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What can happen if a chemist calls . ..

Initial question by Hugh Hillhouse (Purdue, now Univ. of Wash.)

What can mathematicians and physicists tell us about our novel
material, which is in the form of a Double Gyroid? What follows

from its wonderful mathematical structure?

The material can be used in solar cells to make them more
effective (e.g. through multiple excitations)
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Double Gyroid
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The Gyroid

Single Gyroid
e The Gyroid is an embedded CMC surface in R3.

e |t was discovered by Alan Schoen in 1970.
[NASA TN-D5541 (1970)] .

e |n nature it was first observed as an interface for di-block
co-polymers.
[D. A. Hajduk et. al. 1994, M. F. Schulz, et. al 1994]

e It can be embedded.
[K. GroBe—Brauckmann and M. Wohlgemuth 1994].

e A single Gyroid has high symmetry group (/4132 in the
international or Hermann—Mauguin notation). We will need
the translation group / that is bcc.

e Level surface approximation [C. A. Lambert, L. H.
Radzilowski, E. L. Thomas, 1996] (used in many pictures)
Ly :sinxcosy + sinycosz +sinzcosx =t 5 /61
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Double Gyroid
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The Double Gyroid

The Double Gyroid (DG)

e The DG interface actually consists of two mutually
non—intersecting embedded Gyroids.

e The symmetry group is /a3d where the extra symmetry comes
from interchanging the two Gyroids. This is used to identify
the structure in crystallography.

e A level surface model for the double Gyroid is given by L,, and
Ly for0<w <2

Thick surface

The picture was actually a DG. That is a “thick” or “fat” gyroid
surface.
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000®000000

Channels and fat surface

Regions
Let S = S; 11 S, be the DG.
C = R3\ S has three connected components: C,,C_, F

Channels

| \

There are two channel systems C; and C_, each of which can be
deformation retracted to a skeletal graph I'..

Fat surface

There is a third connected component F .

F = FUS is a 3-manifold with two boundary components,
OF=S=5115,.

F can be thought of as a “thickened” (fat) surface. The thickness
is fixed by the parameter w. There is a deformation retract of F
onto a single Gyroid.

N
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The fat surface F
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Double Gyroid
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The two channel systems C,, C_: one cell

Figure: The two channel systems
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Double Gyroid
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The Channel C,

Figure: One channel
12 /61



Double Gyroid
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The Channel C; with its skeletal graph [,
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The skeletal graph I,




Double Gyroid
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Fabrication

Hugh Hillhouse et al., Purdue now Univ. of Washington.

e Semiconductor quantum-wire arrays of PbSe, PbS, and CdSe
have been synthesized via self—assembly.

e The first synthesis step yields a nanoporous silica structure —
the fat surface. The nanopores (channels) are then filled with
a semiconductor and the fat surface is dissolved to yield the
nanowire network.

o After making a DG wire structure a second semiconductor
material may potentially be grown in the void space to yield a
bulk heterojunction semiconductor.

Dimensions and quantum wires
e DG lattice constant: 18nm

e Quantum effects in wire with semi-conductor below 100nm

e Related material graphene has bond length 0.142nm

45 /61




Double Gyroid
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Measurements: Eric Stach, Purdue, now Brookhaven

Nationl. Lab.

FIgU €. (a) Photograph of DG nanoporous silica film on FTO after self-assembly and surfactant extraction. (b)
GISAXS from film showing the high-degree of order and orientation. (c) TEM image of the (111) projection of the
DG nanoporous silica film compared with a simulated TEM image for the DG structure. (d) Quantitatively
accurate structure of the DG nanoporous silica films determined by GISAXS and TEM. (e) High resolution FESEM
image of the cross section of a film. The patterns seen in the structure in panel (d) are easily seen. (f) DG
platinum nanowire array obtained by electrodepositing Pt in the DG nanoporous film followed by etching in HF or
KOH. Periodic y-junctions can be seen in the nanowires extending from top to bottom through the film.



Double Gyroid
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Topology of C, or [',: finite quotients

Since I is a deformation retract, we get the same homotopical
information as for C,.

Quotient by the translational group Z3 c R3

/73 is a cube. The eight vertices are the images of the vertices
VO, - - -, V7.

€6 | A e

el

2y
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Double Gyroid
oe

Topology of C, or [',: finite quotients

Quotient by the full translational symmetry group: bcc

The body centered cubic (bcc) lattice group is generated by
f:=(1,0,0), £ =(0,1,0), f3:=1%(1,1,1). Or

&1 = %(17_171)7 &2 = %(_17171)7 83 = %(1)17_1)

4 :=T4/bcc is a tetrahedron or full square. This is obtained
from the cube by identifying opposite corners

Vo <> Ve, V1 <> V7, Vo <> v and vz <> vs.

B c B es c

a
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C*—geometry

Connes—Bellissard—Harper approach

Replace the geometric setup with a C* algebra % which is the
smallest algebra containing the Hamiltonian and the symmetries.
The standard choice of the Hamiltonian is the Harper Hamiltonian.
This acts on the Hilbert space .7 = ¢?(A) where A are the vertices.

General setup

I C R" a connected embedded graph.
L a (maximal) translational symmetry group of I', s.t.
[ =T/Lis finite. 7:T — T the projection.
A be the set of vertices of ', A the set of vertices of T.
= (free Abelian) subgroup of R" generated by the edge vectors.
Notice L C T.

N,
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Actions

Hilbert space

H = P(N) = Pycp S where 5 = (2(171(V))

| A

Action of L
L acts via translation operators on JZ:

For I € L: Ty(¢)(v) = o(v —1).
This action is by isometries and it maps: 7% — J&.

N

Operations defined by T (it does not act on JZ in general)

T only acts by partial isometries. If € is a directed edge whose
image under 7 is from v to w, then the translation yields an
operator Tz : 9 — . This extends to an operator 7\_5 on
via 'Al'g = iy TzPys where iy : 56, — € is the inclusion and

Py : € — F¢5 is the projection.

20 /61
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Harper Operator

Definition

Let E be the edges of I'. Each directed edge defines a unique
vector € € R". Each edge e defines two directed edges and vectors
€, —€.The Harper Hamiltonian is: A A

H = ZeEE Tg + T—g
If we turn on a constant background magnetic field B (a constant
two form <> skew matrix ©), we use magnetic translations U.
These do not commute in general, so everything becomes a
non-commutative geometry.

HZZU@'-FU_@

ecE
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Physics

Physics background

Use Weyl quantization and Peierls substitution. In the magnetic
case (below) the magnetic translations were introduced by
Wannier. And the magnetic field gives rise to a projective
representation whose commutators include the fluxes of the
magnetic field.

22 /61
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Generalization

Quiver representation

Given a finite graph [, let p/ be a functor from the path groupoid
w1l to separable Hilbert spaces. That is /%, for each v € V(I') and
an isometry Uz : 5%, — £, for each directed edge € from v to w.

v

Harper Hamiltonian

H=Yoceqr) (Us + Uy ) € B(#)

23 /61
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Geometry

Geometry

Picking a base point, we get a rep of m1(T, vp), which generates a
C*-algebra /. Adding in H we get the algebra %,. We get a
non—commutative geometry &/ — %.

| A\

Commutative geometry

In the commutative case we get a family of Hamiltonians from H
over a base T (& ~ C*(T)) and Ay corresponds to the cover X
given by the Eigenvalues. l.e. the C*—geometry describes the cover
X—=T.

24 /61
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Results [KKWK] non-commutative

Expectation

Generically expect that By = Mk(To) ~morita Te. k = F£vertices.

Theorem [KKWK]

This is true for PDG surfaces and the honeycomb and we classified
the locus where 4 is a proper subalgebra. Also at rational B—field
there are only finitely many gaps in the spectrum (Hofstadter's
butterfly).

| \

Commutative case [KKWK]

X is a branched cover of T. For the lattice case T = T" and the
cover is generically unramified. We gave the ramification locus and
branching for PDG and the honeycomb.

25 /61
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Example 1: The Bravais lattice case aka. Z"

o T=L=7"
e Magnetic translations: U; := U,, generate. Relations
UiU; = Ty U;Ui.
o H=73, U+ U;: H € algebra generated by the magnetic

translations. |

The Bellissard-Harper algebra is % = Tg. The non—commutative

n—torus.

26
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Example 2: The Honeycomb lattice aka. Graphene

The honeycomb lattice is a subset of the lattice generated by
—e1 :=(1,0) and &3 := (1, —V/3). Set & = —e1 — &3 = 3(1,V/3).
o L~ 72 generated by f, := er — &1 = 3(— 3f)and
f}, = €3 — €1 = %(3, \/g)
e T is generated by the ¢;

27 /61




Examples
[eeX Yolo)

The Honeycomb lattice Il

The Harper Operator
H = D Hp and Ug, : g — H 4. Fix the magnetic field by
¢ = O(—er1, ), x = e,

~ (0 0 ~ (0 U,
swti= (8 0, o= (0 %)

where U, and U_,, = U;l = U, are the isomorphisms between
J) and HpB.
The Harper Hamiltonian now reads:

3
A N 0 u: + U: + U
H = U, + U 1_ el € €3
Z + ! <U61 + U62 + Ue3 0 >

28 /61
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The Honeycomb lattice IlI

The Matrix Harper Operator

Fixing bases, we obtain the matrix expression:
_ 0 1+ U+ V* 5
H_<1+U+V 0 )GMz(TG)
where we have used the operators U := x U, and V = \Ug which
satisfy UV = qVU with g := e?™% = {5 where 6 = O(f,, f3)

B B
a B

O

A A

Figure: The graph I, a choice of oriented edges and a spanning tree T,
r/r
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The algebra % in the honeycomb case

Theorem
If g # +1 or q= —1 and x* # 1 then Bo = M»(T3) and hence is
Morita equivalent to ’]I‘g.
Ifg=—1and x* =1 orifq=1 and x # £1 then Be is a proper
subalgebra of My(T2) (which we know).

2
Ifg=1 and x = £1 then Bo = C*(X) where X is the double
cover of the torus S x S* ramified at the points (ezﬂ’%, ezﬂ’%) and

(6‘27”%, 627”%).

RENEILS

The two ramification points play a special role in graphene where
they are known as Dirac points.
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Example 3: The Gyroid case

e [ for [| is the bcc lattice spanned by the vectors f; or g;.
e T is the fcc lattice spanned by the edge vectors ey, €5, €.

e In Hilbert space decomposition the Graph Harper Operator H
becomes the 4 x 4 matrix

0 U Up U

y_|u oo Ui Us
v Us 0 U
Us U Uf 0

e Magnetic Field Parameters:

1 1 1
612 o= (g1xg&2),013 o= (g1%g3), 623 o= (g2%xg3)

31/61
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The Gyroid case

The matrix Harper Operator

0 1 1 1 01 1 1
g |1 0 Uil UilsUs 1 0 A B
1 UiUsUy 0 UiUsUs 1 AA 0 C
1 VUV URURU, 0 1 B C* 0

The coefficients can be expressed in terms of the operators of the
magnetic translation operators of the bcc lattice. Set
U:=Ugs,V := U, and W := Ug,.

A=aV*W, B=bWU*, C=cWUV (1)

with a, b, ¢ given explicitly in terms of the magnetic field. A, B, C
span a T3:
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Results for the Gyroid

Theorem

If® #£1 or® =1 and at least one oj # 1 and all ¢; are different
then Bo = My(T%) and K(Bo) = K(T3).

If ;i =1 for all i (commutative case) then K(%eo) = K(X) where
X is a ramified cover of the 3—torus with explicitly given
ramification locus (consisting of four isolated points).

In all other cases Bo & Ma(T3).

Parameters

ay = 2T Gy = @2Tibis oy — @27t

o i 5
g1 =e2"2 gy=e2, g3=e23 & =¢14r¢3

33/61
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Commutative case

Basic questions

@ Classify the points on the base over which the Hamiltonian
has degenerate Eigenvalues and give the multiplicities.

@ If possible identify symmetries, which can correspond to these
Eigenspaces

Answer to Question 1
We answered Question 1 in terms of singularity theory.

Answer to Question 2

We defined a quasi—classical lift of the classical symmetries of T on
the base space. This also gives rise to a representation of a group
extension on CK where k = |A|.
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Questions

Empirical data

In all cases, the degenerate points are the ones one can compute
from the projective action of graph symmetries. There seems to be
no a priori proof however. Not even for the dimension of this locus.

In all cases, the (maximal) dimension of the locus of enhanced
symmetries in the commutative case coincides with the dimension
of the locus of points where %g is not the full matrix algebra.
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New method for analytically finding degeneracies and
Dirac points

e In the commutative case we get a family of Hamiltonians
parameterized over a base torus T".

e Consider det(z Id — H(t)) as smooth function
P:T"xR—R.

e Determine the critical points of P, viz. singularities.

e The singularity is conical/Dirac if P has an isolated critical
point and the signature of the Hessian is (—--- — +)

e Notice we use the embedding of the possibly singular
spectrum P~1(0) into the smooth ambient space T" x R.

36 /61
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New method for analytically finding degeneracies and

Dirac points

Characteristic map

Actually P=1(0) is the pull-back of the miniversal unfolding of the
Ak_1 singularity along the map given by the coefficients of P
considered as a polynomial in z. We call that map the
characteristic map?.

e The characteristic map lets one read off the type of
singularities. They are determined by the image and the fiber.
e Singular points are inverse images of the discriminant locus.

e The type of singularity pulled back to the fiber is given by the
respective stratum of the unfolding which were determined by
Grothendieck.

“There is a rescaling involved if H(t) is not traceless.

37/61
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Details

Characteristic map and pull-back

o H: T — Herm* be a (smooth) family of (traceless)
Hermitian k X k matrices

o P(t) =det(z — H(t)) = zX + ax_2z"2 + - + apz0.

o =: T — CK=2 be the map t + (ax_2,...,a0)

Ck=2 = Map, . is the base of the miniversal unfolding of Ayx_;.

e X := P~1(0), the branched cover given by the spectrum.

e X = =7Y(E) pull-back of the universal cover of the miniversal
unfolding.

e Y swallowtail or discriminant locus. Singularities over fibers
over X given by Grothendieck (delete vertices from Dynkin
diagram ~» stratification).

o Theg := = 1(X) singularity locus. Fibers over =71(X) are
singular. Singularities given by codim of = and Grothendieck
classification. B3 /61
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The spaces
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Results for Examples 2 and 3:

Honeycomb

In the case of B = 0 there are two degenerate points in the
spectrum, which are cone-like/viz. Dirac. These correspond to
enhanced classical symmetries.

| \

Gyroid

In the case of B = 0 there are four degenerate points in the
spectrum. Two of them are triple degeneracies and two of them
are two double degeneracies, the latter are cone-like/viz. Dirac.
These correspond to enhanced classical symmetries.

A
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Gyroid and the As—Discriminant

The eigenvalues of H are given by the roots of the characteristic
polynomial: P(a, b, c,z) = z* — 622 + a1(a, b, c)z + ao(a, b, c)
a; = —2cos(a) — 2 cos(b) — 2cos(c) — 2cos(a+ b+ c)

ag =3 —2cos(a+ b) —2cos(b+ c) —2cos(a+ ¢)

where A — exp(ia), B — exp(ib), C — exp(ic)

al

Figure: Swallowtail and region occupied by Gyroid 2
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Gyroid: As singularity and its strata

e Characteristic region contained in the slice of the A3
singularity with a, = —6, intersects discriminant locus in three
isolated points

e two cusps: in stratum of type A

e double point: in stratum of type (A1, A1)

o fibers over all points are discrete; for A, singularities: one
point each; for (A;, A1): two points each; explains crossings in
spectrum

Theorem [KKWK]

The singular points of X for the Gyroid are given exactly by the
above (analytically). And the four A; singularities are all Dirac
points.

| A\
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The spectrum of the Gyroid Harper Hamiltonian along the

diagonals

3k

Figure: Spectrum of Harper Gyroid Hamiltonian for a=b = ¢
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Local/Global
°

Basic setup

Bundle geometry

e H: T — Herm*. Universal action Hermk x Ck — Ck.
e Trivial vector bundle T x Ck — Ck.

Tqeg be the locus of points s.t. H(t) has multiple Eigenvalues.
TO = T\ Tdeg-

T x Ck<——2Ty x Ck > BF | %

N

T<—"Ty
Need that Eigenvalues are real.

c1(-%;) are the charges corresponding to the Berry phases.
Integral over Berry curvature w [Berry, Simon].

V.
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Local/Global
°

Basic setup

Bundle geometry

e H: T — Hermk. Universal action Herm* x Ck — Ck.

e Trivial vector bundle T x Ck — Ck.

e T4eg be the locus of points s.t. H(t) has multiple Eigenvalues.
To:=T)\ Tdeg -

o TxCk—TyxCk—>Pk ., %

N

T<—"Ty
Need that Eigenvalues are real.

e c1(%;) are the charges corresponding to the Berry phases.
Integral over Berry curvature w [Berry, Simon].

e There are versions for higher degeneracies involving higher
Chern—classes. Not today.

V.
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Chern classes

If T is two—dimensional compact. Then the Chern classes are given
by [+ w. This is what happens in the quantum Hall effect. Here

T = To = T2. Notice that if T = T2 but Tgeg # 0, then all
c1(Z) = 0. This is the case for graphene ~ Dirac points not
topologically protected.

w
o
\

The Chern classes are determined by their pairing with Ha(To, Z).
If T = T3 there is nice method to encode this using slicing.

A\
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Slicing

7t T3 =81 x S x S — S! the i~th projection.

o o(t): T2 =851 x St — T3 = S! x S x St inclusion
(t1, t2) = (t1, t2, t).

o c/(t) == [rut) (L) for t ¢ m3(Taeg)

o For t € m3(Tgeg) set c'(t) := 0. This is also the result of
pulling back the Chern class to T2\ o(t)~1(T98).

e There are of course similar definitions for the other two
inclusions and higher dimensions.

Proposition

If Tgeg is discrete, one can arrange that the c'(t) for all three
projections completely determine the line bundles .Z;. (In fact
slightly less is needed.)

46 /61



Local/Global
00®0000

Chern jumps and local charges

Local charges/jumps

T three dimensional, p isolated point in T4e,. The local charges at
p are c'(p) = f52(p) c1(-Z;) where S?(p) is a little sphere centered
at p.

A local model (Berry, Simons, ...) in 3d for an isolated

2k + 1-dimensional crossing

H(x) :=x-L=xL,+ylL, + zL, where L, , is a k dimensional
representation of spin m.
The local charges are ¢’ € {—m.,..., m}.

47 /61
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Chern jumps and local charges

Local charges/jumps

T three dimensional, p isolated point in T4e,. The local charges at
p are c'(p) = f52(p) c1(-Z;) where S?(p) is a little sphere centered
at p.

A local model (Berry, Simons, ...) in 3d for an isolated
2k + 1-dimensional crossing

H(x) :=x-L=xL,+ylL, + zL, where L, , is a k dimensional
representation of spin m.
The local charges are ¢’ € {—m.,..., m}.

Assume for convenience that 73 is locally bijective at p. By Stokes:
c'(m3(to) +€) — c'(m3 —€) = c'(p)
This implies the jumps are in 27Z.

47 /61
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Questions

Local models

For a double crossing/Dirac point, the above model is the only
model. What are the other local models for higher degeneracies?
Phase diagram?

Global properties

@ Depending on properties of H(t) can one say something
directly about the .Z; or the ¢'?

® How much does this determine them? Examples:
> c'(t) =0 always.
If there is time reversal symmetry c'(t) = —c'(—t).

©® How much does knowing the local models determine the
global structure?

® What is the behavior under perturbations?

48 /61
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Our favorite Example, the Gyroid. Newest results

Local Models

The A; singularities have the spin local model as needed, but also
the A singularities are locally diffeomorphic to the spin 1 case.

Local to global

The local structure of singularities and time reversal symmetry
completely determines the functions c'.

| \

Deformations preserving time reversal symmetry

Numerically, the Dirac points are stable as expected. The As
singularities split into four A; singularities. This is a priori
unexpected. A posteriori it can be explained as the minimal
possible splitting, using the global structure and preserved time
reversal symmetry.

N
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Undeformed case

15 T T
“chemn” u 1:2
‘chern’ u 133 —------
‘chem” u 1:4
“chern” u 15
s
05
ol
05
R e AR | I
15 L
0 01 02 03 04 05 06 07 08 09 1

Figure: Slicing along z numerically, can prove anaytically. Corollary:
Dirac points in Gyroid are stable
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Deformed case

15 T v r . v

0.44 0.46 0.48 05 0.52 0.54 0.56
91/21[

Figure: Slicing along z numerically near the old A,. This breaks up into
four Ay points

51/61



Enhanced Symmetries

Re-gauging symmetries

e The graph I has symmetry group Ss.

e This action lifts as regaugings on the Hamiltonians by
conjugation of matrices.

e The action can be also be lifted to an action on the torus.

e At points with non—trivial stabilizer groups the matrices above
give a projective representation of the stabilizer groups.

e The action of S4 on T3 is fixed once we know the action of
the generators (12),(23) and (34).

e Both actions can be presented and read off graphically.

52 /61



Action of S, on T3

Figure: Calculation of the action of (12) on T3

(A, B, C) — (A*, B*, ACB)

53
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The four degenerate points of the Gyroid

e The point (0,0,0). The re-gaugeing matrices give the usual
representation of S4 on C*, decomposing into the trivial
representation and an irreducible 3-dim rep. This leads to one
three-fold degenerate eigenvalue.

The point (7, 7, 7). The re-gaugeing matrices only give a
projective representation. We can scale by a 1-cocycle and
find again the one-dimensional trivial representation and the
3-dim standard representation.

The points (5, 5, 5) and (37“, 37”, 37”) We have a projective
representation of A4. After scaling by a 1-cocycle, we find a
representation of 2A4 or binary tetrahedral group. This leads

to two eigenvalues with degeneracy 2 (two 2—dim irreps).

Symmetries at the degenerate points

54 /61



The other two cases: P and D

There are only three (families) of triply periodic minimal surfaces
whose complements are given by symmetric and self-dual graphs
(1) the P or primitive or cubic surface, (2) the D or diamond
surface and (3) the G or gyroid surface.

Figure: One channel of the P surface and of the diamond surface and
their skeletal graph. The red and green dots refer to the vertices of the

two interlaced fcc lattices
55 /61



The quotient graphs of the surfaces

P D G

Figure: The quotient graphs for the cubic, diamond and gyroid lattices
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Results on P and D

P surface

This is just the case of Z3. %o = T3e. There is only one
Eigenvalue and hence no degeneracies for B = 0.

| A

D surface

The locus where the Hg is not the full matrix algebra is given by
three one dimensional families — again parameterized by the
magnetic field parameters. And several special points
corresponding to bosonic and fermionic cases.

The locus of degenerate Eigenvalues in the case B = 0 is given by
three circles which pairwise touch at a point given by the equations
¢i =, ¢j = ¢k + ™ mod 2m with {i,j, k} ={1,2,3}.

v
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Summary

® Gave mathematical setup for new material.

@® Constructed Bellissard—Harper algebra in general (physical)
lattice/graph setting.

© Proved that it embeds into a matrix algebra of a
noncommutative torus.

O Gave a range of trace argument to show that in the rational
case there are only finitely many gaps.

©® Gave the commutative geometry when there is no magnetic
field as a ramified cover of a torus.

@ Classified the Bellissard—Harper algebras in the case of a
Bravais lattice, the honeycomb lattice and the PDG skeletal
graphs.

@ ldentified points with degenerate Eigenvalues in PDG cases

® Showed that degeneracies can be explained by a new
semi—classical symmetry.
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@ Look at spectrum of H with impurities. Pretty much done
numerically. Answer: Dirac points stable.

® Classify level crossing in the spectrum in terms of first Chern
classes. Global/local.

© Define the corresponding quantities (analogs of Hall
conductance etc) in non-commutative geometry and give an
algebraic/analytic proof of stability.

©® Find a theory for the c/nc duality if it exists.
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The end

Thank you!
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Figure:

Disciminant locus in the A, and Az singularities
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