# Stringy Singularities 

Ralph Kaufmann<br>Purdue University<br>April 23, 2009

(1) Stringy Singularities

Setup
Gauged TFTs and G-Frobenius algebras $G$-Frobenius algebras
(2) Physics background
(3) Singularities with Symmetries
(Re)construction
Singularities
4. Newer developments, Outlook and Conclusion

Newer developments
Summary

## References

(1) R.M. Kaufmann. Singularities with Symmetries, Orbifold Frobenius algebras and Mirror Symmetry. Contemp. Math., 403 (2006), 67-116. math.AG/0312417
(2) R. M. Kaufmann. A Note on the Two Approaches to Stringy Functors for Orbifolds.
Preprint, math.AG/0703209, MPIM 2007-96, 16p.
(3) A. Libgober and R. M. Kaufmann. In preparation.

## Singularities with Symmetries

## General Setup

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a function with an isolated critical point at 0 .

- We also fix $f$ to be quasi-homogenous with $q_{i}$ the degree of $z_{i} . Q=\operatorname{diag}\left(q_{i}\right)$
- $M_{f}:=\mathbb{C}[[\mathbf{z}]] / J_{f}$ where $J_{f}$ is the Jacobian ideal.
- Using the Grothendieck residue pairing this is a Frobenius algebra.


## Singularities with Symmetries

## Symmetries

Now also fix $G \subset G L(n, \mathbb{C})$ finite, such that $\forall g \in G, g^{*}(f)=f$. Let Fix $(g) \subset \mathbb{C}^{n}$ be the fixed point set.

$$
A_{g}:=M_{\left.\left.f\right|_{F \times(\xi)}\right)}, \quad A:=\bigoplus A_{g}
$$

First Goal: Stringy structure
Make $A$ into a $G$-Frobenius algebra (GFA).
The signature structure of a $G$-FA is a $G$-graded multiplication.

$$
A_{g} \otimes A_{h} \rightarrow A_{g h}
$$

Second Goal: Deformations
Give a geometric description of the minversal unfolding. Noncommutative structure.

## Singularities with Symmetries

## Examples

- $A_{n}$ singularity. $f=z^{n+1}, G=\mathbb{Z} /(n+1) / Z$. Action $z \mapsto \zeta_{n+1} \cdot \zeta_{n}=e^{2 \pi i /(n+1)}$
- Quintic. $f=x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}, G=(\mathbb{Z} / 5 \mathbb{Z})^{\times 5}$, or $H$ diagonal $\mathbb{Z} / 5 \mathbb{Z}$
- Symmetric products. $f\left(\mathbf{x}_{1}\right)+f\left(\mathbf{x}_{2}\right)+\ldots f\left(\mathbf{x}_{n}\right) G=\Sigma_{n}$.


## G-Frobenius algebras, long definition

## Definition

A G-Frobenius algebra is $<G, A, \circ, 1, \eta, \varphi, \chi>$, where
$G$ finite group
A finite dim G-graded $k$-vector space $A=\oplus_{g \in G} A_{g}{ }^{1}$

- a multiplication on $A$ which respects the grading:

○ : $A_{g} \otimes A_{h} \rightarrow A_{g h}$
1 a fixed element in $A_{e}$-the unit
$\eta$ non-degenerate bilinear form which respects the $G$ grading i.e. $\left.\eta\right|_{A_{g} \otimes A_{h}}=0$ unless $g h=e$.
$\varphi$ an action of $G$ on $A$ (which will be by algebra automorphisms),
$\varphi \in \operatorname{Hom}(G, \operatorname{Aut}(A))$, s.t. $\varphi_{g}\left(A_{h}\right) \subset A_{g h g-1}$
$\chi \quad$ a character $\chi \in \operatorname{Hom}\left(G, k^{*}\right)$
${ }^{1} A_{e}$ is called the untwisted sector and the $A_{g}$ for $g \neq e$ are called the twisted sectors.

## Axioms for a G Frobenius Algebra

a) Associativity $\left(a_{g} \circ a_{h}\right) \circ a_{k}=a_{g} \circ\left(a_{h} \circ a_{k}\right)$
b) Twisted commutativity $a_{g} \circ a_{h}=\varphi_{g}\left(a_{h}\right) \circ a_{g}$
c) $G$ Invariant Unit: $1 \circ a_{g}=a_{g} \circ 1=a_{g}$ and $\varphi_{g}(1)=1$
d) Invariance of the metric: $\eta\left(a_{g}, a_{h} \circ a_{k}\right)=\eta\left(a_{g} \circ a_{h}, a_{k}\right)$
i) Projective self-invariance of the twisted sectors

$$
\varphi_{g} \mid A_{g}=\chi_{g}^{-1} i d
$$

ii) G-Invariance of the multiplication

$$
\varphi_{k}\left(a_{g} \circ a_{h}\right)=\varphi_{k}\left(a_{g}\right) \circ \varphi_{k}\left(a_{h}\right)
$$

iii) Projective $G$-invariance of the metric $\varphi_{g}^{*}(\eta)=\chi_{g}^{-2} \eta$
iv) Projective trace axiom $\forall c \in A_{[g, h]}$ and $I_{c}$ left multiplication by $c: \chi_{h} \operatorname{Tr}\left(\left.I_{c} \varphi_{h}\right|_{A_{g}}\right)=\chi_{g^{-1}} \operatorname{Tr}\left(\left.\varphi_{g^{-1}} I_{c}\right|_{A_{h}}\right)$

## Gauged TFTs and G-Frobenius algebras

Theorem (Turaev, K)
Topological Field Theories with a finite gauge group $G$ as thought of as projective functors from the rigidified cobordism category of $G$-bundles to vector spaces are in 1-1 correspondence with G-Frobenius algebras.

## Remark

We will need the version $[\mathrm{K}]$ which includes a twist by a character $\chi$ of $G$.

## G-Frobenius algebras (short definition)

## Theorem

A G-Frobenius algebra $A$ is precisely a unital, associative, commutative algebra object in $D(k[G])$-Mod together with a metric $\eta$ which additionally satisfies
(S) $\rho\left(v^{-1}\right)=\chi^{-1}$ for a character $\chi \in \operatorname{Hom}\left(G, k^{*}\right)$
(T) $\forall c \in A_{[g, h]}$ and $I_{c}$ left multiplication by $c$ :

$$
\chi_{h} \operatorname{Tr}\left(\left.I_{c} \varphi_{h}\right|_{A_{g}}\right)=\chi_{g^{-1}} \operatorname{Tr}\left(\left.\varphi_{g^{-1}} I_{c}\right|_{A_{h}}\right)
$$

Here $D(k[G])$ is a quasi-triangular quasi-Hopf algebra and $v$ is the element such that $S^{2}(u)=v u v^{-1}$.

## Remark

We can also treat just Frobenius algebra objects in the category and use $\tau(\phi, g):=\epsilon\left(\mu(\phi \otimes i d) \Delta\left(\left.v\left(1_{k}\right)\right|_{g}\right)\right)$ where $\Delta\left(\left.v\left(1_{k}\right)\right|_{g}\right)$ is the bi-degree $\left(g, g^{-1}\right)$ part of $\Delta\left(v\left(1_{k}\right)\right)$ for the trace.

## The twisted Drinfel'd double

## Definition

For a finite group $G$ and an element $\beta \in Z^{3}\left(G, k^{*}\right)$, the twisted Drinfel'd double $D^{\beta}(k[G])$ is the quasi-triangular quasi-Hopf algebra whose
(1) underlying vector space has the basis $g_{\dot{X}}$ with $x, g \in G$ $D^{\beta}(k[G])=\bigoplus k g_{\dot{x}}$
(2) algebra structure is given by $g_{\dot{x}} h_{\bar{y}}=\delta_{g, x h x-1} \theta_{g}(x, y) g_{x y}^{L}$ where $\theta_{g}(x, y)=\frac{\beta(g, x, y) \beta\left(x, y,(x y)^{-1} g(x y)\right)}{\beta\left(x, x^{-1} g x, y\right)}$
(3) the co-algebra structure is given by

$$
\begin{aligned}
& \Delta\left(g_{\llcorner }\right)=\sum_{g_{1} g_{2}=g} \gamma_{x}\left(g_{1}, g_{2}\right) g_{1\llcorner } \otimes g_{2}\llcorner\text { where } \\
& \gamma_{x}\left(g_{1}, g_{2}\right)=\frac{\beta\left(g_{1}, g_{2}, x\right) \beta(x)\left(x, x^{-1} g_{1} x, x^{-1} g_{2} x\right)}{\beta\left(g_{1}, x, x^{-1} g_{2} x\right)}
\end{aligned}
$$

## The twisted Drinfel'd double

(4) The Drinfel'd associator $\Phi$ is given by

$$
\Phi=\sum_{g, h, k \in G} \beta(g, h, k)^{-1} g_{\stackrel{L}{e}} \otimes h_{\stackrel{L}{L}} \otimes k_{\stackrel{e}{e}}
$$

(5) The $R$ matrix is given by

$$
R=\sum_{g \in G} g_{\llcorner }^{\llcorner } \otimes \mathbf{1}_{\stackrel{g}{\llcorner }}, \text { where } \mathbf{1}_{\stackrel{L}{L}}=\sum_{h \in G} h_{\stackrel{g}{L}}
$$

(6) The antipode $S$ is given by

$$
S\left(g_{\llcorner }\right)=\frac{1}{\theta_{g^{-1}}\left(x, x^{-1}\right) \gamma_{x}\left(g, g^{-1}\right)} x^{-1} g x\left\llcorner_{x^{-1}}\right.
$$

## Remark

This is good for gerbe twisting

## Remark: Gerbe twisting

## Theorem

There are universal gerbe twistings for the TFT with finite gauge group which can be understood as follows.
$0-G e r b e s ~ t w i s t i n g ~ b y ~ a ~ c h a r a c t e r ~ \chi ~$
1-Gerbes twisting by discrete torsion
2-Gerbes twisting on the the inertia

## Example

For $\beta$ a 2-gerbe on the stack $[p t / G]$
$K_{\text {JKKfull }}^{\beta}([p t / G]) \simeq \operatorname{Rep}\left(D^{\beta}(k[G])\right)$

## Physics background

## $(2,2)$ super-conformal field theory I

- $N=2$ super-conformal symmetry for both the left and the right movers. This implies that there are four finite rings which are closed under the operator product.
- $(c, c),(a, c),(a, a)$ and $(c, a)$.
- Certain constraints for their eigenvalues with respect to the operators $J_{0}, \bar{J}_{0}, L_{0}, \bar{L}_{0}$ of the two $N=2$ super-conformal algebras, which are usually called $q, \bar{q}, h$ and $\bar{h}$, respectively.
- It turns out the rings $(a, a)$ and $(c, a)$ can be recovered from $(c, c)$ and $(a, c)$ by charge conjugation.


## Physics background

## $(2,2)$ super-conformal field theory II

- $|\phi\rangle$ is left chiral if $G_{-1 / 2}^{+}|\phi\rangle=0$ or equivalently $h=\frac{q}{2}$. It is called left anti-chiral if $G_{-1 / 2}^{-}|\phi\rangle=0$ or equivalently $h=-\frac{q}{2}$. Right chiral means that $\bar{G}_{-1 / 2}^{+}|\phi\rangle=0$ or equivalently $\bar{h}=\frac{\bar{q}}{2}$, and finally right anti-chiral means that $\bar{G}_{1 / 2}^{-}|\phi\rangle=0$ or equivalently $\bar{h}=-\frac{\bar{q}}{2}$.
- Thus one confines oneself to study the former two rings. Mirror symmetry as it was originally conceived in physics was an operation which takes one conformal field theory $T$ and produces another conformal field theory $\check{T}$ such that the ( $c, c$ ) ring of $T$ is isomorphic to the $(a, c)$-ring of $\check{T}$ and vice versa.


## More Physics

## Landau-Ginzburg Theory

$N=2$ theory which is the conformally invariant fixed point of the Lagrangian
$\mathcal{L}=\int K(X, \bar{X}) d^{2} z d^{4} \theta+\int\left(f\left(z_{i}\right)+\right.$ complex conjugate $) d^{2} z d^{2} \theta$,
where $f$ is a quasi-homogeneous function of fractional degree $q_{i}$ for $z_{i}$. This model leads to a trivial ( $a, c$ )-ring and a $(c, c)$-ring which is given by $\mathbb{C}[\mathbf{z}] / J_{f}$ where $J_{f}=\left(f_{z_{i}}\right)$ is the Jacobian ideal. Moreover, the bi-degree $(q, \bar{q})$ for $z_{i}$ is given by $\left(q_{i}, q_{i}\right)$.
( $c, c$ )-ring is the Milnor ring of the singularity.
(a, c)-ring is trivial. (B-Model)

## Mathematical model

## Mathematical model

In [1] we defined a mathematical model for an orbifold
Landau-Ginzburg theory for a singularity $f$ with symmetry group $G$. It has an $(a, c)$ and a $(c, c)$ ring which will be denoted $G M_{f}$ and $\left(G M_{f}\right)^{\vee}$. Both of these rings have a bi-grading.

## Duality Spectral Flow

The motivation for the dual bi-grading again comes from the physical interpretation of $G M_{f}$ in orbifold Landau-Ginzburg theory and the dualization being implemented by the spectral flow operator $\mathcal{U}_{(1,0)}[\mathrm{IV}]$ which has the natural charge $\left(d=\hat{c}=\frac{c}{3}, 0\right)$.

## Mirror Symmetry

## Mirror pairs

We will in certain situations produce mirror pairs who will have interchanged $(a, c)$ and $(c, c)$ rings. This includes the ADE and $B, F$ cases which are mirror-self dual.

## Remark

This means the mirror dual model can be called a "Landau-Ginzburg A-model". Following suggestions of Witten:
Fan, Jarvis and Ruan constructed a version of an A-model for special types of Landau-Ginzburg potential. The state space they use is the above ( $a, c$ ) ring of the corresponding LG orbifold model.

## Special GFAs and construction of GFA

The stringy multiplication problem
Given a $D(k[G])$ module $A=\bigoplus_{g \in G} A_{g}$ which satisfies (S) for $\chi$ together with
(1) A Frobenius algebra structure on each $A_{g}$
(2) Isomorphisms $A_{g} \simeq A_{g^{-1}}$
(3) An (cyclic) $A_{e}$ module structure on each $A_{g}$
find the possible $G$-Frobenius algebra structures on $A$

## Definition

A GFA A is special if each twisted sector is a cyclic module over the untwisted sector.

## (Re)construction: algebraic solution

Theorem (K02)
$A:=\bigoplus_{g \in G} A_{g}$ as above, up to an isomorphism of Frobenius algebras on the $A_{g}$, then the structures of super G-Frobenius algebra on $A$ are in 1-1 correspondence with triples $(\sim, \gamma, \varphi)$.

- The function $\sim$ is just a super-sign which determines if $1_{g}$ is even or odd.
- $\gamma$ is a G-graded, section-independent cocycle compatible with the metric satisfying the condition of supergrading with respect to the natural $G$ action
- $\varphi$ is a non-Abelian two cocycle with values in $k^{*}$ which satisfies the condition of discrete torsion with respect to $\sigma$ and the natural $G$ action, such that $(\gamma, \varphi)$ is a compatible pair.
- The cocycle $\gamma$ is a special type of $A_{e}$ valued group 2-cocycle


## Remarks

(1) $\gamma$ defines multiplication on the cyclic generators via

$$
1_{g} \circ 1_{h}:=\gamma(g, h) 1_{g h}
$$

the extra conditions ensure that the extension of this multiplication using the cyclic $A_{e}$-module structures is well defined.
(2) $\varphi$ gives the $G$-action on the generators

$$
\rho(g)\left(1_{h}\right)=\varphi(g, h) 1_{g h g^{-1}}
$$

(3) In the singularity case we will alternatively use

$$
\begin{equation*}
\sigma(g):=\tilde{g}+\left|N_{g}\right| \quad \bmod 2, \tag{1}
\end{equation*}
$$

where $\left|N_{g}\right|:=\operatorname{codim}(\operatorname{Fix}(g))$ in $\mathbb{C}^{n} . \sigma \in \operatorname{Hom}(G, \mathbb{Z} / 2 \mathbb{Z})$
(4) In many cases the equations for the cocycles allow one to find a unique multiplication up to the twist by discrete torsion $\epsilon$.

## Singularities with Symmetries

## General Setup

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a function with an isolated critical point at 0 .

- We also fix $f$ to be quasi-homogenous with $q_{i}$ the degree of $z_{i} . Q=\operatorname{diag}\left(q_{i}\right)$
- $M_{f}:=\mathbb{C}[[z]] / J_{f}$ where $J_{f}$ is the Jacobian ideal.
- Using the Grothendieck residue pairing this is a Frobenius algebra.


## Singularities with Symmetries

## Symmetries

Now also fix $G \subset G L(n, \mathbb{C})$ finite, such that $\forall g \in G, g^{*}(f)=f$. Let Fix $(g) \subset \mathbb{C}^{n}$ be the fixed point set.

- $A_{g}:=M_{\left.f\right|_{F \bar{x}(g)}}$
- $\chi=\operatorname{det}(g)$
- Get data for the Stringy Multiplication Problem.


## Euler

$j:=\exp (2 \pi i Q)$. We call the data $(f, G)$ Euler if $j \in G$. Also $J=\langle j\rangle$.
Notice $J$ is always a symmetry, so we can enlarge $G$ if necessary (quasi-Euler).

## Grading

## Grading Operators

$Q^{(1)}$ inherent grading in the definition of each $A_{g}$. For an element $a_{g} \in A_{g}$ is

$$
\mathcal{Q}\left(a_{g}\right)=Q^{(1)}\left(a_{g}\right)+\frac{1}{2}\left(s^{+}(g)+s^{-}(g)\right) .
$$

## Standard grading shift

For a $G$-Frobenius algebra with a choice of linear representation $\rho: G \rightarrow G L_{n}(k), s_{g}:=\frac{1}{2}\left(s_{g}^{+}+s_{g}^{-}\right)$with $s_{g}^{+}:=d-d_{g}\left(d_{g}\right.$ the degree of co-unit in $A_{g}$ ) and

$$
s_{g}^{-}:=\frac{1}{2 \pi i}\left(\operatorname{tr}(\log (g))-\operatorname{tr}\left(\log \left(g^{-1}\right)\right)\right):=\frac{1}{2 \pi i}\left(\sum_{i} l_{i}(g)-\sum_{i} l_{i}\left(g^{-1}\right)\right)
$$

where the $l_{i}(g)$ are the logarithms of the eigenvalues of $\rho(g)$ using the arguments in $[0,2 \pi)$.

## Bi-grading

## Definition

Set $\bar{s}_{g}:=\frac{1}{2}\left(s_{g}^{+}-s_{g}^{-}\right)$. Since $s_{g}^{+}=s_{g^{-1}}^{+}$and $s_{g}^{-}=-s_{g^{-1}}^{-}$, it follows that $\bar{s}_{g}=s_{g^{-1}}$. We define the bi-grading $(\mathcal{Q}, \overline{\mathcal{Q}})$ by

$$
\mathcal{Q}\left(a_{g}\right):=Q\left(a_{g}\right)+s_{g} \quad \overline{\mathcal{Q}}\left(a_{g}\right):=Q\left(a_{g}\right)+\bar{s}_{g} \quad \text { for } a_{g} \in A_{g}
$$

## Definition

Fix a graded Frobenius algebra $A$ with grading operator $Q$.
We define its ( $c, c$ )-realization $A^{(c, c)}$ to be given by the Frobenius algebra $A$ together with the bi-grading $(Q, Q)$, i.e. $\bar{Q}=Q$. We define the $(a, c)$-realization of $A$ denoted by $A^{(a, c)}$ to be given by the Frobenius algebra $A$ together with the bi-grading $(Q,-Q)$, i.e., $\bar{Q}=-Q$.

## (a,c)-ring $\left(G M_{f}\right)^{\vee}$ via a duality

The dual $k$-module
Given the $G$-Frobenius algebra $G M_{f}$, its dual $G$-graded $k$-module $\left(G M_{f}\right)^{\vee}$ is defined as

$$
\left(G M_{f}\right)^{\vee}=\bigoplus_{g \in G} \check{A}_{g}: \check{A}_{g}=A_{g j^{-1}}=M_{\left.f\right|_{\mathrm{Fix}\left(g j^{-1}\right)}}
$$

where $j$ is the group element defining the exponential of the grading operator $Q$ via $\rho(j)=\exp (2 \pi i Q)$.
The dual $D(k[G])$-module $\left(G M_{f}\right)^{\vee}$
The $G$-module structure is given by pulling back the action and scaling by $\chi$. In the case of a singularity the character $\chi$ is determined by a choice of sign function $\sigma \in \operatorname{Hom}(G, \mathbb{Z} / 2 \mathbb{Z})$ given by $\chi(g)=(-1)^{\sigma(g)} \operatorname{det}(g)$.

## Details on the dual $G$-action

## Pull back twisted action

If we denote the $G$-action on $\check{A}$ by $\check{\varphi}$, then using the $k$-module isomorphism $M: A_{g} \rightarrow A_{g j^{-1}}$

$$
\check{\varphi}(g)\left(\check{a}_{h}\right):=\chi(g) M \varphi(g) M^{-1}\left(\check{a}_{h}\right) \in \check{A}_{h g h-1}, \quad \text { for } \check{a}_{h} \in \check{A}_{g} ;
$$

or if we denote $M(a)=$ : a and fix $\sigma \in \operatorname{Hom}(G, \mathbb{Z} / 2 \mathbb{Z})$, then for $\check{a} \in \check{A}_{h}$

$$
\breve{\varphi}(g)(\breve{a}):=(-1)^{\sigma(g)} \operatorname{det}(g)(\varphi(g)(a)) \in \check{A}_{g h g^{-1}}
$$

## Remark

$$
\text { For } \check{a}_{h}=M\left(a 1_{h j^{-1}}\right) \subset \check{A}_{h}
$$

$$
\begin{gathered}
\check{\varphi}(g)\left(\check{a}_{h}\right)=\check{\varphi}(g) M\left(a 1_{h j^{-1}}\right) \\
=\epsilon\left(g, h j^{-1}\right)(-1)^{\sigma(g)(\sigma(h)+\sigma(j)+1)} \operatorname{det}\left(\left.g\right|_{{ }_{\text {Fix }}\left(h j^{-1}\right)}\right) M\left(a 1_{g h g^{-1} j^{-1}}\right)
\end{gathered}
$$

## The dual bi-grading

New bi-grading
If $A$ was initially graded by the operator $Q^{(1)}$ and
$Q\left(a_{g}\right)=Q^{(1)}\left(a_{g}\right)+s_{g}$, then set $\check{s}_{g}:=s_{g j^{-1}}-d$ and $\bar{s}_{g}:=\bar{s}_{g j^{-1}}$, where we recall that $d$ is the degree of the $G$-Frobenius algebra. We define a bi-grading on $A$ A by

$$
\begin{equation*}
\check{\mathcal{Q}}(\check{a})=Q^{(1)}(a)+\check{s}_{g} \quad \overline{\mathcal{Q}}:=Q^{(1)}(a)+\bar{s}_{g} \quad \text { for } \check{a}_{g} \in \check{A}_{g} . \tag{2}
\end{equation*}
$$

## Remark

An Euler $G$-Frobenius algebra $A=<G, A, \circ, 1, \eta, \varphi, \chi, j>$ naturally gives rise to a triple $\langle A, j, \chi\rangle$ and thus determines a dual $D(k[G])$-module with a non-degenerate pairing and a bi-grading. This transformation is a duality on triples.

## A mirror theorem

## Theorem (K '03)

Let $f$ be one of the simple singularities $A_{n}, D_{n}, E_{6}, E_{7}$ and $E_{8}$ or a Pham singularity with coprime powers, let $J$ be the exponential grading operator and $\Gamma:=\langle j\rangle$ with $\rho(j)=J$.

- There is a projectively unique, maximally non-degenerate, degenerate Г-Frobenius algebra structure of degree $j$ on $\left(\Gamma M_{f}\right)^{\vee}$.
- Moreover the invariants of the Г-Frobenius algebra $\Gamma M_{f}$ are one-dimensional and yield the Frobenius algebra $A_{1}$, while the invariants of the $\left(\Gamma M_{f}\right)^{\vee}$ are isomorphic as a bi-graded Frobenius algebra to $M_{f}^{(a, c)}$.
- In short, the $A, D, E$ singularities are mirror self dual in the sense that $\left(\left(\Gamma M_{g}\right)^{\vee}\right)^{\Gamma}$ is the mirror dual.

| $M_{f}$ | restriction | G | $\sigma$ | $G M_{f}^{G}$ | $\left(\left(G M_{f}\right)^{\vee}\right)^{G}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{n}$ |  | $\mathbb{Z} /(n+1) \mathbb{Z}$ | 0 | $A_{1}$ | $A_{n}$ |
| $A_{2 n-1}$ |  | $\mathbb{Z} /(n+1) \mathbb{Z}$ | 1 | $A_{1}$ | $B_{n}$ |
| $A_{2 n-1}$ |  | $\mathbb{Z} / 2 \mathbb{Z}$ | 0 | $B_{n}$ | $I_{2}(4)$ |
| $A_{2 n-1}$ | $n$ odd for dual | $\mathbb{Z} / 2 \mathbb{Z}$ | 1 | $D_{n+1}$ | $A_{1}$ |
| $A_{2 n-1}$ |  | $\mathbb{Z} / n \mathbb{Z}$ | 0 | $I_{2}(4)$ | $B_{n}$ |
| $D_{n+1}$ |  | $\mathbb{Z} /(2 n \mathbb{Z})$ | 0 | $A_{1}$ | $A_{2 n-1}$ |
| $D_{n+1}$ | $n$ even | $\mathbb{Z} /(2 n \mathbb{Z})$ | 1 | $A_{1}$ | $D_{n+1}$ |
| $D_{n+1}$ | $n$ odd | $\mathbb{Z} / n \mathbb{Z}$ | 0 | $A_{1}$ | $D_{n+1}$ |
| $D_{n+1}$ | $n$ even | $\mathbb{Z} / n \mathbb{Z}$ | 0 | $I_{2}(4)$ | $B_{n}$ |
| $D_{n+1}$ |  | $\mathbb{Z} / 2 \mathbb{Z}$ | 0 | $B_{n}$ | $I_{2}(4)$ |
| $D_{n+1}$ | $n$ odd for dual | $\mathbb{Z} / 2 \mathbb{Z}$ | 1 | $A_{2 n-1}$ | $I_{2}(4)$ |
| $A_{k_{1}-1} \otimes \cdots \otimes A_{k_{n}-1}$ | $k_{i}$ coprime | $\mathbb{Z} / k_{1} \mathbb{Z} \times \ldots \mathbb{Z} / k_{n} \mathbb{Z}$ | 0 | $A_{1}$ | $A_{k_{1}-1} \otimes \cdots \otimes A_{k_{n}-1}$ |
| $E_{6}$ |  | $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ | 0 | $A_{1}$ | $E_{6}$ |
| $E_{7}$ |  | $\mathbb{Z} / 9 \mathbb{Z}$ | 0 | $A_{1}$ | $E_{7}$ |
| $E_{8}$ |  | $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ | 0 | $A_{1}$ | $E_{8}$ |

Table: Since all groups are cyclic, and $\epsilon \equiv 0, \operatorname{Hom}(G, \mathbb{Z} / 2 \mathbb{Z})=e$ or $\operatorname{Hom}(G, \mathbb{Z} / 2 \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z}$ defining, the entry in the column $\sigma$. The conditions for the duals are the conditions to be quasi-Euler.

## Orbifold mirror philosophy

## Philosophy

Let $T$ be a $N=2$ theory (which for us at the moment means Frobenius algebra) and let $H \subset G$ be symmetry groups with $H$ normal in $G$, then
$(T / H)^{H} \simeq\left(\left((T / H)^{H} /(G / H)\right)^{\vee}\right)^{(G / H)}$.
Theorem (Mirror self-duality for $D, B, F)$
The orbifold mirror philosophy produces mirror pairs for the self-dual cases listed in Table 1, with the group $G=\Gamma$ being the group generated by the exponential grading operator and $H=e$. The orbifold mirror philosophy holds for the case of $T=A_{2 n-1}, G=\mathbb{Z} /(2 n \mathbb{Z}), H=\mathbb{Z} / 2 \mathbb{Z}$, with $n$ odd, and the choice of $\sigma=1$ for $\mathbb{Z} /(2 n \mathbb{Z})$ which restricts to $\sigma=1$ for $\mathbb{Z} / 2 \mathbb{Z}$ and $\sigma=0$ for $G / H=\mathbb{Z} / n \mathbb{Z}$.

## Theorem

An extended orbifold mirror philosophy holds for the entries in Table 2 and produces the additional mirror pairs $\left(\left(B_{n}, I_{2}(4)\right),\left(I_{2}(4), B_{n}\right)\right)$ and $\left(\left(F_{4}, I_{2}(4)\right),\left(I_{2}(4), F_{4}\right)\right)$.

| $T$ | G | H | $K=G / H$ | $\binom{(T / H)^{H}}{,\left((T / H)^{\vee}\right)^{H}}$ | $\binom{(T / H) /(K))^{K}}{\left.,\left(((T / H) / K)^{V}\right)^{K}\right)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{2 n-1}$ <br> $n$ odd | $\mathbb{Z} /(2 n \mathbb{Z})$ | $\mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / n \mathbb{Z}$ | $\left(D_{n+1}, A_{1}\right)$ | ( $A_{1}, D_{n+1}$ ) |
| $A_{2 n-1}$ | $\mathbb{Z} /(2 n \mathbb{Z})$ | $\mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / n \mathbb{Z}$ | $\left(B_{n}, l_{2}(4)\right)$ | ( $I_{2}(4), B_{n}$ ) |
| $D_{n+1}$ | $\mathbb{Z} /(2 n \mathbb{Z})$ | $\mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / n \mathbb{Z}$ | $\left(B_{n}, l_{2}(4)\right)$ | $\left(I_{2}(4), B_{n}\right)$ |
| $E_{6}$ | $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ | $e \times \mathbb{Z} / 2 \mathbb{Z}$ | $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ | ( $F_{4}, l_{2}(4)$ ) | $\left(I_{2}(4), F_{4}\right)$ |

Table: Mirror pairs from orbifold mirror philosophy

## The case $E_{7}$

Recall that for $E_{7}: x^{3}+x y^{3}$, we have the following degrees $q_{1}=q_{x}=\frac{1}{3}, q_{2}=q_{y}=\frac{2}{9}, d=\frac{8}{9}$.
Fix $\zeta_{9}:=\exp \left(2 \pi i \frac{1}{9}\right)$, then the $E_{7}$ singularity has the exponential grading operator $J=\exp (2 \pi i Q)$

$$
J=\left(\begin{array}{cc}
\zeta_{9}^{3} & 0 \\
0 & \zeta_{9}^{2}
\end{array}\right)
$$

This operator generates a subgroup $\langle J\rangle \subset G L(n, \mathbb{C})$, which is isomorphic to $\mathbb{Z} / 9 \mathbb{Z}$. We fix a generator $j$ of $\mathbb{Z} / 9 \mathbb{Z}$ and regard the representation $\rho: \mathbb{Z} / 9 \mathbb{Z} \rightarrow G L(n, \mathbb{C})$ as given by $\rho(j)=J$.
This is also the maximal symmetry group $G_{\max }=\langle\Lambda\rangle$

$$
\Lambda=\left(\begin{array}{cc}
\zeta_{9}^{3} & 0 \\
0 & \zeta_{9}^{-1}
\end{array}\right)
$$

and $J=\Lambda^{7}$.

## The $\mathbb{Z} / 9 \mathbb{Z}$-graded $k$-module $(\mathbb{Z} / 9 \mathbb{Z}) M_{f}$

The representation is given by $\rho\left(j^{i}\right)=\left(\begin{array}{cc}\zeta_{9}^{3 i} & 0 \\ 0 & \zeta_{9}^{2 i}\end{array}\right)$.

| $g \in \mathbb{Z} / 9 \mathbb{Z}$ | $f_{g}$ | $M_{f_{g}}$ | $d_{g}$ | $\nu_{1}(g)$ | $\nu_{2}(g)$ | $s_{g}^{+}$ | $s_{g}^{-}$ | $s_{g}$ | $\bar{s}_{g}$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $e=j^{0}$ | $x^{3}+x y^{3}$ | $E_{7}$ | $\frac{8}{9}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $j^{1}$ | 0 | $A_{1}$ | 0 | $\frac{1}{3}$ | $\frac{2}{9}$ | $\frac{8}{9}$ | $-\frac{8}{9}$ | 0 | $\frac{8}{9}$ |
| $j^{2}$ | 0 | $A_{1}$ | 0 | $\frac{2}{3}$ | $\frac{4}{9}$ | $\frac{8}{9}$ | $\frac{2}{9}$ | $\frac{5}{9}$ | $\frac{1}{3}$ |
| $j^{3}$ | $x^{3}$ | $A_{2}$ | $\frac{1}{3}$ | 0 | $\frac{2}{3}$ | $\frac{5}{9}$ | $\frac{1}{3}$ | $\frac{4}{9}$ | $\frac{1}{9}$ |
| $j^{4}$ | 0 | $A_{1}$ | 0 | $\frac{1}{3}$ | $\frac{8}{9}$ | $\frac{8}{9}$ | $\frac{4}{9}$ | $\frac{2}{3}$ | $\frac{2}{9}$ |
| $j^{5}$ | 0 | $A_{1}$ | 0 | $\frac{2}{3}$ | $\frac{1}{9}$ | $\frac{8}{9}$ | $-\frac{4}{9}$ | $\frac{2}{9}$ | $\frac{2}{3}$ |
| $j^{6}$ | $x^{3}$ | $A_{2}$ | $\frac{1}{3}$ | 0 | $\frac{1}{3}$ | $\frac{5}{9}$ | $-\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{4}{3}$ |
| $j^{7}$ | 0 | $A_{1}$ | 0 | $\frac{1}{3}$ | $\frac{5}{3}$ | $\frac{8}{9}$ | $-\frac{2}{9}$ | $\frac{1}{2}$ | $\frac{5}{9}$ |
| $j^{8}$ | 0 | $A_{1}$ | 0 | $\frac{2}{3}$ | $\frac{9}{9}$ | $\frac{8}{9}$ | $\frac{8}{9}$ | $\frac{8}{9}$ | 0 |

Lemma
The elements of bi-degree $(q, q)$ of $(\mathbb{Z} / 9 \mathbb{Z}) E_{7}$ are exactly the elements in the untwisted sector $A_{e}$.

## The $G$-action

For $\mathbb{Z} / 9 \mathbb{Z}$ we have $\epsilon \equiv 1$ and $\sigma \equiv 0$, so the $G$-action is given by

$$
\varphi_{j^{i}, j^{k}}= \begin{cases}1 & \text { if } k=0 \\ \zeta_{9}^{-2 i} & \text { if } k \in\{3,6\} \\ \zeta_{9}^{-5 i} & \text { else }\end{cases}
$$

and the character is

$$
\chi\left(j^{i}\right)=\zeta_{9}^{5 i} .
$$

## Lemma

The $\mathbb{Z} / 9 \mathbb{Z}$-invariants of the only compatible $D(k[\mathbb{Z} / 9 \mathbb{Z}])$-module structure are given by the unit $1_{e}$.

## The dual bi-grading

The dual grading is given by

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\check{s}_{j i}$ | 0 | $-\frac{8}{9}$ | $-\frac{8}{9}$ | $-\frac{1}{3}$ | $-\frac{4}{9}$ | $-\frac{2}{9}$ | $-\frac{2}{3}$ | $-\frac{7}{9}$ | $-\frac{5}{9}$ |
| $\breve{\breve{s}}_{j i}$ | 0 | 0 | $\frac{8}{9}$ | $\frac{1}{3}$ | $\frac{1}{9}$ | $\frac{2}{9}$ | $\frac{2}{3}$ | $\frac{4}{9}$ | $\frac{5}{9}$ |

The elements of bi-degree $(-q, q)$ are

$$
\left\langle\check{1}_{e}, y^{2} \check{1}_{j}, \check{1}_{j^{2}}, \check{1}_{j^{3}}, \check{1}_{j^{5}}, \check{1}_{j^{6}}, \check{1}_{j^{8}}\right\rangle .
$$

## The dual $\mathbb{Z} / 9 \mathbb{Z}$-action

The dual $\mathbb{Z} / 9 \mathbb{Z}$-action is given by

$$
\check{\varphi}_{j^{i}, j} k= \begin{cases}\zeta_{9}^{5 i} & \text { if } k=1 \\ \zeta_{9}^{3 i} & \text { if } k \in\{4,7\} \\ 0 & \text { else } .\end{cases}
$$

## Lemma

The $\mathbb{Z} / 9 \mathbb{Z}$-invariants of the dual $\left((\mathbb{Z} / 9 \mathbb{Z}) E_{7}\right)^{\vee}$ are given by $\left\langle\check{1}_{e}, y^{2} \check{1}_{j}, \check{1}_{j^{2}}, \check{1}_{j^{3}}, \check{1}_{j^{5}}, \check{1}_{j^{6}}, \check{1}_{j^{8}}\right\rangle$; they are all of diagonal bi-degree, and their degrees are
$(0,0),\left(-\frac{4}{9}, \frac{4}{9}\right),\left(\frac{-8}{9}, \frac{8}{9}\right),\left(-\frac{1}{3}, \frac{1}{3}\right),\left(-\frac{2}{9}, \frac{2}{9}\right),\left(-\frac{2}{3}, \frac{2}{3}\right),\left(-\frac{5}{9}, \frac{5}{9}\right)$. The pairing, the bi-grading, and the group grading are the same as those of the anti-chiral realization of $E_{7}$ under the association $\check{1}_{e} \mapsto 1, \check{1}_{j} \mapsto y^{2}, \check{1}_{j^{2}} \mapsto x^{2} y, \check{1}_{j 3} \mapsto x, \check{1}_{j 5} \mapsto y, \check{1}_{j 6} \mapsto x^{2}, \check{1}_{j 8} \mapsto x y$, so that $E_{7}$ is self dual.

## The duality

By inspecting the grading and group grading we have

## Proposition

There is a unique maximally degenerate G-Frobenius structure of charge $j$ on $\left((\mathbb{Z} / 9 \mathbb{Z}) E_{7}\right)^{\vee}$ whose invariants form the (a, c)-realization of $E_{7}$. Hence $\left(\left((\mathbb{Z} / 9 \mathbb{Z}) E_{7}\right)^{\vee}\right)^{\mathbb{Z} / 9 \mathbb{Z}}$ is the mirror dual to $E_{7}$.

## Newer developments I: Results from [K'07]

Special actually not so special:
We showed that the co-cycle formalism applies in other cases as well. One example is the deRham case. Furthermore we showed we gave a trivialization of the co-cycles using the JKK orbifold K-theory description of the obstruction bundle. [K '07].

Application to singularities
This works for singularities as well. Get a geometric solution. We have a theory of Chern classes for the obstruction bundles. This defines a geometric multiplication (see [K '07]).

## Newer developments II - Work with A. Libgober.

A first test in our LG/CY-correspondence
Orbifold Euler characteristic and super trace agree.
Extending to deformations
We use an orbifold version of the Milnor fibration to get an orbifold version Saito theory. Classical theory by Dubrovin, Manin, Hertling, Givental, Barannikov, Sabbah, ...

## Theorems/Conjectures

## Theorem

There is a canonical multiplication $M_{f_{m_{1}}} \otimes M_{f_{m_{2}}} \rightarrow M_{f_{m_{1} m_{2}}}$. Moreover there is even the structure of a G-Frobenius algebra on $G M_{f}$.

## Claim

Given a pair $(f, G)$ as above there is a theory of a miniversal unfolding of this pair which gives rise to a pointed G-Frobenius manifold whose fiber over the special point is the G-Frobenius algebra of the previous conjecture.

## Summary: older results ('03)

- Good algebraic theory for orbifold LG-models. $(a, c)$ ring $\left.\left(G_{A b} M_{f}\right)^{\vee}\right)^{G_{A b}}$ is used by [FJR] as state space. $G_{A b}$ is a maximal Abelian subgroup dictated by the form of the polynomial.
- Mirror symmetry on the level of $D(k[G])$ modules with bi-grading.
- Stringy multiplication reduces to an algebraic co-cycle problem.
- Solved in many cases. Highly non-trivial e.g. $E_{7}$ case
- A and B models for $\mathrm{ADE}, \mathrm{BF}$ models including mirror self-duality.


## Summary: newer results ('07) and in progress

- Geometrically defined multiplication for orbifold Landau-Ginzburg models. ('07)
- Work in progress will extend to Frobenius manifolds.
- Can also twist by gerbes and discrete torsion.


## The End

## Thank you!

