A local estimate from Radon transform and stability of Inverse EIT with partial data

Alberto Ruiz

Universidad Autónoma de Madrid

U. California, Irvine. June 2012

w/ P. Caro (U. Helsinki) and D. Dos Santos Ferreira (Paris 13)
The purpose of this talk is to address the following points

- To prove a local control of the L^p norm of a function by its local Radon transform.

- To apply the above to prove stability for Calderón Inverse problem in two partial data contexts in which uniqueness holds true.
 (1) Bukhgeim and Uhlmann (Recovering a potential from partial Cauchy data 2002)(semiglobal)
 (2) Kenig, Sjöstrand and Uhlmann (The Calderón Problem for partial data 2007)
Description of Partial data:
Calderón inverse problem.
Let u be the solution of the Dirichlet BVP
\[
\begin{cases}
\nabla \cdot (\gamma \nabla u) = 0 & \text{in } \Omega \\
u|_{\partial \Omega} = f & \in H^\frac{1}{2}(\partial \Omega)
\end{cases}
\] (0.1)

γ is a positive function of class C^2 on $\bar{\Omega}$.
The Dirichlet-to-Neumann map:
\[
\Lambda_f = \gamma \partial_\nu u|_{\partial \Omega},
\]
where ∂_ν denotes the exterior normal derivative of u.
Partial data: We assume $F, G \subset \partial \Omega$. Data restricted to f’s so that $\text{supp } f \subset B$ and measurements $\partial_\nu u$ restricted to F.
After standard reduction to Schrödinger equation: $(-\Delta + q)v = 0$.
Assume q_1, q_2 be two bounded potentials on Ω, suppose that 0 is neither a Dirichlet eigenvalue of the Schrödinger operator $-\Delta + q_1$ nor of $-\Delta + q_2$. Given a direction $\xi \in \mathbb{S}^{n-1}$.

Consider the ξ-illuminated boundary

$$\partial \Omega_-(\xi) = \{x \in \partial \Omega : \xi \cdot \nu(x) \leq 0\}$$

and the ξ-shadowed boundary

$$\partial \Omega_+(\xi) = \{x \in \partial \Omega : \xi \cdot \nu(x) \geq 0\}.$$

\tilde{F}, \tilde{B} two open neighborhoods in $\tilde{\Omega}$, respectively of the sets $\partial \Omega_-(\xi)$ and $\partial \Omega_+(\xi)$.

If the two Dirichlet-to-Neumann maps with Dirichlet data $f \in H^{1/2}(\partial \Omega)$ supported in \tilde{B} coincide on \tilde{F}

$$\Lambda_{q_1}f(x) = \Lambda_{q_2}f(x), \quad x \in \tilde{F}$$

then the two potentials agree $q_1 = q_2$.
In this case consider x_0 out of Convex hull of Ω. The x_0-illuminated boundary

$$\partial \Omega_-(x_0) = \{x \in \partial \Omega : (x - x_0) \cdot \nu(x) \leq 0\}$$

and the x_0-shadowed boundary

$$\partial \Omega_+(x_0) = \{x \in \partial \Omega : (x - x_0) \cdot \nu(x) \geq 0\}.$$

\tilde{F}, \tilde{B} two open neighborhoods in $\partial \Omega$, respectively of the sets $\partial \Omega_-(\xi)$ and $\partial \Omega_+(\xi)$. If the two Dirichlet-to-Neumann maps with Dirichlet data $f \in H^{1/2}(\partial \Omega)$ supported in \tilde{B} coincide on \tilde{F}

$$\Lambda_{q_1} f(x) = \Lambda_{q_2} f(x), \quad x \in \tilde{F}$$

then the two potentials agree $q_1 = q_2$.
Previous results. Stability for partial data

- L. Tzou (2008) (extends to the magnetic case, without the support constrain on Dirichlet data)
Previous results. Stability for partial data

 L. Tzou (2008) (extends to the magnetic case, without the support constrain on Dirichlet data)

- KSU case
 Nachman and Street (2010) (Reconstruction of Radon-like integrals of the potential)
Our results: Stability in BU partial data

Theorem

Let Ω be a bounded open set in \mathbb{R}^n, $n \geq 3$ with smooth boundary. Assume given an open set N in S^{n-1} and consider two open neighbourhoods F, B respectively of the front and back sets $\Omega_-(\xi)$ and $\Omega_+(\xi)$ of $\partial \Omega$ for any $\xi \in N$. Let q_1, q_2 be two allowable potentials on Ω, suppose that 0 is neither a Dirichlet eigenvalue of the Schrödinger operator $-\Delta + q_1$ nor of $-\Delta + q_2$, then

$$\|q_1 - q_2\|_{L^p} \leq C \left(\log \left| \log \| \Lambda_{q_1} - \Lambda_{q_2} \|_{B \rightarrow F} \right| \right)^{-\lambda/2}$$

Remarks: The norm $\| \Lambda_{q_1} - \Lambda_{q_2} \|_{B \rightarrow F}$ (Nachman-Street)
The allowable potentials: $L^\infty \cap W^{\lambda,p}$
Theorem

Let Ω be a bounded open set in \mathbb{R}^n, $n \geq 3$ with smooth boundary. Assume given an open set N in \mathbb{R}^3 and consider two open neighbourhoods F, B respectively of the front and back sets $\Omega - (x_0)$ and $\Omega + (x_0)$ of $\partial \Omega$ for any $x_0 \in N$. Let q_1, q_2 be two allowable potentials on Ω, suppose that 0 is neither a Dirichlet eigenvalue of the Schrödinger operator $-\Delta + q_1$ nor of $-\Delta + q_2$, then

$$\|q_1 - q_2\|_{L^p(G)} \leq C \left(\log \left| \log \|\Lambda_{q_1} - \Lambda_{q_2}\|_{B \rightarrow F} \right| \right)^{-\lambda/2} \quad (0.3)$$

where G is an open neighborhood in \mathbb{R}^3 of the penumbra region $F \cap B$

Remarks: The norm $\|\Lambda_{q_1} - \Lambda_{q_2}\|_{B \rightarrow F}$

(After F. J. Chung, A Partial Data Result for the Magnetic Schrödinger Inverse Problem. Norm $H^{1/2}(\partial \Omega) \rightarrow H^{-1/2}(\partial \Omega)$)
Steps in the proof

Step 1 Stability from DtoN map to partial Radon transform.

Step 2 Stability from partial Radon transform to potential
Second step: from limited angle-distance Radon data → local values of the function

Quantitative Helgason-Holmgren Theorem:

Limited data:

- **Distance**

 $I = \{ s \in \mathbb{R} : |s| < \alpha \}$ \hspace{1cm} (0.4)

- **Angle** ($\omega_0 \in S^{n-1}$)

 $\Gamma = \{ \omega \in S^{n-1} : (\omega \cdot \omega_0)^2 > 1 - \beta^2 \}$ \hspace{1cm} (0.5)

 $\Gamma = \{ \omega \in S^{n-1} : d(\omega_0, \omega) < \arcsin \beta \}$. \hspace{1cm} (0.6)

Dependence domain

$$E = \{ x \in \mathbb{R}^n : \omega \cdot (x - y_0) = s, \ s \in I, \ \omega \in \Gamma \}. $$
Allowable potentials

Let $p, 1 \leq p < \infty$, and $\lambda, 0 < \lambda < 1/p$, two functions q_1, q_2 satisfy the following conditions:

(a) $1_E q_j \in X \cap L^\infty(\mathbb{R}^n)$ for $j = 1, 2$,

\[\|q_j\|_{L^\infty(E)} + \|1_E q_j\|_X < M. \]

X-norm $q \in L^1(\mathbb{R}^n)$ and

\[\int_\mathbb{R} (1 + |s|)^n \|R_0 q(s, \cdot)\|_{L^1(S^{n-1})} \, ds < \infty. \]

(b) (λ, p, p)-Besov regularity on the dependence domain

\[\int_{\mathbb{R}^n} \frac{\|1_E q_j - (1_E q_j)(\cdot - y)\|_{L^p(\mathbb{R}^n)}^p}{|y|^{n+\lambda p}} \, dy < M^p \]

for $j = 1, 2$.
\[y_0 \in \text{supp} (q_1 - q_2) \]

\[\text{supp} (q_1 - q_2) \subset \{ x \in \mathbb{R}^n : (x - y_0) \cdot \omega_0 \leq 0 \} \]
Theorem 1. Quantitative H-H

Let $M \geq 1$ be constant. Given $y_0 \in \mathbb{R}^n$, $\omega_0 \in S^{n-1}$, $\alpha > 0$ and $\beta \in (0, 1]$ Let q_i be allowable potentials and assume the support condition holds. Then there exists a positive constant $C = C(M, |G|, \alpha, \beta)$, such that

$$
\|q_1 - q_2\|_{L^p(G)} \leq \frac{C}{\left(|\log \int_I (1 + |s|)^n \|\mathcal{R}_{y_0}(q_1 - q_2)(s, \cdot)\|_{L^1(\Gamma)} \, ds \right)^{\frac{1}{2}}},
$$

where

$$
G = \left\{ x \in \mathbb{R}^n : |x - y_0| < \frac{\alpha}{8 \cosh(8\pi/\beta)} \right\}.
$$
Notation:
\(\mathcal{R}_{y_0} q(s, \omega) \) is the \(y_0 \)-centered Radon transform, integral of \(q \) in
\(H = \{ x \in \mathbb{R}^n : \omega \cdot (x - y_0) = s \} \).

Constant

\[
C = C_n M \max \left(1, |G|^{\frac{1}{p}} \right) \left(1 + \alpha^{-n} + \beta^{-n} + \alpha^\lambda \right)
\] (0.8)
Sketch of proof 1: uniqueness theorem

Assume $\mathcal{R}_{y_0}(q_1 - q_2)|_{I \times \Gamma} = 0$.
Then such (y_0, ω_0) does not exits:

- **1 Microlocal Helgason’s theorem:**

$$ (y_0, \omega_0) \notin WF_a(q_1 - q_2) $$

- **2 Microlocal Holmgren’s theorem (Hörmander):**
 From the conditions $y_0 \in \text{supp} (q_1 - q_2)$ and
 $\text{supp} (q_1 - q_2) \subset \{x \in \mathbb{R}^n : (x - y_0) \cdot \omega_0 \leq 0\}$ one has

$$ (y_0, \omega_0) \in WF_a(q_1 - q_2) $$
1. Quantitative Microlocal Helgason’s theorem. Sketch of proof

The $WF_a(u)$ is characterized by the exponential decay of the wave packet transform:
For any $u \in S'(\mathbb{R}^n)$ define the Wave packet (Segal-Bargmann) transform of u for $\zeta \in \mathbb{C}^n$ as

$$ T u(\zeta) = \langle u, e^{-\frac{1}{2\hbar}}(\zeta - \cdot)^2 \rangle. $$

Where $\langle \cdot, \cdot \rangle$ stands for the duality between $S'(\mathbb{R}^n)$ and $S(\mathbb{R}^n)$ – the class of smooth rapidly decreasing functions.
Step 1: From Radon to wave packet

Proposition

Consider \(q \in A^\lambda(\mathbb{R}^n) \), \(y_0 \in \mathbb{R}^n \) and \(\omega_0 \in S^{n-1} \). Let \(R_q \) be a positive constant such that \(\text{supp } q \subset \{ x \in \mathbb{R}^n : |x - y_0| \leq R_q \} \). Given \(\alpha > 0 \) and \(\beta \in (0, 1] \) consider the sets

\[
I = \{ s \in \mathbb{R} : |s| < \alpha \}, \quad \Gamma = \{ \omega \in S^{n-1} : |\omega \cdot \omega_0|^2 > 1 - \beta^2 \}.
\]

Then, there exists a positive constant \(C \) such that

\[
|T_q(\zeta)| \leq \frac{C}{h^n} (|\text{Im } \zeta|^n + \alpha^n + R_q^n) e^{\frac{1}{2h}|\text{Im } \zeta|^2}
\]

\[
\times \left[\| \mathcal{R}_{y_0} q \|_{L^1(I \times \Gamma)} + \| q \|_{L^\infty(\mathbb{R}^n)} \left(e^{-\frac{1}{2h} \frac{\alpha^2}{4}} + e^{-\frac{1}{2h} \frac{\gamma^2 \beta^2}{16}} \right) \right],
\]

for all \(h \in (0, 1] \), \(\zeta \in \mathbb{C}^n \) such that \(|\text{Re } \zeta - y_0| < \alpha/2 \), \(|\text{Im } \zeta| \geq \gamma > 0 \) and \(|\omega_0 \cdot \theta|^2 > 1 - \beta^2/4 \) with \(\theta = |\text{Im } \zeta|^{-1}\text{Im } \zeta \).
Step 2

- **Step 2a (Key step)** We try to remove the condition $|\text{Im } \zeta| \geq \gamma > 0$. Try to go from the wave packets transform of q to the heat evolution of q ($t = h$) by allowing $\text{Im } \zeta = 0$.

- **Step 2b.** Estimate the backward initial value problem for the heat equation. Need a priori Besov regularity on q.
The key Proposition

Proposition

Under the same notation and assumptions of the Theorem. There exists a positive constant C such that

$$e^{-\frac{1}{2h}|\text{Im} \zeta|^2} |T q(\zeta)| < CM_q\left(\left(\frac{2\alpha}{\beta}\right)^n + \alpha^n + R_q^n\right) \|\mathcal{R}_{y_0} q\|_{L^1(I \times \Gamma)}^\kappa,$$

with

$$\kappa := \frac{1}{4 \left(\cosh\left(\frac{8\pi}{\beta}\right)\right)^2}, \quad h := \frac{\alpha^2}{8 |\log \|\mathcal{R}_{y_0} q\|_{L^1(I \times \Gamma)}|},$$

for all $\zeta \in \mathbb{C}^n$ such that

$$|\text{Re} \zeta - y_0| < \frac{\alpha}{8 \cosh\left(\frac{8\pi}{\beta}\right)}, \quad |\text{Im} \zeta| < \frac{2\alpha}{(4 - \beta^2)^{1/2}}.$$
Proof of the Key proposition

Estimates of the wave packet transform:

(K1) \[|\mathcal{T} q(\zeta)| \leq (2\pi h)^{\frac{n}{2}} \|q\|_{L^\infty(\mathbb{R}^n)} e^{\frac{1}{2h} | \text{Im } \zeta |^2}, \]

(K2) \[|\mathcal{T} q(\zeta)| \leq (2\pi h)^{\frac{n}{2}} \|q\|_{L^\infty(\mathbb{R}^n)} e^{\frac{1}{2h} | \text{Im } \zeta |^2} e^{-\frac{1}{2h} | \omega_0 \cdot (\text{Re } \zeta - y_0) |^2}, \]

for all \(\zeta \in \mathbb{C}^n \) such that \(\omega_0 \cdot (\text{Re } \zeta - y_0) \geq 0 \) (follows from the hyperplane being supporting)

(K3) \[|\mathcal{T} q(\zeta)| \leq \frac{C}{h^\frac{n}{2}} (| \text{Im } \zeta |^n + \alpha^n + R_q^n) e^{\frac{1}{2h} | \text{Im } \zeta |^2} \]
\[\times \left[\| R_{y_0} q \|_{L^1(I \times \Gamma)} + \|q\|_{L^\infty(\mathbb{R}^n)} e^{-\frac{1}{2h} \frac{\alpha^2}{4}} \right], \]

for all \(h \in (0, 1], \zeta \in \mathbb{C}^n \) such that \(|\text{Re } \zeta - y_0| < \alpha/2, |\text{Im } \zeta| \geq \gamma > 0 \) and \(|\omega_0 \cdot \theta|^2 > 1 - \beta^2/4 \) with \(\theta = |\text{Im } \zeta|^{-1} \text{Im } \zeta \). (Follows from quantitative Helgason-Holmgren with \(\gamma = 2\alpha/\beta \))
Lemma

Let \(a, b \) be positive constants. Consider

\[
R = \{ z \in \mathbb{C} : |\text{Re} z| < a, |\text{Im} z| < b + \varepsilon \},
\]

for some \(\varepsilon > 0 \). Let \(F \) be a sub-harmonic function in \(R \) such that

\[
F(z) < (\min\{0, \text{Re} z\})^2, \text{ for all } z \in \mathbb{C}.
\]

Assume that \(F(z) < -2a^2 \) for \(z \in R \) such that \(|\text{Im} z| \geq b \). Then

\[
F(z) < -\frac{1}{2} \frac{2a^2}{\cosh \left(\pi \frac{b}{a} \right)} \min \left(\frac{1}{\cosh \left(\pi \frac{b}{a} \right)}, \frac{1}{3} \right),
\]

for

\[
|\text{Im} z| < b, \quad |\text{Re} z| < \frac{a}{2} \min \left(\frac{1}{\cosh \left(\pi \frac{b}{a} \right)}, \frac{1}{3} \right).
\]
Proof of lemma

Take the subharmonic function

\[G(x + iy) = 2a^2 \frac{\cosh \left(\frac{\pi}{a} y \right)}{\cosh \left(\frac{\pi}{a} b \right)} \sin \left(\frac{\pi}{a} (x + \delta) \right) + F(x + iy) - \delta^2, \]

for

\[\delta = \min \left(\frac{a}{\cosh \left(\frac{\pi}{a} b \right)}, \frac{a}{3} \right) \]

Check that \(G < 0 \) on the boundary of \([-\delta, a - \delta] \times [-b, b]\).

The estimate follows from the maximum principle when we restrict to the values \(|x| < \delta/2\).
Choose \(h := \frac{\alpha^2}{8 \log \| \mathcal{R}_{y_0} q \|_{L^1(I \times \Gamma)}} \), to obtain an appropriate negative exponential in (K3).

Let us denote \(z = \omega_0 \cdot (\zeta - y_0) \in \mathbb{C} \) and write \(\zeta = (z + \omega_0 \cdot y_0) \omega_0 + w \) with \(w \in \mathbb{C}^n \) such that \(\text{Re} w \cdot \omega_0 = \text{Im} w \cdot \omega_0 = 0 \). Use the Lemma for the function

\[
\Phi(z) = |\text{Re} z|^2 - |\text{Im} z|^2 + 2h \log |\mathcal{T} q((z + \omega_0 \cdot y_0) \omega_0 + w)| \\
+ 2h \log \left(\frac{e^{-\frac{1}{2h} |\text{Im} w|^2}}{CM_q (\rho^n + \alpha^n + R^n_q)} \right),
\]

in the rectangle \(a = \alpha/4, b = 2\alpha/\beta \).
Step 2b. The backward estimate

The key point is the fact that the Segal-Bargmann transform restricted to real values is a convolution with the Gaussian. Backward estimate for the heat equation $h = \text{time}$

Lemma

*Consider $q \in L^p(\mathbb{R}^n)$ and G an open set in \mathbb{R}^n such that

$$\text{supp } q \cap G \neq \emptyset.$$*

*Assume that there exists $\lambda \in (0, 1)$ such that

$$L_q := \left(\int_{\mathbb{R}^n} \left\| q - q(\cdot - y) \right\|_{L^p(\mathbb{R}^n)}^p \frac{1}{|y|^{n+\lambda p}} \, dy \right)^{1/p} < +\infty.$$*

*Then, there exists a positive constant C, only depending on n, such that

$$\|q\|_{L^p(G)} \leq C \left(h^{-\frac{n}{2}} \|Tq\|_{L^p(G)} + L_q h^{\frac{\lambda}{2}} \right),$$*
First step: from DtoN map to Radon transform

The uniqueness Results. Locally vanishing Radon Transform.
Stability: Hunk and Wang: Log-log type stability (log stable recovery of the Fourier tranform +log stable continuation of analytic functions)
The Carleman estimates with signed partition of the boundary allow to partially recover the 2-planes X-ray transform in some sets $I \times \Gamma$ which are neighborhood of (y_0, ω_0) from the partial Dirichlet to Neuman map in a logarithmic stable way (following the approach of DSF, Kenig, Sjoestrand and Uhlmann).
This allows to control the norm of $q_1 - q_2$ in a neighborhood of y_0. In the case of BU (semiglobal) one can estimate $\|q_1 - q_2\|_{L^p}$, since we have the control of $\|R_{y_0}(q_1 - q_2)\|_{L^1((0,\infty)\times\Gamma)}$.
In KSU We have the Radon transform if $n = 3$. Giving us the control on $q_1 - q_2$ at points for which we control the Radon transform (the penumbra boundary)
From partial data to Radon transform

We reduce to Schrödinger $-\Delta + q$ equation in the standard way. Use of DSF-K-S-U approach.

Existence of Calderón- Fadeev type solutions. Use of the Carleman estimate with splitting in the illuminated and shadowed regions. Theorem ([BU] and [NS])

Theorem

For $\tau >> 1$ sufficiently large and $g \in \mathcal{C}^\infty(\mathbb{R}^{n-2})$ and $(\xi + i\zeta)^2 = 0$, there exists a unique solution $w_\tau \in H(\Omega; \Delta)$ of the equation $(-\Delta + q)w_\tau = 0$ in Ω, such that $\text{tr}_0 w_\tau \in H(\partial \Omega) \cap \mathcal{E}'(B)$ and which can be written as

$$w_\tau(x) = e^{\tau(\xi + i\zeta) \cdot x} (g(x'') + R(\tau, x))$$

where

$$\|R(\tau, \cdot)\|_{L^2(\Omega)} \leq C\frac{1}{\tau} (\|qg\|_{L^2(\Omega)} + \tau^{1/2} \|\Delta g\|_{L^2(\Omega)}).$$

*The same is true by changing τ by $-\tau$ and B by F.***
The spaces of solutions in $H(\Omega; \Delta)$

Traces (in $H(\partial \Omega) \subset H^{-1/2}(\partial \Omega)$)

Integral formula by using extensions of data

$$(\Lambda_{q_2} - \Lambda_{q_1})(\phi)\psi = \int_{\Omega} P_{q_1}(\phi)(q_1 - q_2) P_{q_2}(\psi). \quad (0.10)$$

Difference ofDtoN maps

Lemma

Let q_j, $j = 1, 2$ be L^∞ potentials so that 0 is not a Dirichlet eigenvalue of $-\Delta + q_j$ in Ω. Then $\Lambda_{q_2} - \Lambda_{q_1}$ extends to a continuous map $H(\partial \Omega) \to H(\partial \Omega)^*$.
2-plane Radon transform estimate

Proposition

For any \(g \in C^\infty(\mathbb{R}^{n-2}) \) there exits \(C > 0 \) which only depends on \(\Omega \) and the a priori bound of \(\|q_j\|_{L^\infty} \), such that

\[
\sup_{\xi \in \mathbb{N}, \zeta \in \xi^\perp} \int_{[\xi, \zeta]^\perp} g(x'') \int_{\mathbb{R}^2} q(x'' + t\xi + s\zeta) dt ds dx'' \leq C(\tau^{-1/2} + e^{c\tau} \|\Lambda q_1 - \Lambda q_2\|_{B \rightarrow F}) \|g\|_{H^2(\Omega)}
\]

(0.11)

By choosing appropriate \(g = \tilde{g}(r\eta) \) for any \(\eta \in [\xi, \zeta]^\perp \)

\[
\sup_{\xi \in \mathbb{N}} \sup_{\eta \in \xi^\perp} \int_{\mathbb{R}} g(r) \mathcal{R}q(r, \eta) dr \leq C(\tau^{-1/2} + e^{c\tau} \|\Lambda q_1 - \Lambda q_2\|_{B \rightarrow F}) \|\tilde{g}\|_{H^2(\mathbb{R})}
\]

(0.13)
\(L^1\) norm of Radon transform

Interpolation with

\[
\int_{S^{n-1}} \int_{\mathbb{R}} (1 + \tau^2)^{(n-1)/2} |\mathcal{R}q(\cdot, \eta)^{\wedge}(\tau)|^2 d\tau d\sigma(\eta) \leq \|q\|_{L^2}
\]

gives:

Theorem (Stability of Radon transform)

\[
\left(\int_M \left(\int_{\mathbb{R}} |\mathcal{R}q(r, \eta)|^2 dr \right)^{\frac{n+3}{4}} d\sigma(\eta) \right)^{\frac{2}{n+3}} \leq C(\tau^{-1/2} + e^{c\tau} \|\Lambda q_1 - \Lambda q_2\|_{B \rightarrow F}^{\frac{n+1}{n+3}}).
\]

(0.15)

Where \(M \subset S^{n-1}\)

\[
M = \bigcup_{\xi \in N} [\xi]^\perp,
\]

(0.16)
Looking for the supporting plane H in quantitative Helgason-Holmgren

Let us take $\eta \in M$ and by translation there exist $r \in \mathbb{R}$ and $y_0 \in \text{supp } q$ such that $H(s, \eta)$ contains y_0 and it is a supporting hyperplane for $\text{supp } q$. We are now in the hypothesis of the previous theorem, since M is a neighborhood of η in the sphere and we can control the Radon transform por $\omega \in M$ and $s \in \mathbb{R}$.
Open problem: Cloaking of 0’s

?????
Open problem: Cloaking of 0’s

?????

60 =06
Open problem: Cloaking of 0’s

?????

60 =06

FELICIDADES GUNTHER