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Abstract. We consider the Dirichlet-to-Neumann map Λ on a cylinder-like Lorentzian manifold related

to the wave equation related to the metric g, a magnetic field A and a potential q. We show that we can
recover the jet of g,A, q on the boundary from Λ up to a gauge transformation in a stable way. We also

show that Λ recovers the following three invariants in a stable way: the lens relation of g, and the light ray

transforms of A and q. Moreover, Λ is an FIO away from the diagonal with a canonical relation given by
the lens relation. We present applications for recovery of A and q in a logarithmically stable way in the

Minkowski case, and uniqueness with partial data.

1. Introduction and main results

Let (M, g) be a Lorentzian manifold of dimension 1 + n, n ≥ 2, i.e., g is a metric with signature
(−1, 1, . . . , 1). Suppose a part of ∂M is timelike. An example of M is a cylinder-like domain representing
a moving and shape changing compact manifold in the x-space (if we have fixed time and space variables)
with the requirement that the normal speed of the boundary is less than one, see section 5.

Denote the wave operator by �g; in local coordinates x = (x0, . . . , xn) it takes the form:

�g :=
1√
|det g|

∂j

(√
|det g|gjk∂k

)
.

Consider the following operator P = Pg,A,q which is a first order perturbation of �g:

(1) P = Pg,A,q :=
1√
|det g|

(∂j − iAj)
√
|det g|gjk (∂k − iAk) + q.

Here i =
√
−1; A is a smooth 1-form on M ; q is a smooth function on M .

The goal of this work is to study the inverse problem of recovery of g, A and q, up to a data preserving gauge
transformation, from the outgoing Dirichlet-to-Neumann (DN) Λ map on a timelike boundary associated
with the wave equation

(2) Pu = 0 in M.

We are motivated by applications in relativity but also in applications to classical wave propagation problems
with media moving and/or changing at a speed not negligible compared to the wave speed. We are interested
in possible stability results even though some steps in the recovery are inherently unstable. This problem
remains widely open. The results we prove are the following. First, we show that one can recover the jet
of g,A, q at the boundary (up to a gauge transform) in a Hölder stable way. Next, we show that one can
extract the natural geometric invariants of g,A, q from Λ in a Hölder stable way. More precisely, Λ recovers
the lens relation L related to g, in stable way. If we know g, the light ray transform L1A of A is recovered
stably. If g and A are known, the light ray transform L0q of q is recovered stably. The lens relation L is
the canonical relation of the Fourier Integral Operator (FIO) Λ away from the diagonal, and the light ray
transforms L1A and L0q are in fact encoded in the principal and the subprincipal symbol of it. In fact, L is
directly measurable from Λ.
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Since the results we prove are local or semilocal (near a fixed lightlike geodesic); and the proofs are
microlocal, we do not formulate a global mixed problem for the wave equation at the beginning but we
do consider one in section 5. In fact, existence of solutions of such problems depend on global properties
of (M, g), one of them is global hyperbolicity, which are not needed for our weaker formulation and for
the proofs. Instead, we define the DN map up to smoothing operators only. In case when one can prove
the existence of a global solution, the true DN map would coincide with ours up to a smoothing error, see
section 5; and our results are not affected by adding smoothing operators.

This problem has a long history in the stationary Riemannian setting, i.e., when M = [0, T ]×M0, where
(M0, g) is a compact Riemannian manifold with boundary, and the metric is −dt2 + gij(x)dxidxj . The
boundary control method [4] and the Tataru’s uniqueness continuation theorem [44, 45] provide uniqueness
provided that T is greater than a certain sharp critical value T , as shown by Belishev and Kurylev in [6], see
also the survey [5]. Stability however does not follow from such arguments. Stability results for recovering
of the metric and lower order terms appeared in [40, 38, 28, 8, 2], with [28] covering the general case. A
main assumption in those works is that the metric is simple, i.e., that there are no conjugate points and
the boundary is strictly convex (not so essential assumption) and the main technical tool for recovery of the
metric is to reduce it to stability for the boundary/lens rigidity problem, see, e.g., [39]. For related results, we
refer to [21, 43]. Recently, the progress in treating the local rigidity problem allowed results under the more
general foliation condition [41] which allows conjugate points. In any case, some condition is believed to be
necessary for stability. It is worth noticing that all inverse (hyperbolic) scattering problems for compactly
supported perturbations are equivalent to inverse DN map problems.

Recently, there has been increased interest in this problem or in related inverse scattering problems in
time-space. Recovery of lower order time-dependent terms for the Minkowski metric has been studied in
[36, 33, 32, 47, 34, 1, 7], and for −dt2 +gij(x)dxidxj in [23]. In [14], Eskin proved that one can recover g,A, q
up to a gauge transformation, assuming existence of a global time variable t and analyticity of all coefficients
with respect to it. The proof is based in an adaptation of the boundary control methods and the analyticity
is needed so that one can still use the unique continuation results in [45]. Stability does not follow from
such arguments. Other inverse problems on Lorentzian manifolds are studied in [24, 25, 27]. The inverse
scattering problem of recovery a moving boundary is studied in [10, 42, 15]. The first author showed in [36]
that in the case of g Minkowski and A = 0, the problem of recovery of q reduces to the inversion of the X-ray
transform in time-space over light rays, which was shown there to be injective for functions tempered in time
and uniformly compactly supported in space. In [26], it is shown that the linearized metric problem leads
to the inversion of a light ray transform of tensor fields. Such light ray transforms are inherently unstable
however because they are smoothing on the time-like cone. They require specialized tools for analyzing the
singularities near the lightlike cone, not fully developed in the geodesic case, see [16, 17, 18]. The light ray
transform has been also studied in [9, 3, 37, 22].

We describe the main results below. Let x0 ∈ ∂M and assume that ∂M is timelike near x0. Then ∂M with
the induced metric is a Lorentzian manifold as well and we choose (locally) one of the two time orientations
that we call future pointing.

Let f ∈ E ′(∂M) be supported near x0 with WF(f) close to a fixed timelike (x0, ξ
0′) ∈ T ∗∂M \ 0. We

define the local outgoing solution operator f 7→ u, defined up to a smoothing operator, as the operator
mapping f to the outgoing solution u of

(3) Pu ∈ C∞ in M near x0, u|∂M = f mod C∞.

The term “outgoing” here refers to the following. We chose that microlocal solution (parametrix) for which
the singularities of the solution are required to propagate along future pointing bicharacteristics. We refer
to section 2.1 for more details. On the other hand, it is “local” because it solves (3) near x0 only and this
keeps the singularities close enough to ∂M without allowing them to hit ∂M again.

Define the associated local outgoing Dirichlet-to-Neumann map as

(4) Λloc
g,A,qf = (∂νu− i〈A, ν〉u) |∂M ,
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where ν denotes the unit outer normal vector field to ∂M , and the equality is modulo smoothing operators
applied to f . By definition, the Λloc

g,A,q is defined near x0 only, and in fact, in some conic neighborhood of the

timelike (x0, ξ
0′). Since the latter is arbitrary, Λloc

g,A,q extends naturally to the whole timelike cone on ∂M

but we keep it microlocalized near (x0, ξ
0′) to emphasize what we can recover given microlocal data only.

As we show in Theorem 3.1, Λloc
g,A,q is actually a ΨDO on the timelike cone bundle near x0. The main

result about Λloc
g,A,q is Theorem 3.2: a stability estimate about the recovery of the boundary jets of the

coefficients.
Let f ∈ E ′(∂M) have WF(f) as above. Let u, as in (3), be the parametrix in a neighborhood of the future

pointing null bicharacteristic issued from the unique future pointing lightlike covector (x0, ξ
0) ∈ T ∗M \ 0

with orthogonal projection (x0, ξ
0′). Note that the direction of (x0, ξ

0) and that of the bicharacteristic might
be the same or opposite. Assume that this bicharacteristics hits ∂M again, transversely, at point y0 in the
codirection η0 and let η0′ be the corresponding orthogonal tangential projection on T ∗y0∂M . Then (y0, η

0′)
is timelike, as well. Let U and V be two small conic timelike neighborhoods in T ∗∂M \ 0 of (x0, ξ

0′) and
(y0, η

0′), respectively. If U is small enough, for every timelike (x, ξ′) ∈ U close to (x0, ξ
0′), we can define

(y, η′) in the same way. This defines the lens relation

(5) L : U −→ V, L(x, ξ′) = (y, η′),

see Figure 1. By definition, L is an even map in the second variable, i.e., L(x,−ξ′) = (y,−η′). If (x, ξ′) is
future pointing (i.e., if the associated vector by the metric is such), then (x,−ξ′) is past-pointing but we can
interpret (y,−η′) as the end point of the null geodesic with initial point projecting to (y,−η′) but moving
“backward” w.r.t. the parameter over it. This property correlates well with Theorem 4.1 since the wave
equation has two wave “speeds” of opposite signs.

The map L is positively homogeneous of order one in its second variable. Now, for f as above, let u be
the outgoing solution to (3) near the bicharacteristic issued from (x0, ξ

0) all the way to its second contact
with ∂M at y0. At this point, we assume that (x0, ξ

0′) is not a fixed point for L, which means that the
reflected bicharacteristic does not become a periodic one after the first reflection. Since f is smooth near
(y0, η

0′) that means no singularity of the solution u at (y0, η
0′), therefore, the singularity reflects at y0. We

extend the solution microlocally over a small segment of the reflected ray before reaching ∂M again, see

Proposition 4.1. Then we define the global DN map Λgl
g,A,q by (4) again but with the r.h.s. localized to V ,

the projection of V to the base. In fact, by propagation of singularities, Λgl
g,A,qf has a wave front set in V

only and we can cut smoothly outside some neighborhood of y0. The map Λgl
g,A,q is actually just semi-global

because it is the DN map restricted to a solution near one geodesic segment connecting boundary points. In

Theorem 4.1, we prove that Λgl
g,A,q is an FIO associated with the graph of L. In Theorem 4.2, we show that

Λgl
g,A,q recovers L in a stable way, which is also a general property of FIOs associated to a local canonical

diffeomorphism.
Another fundamental object is the light ray transform L which integrates functions or more generally

tensor fields along lightlike geodesics. We define L on functions by

(6) L0f(γ) =

∫
f(γ(s)) ds,

and on covector fields of order one by

(7) L1f(γ) =

∫
〈f(γ(s)), γ̇(s)〉ds,

where 〈f(γ(s)), γ̇(s)〉 = fj(γ(s))γ̇j(s) in local coordinates and γ runs over a give set of lighlike geodesics,
and we always assume that supp f is such that the integral is taken over a finite interval. In out results
below, γ’s in L0 and L1 are the maximal geodesics through M connecting boundary points. Unlike the
Riemannian case, lightlike geodesics do not have a natural speed one parameterization and every rescaling
of the parameter along them (even if that rescaling changes from geodesic to geodesic) keeps them being
lightlike. The transform L1 is invariant under reparameterization of the geodesics and can be considered as
an integral of 〈f, dγ〉 over the geodesics. On the other hand, L0 is not. Despite that freedom, the property
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L0f = 0 does not change. One way to parameterize it is to define it locally near a lightlike geodesic hitting
a timelike surface at s = 0, in our case, ∂M . Then the orthogonal projection γ̇′(0) of each such γ on T∂M
(the prime stands for projection) determines γ̇(0) and therefore, γ uniquely. To normalize the projections on
T∂M , we can choose a timelike covector field Z on T∂M locally and require g(γ̇, Z) = ∓1 for future/past
pointing directions.

In Theorem 4.3, we show that given g, one can recover L1A in a Hölder stable way; and if we are given
g, A, one can recover L0q in a Hölder stable way. Notice that we do not require absence of conjugate points
and we do not use Gaussian beams. Instead, we use standard microlocal tools including Egorov’s theorem.
In section 5, we consider some cases where L1 and L0 can be inverted to derive uniqueness results. As
we mentioned above, those transforms are unstable. The reason is that they are microlocally smoothing in
the spacelike cone, see, e.g., [18, 37, 26]. Therefore, stable recovery of L1A and L0q does not imply Hölder
stable recovery of A1 (up to a gauge transform) and q but allows for weaker logarithmic estimates using the
estimate for recovery of q from L0q in the Minkowski case proven in [3], for example. We discuss some of
those possible corollaries in section 5. Recovery of g from L is an open problem with some results about the
linearized problems obtained recently in [26].

Acknowledgments. We would like to thank Matti Lassas for providing some of the references and for
the useful discussions.

2. Preliminaries

2.1. Notation and terminology. In what follows, we denote by U and V the projections of U and V onto
the base ∂M . We freely assume that U and V, and therefore, U and V are small enough to satisfy the needed
requirements below.

If ξ is a covector based at a point x on ∂M , we denote by ξ′ its orthogonal projection to T ∗x∂M . We
routinely denote covectors on T ∗x∂M by placing primes, like ξ′, etc., even if a priori such covector is not a
projection of a given one.

Timelike/spacelike/lightlike vectors v are the ones satisfying g(v, v) < 0, or g(v, v) > 0, or g(v, v) = 0,
respectively. We identify vectors and covectors by the metric. We choose an orientation in U that we call
future pointing (FP). More precisely, we choose some smooth timelike vector Z in U (identified with an open
set in the tangent bundle) and we call future pointing those timelike vectors v for which g(v, Z) > 0. If we
have a time variable t, for example, such a choice could be Z = ∂/∂t. In semigeodesic coordinates (x0 = t, x)
near a spacelike hypersurface, see equation (9) after Lemma 2.3, FP v = (v0, v′) means v0 > 0. Notice that
for the associated covector (τ, ξ) = gv, we have τ < 0.

∂M

∂M ∂M
v′vext

vint

γ γ

x

ξ′ ξintξext

∂M

x

ξ′ ξintξext

v′vext vint

η′

η′

y y

Figure 1. A tangent timelike future pointing (FP) vector v′ on the left, and a past pointing on
the right; and the two lightlike vectors vint and vext with the same projection, pointing to M and
outside M , respectively. The FP geodesic γ = γx,ξ′(s) in both cases propagates to the future but on
the right, it is determined by negative values of the parameter over it. The corresponding covectors
ξ′, ξint and ξext are plotted, as well. The lens relation is L(x, ξ′) = (y, η′).



THE DIRICHLET-TO-NEUMANN MAP ON LORENTZIAN MANIFOLDS 5

Given a timelike (x, ξ′) ∈ U , assume first that ξ′ is FP. Let ξ be the lightlike covector pointing into
M with orthogonal projection ξ′, identified with the vector v = g−1ξ. The geodesic γx,ξ′(s) issued from
(x, v), for s ≥ 0 will be called the FP geodesic issued from (x, ξ′). In Figure 1 on the left, v = vint and
γx,ξ′(s) = γ. If (x, ξ′) is past pointing, then we choose v to be the lightlike vector projecting to v′ pointing
to the exterior (vext in Figure 1 on the right) and take γx,ξ′(s) for s ≤ 0. By propagation of singularities, a
boundary singularity (x, ξ′) as above would propagate either along the FP geodesics chosen above, or along
the past pointing ones (or both) that we did not choose. The choice we made reflects the requirement that
singularities should propagate to the future only. We call such microlocal solutions outgoing. We borrow
that term from scattering theory. In the case of the classical formulation of the Riemannian version of this
problem, this is guaranteed by the condition u = 0 for t < 0.

2.2. Gauge Invariance. There exist some gauge transformations which leave the local and the global
versions of the Dirichlet-to-Neumann map Λg,A,q invariant, thus one can only expect to recover the corre-
sponding gauge equivalence class. To simplify the formulations, we assume that the DN map Λg,A,q is well
defined globally on M . In our main theorems, we will apply this to the ΨDO part of Λg,A,q first, and then
Φ below needs to be identity near a fixed point only. For the semiglobal one, we need Φ to be identity near
both ends of the fixed lightlike geodesic only. Since the computations below are purely algebraic, the lemmas
remain true for the localized maps with obvious modifications.

We will consider two types of gauge transformations in this part. The first one is a diffeomorphism in M
which fixes ∂M .

Lemma 2.1. Let (M, g) be a Lorentzian manifold with boundary as above, let A be a smooth 1-form and q
be a smooth function on M . If Φ : M →M is a diffeomorphism with Φ|∂M = Id, then

Λg,A,q = ΛΦ∗g,Φ∗A,Φ∗q.

Here Id : ∂M → ∂M is the identity map, Φ∗g,Φ∗A,Φ∗q are the pullbacks of g,A, q under Φ, respectively.

Proof. For any f ∈ C∞(∂M), let u be the solution of Lg,A,qu = 0 on M with u|∂M = f . Define v := Φ∗u as
the pull-back of u, then simple calculation in local coordinates shows that LΦ∗g,Φ∗A,Φ∗qv = 0 and v|∂M = f .
If we write y = Φ(x) as a local coordinate representation of Φ, then

Λg,A,qf(y) = νj(y)
∂u

∂yj
(y)− iνj(y)Aj(y)u(y)

∣∣∣
∂M

= νj(x)
∂xl

∂yj
∂v

∂yl
− i ∂x

l

∂yj
νj(x)

∂yk

∂xl
Ak(x)v(x)

∣∣∣
∂M

= ν̃j(x)
∂v

∂xj
(x)− iν̃j(x)(Φ∗A)j(x)v(x)

∣∣∣
∂M

= ΛΦ∗g,Φ∗A,Φ∗qf,

where ν and ν̃ are the unit normals in the y and the x variables, respectively. The above calculation
essentially verifies that Λg,A,q is defined invariantly. Therefore, Λg,A,q = ΛΦ∗g,Φ∗A,Φ∗q. �

Another type of gauge invariance occurs when one makes a conformal change of the metric g. This type
of gauge invariance also occurs when g is a Riemannian metric and Λg,A,q is the corresponding Dirichlet-to-
Neumann map for the magnetic Schrödinger equation, see [12, Proposition 8.2].

Lemma 2.2. Let (M, g) be a Lorentzian manifold with boundary as above, let A be a smooth 1-form and q
be a smooth function on M . If ϕ and ψ are smooth functions such that

ϕ|∂M = ∂νϕ|∂M = 0, ψ|∂M = 0,

then we have

Λg,A,q = Λe−2ϕg,A−dψ,e2ϕ(q−qϕ)

where qϕ := e
n−2
2 ϕ�ge

2−n
2 ϕ.
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Proof. A direct computation in local coordinates shows that

e
n+2
2 ϕPg,A,q(e

2−n
2 ϕu) = Pe−2ϕg,A,e2ϕ(q−qϕ)u

e−iψPg,A,q(e
iψu) = Pg,A−dψ,qu

For any f ∈ C∞(∂M), let u be the solution of Pg,A,qu = 0 on M with u|∂M = f . Setting v := e
n−2
2 ϕe−iψu,

we have

Pe−2ϕg,A−dψ,e2ϕ(q−qϕ)v = Pe−2ϕg,A−dψ,e2ϕ(q−qϕ)(e
n−2
2 ϕe−iψu)

= e
n+2
2 ϕPg,A−dψ,q(e

−iψu)

= e
n+2
2 ϕe−iψPg,A,qu = 0

Furthermore, notice that νe−2ϕg = νg by the assumption on ϕ, thus

Λe−2ϕg,A−dψ,e2ϕ(q−qϕ)f = νj
∂v

∂xj
− iνj

(
Aj −

∂ψ

∂xj

)
v|∂M

= νj
∂(e

n−2
2 ϕe−iψu)

∂xj
− iνj

(
Aj −

∂ψ

∂xj

)
(e

n−2
2 ϕe−iψu)|∂M

= νj
(
−i ∂ψ
∂xj

u+
∂u

∂xj

)
− iνjiνj

(
Aj −

∂ψ

∂xj

)
u|∂M

= νj
∂u

∂xj
− iνjAju|∂M

= Λg,A,qf

which completes the proof. �

2.3. Gauge equivalent modifications of g,A, q. It is convenient to work in semi-geodesic normal co-
ordinates on a Lorentzian manifold. These coordinates are the Lorentzian counterparts of the well known
Riemannian semigeodesic coordinates for Riemannian manifolds with boundary. We formulate the existence
of such coordinate in the following lemma.

Lemma 2.3. Let S be a timelike hypersurface in M . For every x0 ∈ S, there exist ε > 0, a neighborhood N
of x0 in M , and a diffeomorphism Ψ : S ∩N × [0, T )→ N such that

(i) Ψ(x′, 0) = x′ for all x′ ∈ S ∩N ;
(ii) Ψ(x′, xn) = γx′(x

n) where γx′(x
n) is the unit speed geodesic issued from x′ normal to S.

Moreover, if (x0, . . . , xn−1) are local boundary coordinates on S, in the coordinate system (x0, . . . , xn),
the metric tensor g takes the form

(8) g = gαβdx
α ⊗ dxβ + dxn ⊗ dxn, α, β ≤ n− 1.

Clearly, gαβ has a Lorentzian signature as well. If M has a boundary, then S can be ∂M and xn is
restricted to [0, ε]. A proof of the lemma can be found in [30] and is based on the fact that the lines
x′ = const., xn = s are unit speed geodesics; therefore the Christoffel symbols Γinn vanish for all i. We will
call such coordinates the semi-geodesic normal coordinates. The lemma remains true if S is spacelike with
a negative sign in front of dxn ⊗ dxn in (8) (we replace the index n by 0 below), and this gives us a way to
define a time function t = x0 locally, and put the metric in the block form

(9) g = −dt2 + gij(t, x)dxi ⊗ dxj , 1 ≤ i, j ≤ n
with gij Riemannian.

Now we use the gauge invariance of Λg,A,q to alter g,A, q without changing the DN map. Three types of
modifications are made in the following, labeled as (M1)-(M3) respectively.

Firstly, given two metrics g and g̃, one can choose diffeomorphisms as in Lemma 2.1 to obtain common
semi-geodesic normal coordinates. In fact, let Ψ and Ψ̃ be diffeomorphisms like in Lemma 2.3 with respect
to g and g̃ respectively, then Ψ̃ ◦ Ψ−1 is a diffeomorphism near ∂M which fixes ∂M . Extend Ψ̃ ◦ Ψ−1 as
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in [29] to be a global diffeomorphism on M . The properties of Ψ and Ψ̃ ensure that the two metrics g and

(Ψ̃ ◦Ψ−1)∗g̃ have common semi-geodesic normal coordinates near ∂M . Therefore, we may assume

(M1): if (x′, xn) are the semi-geodesic normal coordinates for g, they are also the semi-geodesic normal
coordinates for g̃.

Secondly, we employ the conformal gauge invariance to replace g̃ with a gauge equivalent one to obtain
some identities which later will help simplify the calculations.

Lemma 2.4. Let S be either a timelike or a spacelike hyperplane near some point p0 ∈ S. Given smooth
functions r2, r3, . . . on S near p0, there exists a smooth function µ near p0 with µ = 0, ∂νµ = 0 on S so that
if Ψ̂ is the diffeomorphism in Lemma 2.3 related to the metric ĝ := eµg, then

∂jn det(Ψ̂∗ĝ) = rj , j = 2, 3, . . .

on S near p0. Here ∂n = ∂
∂xn with (x0, . . . , xn) the semi-geodesic normal coordinates for g.

Before giving the proof of the lemma, we remark that (x0, . . . , xn) may not be the semi-geodesic normal
coordinates for ĝ.

Proof. The statement of the theorem is invariant under replacing g by Ψ∗g for any local diffeomorphism Φ
which preserves the boundary pointwise. Therefore, we may assume that g is replaced by Ψ∗g, i.e., that
x = (x′, xn) are semi-geodesic coordinates for g.

Note first that the conformal factor does not change the property of a covector being normal to S but
rescales the normal derivative and may change the higher order ones because γx′ may change its curvature
with respect to the old metric. More precisely, for the vector en = (0, . . . , 0, 1) we have g(en, en) = ∓1 but

ĝ(en, en) = ∓eµ. Therefore, for the corresponding normal derivatives we have ∂̂ν = e−µ/2∂ν = ∂n on xn = 0.

Let γ̂x′(s) be the normal geodesic at x′ ∈ S with ˙̂γx′ consistent with the orientation of S, normalized by

ĝ( ˙̂γx′(s), ˙̂γx′(s)) = ∓1. Then for every smooth function f ,

∂jnΨ̂∗f(x′)|xn=0 = ∂jn|xn=0f(γ̂x′(x
n)).

For j = 0, 1, the results are not affected by the conformal factor and we get

Ψ̂∗f(x′)|xn=0 = f(x′, 0), ∂nΨ̂∗f(x′)|xn=0 = fn(x′, 0)

To compute the higher order normal derivatives, we write

(10) ∂2
nΨ̂∗f(x′) = fij ˙̂γix′

˙̂γjx′ + fi ¨̂γ
i
x′ on xn = 0.

Under the conformal change of the metric, the Christoffel symbols are transformed by the law

Γ̂kjk = Γkij +
1

2
δki ∂jµ+

1

2
δkj ∂iµ− gij∇kµ.

In particular,

(11) Γ̂knn = Γknn +
1

2
δkn∂nµ+

1

2
δkn∂nµ− gnn∇kµ = δkn∂nµ−

1

2
gkl∂lµ.

Therefore, Γ̂knn = 0 on xn = 0 and (10) reduces to

(12) ∂2
nΨ̂∗f(x′) = fnn on xn = 0.

In a similar way, we may compute ∂jnΨ̂∗f(x′) on xn = 0. The result is ∂jnf plus normal derivatives of f of
order j − 1 and less with coefficients depending on the normal derivatives of µ up to order j − 1. For our
purposes, the exam expression does not matter.

The metric ĝ has the form

(Ψ̂∗ĝ)kl = (ĝij ◦ Ψ̂)
∂Ψ̂i

∂xk
∂Ψ̂j

∂xl
= (ĝαβ ◦ Ψ̂)

∂Ψ̂α

∂xk
∂Ψ̂β

∂xl
+
∂Ψ̂n

∂xk
∂Ψ̂n

∂xl
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where the Greek indices range from 0 to n− 1 (but not n). In particular,

(13) det Ψ̂∗ĝ = (det dΨ̂)2 det(ĝ ◦ Ψ̂).

We need to understand the structure of ∂kn(det dΨ̂)|xn=0 now. For k = 0, we have dΨ̂|xn=0 = Id. Notice
next that

(14) dΨ̂ = (∂0Ψ̂, . . . , ∂n−1Ψ̂, ∂nΨ̂),

where each partial derivative is a vector. Since by (11), ∂2
nΨ̂i = −Γ̂inn = 0 for xn = 0,

∂n(det dΨ̂)|xn=0 = 0.

To analyze k = 2, we notice first that

∂3
nΨ̂i = −∂nΓ̂inn = −∂n

(
δin∂nµ−

1

2
gil∂lµ

)
= −δinµnn + . . . ,

where the dots represent a term involving lower order ∂n derivatives of µ. Using this in (14), we get

∂2
n(det dΨ̂)|xn=0 = −µnn|xn=0.

Reasoning as above, we see that

(15) ∂jn(det dΨ̂)|xn=0 = −∂jnµ|xn=0 + . . . ,

where the dots represent terms involving normal derivatives of µ (possibly differentiated tangentially) up to
order j − 1.

We will analyze the normal derivatives of det(ĝ ◦ Ψ̂) in (13) now. Since det ĝ = enµ det g, we get

∂n det(ĝ ◦ Ψ̂) = ∂n

(
e(n+1)µ◦Ψ̂ det g ◦ Ψ̂

)
= (n+ 1)µn det g + ∂n det g = ∂n det g on ∂M.

(16)

We used the fact that dΨ = Id on ∂M and that ∂ndΨ = 0 since dµ = 0 on ∂M . Therefore, ∂jn det ĝ ◦ Ψ̂ =
∂jn det g on xn = 0 for j = 0, 1.

For the highest order derivatives, notice that ∂jnΨ̂ involves ∂j−1
n µ as its highest order normal µ derivative,

as the arguments leading to (15) show. Differentiating (16), we therefore get

∂jn det(ĝ ◦ Ψ̂) = ∂jn

(
e(n+1)µ◦Ψ̂ det g ◦ Ψ̂

)
= (n+ 1)(∂jnµ) det g + . . . on ∂M,

(17)

where the dots have the same meaning as in (15).
Use (13) in combination with (15) and (17) to get

(18) ∂jn(det Ψ̂∗ĝ)|xn=0 = (n− 1)(∂jnµ) det g + . . . ,

To complete the proof of the lemma, we determine the normal derivatives of µ on xn = 0 for j = 2, . . . .
We get first ∂2

n(det Ψ̂∗ĝ)|xn=0 = (n− 1)µnn|xn=0, which needs to be equal to r2; and can be solved for µnn.
Then we can determine the tangential derivatives of the latter. After that, we can solve (17) with j = 3 for
µnnn, etc. To complete the proof, we use Borel’s lemma. �

Let g and g̃ be two metrics satisfying (M1) with the two diffeomorphisms Ψ and Ψ̃ respectively as in
Lemma 2.3. Applying Lemma 2.4 to S = ∂M and p = x0, we can find a metric ĝ := eµg with µ = 0, ∂νµ = 0
on ∂M such that under the semi-geodesic normal coordinates (x0, . . . , xn) for g we have

∂jn det(Ψ̂∗ĝ) = ∂jn det(Ψ̃∗g̃) j = 2, 3, . . . .

on ∂M . Notice that (x0, . . . , xn) are also semi-geodesic normal coordinates for g̃ by (M1).

Now consider the metrics (Ψ̂◦Ψ̃−1)∗ĝ and g̃. These metrics have common semi-geodesic normal coordinates
(see the argument following Lemma 2.3), which are (x0, . . . , xn). In these coordinates the choice of ĝ yields

∂jn det(Ψ̃∗ ◦ (Ψ̂ ◦ Ψ̃−1)∗ĝ) = ∂jn det(Ψ̂∗ĝ) = ∂jn det(Ψ̃∗g̃).
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Thus we may replace g by (Ψ̂◦Ψ̃−1)∗ĝ and change A, q accordingly as in Lemma 2.1 and Lemma 2.2 without
affecting Λg,A,q. We therefore can assume that g and g̃ satisfy not only (M1), but also

(M2): in the common semi-geodesic normal coordinates (x′, xn),

∂jn det g(x′, 0) = ∂jn det g̃(x′, 0) j = 2, 3, . . . .

Here we have identified the metrics with their coordinate representations under Ψ̃.

Thirdly, we make modifications to the 1-form A. Again the modification does not change the gauge
equivalence class of Λg,A,q due to Lemma 2.2.

Lemma 2.5. Let (M, g) be a Lorentzian manifold with boundary as above, let A be a smooth 1-form and q
be a smooth function on M . There exists a smooth functions ψ with ψ|∂M = 0 such that in the semi-geodesic
normal coordinates (x′, xn), B := A− dψ satisfy

(19) ∂jnBn(x′, 0) = 0 j = 0, 1, 2, . . . .

Proof. We can find a smooth function ψ with

ψ(x′, 0) = 0, ∂j+1
n ψ(x′, 0) = ∂jnAn(x′, 0), j = 0, 1, 2, . . . .

Extend it in a suitable manner so that ψ ∈ C∞(M) with ψ|∂M = 0. Then B = A− dψ satisfies (19). �

As a result we may further assume

(M3): in the common semi-geodesic normal coordinates (x′, xn) of g and g̃,

∂jnAn(x′, 0) = ∂jnÃn(x′, 0) = 0 j = 0, 1, 2, . . . .

3. Boundary stability

We choose the semi-geodesic coordinates (x′, xn) near x0 so that x0 = 0, ∂M locally is given by xn = 0,
and the interior of M is given by xn > 0. Let ξ0′ be a future pointing timelike covector in T ∗x0

∂M at x0. On

Figure 1, the associated vector would look like v′ on the left, while the covector ξ0′ would have the opposite
time direction, like the figure on the right. Let χ(x′, ξ′) be a smooth cutoff function with small enough
support in U that equals to 1 in a smaller conic timelike neighborhood of (x0, ξ

0′). Assume also that χ is
homogeneous in ξ′ of order 0.

For

(20) f(x′) = eiλx
′·ξ′χ(x′, ξ′),

and for every N > 0, we would like to construct a geometric optics approximation of the outgoing solution
u of (3) near x0 in M of the form

(21) uN (x) := eiλφ(x,ξ′)
N∑
j=0

1

λj
aj(x, ξ

′).

The eikonal and the transport equations below are based on the following identity

e−iλφPeiλφ = −λ2gjk(∂jφ)(∂kφ) + iλ�gφ+ 2iλgjk∂jφ(∂k − iAk) + P.

In M near x0, the phase function φ(x, ξ′) solves the eikonal equation, which in the semi-geodesic coordi-
nates takes the form

(22) gαβ∂αφ ∂βφ+ (∂nφ)
2

= 0, φ|xn=0 = x′ · ξ′.

With the extra condition ∂νφ|∂M < 0, (22) is locally uniquely solvable. Moreover, (22) implies

(23) ∂nφ(x′, 0) = ξn(x′, ξ′) > 0 for any (x′, ξ′) ∈ U ,
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where

(24) ξn(x′, ξ′) :=
√
−gαβ(x′, 0)ξαξβ .

Notice that the choice of the sign of ξn makes ξ a lightlike future-pointing covector, pointing into M . In
Figure 1, the associated vector v = g−1ξ looks like vint on the left.

We recall briefly the method of characteristics for solving the eikonal equation. We first determine ∂φ on
xn = 0 to get (23) or the same equation with a negative square root. We choose one of them, and in this case
our choice is determined by the requirement that ∂φ points into M , see Figure 1. Let now (qx′,ξ′(s), px′,ξ′(s))
be the null bicharacteristic with qx′,ξ′(0) = x′, px′,ξ′(0) = (ξ′, ξn). We think of (x′, s) as local coordinates
and set φ(x′, s) = x′ · ξ′. More precisely, φ is uniquely determined locally by the requirement to be constant
along the null bicharacteristics qx′,ξ′ . Moreover,

(25) p(s) = ∇xφ(q(s), ξ′).

Since by the Hamilton equations, q̇i(s) = gijpj(s), we get in particular that gij∂jφ∂i is just the derivative
∂/∂s along the null bicharacteristic.

In M near x0, the amplitudes a0 and aj , j = 1, 2, . . . solve the following transport equations:

Ta0 =0, a0|xn=0 = χ;(26)

iTaj =− Paj−1, aj |xn=0 = 0; j ≥ 1.(27)

where the operator T is defined as

(28) T := 2gjk∂jφ (∂k − iAk) +�gφ.

We prefer to express the bicharacteristics through the geodesics

Γ(s) := (qx′,ξ′(s), px′,ξ′(s)) = (γx′,ξ′(s), gγ̇x′,ξ′(s)).

Then along the bicharacteristics, we have

(29) T = 2∂s − 2i〈A, p(s)〉+�gφ = 2µ∂sµ
−1,

with the integrating factor µ given by

µ(Γ(s)) = exp

{
− 1

2

∫ s

0

(�gφ)(γx′,ξ′(σ)) dσ

}
× exp

{
i

∫ s

0

〈
A(γx′,ξ′(σ)), γ̇x′,ξ′(σ)

〉
dσ

}
.

(30)

The amplitudes aj , j = 0, 1, . . . are supported in a neighborhood of the characteristics issued from x0 ∈ ∂M
in the codirection ξ(x0). As a result, on some neighborhood of x0, uN solves PuN = O(λ−N ), u|∂M = f .

Theorem 3.1. Λloc
g,A,q is an elliptic ΨDO of order 1 in U .

Proof. Given f ∈ E ′(U) (not related to (20)) with a wave front set as in the theorem, we are looking for an
outgoing solution u of Pu = 0 near x0, u = f on U of the form

(31) u(x) = (2π)−n
∫
eiφ(x,ξ′)a(x, ξ′)f̂(ξ′) dξ′.

The phase φ solves the eikonal equation (22) and therefore coincides with φ there. We chose the solution
which guarantees a locally outgoing u, which corresponds to the positive square root in (24). We are looking
for an amplitude a of the form a ∼

∑∞
j=0 aj(x, ξ

′), where aj is homogeneous in the ξ′ variable of degree −j.
The standard geometric optics construction leads to the transport equations (26), (27). Using the standard
Borel lemma argument, we construct a convergent series for a. Then u is the microlocal solution (up to
a microlocally smoothing operator applied to f) that we used to define Λloc

g,A,q. Then Λloc
g,A,qf = ∂u/∂ν|U .

Since φ = x′ · ξ′ on U , we get that Λloc
g,A,q is a ΨDO with symbol

−iξn(x′, ξ′)− ∂na|xn=0.
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In particular, for the principal symbol we get

(32) σp
(
Λloc
g,A,q

)
(x′, ξ′) = −iξn = −i

√
−gαβ(x′)ξαξβ .

We proceed in the same way if (x′, ξ′) is past pointing.

It remains to show that if we use another locally outgoing solution ũ, the resulting Λ̃loc
g,A,q would differ

by a smoothing operator. This follows by considering v := u − ũ which is a locally outgoing solution with
smooth boundary data, which therefore must be smooth. We omit the details. �

We prove a stable determination result on the boundary next. Let (g,A, q) and (g̃, Ã, q̃) be two triples.
Denote

(33) δ =
∥∥Λloc

g,A,q − Λloc
g̃,Ã,q̃

∥∥
H1(U)→L2(U)

,

where, as above, Λloc
g,A,q and Λloc

g̃,Ã,q̃
are the local DN maps associated with (g,A, q) and (g̃, Ã, q̃), respectively

microlocally restricted to a fixed conic neighborhood U of a timelike future pointing (x0, ξ
0′) ∈ T ∗U with

x0 ∈ U ⊂ ∂M . As above, we assume that ξ0′ is future pointing and timelike for both g and g̃, and that U
is small enough so that is included in the future timelike cone on T ∗U for both metrics. Therefore, in the
theorem below, we need to know the DN map microlocally only near a fixed timelike covector on T ∗∂M .

Theorem 3.2. Let (g,A, q) and (g̃, Ã, q̃) be replaced by their gauge equivalent triples satisfying (M1)-(M3).
Then for any µ < 1 and m ≥ 0, and some open neighborhood U0 b U of x0,

(1) sup
x∈U0,|γ|≤m

|∂γ(g − g̃)| ≤ Cδ
µ

2m ;

(2) sup
x∈U0,|γ|≤m

|∂γ(A− Ã)| ≤ Cδ
µ

2m+1 ;

(3) sup
x∈U0,|γ|≤m

|∂γ(q − q̃)| ≤ Cδ
µ

2m+2 ;

are valid whenever g, g̃, A, Ã, q, q̃ are bounded in a certain Ck norm in the semi-geodesic normal coordinates
near x0 with a constant C > 0 depending on that bound with k = k(m,µ).

Proof. We adapt the proofs in [28] and [40] in the Riemannian setting. Let Γ0 be a small conic neighborhood
of ξ0′. We can assume that χ = 1 on U0 × Γ0. Let f be as in (20). We restrict (x′, ξ′) to U0 × Γ0 below. In
addition, we normalize ξ′ to have unit Euclidean length (in that coordinate system). Since ∂ν = −∂n, the
formal Dirichlet-to-Neumann map in the boundary normal coordinates (x′, xn) is given by

Λloc
g,A,qf(x′) =− eiλx

′·ξ′
(
iλ∂nφ(x′, 0, ξ′) +

N∑
j=0

1

λj
(∂n − iAn) aj(x

′, 0, ξ)

)
+O

(
λ−N−1

)
.

(34)

The expression for Λg̃,Ã,q̃f is similar, with φ and aj replaced by φ̃ and ãj , respectively.

The representation (34) could be derived from (21) but since u there is an approximate solution only,
and we defined Λloc

g,A,q microlocally, we need to go back to its definition. To justify (34), notice that by [46,

Ch. VIII.7], on the set χ = 1, e−iλx
′·ξ′Λloc

g,A,qf is equal to the full symbol of Λloc
g,A,q with λ = |ξ| and ξ in (34)

unit.
In the following, C denotes various constants depending only on M , χ in (20), on the choice of k � 1

and on the a priori bounds of the coefficients of P in Ck. Solving for ∂nφ (resp. ∂nφ̃) in (34) and taking the
difference we obtain

∂nφ− ∂nφ̃ =
1

iλ

(
Λloc
g,A,qf − Λloc

g̃,Ã,q̃
f
)

+
1

iλ

N∑
j=0

1

λj

[
(∂naj − ∂nãj)− i(Anaj − Ãnãj)

]
+O

(
λ−N−1

)
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in L2(U0). Integrating in U0 yields

(35)
∥∥∥∂nφ− ∂nφ̃∥∥∥

L2(U0)
≤ C

λ
δ‖f‖H1(U0) +

C

λ
.

The choice of f in (20) indicates that ‖f‖H1(U0) ≤ Cλ. Thus, taking the limit λ→∞ yields

(36) ‖ξn − ξ̃n‖L2(U0) =
∥∥∥∂nφ− ∂nφ̃∥∥∥

L2(U0)
≤ Cδ.

From relation (24) we have

(37)
∥∥(gαβ − g̃αβ)ξαξβ

∥∥
L2(U0)

= ‖ξ2
n − ξ̃2

n‖L2(U0) =
∥∥∥(∂nφ)2 − (∂nφ̃)2

∥∥∥
L2(U0)

≤ Cδ.

We use the following argument here and in several places below: a quadratic form hαβξαξβ is uniquely
determined for ξ′ in any fixed in advance open set Γ on the unit sphere. In fact, one can choose n(n− 1)/2

vectors ξ′ in Γ and then the recovery is done by inverting an isomorphism on Rn(n−1)/2, and is therefore
stable, see [11, Lemma 3.3]. Therefore, (37) implies ‖g − g̃‖L2(U0) ≤ Cδ. By interpolation estimates in
Sobolev space and Sobolev embedding theorems, we have for any m ≥ 0 and µ < 1 that

(38) ‖g − g̃‖Cm(U0) ≤ Cδ
µ

provided k � 1 is sufficiently large.
Second, we show that the first order normal derivatives of g and the 1-form can be stably determined on

the boundary. From (34) we have

(∂n − iÃn)ã0 − (∂n − iAn)a0 = e−iλx
′·ξ′
(

Λg,A,qf − Λg̃,Ã,q̃f
)

+

iλ(∂nφ− ∂nφ̃) +

N∑
j=1

1

λj
(∂naj − ∂nãj) +O

(
1

λN+1

)
in L2(U0).

Estimate as in (35) to obtain∥∥∥(∂n − iAn)a0 − (∂n − iÃn)ã0

∥∥∥
L2(U0)

≤ C(δ + λδ +
1

λ
)

which holds for all λ > 0. In particular, we may choose λ = δ−
1
2 to minimize the right-hand side, then

(39)
∥∥∥(∂n − iAn)a0 − (∂n − iÃn)ã0

∥∥∥
L2(U0)

≤ Cδ 1
2 .

In order to estimate the difference of first order normal derivatives of the metrics, we consider the transport
equation in (26). Since χ ≡ 1 for x ∈ U0, it follows from the boundary condition in (26) that ∂αa0 = ∂αχ = 0
for α = 0, . . . , n − 1. Moreover, gnj = δnj in the semi-geodesic coordinates, thus the transport equation in
(26) becomes

(40) 2ξn (∂n − iAn) a0 − 2iAαξα +
1√
−det g

∂n

(√
−det g∂nφ

)
+Q(g) = 0,

where, as before, Greek indices range from 0 to n− 1 (but not n). Here Aα := gαβAβ , and Q(g) is defined
as follows which is a linear combination of tangential derivatives of g:

Q(g) :=
1√
−det g

∂α

(√
− det ggαβ

)
ξβ .

where we have used that ∂βφ = ξβ in U0, β = 0, . . . , n− 1. As a consequence of (38),

(41) Q(g)−Q(g̃) = O(δ
1
2 ).

Therefore, combining (39) (40) and (41) we obtain

1√
−det g

∂n

(√
−det g∂nφ

)
− 1√
−det g̃

∂n

(√
− det g̃∂nφ̃

)
− 2i(Aα − Ãα)ξα = O(δ

1
2 ).
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Notice that

1√
−det g

∂n

(√
−det g∂nφ

)
=

1

2 det g
∂n det g∂nφ+ ∂2

nφ

=
ξn

2 det g
∂n det g − 1

2ξn
∂ng

αβξαξβ

is an even function of ξ′. Here in the computation ∂nφ is substituted by ξn due to (23) and ∂2
nφ is calculated

by differentiating the eikonal equation (22). Separating the even and odd parts in ξ′ we conclude

(42)

(
ξn

2 det g
∂n det g − 1

2ξn
∂ng

αβξαξβ

)
−

(
ξ̃n

2 det g̃
∂n det g̃ − 1

2ξ̃n
∂ng̃

αβξαξβ

)
= O(δ

1
2 );

(43) (Aα − Ãα)ξα = O(δ
1
2 ).

From the odd part (43), varying ξ′ locally, we get

(44) ‖A− Ã‖L2(U0) ≤ Cδ
1
2 .

To deal with the even part, notice (42) states that

ξn
2 det g

∂n det g − 1

2ξn
∂ng

αβξαξβ

is stably determined of order O(δ
1
2 ). As ξn is stably determined on U0, see (36), their product

ξ2
n

2 det g
∂n det g − 1

2
∂ng

αβξαξβ

=− 1

2 det g
(∂n det g)gαβξαξβ −

1

2
∂ng

αβξαξβ

=− 1

2

1

det g
∂n
(
det g · gαβ

)
ξαξβ

is also stably determined. Since det g is known to be stable and away from zero, it follows that ∂nh
αβ is

stable where hαβ := (det g)gαβ . Hence, the normal derivative of g = (deth)
1

1−nh is also stably determined,
that is,

(45) ‖∂ng − ∂ng̃‖L2(U0) ≤ Cδ
1
2 .

Using interpolation and Sobolev embedding theorems, we obtain from (45) and (44) that for any m ≥ 0 and
µ < 1,

(46) ‖∂ng − ∂ng̃‖Cm(U0) + ‖A− Ã‖Cm(U0) ≤ Cδ
µ
2

provided k � 1 is sufficiently large.
Next we show that the second order normal derivatives of g, the first order normal derivatives of A, and

the values of q can be stably determined on the boundary. By (34) up to λ−1 we obtain∥∥∥(∂n − iAn)a1 − (∂n − iÃn)ã1

∥∥∥
L2(U0)

≤ C(λ2δ + λδ
1
2 + λ−1).

Choose λ = δ−
1
4 to minimize the right-hand side. Then

(47)
∥∥∥(∂n − iAn)a1 − (∂n − iÃn)ã1

∥∥∥
L2(U0)

≤ Cδ 1
4 .

Consider the transport equation (27) for a1. In the semi-geodesic coordinates this equation takes the form

(48) 2iξn (∂n − iAn) a1 = −∂2
na0 + q +O(δ

1
2 ),
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where O(δ
1
2 ) represents the stably determined terms of order O(δ

1
2 ). (In fact, a1 = 0 in these expressions by

the boundary condition in (27), but it is left here for the convenience of tracking the corresponding terms.)
From the estimates (36) (45) and (48) it follows that

(49) (−∂2
na0 + ∂2

nã0) + (q − q̃) = O(δ
1
4 ).

To obtain an expression of ∂2
na0, we differentiate the transport equation in (26) and evaluate it on U0:

∂2
na0 =− 1

4 det g
∂2
n det g − 1

2ξn
∂3
nφ+

i

ξn
gαβ∂nAαξβ +O(δ

1
2 )

=− 1

4 det g
∂2
n det g +

1

4ξ2
n

∂2
ng
αβξαξβ +

i

ξn
gαβ∂nAαξβ +O(δ

1
2 ),

where the O(δ
1
2 ) terms are estimated by (38) and (46) and we have used that ∂nAn(x′, 0) = 0 in (M3).

Inserting this into (49) and separating the even and odd parts in ξ′ gives (notice that ξn =
√
−gαβξαξβ is

an even function of ξ′.):(
1

4 det g
∂2
n det g − 1

4 det g̃
∂2
n det g̃ − 1

4ξ2
n

∂2
ng
αβξαξβ +

1

4ξ̃2
n

∂2
ng̃
αβξαξβ

)
+(q − q̃) = O(δ

1
4 ).(50)

(51) − i

ξn
gαβ∂nAαξβ +

i

ξ̃n
g̃αβ∂nÃαξβ = O(δ

1
4 ).

To deal with (51), we multiply the two terms by ξn and ξ̃n respectively. This is valid since ξn is stably
determined in (36). By the arguemnt following (37),∥∥∥∂nAα − ∂nÃα∥∥∥

L2(U0)
≤ Cδ 1

2 .

To deal with (50), recall the following matrix identity which is valid for any invertible matrix S

∂ log |detS| = tr(S−1∂S).

Taking S = gαβ and applying ∂j−1
n we see that

∂jn log(−det gαβ) = ∂j−1
n (gαβ∂ng

αβ), j = 1, 2, . . .

For j = 2, it gives

gαβ∂
2
ng
αβ = ∂2

n log(−det gαβ)− ∂ngαβ∂ngαβ .
The right-hand side is stably determined by (M2) and (45), we thus get on U0 that

(52) gαβ∂
2
ng
αβ − g̃αβ∂2

ng̃
αβ = O(δ

1
2 ).

On the other hand, remember that the two metrics g and g̃ have been modified to satisfy (M2), thus by
(37)

1

4 det g
∂2
n det g − 1

4 det g̃
∂2
n det g̃ =

(
1

4 det g
− 1

4 det g̃

)
∂2
n det g = O(δ).

This together with (50) gives

(53)

(
− 1

4ξ2
n

∂2
ng
αβξαξβ +

1

4ξ̃2
n

∂2
ng̃
αβξαξβ

)
+ (q − q̃) = O(δ

1
4 ).

Again we multiply the terms without the tilde by ξ2
n and those with it by ξ̃2

n, using (24) we have

(∂2
ng
αβ + 4qgαβ − ∂2

ng̃
αβ − 4q̃g̃αβ)ξαξβ = O(δ

1
4 ).

By the arguemnt following (37),

(∂2
ng
αβ + 4qgαβ)− (∂2

ng̃
αβ + 4q̃g̃αβ) = O(δ

1
4 ).
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Multiplying those terms without˜by gαβ , those with˜by g̃αβ , then summing up in α, β yields

(gαβ∂
2
ng
αβ + 4nq)− (g̃αβ∂

2
ng̃
αβ + 4nq̃) = O(δ

1
4 ).

From (52) we come to the conclusion that

‖q − q̃‖L2(U0) ≤ Cδ
1
4 .

Inserting this into (53) and using the arguemnt following (37),

‖∂2
ng
αβ − ∂2

ng̃
αβ‖L2(U0) ≤ Cδ

1
4 .

Putting the estimates on g,A, q together, we have established

‖∂2
ng − ∂2

ng̃‖L2(U0) +
∥∥∥∂nAα − ∂nÃα∥∥∥

L2(U0)
+ ‖q − q̃‖L2(U0) ≤ Cδ

1
4 .

As before, interpolation and the Sobolev embedding theorem lead to

‖∂2
ng − ∂2

ng̃‖Cm(U0) +
∥∥∥∂nAα − ∂nÃα∥∥∥

Cm(U0)
+ ‖q − q̃‖Cm(U0) ≤ Cδ

µ
4

for m > 0 and µ < 1. Repeating this type of argument will establish the stability for higher order derivatives
of g,A, q on U0. �

4. Interior Stability

4.1. The semiglobal microlocal solution. We construct the semiglobal microlocal solution u sketched in

the Introduction in the paragraph following (5) and used to define Λgl
g,A,q. We recall the assumptions. We

fix a time-like (x0, ξ
0′) ∈ T ∗∂M \ 0 and a small conic neighborhood U of it. We choose a local orientation

so that (x0, ξ
0′) is future pointing. Then there is a unique light-like (x0, ξ

0) ∈ T ∗M \ 0 which projects
orthogonally to (x0, ξ

0′). Let γ0 be the zero bicharacteristic issued from (x0, ξ
0′) extended until hits T ∗∂M

again, transversally, by assumption; at some (y0, η
0) with projection (y0, η

0′) = L(x0, ξ
0′) ∈ T ∗∂M . Let

V = L(U) and denote by U and V the projections π(U), π(V) of U and V onto the base, i.e., their “x-parts”.
Denote by Γ the union of all zero bicharacteristics issued “from U”, i.e., from all future pointing (x, ξ) with
x ∈ ∂M which have projections on the boundary in U . Let Γ0 := π(Γ) ⊂M be the projection of Γ onto the
base, see Figure 2. We assume below, for convenience, that (M, g) is embedded in a slightly larger manifold.

∂M

∂M

v
γ0

x

ξ′ ξ

η′

y
Γ0

U

V

Figure 2. The solution u

Next proposition says that the microlocal solution u used in the Introduction to define Λgl
g,A,q is well

defined.

Proposition 4.1. If U is small enough, then for every f ∈ E ′(∂M) with WF(f) ∈ U there exists a distribu-
tion u defined in a neighborhood of Γ̄0 so that Pu ∈ C∞(Γ0), u|U − f ∈ C∞(U) and u|V ∈ C∞. Moreover,
u is unique up to a smooth function in Γ0.
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Proof. We are looking for a solution uinc of the form (31) with f having a wave front set in U . Past pointing
codirections can be handled the same way. The solution is the same as in Theorem 3.1 but we are now
trying to extend it as far as possible away from ∂M . We know that microlocally, uinc is supported in a small
neighborhood of the null bicharacteristic (projecting to a null geodesic on M) issued from (x0, ξ

0) with ξ0

future pointing with a projection ξ0′ on the boundary, i.e., ξ0 = (ξ0′, ξn(x0, ξ
0)), where ξn is given by (24),

see Figure 1. This follows from the general propagation of singularities theory but in this particular case it
can be derived from the fact that T in (28) has its principal part a vector field along such null geodesics;
and WF(uinc) can be analyzed directly with the aid of (31).

Such a solution is guaranteed to exist only near some neighborhood of x0 because the eikonal equation
may not be globally solvable. On the other hand, the solution is still a global FIO applied to the boundary
data f . Indeed, it can also be viewed as a superposition of a finite number of local FIOs, each one having a
representation of the kind (31). We construct uinc first near ∂M , call it u1. Then we restrict it to a timelike
hypersurface S1 intersecting the null geodesic π(γ0) transversely and we chose S1 so that the geometric optics
construction is still valid along π(γ0) until it hits S1, and a bit beyond it. We take the boundary data at
S1, and solve a new similar problem, by taking the outgoing solution (the future pointing cone on S1 is the
one determined by WF(u1|S1

)), etc. By compactness arguments, we can cover the whole null geodesics (the
projection of γ0 to the base) until it hits ∂M again. This construction provides solutions (modulo smooth
terms) u1, . . . uk, each one defined in an open set Γk, where ∪kΓk covers Γ̄0. Without loss of generality we
may assume that the only intersections of the Γk’s happen among consecutive ones. Then on Sk, near the
intersection with π(γ0) , we have two microlocal solutions: uk and uk+1. They have the same traces on Sk
modulo a smooth function.

Next, in their common domain of definition, uk and uk+1 coincide up to a smooth function. Indeed, the
difference v has smooth trace on Sk and it is outgoing. By the last paragraph of the proof of Theorem 3.1,
v is near Sk.

We choose a partition of unity 1 =
∑
k χk near Γ̄0 subordinate to that cover and set uinc =

∑
k χkuk.

The latter is a microlocal solution (i.e., a solution up to smooth errors) in a neighborhood of Γ̄0. Indeed,
this is not completely obvious only when suppχk and suppχk+1 intersect but then uk+1 = uk modulo C∞

and therefore, near such a point, uinc = χkuk + χk+1uk+1 = uk modulo C∞, which is a microlocal solution.
We use this argument several times below. This construction is similar to that in [13] where it is shown that

the Cauchy problem on a spacelike surface gives rise to a global FIO. As a result, one gets a microlocal solution
uinc in a neighborhood of Γ̄0 (not satisfying the needed boundary conditions on V yet) as a composition of
a finite number of FIOs.

We need to reflect uinc at V to satisfy the zero boundary condition. We write the solution u as the sum
of the incident wave uinc and the reflected wave uref : u = uinc + uref . The construction of uref is similar —
we start with boundary data −uinc|V on V and singularities which propagate into M into the future (the
past-future orientation near V is determined by declaring the singularities of uinc on V coming from the
past). We refer to (57) below and the construction following it for more details. The solution uref needs to
be extended to a small neighborhood of the geodesics near γ0 reflected at V until they leave Γ0. By choosing
U small enough, we guarantee that the reflected geodesics do not hit ∂M again.

Finally, we prove the uniqueness statement. If u1 and u2 are two such solutions, then v := u1 − u2

is smooth on both U and V . A priori, v can be only singular along bicharacteristics close to γ0 or its
reflection from V . By the argument we used above, v must be smooth in Γ0 with a possible exception some
neighborhood of V in M , where uref might be non-trivial. Near V , v has smooth Cauchy data. An (easier)
adaptation of the same argument shows that v has to be smooth near V as well. Indeed, otherwise, for v,
extended as zero outside M , we would get that Pv has singularities conormal to V only, and the microlocal
propagation of singularities theorem then would yield that v has no singularities near γ0 or its reflection. �

Having constructed u, then we define Λgl
g,A,q as in (4) but with the so constructed u. The uniqueness part

of the proposition shows that Λgl
g,A,q is defined up to a smoothing operator.

4.2. Λgl
g,A,q recovers the lens relation L in a stable way.
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Theorem 4.1. Under the assumptions in the Introduction, Λgl
g,A,q is an elliptic FIO of order 1 associated

with the (canonical) graph of L.

Note that we excluded lighlike covectors in WF(f). This excludes bicharacteristics (geodesics) tangent
to ∂M carrying singularities of u. This is where the two Lagrangians (one of them being the diagonal)
intersect. We also restricted u to the first reflection and shortly after that. Without that, the canonical
relations would contain powers of L. The theorem is a direct consequence of the geometric optics construction
and propagation of singularities results for the wave equation and can be considered as essentially known.

As a consequence of Theorem 4.1, for every s, Λloc
g,A,q maps Hs(U) into Hs−1(U) and Λgl

g,A,q maps Hs(U)

into Hs−1(V ). Fixing s = 1, one may conclude that the natural norms for those two operators are the
H1 → L2 ones. While both operators are bounded in those norms, their dependence on the metric g is not
necessarily continuous if we stay in those norms. For Λloc

g,A,q, we will see that the principal symbol (and the

whole one, in fact) depends continuously on g; and in fact the whole operator does, as well. On the other

hand, while the canonical relation of Λgl
g,A,q depends continuously on g, the operator itself does not. This

observation was used in [2], see also [41] for a discussion.

Proof of Theorem 4.1. We will analyze first the map F : f 7→ uinc|S , where S is a timelike surface as in the
proof of Proposition 4.1, and (31) for u = uinc is valid all the way to it, and a bit beyond it.

Change the coordinates x so that S = {xn = 1}. This can be done if S is close enough to ∂M . Then (31)
with x = (x′, 1) is a local representation of the FIO F and its canonical relation is given by (see, e.g., [46,
Ch. VIII])

(∇ξ′φ|xn=1, ξ
′) 7−→ (x′,∇x′φ|xn=1).

By (25), with the momentum p projected to T ∗{xn = 1}, we get that this is the lens relation L1 from
U ⊂ T ∗∂M to T ∗S (instead of the image being on T ∗∂M again).

We can repeat this finitely many steps by choosing S1, S2, etc., to get a composition of finitely many
canonical relations, starting with L1, then L2 maps data on T ∗S1 to T ∗S2, etc. That composition of, say m
of them, gives the lens relation from ∂M to Sm. In the final step, we need to take the normal derivative.
This shows that the map f 7→ ∂νu

inc|V is an FIO of the claimed type.

To prove this for Λgl
g,A,q, we need to add ∂νu

ref|V . The latter has an oscillatory representation of the

same kind with a different phase, see (57). Its normal derivative on V is the same however and the principal
symbol is the same as that of ∂νu

ref|V ; see (58) below. This completes the proof. �

To prove stable recovery of the lens relation L, we recall that the H1 → L2 norm of the DN maps is not

suitable for measuring how close the canonical relations L and L̃ of the FIOs Λgl
g,A,q and Λgl

g̃,Ã,q̃
are. Instead,

we formulate stability based on measuring propagation of singularities. Given a properly supported ΨDO

R on ∂M near (y0, η
0), with a principal symbol r0, we consider Λ∗RΛ, where Λ = Λgl

g,A,q. By the Egorov

theorem, this is actually a ΨDO near (x0, ξ0) with a principal symbol (r0 ◦ L)λ0, where λ0 is the principal
symbol of ΛΛ∗ which depends on g. In this way, we do not recover L directly; instead we recover functions of
L for various choices of r0, multiplied by λ0. Choosing a finite number of R’s satisfying some non-degeneracy
assumption, we can apply the Implicit Function Theorem to recover L locally. In fact, we choose below the
differential operators

(54) {Rj} = {1, y0, . . . , yn−1, ∂/∂y0, . . . , ∂/∂yn−1}.

Theorem 4.2. Let (y0, . . . , yn−1) be local coordinates on ∂M near y0. Let

n−1∑
j=0

∥∥∥Λ∗yjΛ− Λ̃∗yjΛ̃
∥∥∥
H2(U)→L2(U)

≤ δ,
∥∥∥Λ∗Λ− Λ̃∗Λ̃

∥∥∥
H2(U)→L2(U)

≤ δ,

n−1∑
j=0

∥∥∥∥Λ∗
∂

∂yj
Λ− Λ̃∗

∂

∂yj
Λ̃

∥∥∥∥
H3(U)→L2(U)

≤ δ,

(55)
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with Λ := Λgl
g,A,q, Λ̃ := Λ̃gl

g̃,Ã,q̃
. Assume that (g,A, q) and (g̃, Ã, q̃) are ε–close to a fixed triple (g0, A0, q0) in

a certain Ck norm in the semi-geodesic normal coordinates near x0 and near y0. Then there exist k > 0 and
µ ∈ (0, 1) so that

(56) |(L − L̃)(x, ξ′)| ≤ Cδµ
√
−g(ξ′, ξ′), ∀(x, ξ′) ∈ U ,

if U and ε > 0 are small enough.

A few remarks:

(a) The square root term is just a homogeneity factor.

(b) The cotangent bundle T ∗∂M is not a linear space, therefore the difference L − L̃ makes sense in fixed
coordinates only.

(c) The norms in (55) are the natural one since the operators we subtract there are ΨDOs of order two and
three, respectively.

(d) The norms in (55) are equivalent to studying the quadratic forms (Λf,RjΛf)− (Λ̃f,RjΛ̃f).
(e) One could reduce the number of the Rj ’s to 2n − 2; in fact, R0 = 1 in (55) is not needed, as it follows

from Remark 4.1, since we can recover η′/ηn and use the fact η = (η′, ηn) is a null covector.

We prove Theorem 4.2 at the end of this section.

4.3. Stable recovery of the light ray transforms of A and q. Let, as in the Introduction, ξ0 ∈ Tx0
M \0

be the future-pointing lightlike co-vector whose projection on T ∗∂M \ 0 is the timelike co-vector ξ0′ as in
the definition of the semi-global DN map. Let γ0 := γx0,ξ0′ be the lightlike geodesic issued from (x0, ξ

0)
which intersects ∂M at another point y0. Let V be a neighborhood of y0 containing all endpoints of future
pointing geodesics issued from Ū . Choose and fix any parameterization of the lighlike geodesics close to γ0

by normalizing ξ′. This defines a hypersurface U0 in U . The theorem below holds if U is a small enough
neighborhood of (x0, ξ

0′), and therefore U0 is small enough, as well. Then L1 and L0 are well defined on U0.

Theorem 4.3. Fix a Lorentzian metric g, and (x0, ξ
0) satisfying the assumptions above. Let (A, q) and

(Ã, q̃) be two pairs of magnetic and electric potentials. Denote δ := ‖Λgl
g,A,q − Λgl

g,Ã,q̃
‖H1(U)→L2(V ). Then

(a) for any µ < 1 and m ≥ 0, the following estimates are valid for some integer N whenever g,A, Ã, q, q̃
are bounded in a certain Ck norm

‖L1(A− Ã)− 2πN‖Cm(Ū0) ≤ Cδµ.

(b) Under the a-priori condition ‖A − Ã‖C1(M) ≤ δ1 for some δ1 > 0, for any 0 < µ < µ′ and m ≥ 0,

the following estimate is valid whenever g,A, Ã, q, q̃ are bounded in a certain Ck norm

‖L0(q − q̃)‖Cm(Ū0) ≤ C(δµ + δµ1 ).

If there are no conjugate points along γ0, the proof can be done using a geometric optics construction
of the kind (21) but with a different phase in (21) all the way along that geodesic and taking the normal
derivative in V . Since we do not want to assume the no-conjugate points assumption, we will proceed in a
somewhat different way.

The fact that we cannot rule out the case N 6= 0 based on those arguments can be considered as a
manifestation of the Aharonov-Bohm effect. If Ã and A are a priori close, then N = 0.

We start with a preparation for the proof of the theorem. Consider first the geometric optics parametrix of
the kind (31) of the outgoing solution u like in the previous section. We assume that the boundary condition
f has a wave front set in the timelike cone on the boundary, and for simplicity, assume that it is in the
future pointing one (τ < 0 in local coordinates for which ∂/∂t is future pointing). Assume at this point that
the construction is valid in some neighborhood of the maximal γ0. We microlocalize all calculations below
there. All inverses like D−1, etc., below are microlocal parametrices and the equalities between operators are
modulo smoothing operators in the corresponding conic microlocal neighborhoods depending on the context.

The construction is the same to that in the previous section, but this time the outgoing solution u is
constructed near the bicharacteristic issued from (x0, ξ

0′) all the way to y0. Since the solution can reach the
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other side of the boundary, we need to reflect it at the boundary to satisfy the zero boundary condition. We
write the solution u as the sum of the incident wave uinc and the reflected wave uref : u = uinc + uref where

uinc(x) = (2π)−n
∫
eiφ(x,ξ′)

(
ainc

0 + ainc
1 +Rinc

)
(x, ξ′)f̂(ξ′) dξ′,

uref(x) = (2π)−n
∫
eiφref (x,ξ′)

(
aref

0 + aref
1 +Rref

)
(x, ξ′)f̂(ξ′) dξ′.

(57)

Here the phase function φref solves the same eikonal equation as φ does but satisfies the boundary condition
φref |V = φ. It differs from φ by the sign of its (exterior) normal derivative ∂φ/∂ν = −∂φref/∂ν > 0 on V .
The amplitudes are of order 0 and −1, respectively, and satisfy

T incainc
0 = 0, ainc

0 |U = χ,

T refaref
0 = 0, aref

0 |V = −ainc
0 |V ,

iT incainc
1 = −Painc

0 , ainc
1 |U = 0,

iT refaref
1 = −Paref

0 , aref
1 |V = −ainc

1 |V ,

where T inc and T ref are the transport operators defined in (28), related to the corresponding phase function,
and the remainder terms are of order −2.

Replace A and Ã with their gauge equivalent field satisfying (M3) on V . This does not change their light
ray transforms. A direct computation, which can be justified as (34), yields

Λgl
g,A,qf = (2π)−n

∫
eiφ(x,ξ′)

(
2i(∂νφ)ainc

0 + 2i(∂νφ)ainc
1 + ∂ν(ainc

0 + aref
0 ) + a−1

)
f̂(ξ′) dξ′,(58)

where a−1 is of order −1 and φ and the amplitudes are restricted to x ∈ V .

The expression (58) allows us to factorize Λgl
g,A,q as Λgl

g,A,q = 2N0D modulo FIOs of order 0 associated

with the same canonical relation, where Df is the trace of uinc on V (a “Dirichlet-to-Dirichlet map”) and N0

is the DN map Λloc
g,0,0 but localized in V . Note that replacing A and q in N0 by zeros or not contributes to

lower order error terms. Let D0 be the operator D related to A = 0, q = 0. Let N−1
0 and D−1

0 be microlocal
parametrices of those operators which are actually parametrices of the local Neumann-to-Dirichlet map and
the incoming Dirichlet-to-Dirichlet one from V to U . Then

(59) D−1
0 N−1

0 Λgl
g,A,q = 2D−1

0 D mod S−1

is a ΨDO of order 0.
In the next lemma, we do not assume that the geometric optics construction is valid along the whole γ0.

Lemma 4.1. The operator D−1
0 N−1

0 Λgl
g,A,q is a ΨDO of order zero in U with principal symbol

(60) 2 exp {iL1A(γx′,ξ′)} ,

where γx′,ξ′ is the future pointing lightlike geodesic issued from x′ in direction ξ with projection ξ′.

Proof. By (59), we need to find the principal symbol of D−1
0 D.

The transport equation for ainc
0 is[

2gjk(∂jφ)(∂k − iAk) +�gφ
]
ainc

0 = 0, ainc
0 |U = 1.

As explained right after (25), gjk(∂jφ)∂k is the tangent vector field along the null geodesic γx′,ξ′ . Therefore,
with Γ(s) := (γx′,ξ′(s), gγ̇x′,ξ′(s)), as before, on the set χ = 1 we get ainc

0 = µ, see (30), i.e.,

ainc
0 (Γ(s)) = exp

{
− 1

2

∫ s

0

(�gφ)(Γ(σ)) dσ

}
× exp

{
i

∫ s

0

Ak ◦ γx′,ξ′(σ)γ̇kx′,ξ′(σ) dσ

}
.

(61)
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Take s = s(x, ξ) so that γx′,ξ′(s) ∈ V to get

(ainc
0 ◦ L)(x′, ξ′) = exp

{
−1

2
L(�gφ)(x′, ξ′) + iL1A(x′, ξ′)

}
,

where we use the coordinates (x′, ξ′) to parameterize the lightlike geodesics locally, and the definition of
L(�gφ) is clear from (61).

To construct a representation for D−1
0 , note first that when A = 0, the term involving L1A is missing

above. We look for a parametrix of the incoming solution of �gu = 0 with boundary data u = h on V with
WF(h) ⊂ V of the form

(62) u(x) = (2π)−n
∫
eiφ(x,ξ′)b(x, ξ′)f̂(ξ′) dξ′,

where φ is the same phase as in the first equation in (57) and f (not related to (20)) depending on h as below.
The amplitude b solves the transport equation along the same bicharacteristics (with different coefficients
since A = 0, q = 0) with the initial condition:

b|V = ainc|V ,
where ainc is the full amplitude in the first equation in (57). Restricted to V , the map f → u|V is just Df .
Then to satisfy u = h on V , we need to solve Df = h, i.e., to take f = D−1h microlocally.

To illustrate the argument below better, suppose that we are solving the ODE

y′ + ay = 0, y(0) = 1

from t = 0 to t = 1, where a = a(t). Then we solve

y′1 + a1y1 = 0, y1(1) = y(1),

where a1 = a1(t). A direct calculation yields

y(t) = exp
{
−
∫ t

0

a(s) ds
}
, y1(t) = exp

{
−
∫ t

1

a1(s) ds
}
y(1).

In particular,

y1(0) = exp
{
−
∫ 1

0

(a1(s)− a(s)) ds
}
.

We apply those argument to the transport equation to get

b|U = exp
{

iL1A(γx′,ξ′)
}
.

Then

D−1
0 Df = (2π)−n

∫
ex
′·ξ′ exp

{
iL1A(γx′,ξ′)

}
f̂(ξ′) dξ′.

This proves the lemma under the assumption that the geometric optics construction is valid in a neighborhood
of γ0.

To prove the theorem in the general case, we use the partition argument we used in Proposition 4.1. Let
S1, . . . , Sk be small timelike surfaces intersecting γ0 in increasing order, from U to V so that the geometric
optics construction is valid in a neighborhood of each segment of γ0 cut by two consecutive surfaces of the
sequence {U, S1, . . . , Sk, V }. This determines Dirichlet-to-Dirichlet maps D1, from U to S1; then D2, from
S1 to S2, etc., until Dk+1 from Sk to V . Then D = Dk+1Dk . . . D1. Similarly, D0 = D0,k+1D0,k . . . D0,1.
Then (59) is still valid and takes the form

D−1
0 N−1

0 Λgl
g,A,q = 2D−1

0,1 . . . D
−1
0,kD

−1
0,k+1Dk+1Dk . . . D1 mod S−1.

By the first part of the proof, D−1
0,k+1Dk+1 is a ΨDO on V with principal symbol exp{iL(k+1)

1 A}, where L
(k+1)
1

is the light ray transform L1 restricted to geodesics between Sk and V . Then we apply Egorov theorem,
see [20, Theorem 25.2.5], to conclude that D−1

0,k

(
D−1

0,k+1Dk+1

)
Dk is a ΨDO with a principal symbol that of

D−1
0,k+1Dk+1, pulled back by Lk+1, the canonical relation between Sk and V , multiplied by the principal
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symbol of D−1
0,kDk. The result is then (60) without the factor 2 with the integration between Sk (through

Sk+1) to V . Repeating this argument several times, we complete the proof of the lemma. �

4.4. Stability of the light ray transform of the magnetic field.

Proof of Theorem 4.3(a). We have∥∥D−1
0 N−1

0

(
Λgl
g,A,q − Λgl

g,Ã,q̃

)∥∥
H1(U)

≤ C
∥∥Λgl

g,A,q − Λgl

g,Ã,q̃

∥∥
H1(U)→L2(V )

= Cδ.
(63)

Set R := D−1
0 N−1

0

(
Λgl
g,A,q − Λgl

g,Ã,q̃

)
. By Lemma 4.1, R is a ΨDO in U of order 0 with principal symbol

r0(x′, ξ′) = 2 exp
{

iL1(Ã−A)(γx′,ξ′)
}
,

and we have ‖R‖H1(V ) ≤ Cδ, by (63). We need to derive that r0 is “small” in U , as well. We essentially did

that in the proof of Theorem 3.2. Choose f as in (20). By [46, Ch. VIII.7], on the set χ = 1, e−iλx
′·ξ′Rf is

equal to the full symbol of Λloc
g,A,q with λ = |ξ| and ξ in (34) bounded, say, unit. Therefore,

(64) r0(x′, ξ′) = e−iλx
′·ξ′Rf +O(1/λ)

in Ck for every k. Since ‖f‖L2 = C and ‖f‖H1 ∼ λ, (63) yields

‖r0(·, ξ′)‖H1(U) ≤ Cλδ + C/λ,

uniformly for ξ in some neighborhood of ξ0′. With a little more efforts one can remove λ from Cλδ but this
is not needed. Take λ = δ−1/2 to get∥∥∥ exp

{
iL1(Ã−A)(γx′,ξ′)

}∥∥∥
H1(Ū ′)

≤ Cδ1/2.

Using interpolation estimates, we can replace the H1 norm by any other one at the expense of lowering
the exponent on the right from 1/2 to another positive one, if k in Theorem 4.3 is large enough. Since
|eiz − 1| < ε implies |z − 2πN | < Cε for some integer N , this proves part (a) of the theorem. �

4.5. Stability of the light ray transform of the potential.

Proof of Theorem 4.3(b). First, we will reduce the problem to the case Ã = A. For Λgl

g,Ã,q̃
− Λgl

g,A,q̃, we get

a representation as in (58) with a principal symbol with seminorms O(δµ
′

1 ), since we can use interpolation

estimates to estimate the higher derivatives of Ã−A. Apply a parametrix
(

Λgl
g,A,q̃

)−1

to that difference to

get a ΨDO Q of order 0 microlocally supported in U . If the geometric optics construction is valid all the

way from U to V , we get as in the proof of (a) that Qf = O(δµ
′

1 ) + O(1/λ) in H1. This implies the same

estimate for
∥∥(Λgl

g,Ã,q̃
− Λgl

g,A,q̃

)
f
∥∥
L2 . In the general case, we can prove the same estimate as in the proof of

(a). We will use this later and for now, we assume Ã = A.

Lemma 4.2. The operator D−1N−1
0

(
Λgl
g,A,q̃ − Λgl

g,A,q

)
is a ΨDO of order −1 on U with principal symbol

(65) 2 [L0(q̃ − q)] ◦ γx′,ξ′ ,
where γx′,ξ′ is the future pointing lightlike geodesic issued from x′ in direction ξ with projection ξ′.

Proof. Assume first that the geometric optics construction is valid in a neighborhood of the whole γ0. In
the amplitude

−2i(∂νφ)ainc
0 − 2i(∂νφ)ainc

1 + ∂ν(ainc
0 + aref

0 ) + a−1

in (58), the terms −2i(∂νφ)ainc
0 and ∂ν(ainc

0 +aref
0 ) do not depend on q, see (61). The other two terms depend

on q but they are of different orders. Therefore,(
Λgl
g,A,q̃ − Λgl

g,A,q

)
f = (2π)−n

∫
eiφ(x,ξ′)

(
− 2i(∂νφ)(ãinc

1 − ainc
1 ) + (a−1 − ã−1)

)
f̂(ξ′) dξ′|V .(66)
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The order of the FIO above is zero. As in the previous proof, we can represent this as a composition of 2N0

with the operator D̃ −D (the difference of two such Dirichlet-to-Dirichlet maps):

(67) Λgl
g,A,q̃ − Λgl

g,A,q = 2N0(D̃ −D)

modulo FIOs of order −2. That operator D̃ −D is an FIO with a symbol, compare with (66),

(68) σ(D̃ −D) = −2i(ãinc
1 − ainc

1 ) + a−2,

with a−2 of order −2.
To compute ainc

1 , recall the transport equation for ainc
1

(69)
[
2gjk∂jφ(∂k − iAk) +�gφ

]
ainc

1 = iPainc
0 , ainc

1 |U = 0

where

iPainc
0 = iPg,A,0a

inc
0 + iqainc

0 .

The first term on the right is independent of q. By (29), (30), with Γ(s) as in (61), we get

ainc
1 (Γ(s)) =

iainc
0

2

∫ s

0

1

ainc
0

[
Pg,A,0a

inc
0 + qainc

0

]
◦ Γ(σ) dσ

=
iainc

0

2

∫ s

0

[ 1

ainc
0

Pg,A,0a
inc
0 + q

]
◦ Γ(σ) dσ.

(70)

The potential q depends on x only, so q ◦ Γ(s) = q ◦ γ(s). In (70), only the last term depends on q and is an
integral of q over lightlike geodesics multiplied by an elliptic factor. Note that the integral, as well as ainc

1 ,
are homogeneous of order −1 in ξ′, as they should be.

We go back to (68) now. Using (70), the terms involving Pg,A,0 and Pg,Ã,0 cancel below and we get

(71) σ(D̃ −D) ◦ L = iainc
0 L0(q̃ − q) + a−2,

where a−2 is a symbol of order −2, different form the one above.
Similarly to (59), we have

(72) D−1N−1
0

(
Λgl
g,A,q̃ − Λgl

g,A,q

)
= 2D−1(D̃ −D) mod S−2.

Therefore, we need to compute the principal symbol of 2D−1(D̃−D). Let R be a ΨDO in U with principal
symbol r−1 given by (65). Then, in U , DR is an FIO of the type (62) with x ∈ V with the same phase
function and a principal amplitude b0 solving Tb0 = 0, b0|U = r−1. By (29), the solution restricted to x ∈ V
is given by µr−1 ◦ L−1|V . Recall that µ = ainc

0 . By (71), this is 2σ(D̃ − D) modulo symbols of order −2.

Therefore, DR = 2(D̃ −D) modulo FIOs of order −2. This proves the lemma under the assumption that
the geometric optic construction is valid along the whole γ0.

In the general case, we repeat the arguments of Lemma 4.1. We represent D and D̃ as a composition
D = Dk+1 . . . D1, and similarly for D̃. We will do the first step. Consider 2(D2D1)−1(D̃2D̃1 −D2D1). We
have

2(D2D1)−1(D̃2D̃1 −D2D1)

= 2D−1
1 D−1

2

(
(D̃2 −D2)D̃1 +D2(D̃1 −D1)

)
= D−1

1 R2D̃1 +R1 = D−1
1 R2D1 +R1

modulo FIOs of order −2, where Rj = 2D−1
j (D̃j −Dj), j = 1, 2. We apply Egorov’s theorem to D−1

1 R2D1

to conclude that it is a ΨDO on U with a principal symbol equal to the sum of two terms as in (65) with L0

taken over the geodesic segments between U and S1 first, and S1 and S2 second. The sum is equal to (65)
with L0 taken over the union of those segments. Repeating this arguments to include D2, etc., completes
the proof of the lemma. �
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We finish the proof of part (b) as we did that for part (a). Set R = D−1N−1
0

(
Λgl
g,A,q̃ − Λgl

g,A,q

)
. It is a

ΨDO of order −1 rather than of order 0 as in (a). The analog of (63) is still true. If, as above, r−1 is the
principal symbol of R, then by Lemma 4.2,

r−1(x′, ξ′) = −2i[L0(q̃ − q)] ◦ γx′,ξ′ = λe−iλx′·ξ′Rf +O(1/λ)

with f as in (20), compare with (64). Then

‖r−1(·, ξ′)‖H1(U) ≤ Cλ2δ + C/λ.

Choose λ = δ−1/3 to get ‖r−1(·, ξ′)‖H1(U) ≤ Cδ1/3. This completes the proof of the theorem. �

4.6. Proof of the stable recovery of the lens relation.

Proof of Theorem 4.2. We use the notation above. Recall the remark preceding Theorem 4.2 above. The
operator Λ∗PΛ is a ΨDO with a principal symbol (p0 ◦ L)λ0. Take p = p0 = 1 as in (54) to recover λ0 first.
Knowing the latter, we recover pj ◦ L for j = 1, . . . 2n− 1, see (54). That gives us (y, η′) in (5) as functions
of (x, ξ′). Therefore, we reduce the stability problem to the following: show that the principal symbol of a
ΨDO A of order m is determined by A : Hm → L2 in a stable way which is resolved by the lemma below,
see also (35), (36). Note that the lemma is a bit more general than what we need since {Pj} are simple
multiplication and differentiation operators.

Lemma 4.3. Let Q be ΨDO in Rn with kernel supported in K ×K, where K ⊂ Rn is compact. Let qm be
its principal symbol homogeneous of order m. Then

‖qm(·, ξ)‖L2 ≤ C|ξ|m‖Q‖Hm→L2

for all ξ 6= 0 with C > 0 depending on K only.

Proof. Take f = eix·ξχ(x), where χ ∈ C∞0 equals 1 in a neighborhood K. Then for x in a neighborhood
of K, Qf(x) = eix·ξ(qm(x, ξ) + r(x, ξ)) with r ∈ Sm−1. We have |ξ|m/C ≤ ‖f‖Hm ≤ C|ξ|m for |ξ| ≥ 1.
Therefore, for such ξ,

C1‖Qf‖L2/‖f‖Hm ≥ ‖qm(·, ξ)/|ξ|m‖L2 − C2/|ξ|.
Take the limit |ξ| → ∞ along radial rays to complete the proof. �

We complete the proof of Theorem 4.2 with the aid of Lemma 4.3. We recover first the L2-norms w.r.t.
x of L(x, ξ) − L̃(x, ξ) uniformly in ξ (in fixed coordinates); we can choose µ = 1 then. Using standard

interpolation estimates, we can estimate the L∞ norm of L(x, ξ) − L̃(x, ξ) with µ < 1 in (56), using the a

priori bounds on g and g̃ in some Ck, k � 1, which imply similar bounds on L and L̃. �

Remark 4.1. The symbol λ0 can be computed. Since we do not use this formula, we will sketch the proof
only. Using Green’s formula, as in the proof of [38, Prop. 2.1], we can show that 2NV ∼= D∗Λ, where ∼=
stands for equality modulo lower order terms, and NV is N above with the subscript V indicating that it
acts microlocally in that set. The same proof implies that Λ∗ is the DN map associated with the incoming
solution, i.e., the one which starts from V microlocally and hits U . Therefore, Λ∗ ∼= 2NUD−1, where NU now
acts in U . Those two identities and the Egorov’s theorem imply λ0 = −4(ξn ◦L)ξn, where ξn is the function
defined in (32).

5. Applications and Examples

We start with a partial but still general enough case. We follow [19, §24.1]. Let M be a Lorentzian
manifolds with a timelike boundary ∂M . Assume that t is a real valued smooth function onM so that the level
surfaces t = const. are compact and spacelike. For every a < b, the (compact) “cylinder” Mab = {a ≤ t ≤ b}
(assuming [a, b] is in the range of t) has a boundary consisting of the spacelike surfaces t−1(a), t−1(b) and
∂M ∩Mab which intersect transversely. This is a generalization of [0, T ] × Ω in the Riemannian case. By
[19, Theorem 24.1.1], the following problem is well posed

Pu = 0 in M, u|t<a = 0, u|∂M = f
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with f ∈ Hs(∂M), s ≥ 1, f = 0 for t < a; with a unique solution u ∈ Hs(M) vanishing for t < a. Moreover,
the map f 7→ u is continuous. Then the Dirichlet-to-Neumann map Λg,A,q defined as in (4), is well defined.

Let x0 ∈ U0 b U ⊂ ∂M be as in Theorem 3.2. Let χ be a properly supported ΨDO cutoff of order zero
localizing near some timelike covector over x0 ∈ U0. Since there is a globally defined time function, there
are no periodic lightlike geodesics. Then χΛg,A,qχ can be taken as Λloc

g,A,q and Theorem 3.2 applies. If we

know a priori that Λg,A,q : H1
(0)(∂M) → L2(∂M) is continuous, where the subscript (0) indicates functions

vanishing for t = 0, then we can replace Λloc
g,A,q by Λg,A,q in (33) and therefore, in Theorem 3.2.

Similarly, with suitable ΨDO cutoffs χ1 and χ2, we can take Λgl
g,A,q = χ1Λg,A,qχ2, under the assumptions

of Theorem 4.3. And again, if we know that Λg,A,q : H1
(0)(∂M)→ L2(∂M) is continuous, we can remove the

cutoffs. The results with the cutoffs are actually stronger.
Some special subcases are discussed below. They recover and extend the uniqueness results in [36, 33,

32, 47, 34, 1, 7], and some of the stability results there. Using the results in this paper with the support
theorems about the light ray transform in [37, 31], we can get new partial data results.

Example 5.1. Let q be a unknown potential but assume that the metric and the magnetic fields are known.
Restrict the DN map to Mab for some a < b. Then we can recover L0q in a stable way as in Theorem 4.3 over
all timelike geodesics intersecting the lateral boundary transversely at their endpoints. If g is real-analytic,
then we can apply the results in [37] to recover q in the set covered by those geodesics under an additional
foliation condition. Note that in contrast, the results in [14] require A and q to be analytic in time.

Example 5.2. In the example above, assume that g is Minkowski, and Mab = [0, T ] × Ω̄ for some bounded
smooth Ω ⊂ Rn. By Theorem 3.2, we can recover L1A and L0q over all lightlike geodesics (lines) lz,θ =
{(t, x) = (s, z + sθ); s ∈ R}, (z, θ) ∈ Rn × Sn−1, not intersecting the top and the bottom of the cylinder.
By [37], we can recover q in the set covered by those lines. By [31], we can recover A up to dφ, φ = 0 on
[0, T ]× ∂Ω in that set as well.

For example, if Ω is the ball B(0, 1) = {x; |x| < 1}, the DN map recovers uniquely q and A, up to a gauge
transform, in the cylinder [0, T ] × B̄(0, 1) with the upward characteristic cone with base {0} × B(0, 1) and
the downward with base {T}×B(0, 1) removed, see Figure 3. If T ≤ 2, those two cones intersect; otherwise
they do not but the result holds in both cases. This is the possibly reachable region from [0, T ]× ∂Ω, thus
the results are sharp since no information about the complement can be obtained by the finite speed of
propagation.

Figure 3. The DN map, with g Minkowski, on the lateral boundary of the cylinder determines a
potential and a magnetic field up to dφ inside the cylinder but outside the two characteristic cones.

This extends further the uniqueness part of the results in [36, 33, 32, 47, 34, 1, 7]. Using the stability
estimate in [3] about L0, and the logarithmic estimate for L1 in [35], we can use Theorem 4.3 to recover
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the results in [35]. One important improvement however is that for uniqueness, we do not assume that A
and q are known outside [0, T ]; or that T =∞ because the uniqueness results in [37, 31] do not require the
function or the vector field to be compactly supported in time.

Example 5.3. A partial data case of Example 5.2 is the following. Let Γ ⊂ ∂Ω be relatively open, and assume
that ∂Ω is strictly convex. Assume that we know the DN map for f supported in [0, T ]×Γ, and we measure
Λf there, as well. Then we can recover q (for all n ≥ 2) and A for n ≥ 3, up to a gauge transform, in the
set covered by the lightlike lines hitting [0, T ] × ∂Ω in [0, T ] × Γ at their both endpoints. When n = 2, the
recovery of A up to a potential dφ requires that if we know L1A for all some lightlike lz,θ, we also know it
for lz,−θ, see [31], and this is the reason we restricted n to n ≥ 3. Those local uniqueness results for the DN
maps are new.

Example 5.4. In a recent work [7], an inverse problem for the wave operator

P := ∂2
t + a(t, x)∂t −∆ + b(t, x)

with real valued a, b is studied. The coefficient b causes absorption. We do not restrict A and q to be real
valued, so we can take A = ( i

2a(t, x), 0, . . . , 0) , q = − i
2∂ta(t, x) + b(t, x), then P in (1) is the same as the

one above. Then Theorem 4.3 proves unique recovery of A, q up to the gauge transform A 7→ A− dψ with
ψ = 0 on [0, T ] × ∂Ω. Since A is restricted to the class of covector fields with spatial components zero, we
must have ψ = ψ(t). However, then ψ = 0 for x ∈ ∂Ω implies ψ ≡ 0. Therefore, the logarithmic and the
double logarithmic stability estimates in [7] for a and for b which are about the DN map can be obtained by
Theorem 4.3 combined with the stability estimates in [3, 35]. We can get new uniqueness results however
with partial data as in the previous examples. In the Riemannian case studied by Montalto [28] we can
allow an absorption term as well to obtain, up to a gauge transform, stable recovery of a Riemannian simple
metric in a generic class, a magnetic field, a potential and an absorption term from the DN map.
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