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Abstract

We study resonances (scattering poles) associated to the elasticity operator in the
exterior of an arbitrary obstacle in R3 with Neumann boundary conditions. We prove

that there exists a sequence of resonances tending rapidly to the real axis.

1 Introduction

Let O ⊂ R3 be a compact set with C∞-smooth boundary Γ and connected complement
Ω = R3 \ O. Denote by ∆e the elasticity operator

∆ev = µ0∆v + (λ0 + µ0)∇(∇ · v),

v = t(v1, v2, v3). Here λ0, µ0 are the Lamé constants and we assume that

µ0 > 0, 3λ0 + 2µ0 > 0. (1)

Consider ∆e in Ω with Neumann boundary conditions on Γ

3∑

j=1

σij(v)νj|Γ = 0, i = 1, 2, 3, (2)

where σij(v) = λ0∇ · vδij + µ0

(
∂vi

∂xj
+

∂vj

∂xi

)
is the stress tensor, ν is the outer normal to Γ.

Denote by L the self-adjoint realization of −∆e in Ω with Neumann boundary conditions on
Γ. As usual we define resonances as the poles of the meromorphic continuation of the cut-off
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resolvent Rχ(λ) = χ (L − λ2)
−1

χ from Imλ < 0 to the whole complex plane C, χ ∈ C∞
0

being a cut-off function equal to 1 near Γ. So we accept the convention that the resonances
lie in the upper half-plane.

If one considers the Laplacian with Dirichlet or Neumann boundary conditions, then it
is well known that for convex or more generally for non-trapping obstacles the resonances
lie above logarithmic curves of the type Imλ = C1 lnReλ − C2, C1 > 0. There are several
special examples of trapping obstacles [I1], [I2], [I3], [G] with resonances tending to the real
axis or with a strip of the kind 0 < Im λ < C0 containing infinitely many resonances. An
important open problem in this direction is to prove or reject the Modified Lax and Phillips
Conjecture — for any trapping obstacle there is a strip 0 < Im λ < C0 containing infinitely
many resonances.

In [SV2] the authors proved that for the elasticity operator L with Neumann boundary
conditions there exists a sequence of resonances tending rapidly to the real axis provided that
the obstacle O is strictly convex. Moreover, below any logarithmic curve Imλ = C1 ln |λ|−C2

there are no other resonances except possibly a finite number. The reason for the existence of
almost real resonances are the Rayleigh waves which is a typical phenomenon for the elasticity
operator with Neumann boundary conditions. As proven by Taylor [T] (see also [Y]) there
are three types of rays for L that carry singularities. The first two types are classical rays
reflecting at the boundary according to the laws of geometrical optics and the singularities
propagate along them with speeds c1 =

√
µ0, c2 =

√
λ0 + 2µ0. The third type of trajectories

lie on the boundary and singularities propagate along them with a slower propagation speed
cR > 0 (the Rayleigh speed). Thus any obstacle is trapping for L from the point of view
of propagation of singularities and one might expect resonances close to the real axis. The
proof in [SV2] is based on a construction of a microlocal parametrix of the corresponding
Neumann operator in all of the 5 zones (hyperbolic, mixed, elliptic and two glancing ones)
using the calculus of ΨDO-s and FIO-s with large parameter (see e.g. [G]). It turns out
that the parametrix is elliptic in the first two zones, can be represented microlocally as a
hypoelliptic operator in L0,1

2/3,0 conjugated with an elliptic FIO in the glancing zone while
in the elliptic zone has a characteristic variety of the form Σ = {ζ ∈ T ∗Γ; cR‖ζ‖ = 1}.
Therefore, the parametrix is microlocally invertible outside Σ, which is essential for the
proof of the pole-free domain, while the proof of the existence of almost real resonances is
based on an application of the Phragmén-Lindelöf principle.

In this paper we show the existence of a sequence of resonances of L tending to the real
axis for an arbitrary obstacle O. Of course, one can no longer expect a pole-free logarithmic
zone as in the case of a strictly convex obstacle [SV2] because there might be resonances
near the real axis or more generally in any logarithmic region generated by classical trapped
rays. Our main result is the following theorem.

Theorem 1 There exist two infinite sequences {λj}, {−λ̄j} of distinct resonances of the
elasticity operator L, such that

0 < Imλj ≤ CN |λj |−N for any N > 0.

The proof of Theorem 1 suggests that the reason for the existence of these resonances
are the Rayleigh waves. In particular, it provides another proof of Kawashita’s result [K]
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that the elastic wave equation with Neumann boundary conditions does not possess the
exponential local energy decay property.

To prove Theorem 1 it suffices to show that for any integer N ≥ 1 there are infinitely
many resonances in {λ ∈ C : Im λ ≤ |λ|−N , |Re λ| ≥ 1}. Then, the assumption that there
are finitely many resonances in this region would lead to polynomial a priori estimates on
N−1(λ), N (λ) being the Neumann operator on Γ, in a smaller region near the real axis. The
final step is to show that these a priori estimates cannot hold because the parametrix of the
Neumann operator fails to be elliptic at Σ. To do so, we use the calculus of ΨDO-s and FIO-s
with large parameter as presented in [G] to construct a parametrix of the Neumann operator
in the elliptic zone. Note that this is possible despite the fact that O is not necessarily convex.
In fact, it is sufficient to construct the parametrix in a neighborhood of the characteristic
variety Σ. We take a finite number 2m + 1 of terms in the asymptotic expansion of the
corresponding amplitude in order to get a parametrix N2m−1(λ), such that λ2m−1N2m−1(λ)
is analytic in λ. Then we extend λ2m−1N2m−1(λ) as an elliptic ΨDO with large parameter
λ1 = Re λ globally, thus obtaining a ΨDO P (λ) which is an entire function of λ. Applying
the Phragmén-Lindelöf principle, we show that P (λ) has “zeros”, i.e. we have P (λj)fj = 0
with some λj in a logarithmic domain and ‖fj‖ = 1. Next we show that λj are asymptotic
zeros of N2m−1(λ), i.e. N2m−1(λj)fj = O(|λj |−∞), as well as Imλj = O(|λj |−2m+2). Since
N2m−1 is a parametrix of the Neumann operator N , for m sufficiently large this turns out
to be enough to get the desired contradiction.

2 Some a priori estimates on the resolvent

The purpose of this section is to prove the following a priori estimate of the cut-off resolvent
which is crucial for our proof of Theorem 1.

Proposition 1 Assume that Rχ(λ) is analytic in {λ ∈ C; Im λ ≤ |λ|−N , |Reλ| ≥ C} with
some C > 0 and integer N > 0. Then

‖Rχ(λ)‖L(L2;H2) ≤ C1|λ|N+7 for |Im λ| ≤ |λ|−N−6, |Re λ| ≥ C2,

with some constants C1, C2 > 0.

Remark 1. It is easy to see from the proof that a similar statement holds in any odd-
dimensional space as well and for compactly supported perturbations of the Laplacian. The
proof however does not work if the space dimension is even.

Remark 2. As an immediate consequence of Proposition 1 we get that the existence of
real quasimodes implies the existence of resonances {λj}∞j=1 with Imλj = O(|λj |−∞). The
advantage of this conclusion is that, as shown in [P] (see also [CP], [L]), if there exists an
elliptic broken periodic ray (with Poincaré map satisfying some technical conditions), one
can construct real quasimodes kj → +∞ of the Dirichlet Laplacian in an exterior domain
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Ω ⊂ Rn, n ≥ 3 odd, with C∞ boundary Γ, i.e. there exist uniformly compactly supported
functions uj, ‖uj‖L2 = 1, such that

{
(∆ + k2

j )uj = O(k−∞
j ) in Ω,

uj = O(k−∞
j ) on Γ.

(3)

The proof of Proposition 1 is based on the next two lemmae.

Lemma 1 Assume that f(z) is analytic in {z ∈ C; Im z < C1|z|−N , |Re z| > C2} and
|f(z)| ≤ C3e

C3|z|
n

with some positive constants C1, C2, C3, and integers n, N . Assume
moreover that |f(z)| ≤ C4|z|m/|Im z| for −1 < Im z < 0, |z| > 1 with some C4, and integer
m ≥ 0. Then

|f(z)| ≤ C5|z|m+n+N+2 for |Im z| ≤ |z|−n−N−2, |Re z| ≥ C5,

with some constant C5 > 0.

Proof. Without loss of generality we can assume that Re z ≥ C2. Set

u(z) = exp{izs} = exp{i(Re z)s − s(Re z)s−1Im z + . . .},
s being an integer to be chosen latter on. On γ+ := {z ∈ C; Im z = C1|z|−N , Re z ≥ C2}
we have for g := fu

|g(z)| ≤ C3e
C3|z|

n

exp
{
−s(Re z)s−1Im z + Cs(Re z)s−3(Im z)3 − . . .

}

= C3e
C3|z|

n

exp

{
−C1s

(Re z)s−1

|z|N + C ′
s

(Re z)s−3

|z|3N
− . . .

}

≤ C3e
C3|z|

n

exp

{
−1

2
C1s

(Re z)s−1

|z|N
}

for |z| sufficiently large. Therefore, if s > n + N + 1, we have

|g(z)| ≤ C for z ∈ γ+. (4)

Set γ− = {z ∈ C; −Im z = |z|−s, Re z ≥ C2}. On γ− we have

|g(z)| ≤ C4|z|m
|Im z| exp

{
s(Re z)s−1|Im z| − Cs(Re z)s−3|Im z|3 + . . .

}

≤ C|z|m+s. (5)

We get from (4), (5) that z−m−sg(z) is uniformly bounded on the boundary of the domain be-
tween the curves γ+, γ− and Re z = C ′

2 with C ′
2 > C2 sufficiently large. Moreover z−m−sg(z)

satisfies an a priori exponential estimate in the interior. An application of the Phragmén-
Lindelöf principle implies that z−m−sg(z) is uniformly bounded in the interior of that domain
as well and therefore

|f(z)| ≤ C|z|m+s exp
{
s(Re z)s−1Im z − Cs(Re z)s−3(Im z)3 + . . .

}

≤ C5|z|m+s,
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provided that |Im z| ≤ 1/(Re z)s. Now it suffices to pick s = N + n + 2 in order to complete
the proof of the lemma. 2

We would like to apply this lemma to the operator-valued function Rχ(λ). To this end
we need the following a priori estimate (compare with [SV2, Proposition 5.2]).

Lemma 2 Assume that Rχ(λ) is analytic in DC1,C2
= {λ ∈ C; |Imλ| < C1|λ|−N , |Reλ| >

C2} with some C1 > 0, C2 > 0, N > 0. Then for any C ′
1 < C1, C ′

2 > C2 we have

‖Rχ(λ)‖L(L2;H2) ≤ CeC|λ|4 (6)

with some C > 0 in DC′

1
,C′

2
= {λ ∈ C; |Im λ| < C ′

1|λ|−N , |Reλ| > C ′
2}.

Proof. This is a refinement of Proposition 5.2 in [SV2] (see also Lemma 3 in the present
paper) and we refer to [SV2] for more details. As in the above cited paper we can find an
entire function h(λ) of order 3, such that in

V = C \
⋃

j

{
λ; |λ − zj| < |zj|−5−N

}

we have
‖Rχ(λ)‖L(L2;H2) ≤ CeC|λ|4 for λ ∈ V , (7)

where {zj}∞j=1 are the zeros of h(λ). Let us observe that C \ V =
⋃∞

k=1 Uk, where Uk are
disjoint connected sets and each Uk is a union of a finite number of disks, because the series∑∞

j=1 |zj|−4 converges and hence so does
∑∞

j=1 |zj|−5−N . Clearly, for each k, diam Uk < 2M ,
where M :=

∑ |zj|−4, which implies
∑

|zj |>A

|zj|−N−5 ≤ MA−N−1.

Therefore,
diam Uk < 2M [min{|λ|; λ ∈ Uk}]−N−1 ≤ 2M(|λ| − 2M)−N−1 (8)

for each λ ∈ Uk, and k sufficiently large. Fix C ′
1 < C1, C ′

2 > C2 and set K = {k ∈
N; DC′

1
,C′

2
∩ Uk 6= ∅}. For large k ∈ K we have Uk ⊂ DC1,C2

because of (8). Since (7) holds
on ∂Uk we can apply the maximum principle to conclude that (7) holds in Uk as well with
some other constant C > 0 for large k. Thus (7) holds in the entire DC′

1
,C′

2
except perhaps

in a bounded set. 2

Proof of Proposition 1. We have by the above lemma that the operator-valued function
Rχ(λ) : L2 → H2 satisfies the first assumption of Lemma 1 with n = 4. On the other hand,
it is clear that in the lower half-plane Rχ satisfies the estimate

‖Rχ(λ)‖L(L2) ≤
C

|Im λ||λ| ,

which easily yields

‖Rχ(λ)‖L(L2;H2) ≤
C ′|λ|
|Im λ| for Im λ < 0.
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Thus Rχ(λ) : L2 → H2 satisfies the second assumption of Lemma 1 as well with m = 1.
Now Proposition 1 follows from Lemma 1 at once. 2

Let us define the Neumann operator N (λ) by the formula

N (λ) : Hs(Γ) 3 f 7→
3∑

j=1

σj(v)νj|Γ ∈ Hs−1(Γ), s ≥ 3

2
,

where σj = t(σ1j, σ2j, σ3j), σij is the stress tensor (see (2)) and v solves the following problem





(∆e + λ2)v = 0 in Ω,
v = f on Γ,
v − outgoing.

(9)

As N−1(λ) can be easily expressed in terms of Rχ(λ) (see [SV1]), the assumption that Rχ(λ)
is holomorphic in {λ ∈ C : Im λ ≤ |λ|−N , |Re λ| ≥ C} implies that so is N−1(λ) and
moreover, by Proposition 1,

‖N−1(λ)‖L(H1/2;H3/2) ≤ C|λ|N+9 for |Im λ| ≤ |λ|−N−6, |Reλ| ≥ C ′. (10)

In the rest of the paper we will find a contradiction to (10).

3 Parametrix for the Neumann operator

We will recall briefly the construction of the parametrix of (9) in the elliptic zone (see [SV2],
[CP]). We will use the calculus of ΨDO-s and FIO-s with large parameter as developed in
[G]. We choose λ to be the large parameter and we suppose that

λ ∈ ΛC1,C2
:= {λ ∈ C; |λ2| < C1 lnλ1, λ1 > C2}, (11)

where λ1 = Re λ, λ2 = Imλ, C1 > 0, C2 > 0.
Given an open set X in Rn denote by C̃∞(X) the space of all functions u(x, λ), λ ∈ Λ

such that u( · , λ) ∈ C∞(X) and p(u( · , λ)) = O(|λ|−∞) for all seminorms p in C∞(X). In a
similar way we define C̃∞(K), K being a compact, C̃∞

0 (X) and D̃′(X).
Given two open sets X, Y in Rn, for m, k ∈ R, ρ, δ ∈ [0, 1) we define (see [G, Def. A.I.2])

the class Sm,k
ρ,δ (X × Y ) to be the set of all a(x, y, η, λ) ∈ C∞(X ×Y ×Rn), such that for any

compact K ⊂⊂ X × Y , all α, β, γ ∈ Zn, λ ∈ Λ we have

|∂α
x ∂β

y ∂γ
ηa| ≤ Cα,β,γ,K|λ|k+ρ|γ|+δ|α+β|(1 + |η|)m−|γ|. (12)

If X = Y , we set Sm,k
ρ,δ (X) = Sm,k

ρ,δ (X × X). Given a ∈ Sm,k
ρ,δ (X × Y ), denote by Op(a) (or

Opλ(a)) the operator

(Op(a)u) (x, λ) =

(
λ

2π

)n ∫ ∫
eiλ(x−y)·ηa(x, y, η, λ)u(y, λ) dy dη. (13)
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We have well-defined operators in the case where a has bounded support in η and λ ∈ Λ or
if η is unbounded on supp a, but λ is real. We refer to [G] (see also [SV2]) for more details,
as well as for a definition and properties of elliptic ΨDO-s with large parameter, wave front
set W̃F(f), etc.

Let us recall [SV2] that operators of the form Opλ(a) can be represented as ΨDO-s
with large parameter λ1 = Re λ, provided that |η| is bounded on supp a. In other words,
Opλ(a) = Opλ1

(ã), where

ã(x, y, η, λ) = (1 + iλ2/λ1)
ne−λ2(x−y)·ηa(x, y, η, λ).

One can regard here λ2/ lnλ1 ∈ [−C1, C1] as an additional parameter. Assuming λ ∈ ΛC1,C2
,

we get that a ∈ S0,k
ρ,δ implies ã ∈ S0,k+N

ρ+ε,δ+ε for any ε > 0. This follows from the fact that

|e−λ2(x−y)·η| ≤ |λ|N with a fixed N > 0 and |λ2| ≤ Cε|λ|ε for any ε > 0. Therefore, ã is an
amplitude. Using [G, Pr. A.I.4, Pr. A.I.5], we can calculate the symbol of ã (depending only
on x, η, λ) and we find that actually ã ∈ S0,k

ρ,δ and the principal symbol is a|y=x − i(λ2/λ1)η ·
∇ηa|y=x. Thus if a ∈ S0,k

0,0 , we have Opλ(a) = Opλ1
(ã) with

ã = a − i
λ2

λ1
η · ∇ηa mod S0,k−1

0,0 . (14)

Let us now recall the construction of the parametrix in the elliptic zone. Recall (see
e.g. [SV2]) that the operator −∆e has two sound speeds c1, c2 and the variety Σ = {ζ ∈
T ∗Γ; cR‖ζ‖ = 1} lies in the elliptic zone {ζ ∈ T ∗Γ; ‖ζ‖ > c−1

1 }, ‖ · ‖ being the norm in
T ∗Γ. Let ζ0 ∈ T ∗Γ with ‖ζ0‖ > c−1

1 and from now on we assume that the space dimension
is n = 3. Let us pick local coordinates such that ζ0 = (0, η0), the boundary is given locally
by x1 = 0 and the normal derivative at x = 0 is given by ∂/∂x1. Then x′ = (x2, x3) are
local coordinates on Γ. Let χζ0(x′, η) ∈ C∞

0 (T ∗Γ) be a cut-off function equal to 1 near ζ0.

If supp χζ0 is sufficiently small, one can construct a local FIO Hζ0

with large parameter
λ ∈ ΛC1,C2

such that {
(∆e + λ2)Hζ0

f = Kf,

Hζ0

f |Γ = Opλ(χζ0)f,
(15)

where K has kernel in C̃∞. The operator Hζ0

is of the form

Hζ0

f =

(
λ1

2π

)2 ∫ ∫
eiλ(ϕ(x,η)−y·η)h(x, η, λ)f(y, λ) dy dη. (16)

The phase function ϕ solves the eikonal equation (∇ϕ)2 = 1, ϕ|Γ = x · η to infinite order at
Γ and Im ϕ ≥ cx1 on supp χζ0 with some c > 0. This implies that Hζ0

f = O(e−cλ1x1). The
matrix-valued amplitude h is a solution of the corresponding transport equations and has
the form h =

∑∞
j=0 hj(x, η)λ−j, with hj formal series in x1. Set

h(m) =
m∑

j=−1

λ−jh−j(x, η)
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and consider the operator Hζ0

m associated with h(m). Then Hζ0

m solves a problem similar to
(14) with K replaced by K plus a FIO of order −m. Denote N ζ0

m f =
∑3

j=1 σj(H
ζ0

m f)νj|Γ,

where σj = t(σ1j, σ2j, σ3j), σij is the stress tensor. Then N ζ0

m is a ΨDO with large parameter
λ and symbol

σ(N ζ0

m ) =
m∑

j=−1

λ−jn−j(x, η).

The principal symbol is λn1(x, η) = λχζ0(x, η)ñ1(x, η), ñ1(x, η) being a Hermitian matrix
with three distinct eigenvalues near Σ. One of the eigenvalues has simple zero at Σ, the
other two are elliptic. Moreover, ñ1 is elliptic everywhere in the elliptic zone outside Σ (see
also [CP], [K]).

Thus for any ζ in a neighborhood of Σ in the elliptic zone we constructed an operator
Hζ

m solving (15) provided that supp χζ is contained in a small neighborhood Uζ of ζ. Let
W1 be a bounded neighborhood of Σ in the elliptic zone and let us pick a partition of unity
{χζj} associated with {Uζ} covering W1 and supported in a slightly larger domain. Using
this partition of unity, we construct a solution operator

Hm(λ) =
∑

j

Hζj

m φj, (17)

where φj(x) have small supports and φj(x) = 1 in a neighborhood of πx(suppχζj). This
operator solves {

(∆e + λ2)Hmf = Kmf,
Hmf |Γ = f + Qf,

(18)

provided that W̃F(f) ⊂ W1, where Km(λ) is a FIO with amplitude of order −m and

‖Qf‖Hs = O(|λ|−∞) for any s. (19)

Set

Nmf =
3∑

j=1

σj(Hmf)νj|Γ.

Then Nm ∈ L0,1
0,0(Γ) and λmNm is holomorphic in λ.

Now we are going to find a relationship between Nm and the Neumann operator N .
Following [G], we set

H̃m(λ) = χHm(λ) − S0 (λ)(χKm(λ) + [∆e, χ]Hm(λ)) , (20)

where S0(λ) is the free outgoing resolvent. Thus H̃m(λ)f solves the problem

{
(∆e + λ2)H̃mf = 0,

H̃mf |Γ = f + Qf + Rmf,
(21)

with
‖Rm(λ)‖L(H3/2(Γ)) ≤ C|λ|−m+1 (22)
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provided that λ ∈ ΛC1,C2
with C1 small enough. If we denote the exact solution to (9) by

H(λ)f , we see that
H(f + Qf + Rmf) = H̃mf.

By differentiating this at the boundary, we get

N (f + Qf + Rmf) = Nmf + R̃mf, W̃F(f) ⊂ W1, (23)

where ‖R̃m‖L(H3/2,H1/2) = O(|λ|−m+2) and Qf , Rm satisfy (19) and (22), respectively.

4 Proof of the main result

Let {χζj} be the partition of unity used to construct Hm (see (17)). Choose an open set
W2 ⊂ T ∗Γ, such that Σ ⊂ W2 ⊂⊂ W1 and pick χ0 ∈ C∞

0 (T ∗Γ), such that χ0 = 1 on W2 and
supp χ0 ⊂ W1. For each ζj let us define a local ΨDO using the special coordinates related to
ζj by Aζj

= Opλ(χ0χζj) and set A =
∑

j Aζj
φj (see (17)). Then A ∈ L0,1

0,0(Γ), A is an entire
function of λ and σp(A) = 1 on W2, σp(A) = 0 outside W1. Moreover, the symbol of A in
any local coordinates is supported in W1. Since the symbol of Nm has also compact support,
we will extend Nm as an operator elliptic outside W1 with characteristic variety Σ. To this
end fix an integer m > 0 and set

P (λ) = λ2m−1N2m−1A + i
(
λ2 − ∆Γ

)m
(I − A), (24)

∆Γ being the Laplacian on Γ. Note first that P is analytic function of λ with values in
L(Hs+2m, Hs). Secondly, let us mention that in any logarithmic region ΛC1,C2

, P can be
considered as a ΨDO with large parameter λ1 = Re λ and P ∈ L2m,2m

0,0 (Γ). We claim that P
is elliptic outside Σ. Indeed, for the principal symbol of P we have

σp(P ) = λ2m−1σp(A)σp(N2m−1) + iλ2m
1 (1 − σp(A))

(
(1 + iλ2/λ1)

2 + |η|2x
)m

,

where σp(A) is a function supported in W1 and |η|x denotes the norm of the covector (x, η).
Note that here we consider N2m−1, A as ΨDO-s with large parameter λ1, not λ, and respec-
tively σp(N2m−1), σp(A) are the principal symbols of these operators obtained by using (14).
In W2 \ Σ the principal symbol σp(P ) is elliptic, because σp(A)|W2

= 1 is elliptic. Outside
W1, σp(P ) = λ2m

1 ((1 + iλ2/λ1)
2 + |η|2x)

m
is elliptic as well, including at the infinite points

of T̂ ∗Γ. Finally, on W1 \ W2 our claim follows from the fact that for any Hermitian elliptic
matrix B we have |αBx + iβx|2 = α2|Bx|2 + β2|x|2 ≥ c|x|2 provided that α + β = 1.

Next proposition establishes existence of “resonances” of P .

Proposition 2 There exist λj and fj ∈ C∞(Γ), j = 1, 2, . . ., such that
a) P (λj)fj = 0,
b) |Imλj | ≤ C ln |λj | and |λj | → ∞, as j → ∞,

c) ‖fj‖H3/2(Γ) = 1, W̃F(f) ⊂ Σ, where f(x, λ) := fj(x), λ = λj.

To prove Proposition 2 we are going to apply the Phragmén-Lindelöf principle to P−1(λ). To
this end we need the following two lemmae. First we prove an a priori exponential estimate
of P−1(λ) similar to that in Lemma 2 (see also [SV2], Proposition 5.2).
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Lemma 3 Assume that P−1(λ) has no poles in ΛC1,C2
with some C1 > 0, C2 > 0. Then

‖P−1(λ)‖L(L2(Γ)) ≤ CeC|λ|4, λ ∈ ΛC1/2,2C2
.

Proof. Let us rewrite P (λ) in the form

P (λ) = i (I − ∆Γ)m (I + K(λ)), (25)

where K(λ) = K1(λ) + K2(λ) with

K1(λ) = −
[
I + (λ2 − 1) (I − ∆Γ)

−1
]m

A − i (I −∆Γ)−m λ2m−1N2m−1A,

K2(λ) =
[
I + (λ2 − 1) (I − ∆Γ)

−1
]m − I.

Clearly, K(λ) is an entire family of compact operators on L2(Γ). Moreover, the operator
K2(λ) is of trace class and we can consider the entire function h(λ) = det (I −K2(λ)). As
in the proof of Proposition 5.2 in [SV2] first we will prove the following a priori estimate

‖P−1(λ)‖L(L2(Γ)) ≤ CeC|λ|4, λ ∈ V, (26)

where V = C \ ∪{λ ∈ C; |λ − zj| ≤ |zj|−4}, zj being the zeros of h. To this end we will
prove first that h(λ) is of order 3. We have

|h(λ)| =
∣∣∣det

(
I − K2(λ)

)∣∣∣ ≤
∞∏

j=1

(
1 + µj(K

2(λ))
)

≤
∞∏

j=1

(
1 + µj(K̃1(λ))

)2
∞∏

j=1

(
1 + µj(K

2
2 (λ))

)2
, (27)

where µj(K) denote the characteristic values of K and K̃1 = K2
1 + K1K2 + K2K1. Let us

first estimate µj(K̃1(λ)). Clearly,

µj(K̃1(λ)) ≤ ‖K̃1(λ)‖ ≤ CeC|λ| ∀λ ∈ C, ∀j. (28)

On the other hand,

µj(K̃1(λ)) ≤ µ[ j
2
](K

2
1 + K1K2) + µ[ j

2
](K1K2)

≤ ‖K1 + K2‖µ[ j
2
](K1) + ‖K2‖µ[ j

2
](K1)

≤ CeC|λ|µ[ j
2
](A). (29)

Let us recall that A is a finite sum of operators Aζφ with kernels of the kind

(
λ

2π

)2

χ(x, η)eiλ(x−y)·ηφ(y),

where χ is a cut-off function supported near ζ in the elliptic zone, φ ∈ C∞
0 and φ(y) = 1

in a neighborhood of πx(suppχ). Set M := πη(suppχ). We have Aζ = A1A2, where
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A1 : L2(M) → L2(Γ), A2 : L2(Γ) → L2(M) have kernels (λ/2π)2χ(x, η)eiλx·η and e−iλy·ηφ(y),
respectively. For the kernel of A2 we have

sup
y∈suppφ, η∈M

∣∣∣(I − ∆η)
ke−iλy·ηφ(y)

∣∣∣ ≤ CeC|λ|
(
(C|λ|)2k + (2k)2k

)
.

Therefore, we get for any k ≥ 0 and for any j > 0,

µj(A2) ≤ µj

(
(I − ∆η)

−k
)
‖(I − ∆η)

kA2‖ ≤ Cj−keC|λ|
(
(C|λ|)2k + (2k)2k

)
.

Taking k = [|λ|/2], j ≥ C(q)|λ|2 gives

µj(A2) ≤ j−2e−q|λ| for any q > 0 and j ≥ C(q)|λ|2. (30)

By (30) and the estimate ‖A1‖ ≤ CeC|λ| we get the same type of estimate for Aζ, and hence
for A. Thus, choosing q properly, in view of (26) we obtain

µj(K̃1(λ)) ≤ Cj−2 for j ≥ C ′|λ|2. (31)

Combining (28) and (31) yields

∞∏

j=1

(
1 + µj(K̃1(λ))

)2 ≤
∏

j≤C′ |λ|2

(
CeC|λ|

)2 ∏

j>C′|λ|2

(
1 + C ′j−2

)2 ≤ eC|λ|3. (32)

It remains to estimate µj(K
2
2 ). We have

µj(K
2
2 ) ≤ µ2

[ j
2
]
(K2). (33)

On the other hand,

K2 =
m∑

p=1

(
m

p

)
(λ2 − 1)p(I − ∆Γ)−p,

thus, setting 〈λ〉 := (1 + |λ|2)1/2
, we get

µj(K2) ≤
m∑

p=1

(
m

p

)
〈λ〉2pµ[ j

m
]

(
(I − ∆Γ)

−p
)

≤
m∑

p=1

(
m

p

)
〈λ〉2p

(
cj

m

)−p

≤ C〈λ〉2j−1 for j ≥ 〈λ〉2/2.

Thus we get from (33) and the estimate above

µj(K
2
2 ) ≤ C〈λ〉4j−2 for j ≥ 〈λ〉2. (34)
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Using (34) we deduce

∞∏

j=1

(
1 + µj(K

2
2(λ))

)
≤

∏

j≤〈λ〉2

[
C〈λ〉2m

] ∏

j>〈λ〉2

(
1 + C〈λ〉4j−2

)

≤ exp
[
C〈λ〉2 ln〈λ〉

]
exp

[
C〈λ〉4

∑

j>〈λ〉2

j−2
]

≤ exp
[
C〈λ〉2 ln〈λ〉

]
exp

[
C〈λ〉2

]

≤ CeC|λ|3. (35)

Now (32) and (35) together imply

|h(λ)| ≤
∞∏

j=1

(
1 + µj(K

2(λ))
)
≤ CeC|λ|3, λ ∈ C. (36)

We will complete the proof of the lemma as in [SV2]. By [Ti, Ch. VIII] we conclude from
(36) that

|h−1(λ)| ≤ CeC|λ|4, λ ∈ V. (37)

On the other hand, we have (see e.g. [GK, Thm. 5.1])

∣∣∣det
(
I − K2(λ)

)∣∣∣ .
∥∥∥
(
I − K2(λ)

)−1∥∥∥ ≤
∞∏

j=1

(
1 + µj(K

2(λ))
)
≤ CeC|λ|3. (38)

By (36) and (37) we obtain

∥∥∥
(
I − K2(λ)

)−1∥∥∥ ≤ CeC|λ|4, λ ∈ V,

which implies immediately (26). As in the proof of Lemma 2 if we assume that P−1 is free of
poles in some logarithmic domain, we will get that (26) holds in a slightly shrunken domain.

2

Denote l± = {λ ∈ C; Re λ ≥ C2, Imλ = ±C1 ln(Re λ)}. Let us assume that C2 > 1, so
that ln(Re λ) > 0.

Lemma 4 For any C1 > 0 there exists C2 > 1, such that the operator P (λ) is invertible on
l± and

‖P−1(λ)‖L(L2(Γ)) ≤
C

ln |λ| |λ|
−2m+1, λ ∈ l±.

Proof. Let ζ 6∈ W2 and χ ∈ C∞
0 (T ∗Γ) be a cut-off function with sufficiently small support

in T ∗Γ \ W2. Since P is a ΨDO with large parameter λ1 elliptic outside W2, we get

‖Opλ1
(χ)f‖ ≤ C

|λ|2m
‖Pf‖ + CN |λ|−N‖f‖ (39)
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for any N > 0 and λ ∈ l±, where Opλ1
(χ) is the ΨDO with symbol χ written in the

special coordinates related to ζ. The same estimate holds if χ is supported near the infinite
points in T̂ ∗Γ, i.e. for χ = χ′(x)χ′′(η), where supp χ′ is close to a point x0 ∈ Γ, while
supp χ2 ⊂ {η; cR|η| > 2}.

Let us now choose ζ ∈ W1 and pick χ ∈ C∞
0 (T ∗Γ) supported in W1, such that χ = 1 in

a neighborhood of ζ. The principal symbol of P considered as a ΨDO with large parameter
λ ∈ l± is λ2mñ1(x, η) (see section 3). In a neighborhood Uζ of supp χ we have

T ∗ñ1T = diag(c2
R|η|2x − 1, 1, 1)S, (40)

where S = diag(a′
1, a2, a3) is elliptic and a1 = (c2

R|η|2x − 1)a′
1, a2, a3 are the eigenvalues of

ñ1. Here T is a unitary matrix. Let us now consider Opλ (c2
R|η|2x − 1) as a ΨDO with large

parameter λ1. From (14) we deduce that the principal symbol of the latter reads

1

λ2

(
λ2

1c
2
R|η|2x − λ2

1 − 2iλ1λ2

)
.

Therefore, modulo S0,−1
0,0 this operator coincides with

1

λ2

(
−∆Γ − λ2

1 − 2iλ1λ2

)
.

Observe that for any g and C2 sufficiently large

‖ 1

λ2

(
−∆Γ − λ2

1 − 2iλ1λ2

)
g‖ ≥ |λ2|

|λ| ‖g‖ = C1
lnλ1

|λ| ‖g‖.

This inequality together with (40) shows that for any N > 0 we have

‖Opλ(χ)f‖ ≤ C

|λ|2m−1 ln |λ|‖Pf‖ + CN |λ|−N‖f‖.

Choose χ1 ∈ C∞
0 (T ∗Γ), such that suppχ1 ⊂ {ζ; χ(ζ) = 1}. Then one easily gets

‖Opλ1
(χ1)f‖ ≤ C

|λ|2m−1 ln |λ|‖Pf‖ + CN |λ|−N‖f‖. (41)

By (39), (41),

‖f‖ ≤ C

|λ|2m−1 ln |λ|‖Pf‖

for any f and |λ| sufficiently large. Since we can prove the same type of estimate for P ∗, we
get that P−1(λ) exists for λ ∈ l± sufficiently large and satisfies the desired estimate. 2

Proof of Proposition 2. Assume now that there is a finite number of poles of P−1 in some
logarithmic domain ΛC1,C2

. Taking C2 sufficiently large we can assume that ΛC1,C2
is free

of poles and Lemma 4 holds. Let us apply the Phragmén-Lindelöf principle to the function
λ2m−1(log λ)P−1(λ) in ΛC1/2,2C2

. By Lemma 3 it satisfies the a priori exponential estimate
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in ΛC1/2,2C2
, while by Lemma 4 it is uniformly bounded on the boundary. Therefore, it is

uniformly bounded in ΛC1/2,2C2
as well, i.e.

‖P−1(λ)‖L(L2(Γ)) ≤
C

|λ|2m−1 ln |λ| , λ ∈ ΛC1/2,2C2
. (42)

The final step of the proof of Proposition 2 is to show that (42) leads to contradiction for
real λ. We will do this in exactly the same way as in [SV2]. Let {µ2

j} be the eigenvalues of
−c2

R∆Γ and denote by ϕj, ‖ϕj‖ = 1 the corresponding eigenfunctions. Fix ζ0 ∈ Σ and let χ
be supported in a small neighborhood U of ζ0 in the elliptic region. Let Π(x, η), (x, η) ∈ U be
the projection onto the eigenspace corresponding to the first eigenvalue a1 = (c2

R|η|2x − 1)a′
1.

Set
fk( · , µj) = Opµj

(χΠ)ekϕj , (43)

{ek}3
k=1 being the standard base in R3. Denote Θ = {µj}∞j=1 and fk(x, λ) = fk(x, µj),

ϕ(x, λ) = ϕj(x) for λ ∈ Θ. Consider all ΨDO-s bellow as ΨDO-s with large parameter
λ ∈ Θ. Then

Pfk = Gekϕ, (44)

where G ∈ L0,2m
0,0 (Γ), σp(G) = λ2m(c2

R|η|2x−1)a′
1χΠ. Since the principal symbol of −c2

R∆Γ−λ2

is λ2(c2
R|η|2x − 1), we have

Pfk = λ2m−2Op(χa′
1Π)

(
−c2

R∆Γ − λ2
)
ekϕ + Bekϕ = Bekϕ, (45)

where B ∈ L0,2m−1
0,0 (Γ). Thus

‖Pfk‖ ≤ Cλ2m−1 for k = 1, 2, 3; λ ∈ Θ. (46)

According to (42), (43),

‖Op(χΠ)ekϕ‖ ≤ C

lnλ
for k = 1, 2, 3; λ ∈ Θ. (47)

Since the projection Π(ζ) is well defined and does not vanish near Σ, we have that
∑ |Πij|2

is elliptic in U provided that U is sufficiently close to Σ. Thus from (47) we deduce that

‖Op(χ′χ′′)ϕ‖ ≤ C

lnλ
, (48)

where χ′ = χ′(x), χ′′ = χ′′(η) and χ′(x) = 1, χ′′(η) = 1 for (x, η) close to ζ0, supp χ′χ′′ ⊂
{χ = 1}. On the other hand, (−c2

R∆Γ −λ2)ϕ = 0 and −c2
R∆Γ−λ2 is a ΨDO on Γ in L2,2

0,0(Γ)

with principal symbol λ2(c2
R|η|2x − 1) elliptic outside Σ. Therefore, W̃F(ϕ) ⊂ Σ. Hence,

‖Op(χ′(1 − χ′′))ϕ‖ ≤ CNλ−N , ∀N > 0. (49)

Combining (48) and (49) we get

‖χ′ϕ‖ ≤ C

lnλ
, λ ∈ Θ,
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for any cut-off function χ′, such that χ′ = 1 near x0 = πx(ζ
0) and supp χ′ is sufficiently small.

Since ζ0 ∈ Σ was arbitrary, we get ‖ϕ‖ ≤ C/ ln λ which contradicts the fact that ‖ϕ‖ = 1.
Thus, there exists a sequence {λj} of poles of P−1(λ) satisfying (b). Going back to the

representation (25) we conclude by the Fredholm alternative that for any pole λj there is a
function fj 6= 0 such that P (λj)fj = 0. Since P , considered as a ΨDO with large parameter
λ1 (with λ satisfying (b)) is elliptic outside Σ, we get (c). 2

Next we show that Proposition 2 implies existence of asymptotic zeros of N2m−1.

Proposition 3 Let λj , fj , j = 1, 2, . . . be as in Proposition 2. Then
(a) N2m−1(λj)fj = O(|λj |−∞),
(b) |Imλj | ≤ C|λj|−2m+2 with some C > 0.

Proof. It follows from Proposition 2 (c) that (I −A)fj = O(|λj |−∞), which in view of (24)
yields (a). To prove (b), set f(x, λ) = fj(x), λ ∈ Θ := {λj}∞j=1 and recall that H2m−1 solves
(18) with 2m − 1 instead of m. Arguing as in [SV2], we get that

(∆e + λ2)φH2m−1f = [∆e, φ]H2m−1f + φK2m−1f, (50)

where φ ∈ C∞
0 , φ = 1 near Γ. Multiply (50) by φH2m−1f and integrate by parts. Using (18),

we get that

Im λ2 ≤ ‖[∆e, φ]H2m−1f‖ + C|λ|−2m+1

‖φH2m−1f‖
.

Now, we use the facts that [∆e, φ] is a first order differential operator with compactly sup-
ported coefficients vanishing near Γ and that the parametrix in the elliptic zone decays
exponentially in |λ|x1. This implies

‖[∆e, φ]H2m−1f‖ ≤ Ce−γ|λ|‖f‖ ≤ Ce−γ|λ|

with some γ > 0 (recall that ‖f‖H3/2 = 1). On the other hand, by trace theorem, in view of
(17) and using the fact that the operator ∆e with Dirichlet boundary conditions is coercive,
we have

‖f + Qf‖H3/2 ≤ C‖φH2m−1f‖H2 ≤ C ′(‖∆eφH2m−1f‖ + ‖φH2m−1f‖)
≤ C ′′|λ|2‖φH2m−1f‖ + C ′′|λ|−2m+1,

which gives for large λ ∈ Θ
1 ≤ 2C ′′|λ|2‖φH2m−1f‖.

Combining the above estimates implies (b) at once. 2

We are ready now to conclude the proof of Theorem 1. Let us see first that for any
integer N ≥ 1 there are infinitely many resonances in {λ ∈ C : Im λ ≤ |λ|−N , |Re λ| ≥ 1}.
Assume the contrary, i.e. Rχ(λ) is holomorphic in {λ ∈ C : Imλ ≤ |λ|−N , |Re λ| ≥ C0} for
some constant C0 > 0. Choose m so that 2m − 3 > N + 9. Let fj , λj be as in Propositions
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2 and 3, and set f(x, λ) = fj(x), λ ∈ Θ := {λj}∞j=1. In view of Proposition 2(c) we can use
(23) to obtain

N2m−1f + R̃2m−1f = N (f + Qf + R2m−1f), λ ∈ Θ.

Since Θ ∩ {λ; |Reλ| ≥ C1} ⊂ {λ ∈ C : |Imλ| ≤ |λ|−N−6, |Re λ| ≥ C1} for C1 large enough,
this estimate combined with (10) yields

‖f + Qf + R2m−1f‖H3/2 ≤ C|λ|N+9‖N2m−1f + R̃2m−1f‖H1/2 ≤ C ′|λ|N+9−(2m−3).

On the other hand, in view of (19), (22),

1 = ‖f‖H3/2 ≤ ‖f + Qf + R2m−1f‖H3/2 + C|λ|−1,

therefore we get a contradiction for large λ = λj .
We will now choose our sequence of resonances by induction. Assume that we have

already chosen λ1, ..., λk−1. It follows from the above analysis that there exists a resonance
λk satisfying |λk| > |λk−1| + 1 and

0 < Imλk ≤ |λk|−k. (51)

Thus we have an infinite sequence of different resonances {λk} satisfying (51) for each k ≥ 1.
It is easy to see now that

0 < Imλk ≤ CN |λk|−N , ∀k, (52)

for any integer N ≥ 1 with CN = |λN |N . Indeed, for k ≥ N (52) follows from (51) at once,
while for k ≤ N we have

Imλk ≤ |λk|−k ≤ |λN |N |λk|−N ,

which completes the proof of (52), and hence of Theorem 1.
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