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1. Introduction

This paper concerns the problem of recovering the absorption and scattering properties

of a bounded, convex medium Ω ⊂ Rn, n ≥ 2 from the spatial-angular measurements of

the density of particles at the boundary ∂Ω. Provided that the particles interact with

the medium but not with each other, the radiation transfer in the steady-state can be

modeled by the transport equation

−θ · ∇u(x, θ)− a(x, θ)u(x, θ) +

∫

Sn−1

k(x, θ′, θ)u(x, θ′)dθ′ = 0, (1)

for x ∈ Ω and θ ∈ Sn−1; see, e.g. [10, 25]. The function u(x, θ) represents the density of

particles at x traveling in the direction θ, a(x, θ) is the attenuation coefficient at x for

particles moving in the direction of θ, and k(x, θ′, θ) is the scattering coefficient (or the

collision kernel) which accounts for particles from an arbitrary direction θ′ which scatter

in the direction of travel θ. Let Γ± denote the incoming and outgoing “boundary”

Γ± := {(x, θ) ∈ ∂Ω× Sn−1 : ±θ · n(x) > 0}, (2)

n(x) being the outer unit normal at a boundary point x ∈ ∂Ω. The medium is probed

with the given radiation

u|Γ− = f−. (3)

The exiting radiation u|Γ+ is detected thus defining the albedo operator A that takes

the incoming flux f− to the outgoing flux u|Γ+ , i.e. A[f−] := u|Γ+ .

In general, the boundary value problem (1) and (3) may not be uniquely solvable

but it has a unique solution under some physically relevant subcritical conditions like

(26), (27), or (58). We note, however, that for sufficiently regular coefficients, the

problem has unique solution for generic (a, k), see [30, 28].

One of the inverse boundary value problems in transport theory is to recover the

attenuation coefficient a and the scattering kernel k from knowledge of the albedo

operator A. This problem has been solved under some restrictive assumptions (e.g. k of

a special type or independent of a variable) in [1, 2, 3, 5, 18, 19, 20, 31, 32]. In three or

higher dimensions, uniqueness and reconstruction results for general k and a = a(x) were

established in [12]. The general approach is based on the study of the singularities of the

fundamental solution of (1) (see also [9]), and the singularities of the Schwartz kernel

of A. Stability estimates for k of special type were established in [27, 33], and recently,

for general k, in [7]. Uniqueness and reconstruction results in a Riemannian geometry

setting, including recovery of a simple metric, were established in [21]. Similar results

for the time-dependent model were established in [11], and in [15] for the Riemannian

case. In planar domains the work in [29] shows stable determination of the isotropic

absorption and small scattering, and an extension to simple Riemannian geometry is

given in [22]. Also in two dimensional domains we point out that the recovery of k is

only known under smallness conditions which are more restrictive than what is needed

to solve the direct problem; e.g. more restrictive than (26) or (27) below. On the other

hand, in the time-dependent case, the extra variable allows us to treat the planar case
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without such restrictions, see [11]. We also mention here the recent works [8, 16, 17], in

which the coefficients are recovered from angularly averaged measurements rather than

from the knowledge of the whole albedo operator A. For an exhaustive account on the

inverse transport problem we refer to the review paper [6].

The above mentioned results concern media with directionally independent

absorption a = a(x), except for transport with variable speed when the attenuation

may depend on |v|, a = a(x, |v|).
The attenuation accounts not only for the absorption of particles, but also for the

loss of particles due to the scattering. In the physical case in which k depends on two

independent directions, the attenuation is inherently anisotropic a = a(x, θ). However,

in an anisotropic attenuating media, the unique determination of the coefficients from

boundary measurements no longer holds: In [28] it is shown that the albedo operator

determines the pairs of coefficients up to a gauge transformation; see (4) below. This

non-uniqueness motivates the following definition.

Definition 1.1 Two pairs of coefficients (a, k) and (ã, k̃) are called gauge equivalent

if there exists a positive φ ∈ L∞(Ω × Sn−1) with 1/φ ∈ L∞(Ω × Sn−1), θ · ∇xφ(x, θ) ∈
L∞(Ω× Sn−1) and φ = 1 for x ∈ ∂Ω such that

ã(x, θ) = a(x, θ)− θ · ∇x log φ(x, θ), k̃(x, θ′, θ) =
φ(x, θ)

φ(x, θ′)
k(x, θ′, θ). (4)

We denote the equivalence class of (a, k) by 〈a, k〉, and the equivalence relation itself by

∼.

The relation defined above is reflexive since (a, k) ∼ (a, k) via φ ≡ 1; it is symmetric

since (a, k) ∼ (ã, k̃) via φ yields (ã, k̃) ∼ (a, k) via 1/φ; and it is transitive since if

(a, k) ∼ (ã, k̃) via φ and (ã, k̃) ∼ (a′, k′) via φ̃ then (a, k) ∼ (a′, k′) via φφ̃.

The main result in [28] is that, in dimensions n ≥ 3, A = Ã if and only if

(a, k) ∼ (ã, k̃), i.e., uniqueness up to gauge transformations. The uniqueness up to

the gauge transformation extends naturally to refractive media and to dimension two,

see [23].

In this paper we study the question of stability of the determination of the gauge

equivalent classes. Let (M, ‖ · ‖M) and (N, ‖ · ‖N) be Banach spaces in which the

attenuation and, respectively, the scattering kernel are considered, (a, k), (ã, k̃) ∈ M×N .

The distance ∆ between equivalence classes with respect to M × N is given by the

infimum of the distances between all possible pairs of representatives. More precisely,

∆(〈a, k〉, 〈ã, k̃〉) := inf
(a′,k′)∈〈a,k〉,(ã′,k̃′)∈〈ã,k̃〉

max{‖a′ − ã′‖M , ‖k′ − k̃′‖N}.

For n ≥ 3 we work within the class of coefficients

(a, k) ∈ L∞(Ω× Sn−1)× L∞(Ω× Sn−1; L1(Sn−1)). (5)

For two dimensional domains (n = 2) both coefficients are assumed bounded:

(a, k) ∈ L∞(Ω× S1)× L∞(Ω× S1 × S1). (6)



Stability of the Gauge Equivalent Classes 4

The following norms are used throughout

‖a‖∞ = ess sup(x,θ)∈Ω×Sn−1|a(x, θ)|, (7)

‖k‖∞,1 = ess sup(x,θ′)∈Ω×Sn−1

∫

Sn−1

|k(x, θ′, θ)|dθ, (8)

‖k‖∞ = ess sup(x,θ′,θ)∈Ω×S1×S1 |k(x, θ′, θ)| , (9)

‖k‖1 =

∫

Ω

∫

Sn−1

∫

Sn−1

|k(x, θ′, θ)|dxdθ′dθ. (10)

Note that the gauge transformations preserve the class of coefficients in (5) or (6).

In Section 2 we reduce the original inverse problem in Ω to the inverse problem

of transport in a larger (strictly convex) domain BR ⊃ Ω, where the attenuation and

scattering coefficients are extended by zero in BR \Ω. More precisely we show that the

difference of two albedo operators realizes an isometry when transported from ∂Ω to

∂BR. For simplicity, the larger domain is a ball but this is not essential. Let (ã, k̃) be

another pair of admissible coefficients for which the forward problem in Ω is well posed

and let Ã denote the corresponding albedo operator. Set a = ã = 0 and k = k̃ = 0 in

BR\Ω. Then the forward problems in BR are also well posed and let AR and ÃR, denote

the corresponding albedo operators respectively. The boundary data is considered on

ΓR
± := {(x, θ) ∈ ∂BR × Sn−1 : ±θ · n(x) > 0}, (11)

n(x) now being the outer unit normal at a boundary point x ∈ ∂BR. Provided that the

forward problem is well-posed in Lp, 1 ≤ p ≤ ∞, we show that

‖A − Ã‖L(Lp(Γ−;dξ);Lp(Γ+;dξ)) = ‖AR − ÃR‖L(Lp(ΓR
−;dξR);Lp(ΓR

+;dξR)). (12)

In (12) we used dξ = |n(x) · θ|dµ(x)dθ, where dθ is the normalized measure on the

sphere, dµ(x) is the induced Lebesgue measure on ∂Ω and n(x) is the unit outer normal

at some x ∈ ∂Ω. Similarly, dξR = |n(x) · θ|dµR(x)dθ, where dµR(x) is the induced

Lebesgue measure on ∂BR.

Consequently, we may consider the data (albedo operators) given directly on the

∂BR and drop R from their notation. The isometry (12) with p = 1 is used for domains

in three or higher dimensions. For brevity let

‖A − Ã‖ := ‖A − Ã‖L(L1(Γ−;dξ);L1(Γ+;dξ)).

Let τ±(x, θ) be the travel time it takes a particle at x ∈ BR to reach the boundary

∂BR while moving in the direction of ±θ and define τ(x, θ) = τ−(x, θ) + τ+(x, θ). Since

we work with unit-speed velocities, τ(x, θ) ≤ 2R. Moreover, since dist(Ω, ∂BR) > 0, we

have

cR := inf{τ(x, θ) : (x, θ) ∈ Ω× Sn−1} > 0. (13)

Note that we could make cR = 1 at the expense of a sufficiently large radius R.

For domains Ω ⊂ Rn with n ≥ 3, and for Σ, ρ > 0 we consider the class

UΣ,ρ := {(a, k) as in (6) : ‖a‖∞ ≤ Σ, ‖k‖∞,1 ≤ ρ}.
The main result of stability of gauge equivalent classes is the following.
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Theorem 1.2 Let n ≥ 3 be the dimension of Ω, and (a, k), (ã, k̃) ∈ UΣ,ρ be such that

the corresponding forward problems (1) and (3) are well posed. Then

∆(〈a, k〉, 〈ã, k̃〉) ≤ C‖A − Ã‖,
where ∆ is with respect to L∞×L1, and C is a constant depending only on Σ, ρ, cR, R

and the dimension n. More precisely, there exists a representative (a′, k′) ∈ 〈a, k〉 such

that

‖a′ − ã‖∞ ≤ C‖A − Ã‖, (14)

‖k′ − k̃‖1 ≤ C‖A − Ã‖, (15)

where

C = max{ω2
n−1R

n−1e4RΣ
(
1 + 4Rρe4RΣ

)
, e4RΣ/cR},

ωn−1 denoting the (n− 1)-volume of the unit sphere Sn−1.

For the stability of the equivalence classes in two dimensional domains we need a

more refined notion of distance between the albedo operators: Following [29, Proposition

1], the Schwartz kernel of a albedo operator A admits the singular decomposition:

α =
A(x′, θ′)
n(x) · θ δ{x′+τ+(x′,θ′)θ′}(x)δ{θ′}(θ) + β(x, θ, x′, θ′), (16)

where

A(x′, θ′) = exp

(
−

∫ τ+(x′,θ′)

0

a(x′ + tθ′, θ′)dt

)
(17)

and |θ × θ′|β ∈ L∞(ΓR
+ × ΓR

−); see also Section 6.

Let Ã, β̃ be the coefficients corresponding to the decomposition (16) of another

albedo operator Ã. We define

‖A‖∗ = max{‖A‖∞; ‖ |θ × θ′|β‖∞}.
In Section 2 we show that the isometric transportation from ∂Ω to ∂BR holds in the

new operator norm, i.e.,

‖A − Ã‖∗ = ‖AR − ÃR‖∗. (18)

In the two dimensional case, for Σ, ρ > 0, we consider the smaller class

VΣ,ρ := {(a, k) as in (6) : ‖a‖∞ ≤ Σ, ‖k‖∞ ≤ ρ}.
Theorem 1.3 Let Ω be a planar domain. For any Σ > 0, there exists 0 < ρ ≤ 1

depending only on Σ, R and cR, such that the following holds: If (a, k), (ã, k̃) ∈ VΣ,ρ,

then

∆(〈a, k〉, 〈ã, k̃〉) ≤ C‖A − Ã‖∗,
where ∆ is with respect to L∞ × L∞, and C is a constant depending only on Σ, ρ, cR

and R.
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The proofs of Theorem 1.2 and 1.3 are based on the analysis of the singularities of the

Schwartz kernel of A as in [12] and, respectively, [29]. We also use an extended version

of an estimate in [7], see Section 4 below.

One can formulate and prove similar results in the case where the velocity belongs

to an open subspace of Rn, i.e., the speed can change, as in [7, 12]. We restrict ourselves

to the fixed speed case (|θ| = 1) for the sake of simplicity of the exposition.

2. Isometric transportation of the albedo operators from ∂Ω to ∂BR

Recall that Ω is strictly convex with Ω ⊂ BR, and A is the albedo operator for the

radiation transport in Ω. The coefficients (a, k) are extended by zero in BR \ Ω and

let AR be the albedo operator corresponding to the radiative transport in BR × Sn−1,

which takes functions on ΓR
− to functions on ΓR

+; see (11). Recall that τ±(x, θ) is the

travel time it takes a particle at x ∈ BR to reach the boundary ∂BR while moving in

the direction of ±θ.

We consider next the set of “projections” of Γ± onto ΓR
± defined by

Γ̃R
± := {(x± τ±(x, θ)θ, θ : (x, θ) ∈ Γ±} ( ΓR

±

and the transportation maps

[T f ](x′, θ′) := f(x′ − τ−(x′, θ′)θ′, θ′), ∀(x′, θ′) ∈ Γ− (19)

[T̃ f ](x + τ+(x, θ)θ, θ) := f(x, θ), ∀(x, θ) ∈ Γ+. (20)

T takes maps defined on Γ̃R
− to maps on Γ−, whereas T̃ takes maps defined on Γ+ to

maps on Γ̃R
+.

Proposition 2.1 For any 1 ≤ p ≤ ∞, the maps

T : Lp(Γ̃R
−; dξ) → Lp(Γ−; dξ),

T̃ : Lp(Γ+; dξ) → Lp(Γ̃R
+; dξ)

are isomorphisms.

Proof: From the definitions (19) and (20) we have

ess supΓ̃R
−
f = ess supΓ− [T f ] and ess supΓ̃R

−
[T̃ f ] = ess supΓ−f.

This proves the isometry for p = ∞. For 1 ≤ p < ∞ we have the identities∫

Γ̃R
−

|f(x, θ)|pdξ̃(x, θ) =

∫

Γ−
|[T f ](x′, θ)|pdξ(x′, θ),

∫

Γ̃R
+

|T̃ f(x, θ)|pdξ̃(x, θ) =

∫

Γ+

|f(x′, θ)|pdξ(x′, θ)

obtained by the change of variables x = x′− τ−(x′, θ) and x = x′+ τ+(x′, θ) respectively.

¤
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Proposition 2.2 Let (a, k) be an admissible pair for the transport in Ω such that the

forward problem is well-posed in Lp(Ω × Sn−1), 1 ≤ p ≤ ∞, n ≥ 2, and let A be the

corresponding albedo operator. Extend the coefficients by zero in BR \ Ω. Then the

forward problem in Lp(BR × Sn−1), 1 ≤ p ≤ ∞, is also well posed and let AR be the

corresponding albedo operator. For any f ∈ Lp(ΓR
−) we have

AR[f ](x, θ) =





f(x− τ−(x, θ)θ, θ), if (x, θ) ∈ ΓR
+ \ Γ̃R

+,

T̃ AT f(x, θ), if (x, θ) ∈ Γ̃R
+.

(21)

Proof: The relation (21) is a direct consequence of the fact that in BR \ Ω, where the

coefficients vanish, the solution u(x, θ) of the transport equation is constant in x along

the lines in the direction of θ. ¤

Proposition 2.3 Let (a, k) and (ã, k̃) be admissible pairs for the transport in Ω such

that the forward problem is well-posed in Lp(Ω × Sn−1), n ≥ 2, 1 ≤ p ≤ ∞, and let A
and Ã be the corresponding albedo operators. Extend the coefficients by zero in BR \ Ω

and let AR, respectively ÃR, be their corresponding albedo operators for the transport

through BR. Then (12) and (18) hold.

Proof: Following (21)

(AR − ÃR)[f ](x, θ) =





0, if (x, θ) ∈ ΓR
+ \ Γ̃R

+,

T̃ [A− Ã]T f(x, θ), if (x, θ) ∈ Γ̃R
+.

(22)

For f ∈ Lp(ΓR
−),

‖(AR − ÃR)f‖Lp(ΓR
+) = ‖T̃ (A− Ã)T f‖Lp(Γ̃R

+) = ‖(A− Ã)T f‖Lp(Γ+)

≤ ‖A− Ã‖ · ‖T f‖Lp(Γ−) = ‖A − Ã‖ · ‖f‖Lp(Γ̃R
−)

≤ ‖A− Ã‖ · ‖f‖Lp(ΓR
−).

Hence ‖AR − ÃR‖ ≤ ‖A − Ã‖.
To prove the converse inequality, let f0 be the projection of f on Γ̃R

+, i.e.

f0 :=





0, on ΓR
+ \ Γ̃R

+,

f, on Γ̃R
+.
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Then

‖(A− Ã)T f‖Lp(Γ+) = ‖T̃ (A− Ã)T f‖Lp(Γ̃R
+) = ‖(AR − ÃR)f‖Lp(ΓR

+)

= ‖(AR − ÃR)f0‖Lp(ΓR
+) ≤ ‖AR − ÃR‖ · ‖f0‖Lp(ΓR

−)

= ‖AR − ÃR‖ · ‖f |Γ̃R
−
‖Lp(Γ̃R

−) = ‖AR − ÃR‖ · ‖T f‖Lp(Γ−).

Since T is onto Lp(Γ−), the inequality above yields ‖A − Ã‖ ≤ ‖AR − ÃR‖.
Next, we prove the isometry in the ‖ · ‖∗-norm. Let α, α̃, αR, α̃R be the Schwartz

kernels associated with the albedo operators A, Ã,AR, ÃR, and let A, Ã, AR, ÃR and

β, β̃, βR, β̃R be the coefficients from the corresponding singular decomposition as in

(16).

On the one hand, for f ∈ C∞(ΓR
−) arbitrary, and (x, θ) ∈ Γ+ we have:

[T̃ (Ã − A)T f ](x + τ+(x, θ)θ, θ) = [(Ã − A)T f ](x, θ)

=

∫

Γ−
[α̃− α](x, θ, x′, θ′)T f(x′, θ′)dξ(x′, θ′)

=

∫

Γ−
[α̃− α](x, θ, x′, θ′)f(x′ − τ−(x′, θ′), θ′)dξ(x′, θ′)

=

∫

Γ̃R
−

[γ̃ − γ](x, θ, x′R, θ′)f(x′R, θ′)dRξ(x′R, θ′).

In the last equality above we change variables x′R = x′ − τ−(x′, θ′)θ′, and denote the

distribution [γ̃ − γ](x, θ, x′ − τ−(x′, θ′)θ′, θ′) := [α̃− α](x, θ, x′, θ′).
On the other hand, from (22), we get

[T̃ (Ã − A)T f ](x + τ+(x, θ)θ, θ) = [ÃR −AR]f(x + τ+(x, θ)θ, θ)

=

∫

ΓR
−

[α̃R − αR](x + τ+(x, θ)θ, θ, x′R, θ′)f(x′R, θ′)dξR(xR, θ′)

=

∫

Γ̃R
−

[α̃R − αR](x + τ+(x, θ)θ, θ, x′R, θ′)f(x′R, θ′)dξR(xR, θ′).

Therefore, in the sense of distributions

[α̃R − αR](x + τ+(x, θ)θ, θ, x′ − τ−(x′, θ′)θ′, θ′) = [α̃− α](x, θ, x′, θ′) (23)

Independently of the equality (23) above, due to the fact that a = ã = 0 in the BR \Ω,

by direct verification in the formula (17), we get

[ÃR − AR](x′ − τ−(x′, θ′)θ′, θ′) = [Ã− A](x′, θ′), (x′, θ′) ∈ Γ−. (24)

Now (23) and (24) applied to (16) yield for (x, θ, x′, θ′) ∈ Γ+ × Γ−:

[β̃R − βR](x + τ+(x, θ)θ, θ, x′ − τ−(x′, θ′)θ′, θ′) = [β̃ − β](x, θ, x′, θ′). (25)

The isometric relation (18) now follows from (23) and (25). ¤

3. The forward problem in three or higher dimensions

In this section we recall the properties which define the albedo operator and its kernel’s

singular expansion when n ≥ 3.
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Let T be the operator defined by the left hand side of (1) considered on BR×Sn−1,

n ≥ 3. From (5), the second and the third terms of T are bounded operators on

L1(BR × Sn−1), while the first term is unbounded. We view T as a (closed) unbounded

operator on L1(BR × Sn−1) with the domain

D(T ) = {u ∈ L1(BR × Sn−1); θ · ∇u ∈ L1(BR × Sn−1), u|Γ− = 0};
see [12].

We work under either one of the following subcritical conditions that yield well-

posedness for the boundary value problem (1) and (3):

ess sup(x,θ)∈Ω×Sn−1

∣∣∣∣τ(x, θ)

∫

Sn−1

k(x, θ, θ′)dθ′
∣∣∣∣ < 1, (26)

or

a(x, θ)−
∫

Sn−1

k(x, θ, θ′)dθ′ ≥ 0, a.e. Ω× Sn−1; (27)

see, e.g., [7, 12, 13, 24, 25].

Let δ{x}(x′) represent the delta distribution with respect to the boundary measure

dµ(x′) supported at x ∈ ∂Ω, and let δ{θ}(θ′) represent the delta distribution with respect

to dθ centered at θ ∈ Sn−1. The following result is a recast of [12, Theorem 2.3] to the

unit speed velocities.

Proposition 3.1 Let n ≥ 3. Assume that the direct problem is well-posed. Then

the albedo operator A : L1(ΓR
−, dξ) → L1(ΓR

+, dξ) is bounded and its Schwartz kernel

α(x, θ, x′, θ′), considered as a distribution on Γ+ with (x′, θ′) ∈ ΓR
− parameters, is given

by α = α1 + α2 + α3, where

α1(x, θ, x′, θ′) =
|n(x′) · θ′|
n(x) · θ e−

∫ τ−(x,θ)

0 a(x−tθ,θ)dtδ{x′+τ+(x′,θ′)θ′}(x)δ{θ′}(θ) (28)

α2(x, θ, x′, θ′) =
|n(x′) · θ′|
n(x) · θ

∫ τ+(x′,θ′)

0

e−
∫ τ+(x′+tθ′,θ)

0 a(x−sθ,θ)ds (29)

× e−
∫ t
0 a(x′+sθ′,θ′)dsk(x′ + tθ′, θ′, θ)δ{x′+tθ′+τ+(x′+tθ′,θ)θ}(x)dt

|n(x′) · θ′|−1α3 ∈ L∞(ΓR
−; L1(ΓR

+, dξ)). (30)

4. Preliminary estimates

This section extends a result from [7] for continuous coefficients to the class of essentially

bounded coefficients as in (5). This extension is crucial to the transportation of the

problem to a larger domain, if no boundary knowledge of the coefficients is available,

and has the added benefit of simplifying the proof considerably.

Although the presentation below concerns the unit speed velocity and

measurements at the boundary, the results easily extend to the variable velocity and

measurements in the rotating planes setting. The main novelty in this section is made

possible by the following result on the approximation of the identity.
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Proposition 4.1 [14, Theorem 8.15] Suppose ϕ ∈ L1(Rn) with
∫

ϕ(x)dx = 1 and

|ϕ(x)| ≤ C(1 + |x|)−n−ε for some C, ε > 0, and let ϕt = t−nϕ(x/t). If f ∈ Lp(Rn), for

some 1 ≤ p ≤ ∞, then f ∗ϕt → f(x) with t → 0+, for almost every x in the Lebesgue set

of f– in particular, for almost every x ∈ Rn, and at every x at which f is continuous.

Corollary 4.2 There is a family of maps φε,x′0,θ′0 ∈ L1(Γ−, dξ), (x′0, ξ
′
0) ∈ Γ− and ε > 0,

such that, for any f ∈ L∞(Γ+, dξ) given,

lim
ε→0

∫

Γ−
φε,x′0,θ′0(x

′, θ′)f(x′, θ′)dξ(x′, θ′) = f(x′0, θ
′
0), (31)

whenever (x′0, θ
′
0) is in the Lebesgue set of f . In particular, (31) holds for almost every

(x′0, θ
′
0) ∈ Γ−.

Proof:For (x′0, θ
′
0) ∈ Γ− and ε > 0 sufficiently small, let (x′, θ′) : U × V ⊂ R2n−2 →

x′(U)×θ′(V ) ⊂ ∂Ω×Sn−1 be a coordinate chart with (x′0, θ
′
0) ∈ x′(U)×θ′(U) such that

x′0 = x′(0) and θ′0 = θ′(0). For (x′, θ′) ∈ Γ−, define

φε,x′0,θ′0(x
′, θ′) =

1

|n(x′) · θ′|

∣∣∣∣
D(u, v)

D(x′, θ′)

∣∣∣∣ ϕε(u(x′))ϕε(v(θ′)),

where ϕ(u) ≡ 1/(ωn−1) for |u| < 1, ϕ(u) ≡ 0 for |u| ≥ 1, and ϕε(u) = ε−n+1ϕ(u/ε). By

ωn−1 we denoted the volume of the (n− 1)-dimensional unit ball. Then, for any ε > 0,∫
ϕε(u)du = 1 and

∫

Γ−
φε,x′0,θ′0(x

′, θ′)f(x′, θ′)dξ(x′, θ′) =

∫

R2n−2

ϕε(u)ϕε(v)f (x′(u), θ′(v)) dudv.

Apply the equality above to f ≡ 1 to get ‖φε,x′0,θ′0‖L1(Γ+,dξ) = 1. The conclusion

follows from Proposition 4.1. ¤We introduce the following notations. For (x′, θ′) ∈ Γ−,

0 ≤ t ≤ τ+(x′, θ′) and θ ∈ Sn−1 let

x+(t, x′, θ′, θ) := x′ + tθ′ + τ+(x′ + tθ′, θ)θ, (32)

F (t, x′, θ′, θ) := e−
∫ τ+(x′+tθ′,θ)

0 a(x′+tθ′+sθ,θ)dse−
∫ t
0 a(x′+sθ′,θ′)ds, (33)

denote the exiting point after one scattering at the point x′ + tθ′ coming from direction

θ′ into the direction θ, and, respectively, the total absorption along the broken line due

to this scattering.

Let (a, k), (ã, k̃) be as in (5) extended by 0 on BR\Ω, such that the forward problem

is well-posed. All the operators bearing the tilde refer to (ã, k̃) and are defined in a

similar way to the ones for (a, k). For example Ã is the albedo operator corresponding

to (ã, k̃). Recall that n is the dimension of the space.

Theorem 4.3 Let (a, k), (ã, k̃) be as in (5). For almost every (x′0, θ
′
0) ∈ Γ− the following

estimates hold:

For n ≥ 2,∣∣∣∣e−
∫ τ+(x′0,θ′0)

0 a(x′0+tθ′0,θ′0)ds − e−
∫ τ+(x′0,θ′0)

0 ã(x′0+tθ′0,θ′0)ds

∣∣∣∣ ≤ ‖A− Ã‖. (34)
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For n ≥ 3,
∫ τ+(x′0,θ′0)

0

∫

Sn−1

|k − k̃|(x′0 + tθ′0, θ
′
0, θ)E(t, x′0, θ

′
0, θ)dθdt ≤ ‖A− Ã‖+

+‖F − F̃‖∞
∫ τ+(x′0,θ′0)

0

∫

Sn−1

k̃(x0 + tθ′0, θ
′
0, θ)dθdt. (35)

Proof: Let (x′0, θ
′
0) ∈ Γ− be arbitrarily fixed and let φε,x′0,θ′0 ∈ L1(Γ−) be defined as in

Corollary 4.2. To simplify the formulas, since (x′0, θ
′
0) is fixed, in the following we drop

this dependence from the notation φε = φε,x′0,θ′0 .

Let A = A1 +A2 +A3 be the decomposition of the albedo operator given by

Aif(x, θ) =

∫

Γ−
αi(x, θ, x′, θ′)f(x′, θ′)dµ(x′)dθ′, i = 1, 2, 3,

where αi, i = 1, 2, 3 are the Schwartz kernels in Proposition 3.1 and dµ(x′) is the induced

Lebesgue measure on the boundary ∂Ω.

Let φ ∈ L∞(Γ+) with ‖φ‖∞ ≤ 1. Since ‖φε‖L1(Γ−) = 1, the mapping properties of

the albedo operator imply that∣∣∣∣
∫

Γ+

φ(x, θ)[A− Ã]φε(x, θ)dξ(x, θ)

∣∣∣∣ ≤ ‖A− Ã‖. (36)

Next we evaluate each of the three terms in
∫
Γ+

φ(x, θ)[A − Ã]φε(x, θ)dξ(x, θ) by

using the decomposition in Proposition 3.1 and Fubini’s theorem.

The first term is evaluated using the formula (28):

I1(φ, ε) :=

∫

Γ+

φ(x, θ)[A1 − Ã1]φε(x, θ)dξ(x, θ)

=

∫

Γ−
φ(x′ + τ+(x′, θ′)θ′, θ′)φε(x

′, θ′)

×
[
e−

∫ τ+(x′,θ′)
0 a(x′+sθ′,θ′)ds − e−

∫ τ+(x′,θ′)
0 ã(x′+sθ′,θ′)ds

]
dξ(x′, θ′).

Since the integrand above is in L∞(Γ−) by applying (31), we get for almost every

(x′0, θ
′
0) ∈ Γ−

I1(φ)(x′0, θ
′
0) := lim

ε→0
I1(φ, ε)

= φ(x′0 + τ+(x′0, θ
′
0)θ

′
0, θ

′
0) (37)

×
(

e−
∫ τ+(x′0,θ′0)

0 a(x′0+sθ′0,θ′0)ds − e−
∫ τ+(x′0,θ′0)

0 ã(x′0+sθ′0,θ′0)ds

)
.

To evaluate the second term we use the notations (32) and (33) and the formula

(29):

I2(φ, ε) :=

∫

Γ+

φ(x, θ)[A2 − Ã2]φε(x, θ)dξ(x, θ)

=

∫

Γ−
φε(x

′, θ′)dξ(x′, θ′)
{∫

Sn−1

∫ τ+(x′,θ′)

0

φ(x+(t, x′, θ′, θ), θ)×

×
[
F (t, x′, θ′, x, θ)k(x′ + tθ′, θ′, θ)− F̃ (t, x′, θ′, x, θ)k̃(x′ + tθ′, θ′, θ)

]
dtdθ

}
.
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Apply again (31) for the continuous integrand above to obtain for almost every

(x′0, θ
′
0) ∈ Γ−:

I2(φ)(x′0, θ
′
0) := lim

ε→0
I2(φ, ε)

=

∫

Sn−1

∫ τ+(x′0,θ′0)

0

φ(x+(t, x′0, θ
′
0, θ), θ) [F (t, x′0, θ

′
0, x, θ)k(x′0 + tθ′0, θ

′
0, θ)

−F̃ (t, x′0, θ
′
0, x, θ)k̃(x′0 + tθ′0, θ

′
0, θ)

]
dtdθ, (38)

or I2(φ) = I2,1(φ) + I2,2(φ) with

I2,1(φ) =

∫

Sn−1

∫ τ+(x′0,θ′0)

0

φ(x+(t, x′0, θ
′
0, θ), θ)F (t, x′0, θ

′
0, x, θ)

× (k − k̃)(x′0 + tθ′0, θ
′
0, θ)dtdθ, (39)

|I2,2(φ)| ≤
∫

Sn−1

∫ τ+(x′0,θ′0)

0

|F − F̃ |(t, x′0, θ′0, x, θ)k̃(x′0 + tθ′0, θ
′
0, θ)dtdθ. (40)

Consider the third term

I3(φ, ε) =

∫

Γ+

φ(x, θ)[A3 − Ã3]φε(x, θ)dξ(x, θ)

=

∫

Γ−
φε(x

′, θ′)dξ(x′, θ′)
{∫

Γ+

φ(x, θ)
(α3 − α̃3)(x, θ, x′, θ′)

|n(x′) · θ′| dξ(x, θ)

}
.

By (30), the map (x′, θ′) 7→ ∫
Γ+

φ(x, θ)(α3 − α̃3)(x, θ, x′, θ′)|n(x′) · θ′|−1dξ(x, θ) is in

L∞(Γ−), and then, by (31) we get for almost every (x′0, θ
′
0) ∈ Γ−

I3(φ)(x′0, θ
′
0) := lim

ε→0
I3(φ, ε) =

∫

Γ+

φ(x, θ)
|α3 − α̃3|(x, θ, x′0, θ

′
0)

|n(x′0) · θ′0|
dξ(x, θ).(41)

The left hand side of (36) has three terms. We move the third term to the right

hand side (with absolute values) and take the limit with ε → 0 to get

|I1(φ) + I2(φ)| (x′0, θ′0) ≤ ‖A− Ã‖+ I3(|φ|)(x′0, θ′0), a.e. (x′0, θ
′
0) ∈ Γ−,(42)

for any φ ∈ L∞(Γ+) with ‖φ‖∞ = 1.

We note that the negligible set on which the inequality above does not hold

may depend on φ. We will consider a countable sequence of functions φ, and since

the countable union of negligible sets is negligible, the inequality (42) holds almost

everywhere on Γ−, independently of the term in the sequence. This justifies the

argument below for almost every (x′0, θ
′
0) in Γ−.

In (42), we shall choose two sequences of φ to conclude the two estimates of

the lemma. First we show the estimate (34). Let {φm} be a sequence of maps

such that |φm| ≤ 1, φm ≡ 1 near (x′0 + τ+(x′0, θ
′
0)θ

′
0, θ

′
0) and with support inside

{(x, θ) ∈ Γ+ : |x− x′0 + τ+(x′0, θ
′
0)θ

′
0|+ |θ − θ′0| < 1/m}. Then (38) gives

I1(φm) = e−
∫ τ+(x′0,θ′0)

0 a(x′0+sθ′0,θ′0)ds − e−
∫ τ+(x′0,θ′0)

0 ã(x′0+sθ′0,θ′0)ds,

independently of m. From (38) we have limm→∞ I2(φm) = 0 since the support in θ

shrinks to θ′0. From (41) we also have limn→∞ I3(|φm|) = 0, since the support shrinks to

one point.
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Next we prove the estimate (35). Let {φm,q} be a (double indexed) sequence defined

by φm,q(x, θ) = χm(θ)ϕq(x, θ) where χm ∈ L∞(Sn−1) with χm ≡ 0 for |θ − θ′0| ≤ 1/m

and χm ≡ 1 for |θ − θ′0| > 1/m and ϕq ∈ L∞(Γ+) to be specified below. Regardless of

the way we define ϕq, the presence of χm already yields I1(φm,q) = 0 for all m, q since

χm(θ′0) = 0.

Next we construct ϕq. Note that we only need to have it defined for θ 6= θ′0 since

the function χ vanishes near θ′0. Let N(x′0,θ′0),q ⊂ BR be the tubular neighborhood of the

line x′0 + tθ′0, 0 ≤ t ≤ τ+(x′0, θ
′
0) of radius 1/q. Given (x, θ) ∈ Γ+ (θ 6= θ0), if the line

x− sθ, 0 ≤ s ≤ τ−(x, θ) does not intersect N(x′0,θ′0),q then we define ϕq(x, θ) = 0. If the

intersection is not empty, then let t(x, θ) be the unique value for which x′0 + t(x, θ)θ′0 is

closest to the line x− sθ; we define

ϕq(x, θ) := sgn(k − k̃)(x′0 + t(x, θ)θ′0, θ
′
0, θ).

We thus obtain a well-defined function ϕq ∈ L∞(BR×Sn−1). Notice that when (x, θ) is

of the form (x+(t, x′0, θ
′
0, θ), θ) (see (32)), ϕq(x, θ) takes the sign of k− k̃ at the point of

intersection of the lines determined by x′0, θ
′
0, t and θ. Note also that the support of ϕq

shrinks to a negligible set in Γ+ as q →∞.

Now apply the estimate (42) to φm,q and use I1(φm,q) = 0 to get

|I2,1(φm,q)| (x′0, θ′0) ≤ ‖A− Ã‖+ I3(|φm,q|)(x′0, θ′0) + |I2,2(φm,q)|(x′0, θ′0).
Since the support of φm,q shrinks to a set of measure zero in Γ+ as q → ∞, we get for

all m and almost every (x′0, θ
′
0) ∈ Γ−, limq→∞ I3(|φm,q|)(x′0, θ′0) = 0. Finally, from (39)

we obtain for almost every (x′0, θ
′
0) ∈ Γ− that

lim
m→∞

lim
q→∞

I2,1(φm,q) =

∫

Sn−1

∫ τ+(x′0,θ′0)

0

F (t, x′0, θ
′
0, x, θ)|k − k̃|(x′0 + tθ′0, θ

′
0, θ)dtdθ,

while from (40) we have

|I2,2(φm,q)| ≤
∫

Sn−1

∫ τ+(x′0,θ′0)

0

|F − F̃ |(t, x′0, θ′0, x, θ)k̃(x′0 + tθ′0, θ
′
0, θ)dtdθ,

for all m, q. The estimate (35) in the theorem follows. ¤

5. Stability modulo gauge transformations

In this section we prove Theorem 1.2.

We start with two pairs (a, k), (ã, k̃) ∈ UΣ,ρ and let

ε := ‖A − Ã‖.

We shall find an intermediate pair (a′, k′) ∼ (a, k) such that (14) and (15) hold for some

constant C > 0 dependent on Σ, ρ, Ω and BR.

Define first the “trial” gauge transformation:

ϕ(x, θ) := e−
∫ τ−(x,θ)

0 (ã−a)(x−sθ,θ)ds, a.e. (x, θ) ∈ BR × Sn−1. (43)
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Then ϕ > 0, ϕ|ΓR
−

= 1, θ · ∇ϕ(x, θ) ∈ L∞(BR × Sn−1) and

ã(x, θ) = a(x, θ)− θ · ∇x ln ϕ(x, θ). (44)

Note that ϕ|ΓR
+

is close, but not equal, to 1. We use the first estimate from Lemma 4.3

to decide how far from 1 can ϕ|ΓR
+

be.

By (34), we have for almost every (x′0, θ
′
0) ∈ Γ−∣∣∣∣e−

∫ τ+(x′0,θ′0)

0 a(x′0+tθ′0,θ′0)ds − e−
∫ τ+(x′0,θ′0)

0 ã(x′0+tθ′0,θ′0)ds

∣∣∣∣ ≤ ε.

In each of the integrals of the left hand side above change variables t = τ+(x′0, θ
′
0) − s

and denote x0 = x′0 + τ+(x′0, θ
′
0)θ

′
0 to get∣∣∣∣e−

∫ τ−(x0,θ′0)

0 a(x0−sθ′0,θ′0)ds − e−
∫ τ−(x0,θ′0)

0 ã(x0−sθ′0,θ′0)ds

∣∣∣∣ ≤ ε. (45)

When (x′0, θ
′
0) covers ΓR

− almost everywhere we get that (x0, θ
′
0) covers ΓR

+ almost

everywhere.

Now apply the Mean Value theorem to u 7→ e−u to get the lower bound
∣∣∣e−

∫ τ−(x0,θ′0)

0 a(x0−sθ′0,θ′0)ds − e−
∫ τ−(x0,θ′0)

0 ã(x0−sθ′0,θ′0)ds
∣∣∣

= e−u0

∣∣∣∣∣
∫ τ−(x0,θ′0)

0

(ã− a)(x0 − sθ′0, θ
′
0)ds

∣∣∣∣∣
= e−u0| ln ϕ(x0, θ

′
0)| ≥ e−2RΣ| ln ϕ(x0, θ

′
0)|. (46)

where u0 = u0(x0, θ
′
0, a, ã) is a value between the two integrals appearing in the

exponents in the left hand side above, and ϕ is defined in (43).

From (45) and (46) we get the following estimate for the “trial” gauge ϕ:

| ln ϕ(x, θ)| ≤ e2RΣε, a.e. (x, θ) ∈ ΓR
+. (47)

The “trial” gauge ϕ is not good enough since it does not equal 1 on ΓR
+. We alter it

to some ϕ̃ ∈ L∞(BR×S1) with θ ·∇ ln ϕ̃ ∈ L∞(BR×Sn−1) in such a way that ϕ̃|∂BR
= 1.

More precisely, for almost every (x, θ) ∈ BR × Sn−1, we define ϕ̃(x, θ) by

ln ϕ̃(x, θ) := ln ϕ(x, θ)− τ−(x, θ)

τ(x, θ)
ln ϕ(x + τ+(x, θ)θ, θ).

Since 0 ≤ τ−(x, θ)/τ(x, θ) ≤ 1 we get ϕ̃ ∈ L∞(BR × S1). Following directly from its

definition ln ϕ̃|∂BR
= 0: Indeed, for (x, θ) ∈ ΓR

−, we get τ−(x, θ) = 0 and ϕ(x, θ) = 1,

whereas for (x, θ) ∈ ΓR
+ we have τ−(x, θ) = τ(x, θ) and x = x + τ+(x, θ)θ. Since both

maps x 7→ τ(x, θ) and x 7→ ln ϕ(x + τ+(x, θ)θ, θ) are constant in the direction of θ and

since θ · ∇xτ−(x, θ) = 1, we get θ · ∇ ln ϕ̃(x, θ) ∈ L∞(BR × Sn−1) and

θ · ∇ ln ϕ̃(x, θ) = θ · ∇ ln ϕ(x, θ)− ln ϕ(x + τ+(x, θ)θ, θ)

τ(x, θ)
. (48)

Define now the pair (a′, k′) in the equivalence class of 〈a, k〉 by

a′(x, θ) := a(x, θ)− θ · ∇x ln ϕ̃(x, θ), (49)

k′(x, θ′, θ) :=
ϕ̃(x, θ)

ϕ̃(x′, θ′)
k(x, θ′, θ). (50)
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Now A′, the albedo operator corresponding to (a′, k′), satisfies A′ = A, and then

‖A′ − Ã‖ = ‖A − Ã‖ = ε.

Next we compare the pairs (a′, k′) with (ã, k̃) and show them to satisfy (14) and

(15).

Using the definitions (44), (49), the relation (48), and the estimate for ϕ on ΓR
+

(47), we have for almost every (x, θ) ∈ BR × Sn−1:

|ã(x, θ)− a′(x, θ)| = |[ã− a](x, θ) + [a− a′](x, θ)|
= |θ · ∇x ln ϕ̃(x, θ)− θ · ∇x ln ϕ(x, θ)| (51)

=
| ln ϕ(x + τ+(x, θ)θ, θ)|

τ(x, θ)
≤ ε

e2RΣ

τ(x, θ)
.

Since the coefficients are supported away from ∂BR (by construction of BR) such

that (13) holds, following (51) we obtain the estimate (14) in the form

‖ã− a′‖∞ ≤ ε
e2RΣ

cR

, (52)

with cR from (13).

Up to this point, all the arguments above also work for two dimensional domains.

Next we prove the estimate (15). These arguments are specific to three or higher

dimensions. Recall the formula (33) adapted to a′

F ′(t, x′, θ′, θ) = e−
∫ τ+(x′+tθ′,θ)

0 a′(x′+tθ′+sθ,θ)dse−
∫ t
0 a′(x′+sθ′,θ′)ds

and note that F = F ′ is an equality preserved under the gauge transformation (49).

This follows by direct calculation and the fact that ϕ̃ = 1 on ∂BR. Then for almost all

(x′, θ′) ∈ ΓR
−, t ∈ [0, τ(x′, θ′)] and θ ∈ Sn−1, we have the following lower bound

|F ′(t, x′, θ′, θ)| ≥ e−4RΣ. (53)

Using the non-negativity of ã and a′ we estimate

|[F̃ − F ′](t, x′, θ′, θ)| ≤
∣∣∣e−

∫ t
0 ã(x′+sθ′,θ′)ds − e

∫ t
0 a′(x′+sθ′,θ′)ds

∣∣∣

+

∣∣∣∣e−
∫ τ+(x′+tθ′,θ)

0 ã(x′+tθ′+sθ,θ)ds − e−
∫ τ+(x′+tθ′,θ)

0 a′(x′+tθ′+sθ,θ)ds

∣∣∣∣

≤
∣∣∣∣
∫ t

0

[ã− a′](x′ + sθ′, θ′)ds

∣∣∣∣

+

∣∣∣∣∣
∫ τ+(x′+tθ′,θ)

0

[ã− a′](x′ + tθ′ + sθ, θ)ds

∣∣∣∣∣

≤ εe2RΣ

(∫ t

0

ds

τ(x′ + sθ′, θ′)
+

∫ τ+(x′+tθ′,θ)

0

ds

τ(x′ + tθ′ + sθ, θ)

)

= εe2RΣ

(
t

τ(x′, θ′)
+

τ+(x′ + tθ′, θ)
τ(x′ + tθ′, θ)

)
≤ 2εe2RΣ. (54)

The next to the last inequality uses (51); the following equality uses the fact that both

maps s 7→ τ(x′ + sθ′, θ′) and s 7→ τ(x′ + tθ′ + sθ, θ) are constant in s, while the last
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inequality uses the fact that t ≤ τ(x′, θ′) and τ+(x′ + tθ′ + sθ, θ) ≤ τ(x′ + tθ′ + sθ, θ).

Therefore we proved that for almost all (x′, θ′) ∈ Γ−, t ∈ [0, τ(x′, θ′)] and θ ∈ Sn−1 we

have

|[F̃ − F ′](t, x′, θ′, θ)| ≤ 2εe2RΣ. (55)

Recall now the estimate (35) with respect to the pairs (a′, k′) and (ã, k̃):
∫ τ+(x′0,θ′0)

0

∫

Sn−1

|k̃ − k′|(x′0 + tθ′0, θ
′, θ)F ′(t, x′0, θ

′
0, θ)dθdt ≤ ‖Ã − A′‖+

+‖F̃ − F ′‖∞
∫ τ+(x′0,θ′0)

0

∫

Sn−1

k̃(x0 + tθ′0, θ
′
0, θ)dθdt.

Now use the lower bound for F ′ in (53), the upper bound for ‖F̃ − F ′‖∞ in (55) and

the hypothesis ‖k̃‖∞,1 ≤ ρ, to obtain
∫ τ+(x′0,θ′0)

0

∫

Sn−1

|k̃ − k′|(x′0 + tθ′0, θ
′, θ)dθdt ≤ εe4RΣ

(
1 + 4Rρe2RΣ

)
.

Finally, integrating the formula above in (x′0, θ
′
0) ∈ Γ− with the measure dξ(x′0, θ

′
0), we

get

‖k̃ − k′‖1 ≤ εω2
n−1R

n−1e4RΣ
(
1 + 4Rρe2RΣ

)
.

Now choose

C = max
{
ω2

n−1R
n−1e4RΣ

(
1 + 4Rρe2RΣ

)
, e2RΣ/cR

}

with cR from (13) to finish the proof of Theorem 1.2.

6. Preliminaries for two dimensional domains

This section introduces the framework for the problem in two dimensions. The results

are mainly from [29].

As above, T denotes the operator defined by the left hand side of (1) in BR×S1 with

BR ⊂ R2. The coefficients are extended to be 0 in BR \Ω. By the regularity assumption

(6), the second and the third terms of T are bounded operators in L∞(BR × S1). The

first term is unbounded. We view T as a (closed) unbounded operator on L∞(BR×S1)

with the domain

D(T ) = {u ∈ L∞(BR × S1); θ · ∇u ∈ L∞(BR × S1), u|ΓR
−
∈ L∞(ΓR

−)}.
To simplify notation, for x 6= y, we denote by

x̂− y = arg(x− y) =
x− y

|x− y| ,

the direction from y to x. Also, let

0 < E(y, x) = e−
∫ 1
0 a(x−t(x−y),x̂−y)dt ≤ 1 (56)

denote the attenuation along the segment in the direction from y to x. The attenuations

corresponding to a′ and ã will be denoted by E ′ and Ẽ, respectively.
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The boundary value problem (1) and (3) is equivalent to the operator equation

(I −M)u = Jf−, (57)

where, using (56),

Jf−(x, θ) = E(x− τ−(x, θ)θ, x)f−(x− τ−(x, θ)θ, θ)

Kf(x, θ) =

∫

S1

k(x, θ′, θ)f(x, θ′)dθ′, and

Mf(x, θ) =

∫ ∞

0

E(x− tθ, x)Kf(x− tθ, θ)dt.

Under the subcritical assumption

R‖k‖∞ < 1/2, (58)

the operator M : L∞(BR × S1) → L∞(BR × S1) is contractive and (57) has a

unique solution obtained by Neumann series. Moreover, for f− ∈ L∞(ΓR
−), we get

u = (I −M)−1Jf− ∈ D(T ) has a well defined trace in L∞(ΓR
+) given by

γ[u](x, θ) := [(I −M)−1Jf−]|ΓR
+
(x, θ), (x, θ) ∈ ΓR

+;

see [12, 29]. Therefore the albedo operator A : L∞(ΓR
−) → L∞(ΓR

+) is bounded and

has the Schwartz kernel α(x, θ, x′, θ′) = φ|ΓR
+
(x, θ; x′, θ′), where, for (x′, θ′) ∈ ΓR

−, the

map (x, θ) 7→ φ(x, θ; x′, θ′) is the fundamental solution of (1) subject to the boundary

condition

φ|ΓR
−
(·, ·; x′, θ′) = |n(x′) · θ′|−1δ{x′}(·)δ{θ′}(·).

More precisely, as shown in [29, Proposition 1], α = α0 + α1 + α2 with

α0 + α1 + α2 = γφ0 + γφ1 + γφ2 := φ0|ΓR
+

+ Mφ0|ΓR
+

+ (I −M)−1M2φ0|ΓR
+
,

where

φ0 = E(x− τ−(x, θ)θ, x)δ{θ′}(θ)
∫ τ+(x′,θ′)

0

δ(x− x′ − tθ′)dt,

φ1 =
χ(y)k(y, θ′, θ)

|θ′ × θ| E(y − τ−(y, θ′)θ′, y)E(y, y + τ+(y, θ)θ), (59)

0 ≤ φ2 ≤ dR‖k‖2
∞ (1− ln |θ′ × θ|) .

The constant dR depends on R only, χ is the characteristic function of BR, and, for

(x, θ, x′, θ′) ∈ BR × S1 × ΓR
−, y = y(x, θ, x′, θ′) is the point of intersection of the rays

x′ → x′ +∞θ′ and x → x−∞θ. The kernel β in (16) is then given by

β(x, θ, x′, θ′) = [γφ1 + γφ2](x, θ, x′, θ′), (x, θ, x′, θ′) ∈ ΓR
+ × ΓR

−, (60)

where γ is the trace operator on ΓR
+.

The following estimate from [29] is needed later.

Lemma 6.1 Let χ be the characteristic function of BR, L(x′, θ′) be the line through x′

in the direction θ′ and dl(y) be the Lebesgue measure on the line. Then∫ ∞

0

χ(x− tθ)

∫

L(x′,θ′)

χ(y)

|x− tθ − y|dl(y)dt ≤ C(1− ln |θ′ × θ|),

where C is a constant dependent on R only.
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7. Stability of the equivalence classes in two dimensions

In this section we work under the hypotheses in Section 6 and prove Theorem 1.3.

Let (a, k), (ã, k̃) ∈ VΣ,ρ be given with ‖A − Ã‖∗ = ε. Define the pair (a′, k′) in the

equivalence class of 〈a, k〉 by (49) and (50) as before, i.e.

a′(x, θ) := a(x, θ)− θ · ∇x ln ϕ̃(x, θ), k′(x, θ′, θ) :=
ϕ̃(x, θ)

ϕ̃(x′, θ′)
k(x, θ′, θ),

where ϕ̃ is given in (48).

Then the corresponding albedo operator A′ = A and, thus,

‖A′ − Ã‖∗ = ‖A − Ã‖∗ = ε.

In particular,

‖β̃ − β′‖∞ ≤ ε,

and (45) holds.

Starting with (45), the same arguments as the ones in the three dimensional

domains, notably (51), are valid in two dimensions to conclude the estimate (52):

‖ã− a′‖∞ ≤ ε(e2RΣ/cR) =: εC̃. (61)

In turn, (61) yields

ϕ̃(x, θ)

ϕ̃(x′, θ′)
= e−

∫ τ−(x,θ)

0 (a′−ã)(x−sθ,θ)ds+
∫ τ−(x′,θ′)
0 (a′−ã)(x−sθ′,θ′)ds ≤ e4RC̃ε. (62)

From the definition (50) and (62) we now get

‖k′‖∞ ≤ ρe4RC̃ε. (63)

Let

Ẽ1(y, θ′, θ) := Ẽ(y − τ−(y, θ′)θ′)Ẽ(y, y + τ+(y, θ)θ).

be the total attenuation along the broken path due to one scattering at y ∈ BR, when

coming from the direction θ′ and scattering into the direction θ. The formula (59) now

reads

φ̃1(x, θ, x′, θ′) =
χ(y)[k̃Ẽ1](y, θ′, θ)

|θ′ × θ| , (x, θ, x′, θ′) ∈ BR × S1 × Γ−, (64)

where χ(y) and y = y(x, θ, x′, θ′) are as described above in Section 6. We also consider

E ′
1 and φ′1 defined similarly with the attenuation a′ replacing ã.

The relation with the quantity in (33), F ′(t, x′, θ′, θ) = E ′
1(x

′ + tθ′, θ′, θ), allows us

to use the estimates (53) and (54) to conclude

|E ′
1(y, θ′, θ)| ≥ e−4RΣ, (y, θ′, θ) ∈ BR × S1 × S1, (65)

‖Ẽ1 − E ′
1‖∞ ≤ 2εe2RΣ, . (66)
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Now use (65), (66), (64) and (60) in E ′
1(k̃ − k′) = (E ′

1 − Ẽ1)k̃ + (Ẽ1k̃ − E ′
1k
′),

(evaluated at (y, θ′, θ) with y = y(x, θ, x′, θ′) as above,) to estimate

e−4RΣ|k̃ − k′| ≤ |E ′
1 − Ẽ1|k̃ + |Ẽ1k̃ − E ′

1k
′|

≤ |E ′
1 − Ẽ1|k̃ + |β̃ − β′| |θ × θ′|+ |γφ′2 − γφ̃2||θ × θ′|

≤ 2ερe2RΣ + ε + |γφ′2 − γφ̃2||θ × θ′|. (67)

We estimate the last term using the identity

|θ′ × θ||γφ′2 − γφ̃2| = |θ′ × θ|γ(I −M ′)−1M ′2φ′0 − |θ′ × θ|γ(I − M̃)−1M̃2φ̃0

= |θ′ × θ|γ(I −M ′)−1[M ′2φ′0 − M̃2φ̃2
0] (68)

+ |θ′ × θ|γ(I − M̃)−1[M ′ − M̃ ](I −M ′)−1M̃2φ̃0

To estimate the first term in the right hand side above we write

[M ′2φ′0 − M̃2φ̃2
0] = M ′(M ′ − M̃)φ′0 + (M ′ − M̃)M̃φ′0 + M̃2(φ′0 − φ̃0)

and bound each of the terms as follows. From their definitions we have

M̃M ′φ′0 =

∫ ∞

0

Ẽ(x− tθ, x)

∫

L(x′,θ′)

k̃(x− tθ, ̂x− tθ − y, θ)k′(y, θ′, ̂x− tθ − y)

|x− tθ − y|
× E ′(x′, y)E ′(y, x− tθ)dl(y)dt.

M ′M ′φ′0 =

∫ ∞

0

E ′(x− tθ, x)

∫

L(x′,θ′)

k′(x− tθ, ̂x− tθ − y, θ)k′(y, θ′, ̂x− tθ − y)

|x− tθ − y|
× E ′(x′, y)E ′(y, x− tθ)dl(y)dt.

Since (I − M ′)−1 is bounded in L∞, with a norm dependent on the radius only, say

C(R), by adding and subtracting one term and by using Lemma 6.1, we estimate

|γ(I −M ′)−1(M̃ −M ′)M ′φ′0| ≤ C(R)‖Ẽ − E ′‖∞‖k‖∞‖k′‖∞(1− ln |θ′ × θ)

+ C(R)‖k̃ − k′‖∞‖k′‖∞(1− ln |θ′ × θ|).(69)

Now, from (61) we get

‖Ẽ − E ′‖∞ ≤ 2R‖ã− a′‖ ≤ C(R, Σ, cR)ε,

for some constant which only depends on R, Σ, cR.

In what follows we keep the notation C(R, Σ, cR) for constants that may be different

from equation to equation but that only depend on R, Σ, cR in an explicit, but inessential,

way.

Using the fact that 0 ≤ t(1 − ln t) ≤ 1 for t ∈ [0, 1], the bound ‖k̃‖ ≤ ρ and the

bound in (63), we get from (69) that

|θ′ × θ||γ(I −M ′)−1(M̃ −M ′)M ′φ′0| ≤ C(R, Σ, cR)(ερ2 + ρ‖k̃ − k′‖∞).(70)

By reversing the roles of M ′ and M̃ , we get similarly

|θ′ × θ||γ(I −M ′)−1(M ′ − M̃)M̃φ′0| ≤ C(R, Σ, cR)(ερ2 + ρ‖k̃ − k′‖∞).(71)
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Similarly, from the definition of M̃2 as above, we also get

|θ′ × θ||γ(I −M ′)−1M̃2(φ′0 − φ̃0) ≤ C(R, Σ, cR)ερ2. (72)

The estimates (70), (71) and (72) imply

|θ′ × θ|γ(I −M ′)−1[M ′2φ′0 − M̃2φ̃2
0] ≤ C(R, Σ, cR)(ερ2 + ρ‖k̃ − k′‖∞).(73)

Next we estimate the second term of the right hand side of (68). Since for any

f ∈ L∞(BR × S1), we have

|[M ′ − M̃ ]f(x, θ)| ≤
∣∣∣∣
∫ ∞

0

[E ′ − Ẽ](x− tθ, x)

∫

S1

k′(x− tθ, θ′, θ)f(x− tθ)dθ′dt

∣∣∣∣

+

∣∣∣∣
∫ ∞

0

Ẽ(x− tθ, x)

∫

S1

[k′ − k̃](x− tθ, θ′, θ)f(x− tθ)dθ′dt

∣∣∣∣
≤

{
2R‖E ′ − Ẽ‖∞‖k′‖∞ + 2R‖k′ − k̃‖∞

}
‖f‖∞

≤
{

Cερ + 2R‖k′ − k̃‖∞
}
‖f‖∞

we get

|θ′ × θ| |γ(I − M̃)−1(M ′ − M̃)−1M̃2φ̃0| ≤ C
{

ερ3 + ‖k′ − k̃‖∞ρ2
}

, (74)

where C = C(R, Σ, cR) is a constant depending on R, Σ and cR only. Since ρ ≤ 1, by

applying (73) and (74) in (68), we get

|γ[φ′2]− γ[φ̃2]| |θ × θ′| ≤ C(R, Σ, cR)
{

ερ2 + ρ‖k̃ − k′‖∞
}

.

Therefore the basic estimate (67) yields

‖k′ − k̃‖∞ ≤ C(R, Σ, cR)ε + C(R, Σ, cR)ρ‖k′ − k̃‖∞.

By choosing

ρ <
1

C(R, Σ, cR)
, (75)

we get the final estimate

‖k′ − k̃‖∞ ≤ C(R, Σ, cR)

1− C(R, Σ, cR)
ε. (76)

The constant C from Theorem 1.3 is the largest of the constants in (61) and (76).

8. Concluding Remarks

In the case of an anisotropic attenuating medium, the albedo operator determines the

attenuation and scattering properties up to a gauge equivalence class. The set of gauge

functions has a natural structure of a multiplicative group which acts transitively on

the pairs of the coefficients.

We showed that the gauge equivalent classes are stably determined by the albedo

operator. We understand the distance between equivalent classes to be the infimum of

the distances between the corresponding representatives.
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The proof uses essentially the fact that, without loss of generality, the problem can

be transferred to a larger domain, and, consequently, the total travel time (with respect

to the larger domain) of free moving particles in the interior domain stays away from

zero. The fact that there is no loss of generality is due to the extension of an estimate

in [7] to essentially bounded coefficients.

The fact that we get Lipschitz stability estimates in (14), (15) instead of conditional

Hölder stability estimates as in [7] may seem strange. In fact, if we assume that a and

ã depend on x only (or on (x, |θ|), if θ belongs to an open velocity space), then (14)

implies ∫
(a− ã)(x + tθ) dt = O(ε)

in the L∞ norm, compare with [7, Theorem 3.2]. Then, by using interpolation estimates,

and the stability of the X-ray transform, we can get a conditional Hölder stability

estimate for a− ã, similar to the one in [7, Theorem 3.4].
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