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1 Introduction 

Let Q c l (  "+1, n > 3  odd, be an open connected set with a smooth boundary 
0Q. Given teN,, we denote O(t)= {xMR"; (t, x)~Q}, and O(t)=ll"\~2(t)  is the 
obstacle at the time t. We impose the following conditions. 

(i) There exists p > 0 such that (9 ( t )c  Bp = {x; Ix[ < p} for each t. 
(ii) If v=(vt, v,,) is the inner unit normal to OQ, then ]vt] <]vx]. 

Conditions (i), (ii) mean that the obstacle remains within a fixed compact 
set and that the boundary moves with a speed less than 1. Consider the wave 
equation in Q with Dirichlet boundary conditions 

(1.1) u , t - A u = O  in Q, 

u = 0 on OQ. 

This paper is devoted to the uniqueness of the inverse scattering problem for 
(1.1). 

The scattering theory for moving obstacles has been developed by Cooper 
and Strauss [3-11, 23] (see also El, 17 20, 26]). There are some essential differ- 
ences between the stationary case (see [14]) and the case of moving obstacles. 
One of them is that the variables cannot be separated and in general it is 
not possible to reduce (1.1) to a stationary problem by using Fourier transform. 
Another phenomenon is that the local (global) energy may increase as the time 
tends to infinity [5, 20]. Thus to prove the existence of the scattering operator 
S we must impose some additional restrictions [7, 8, l l ,  17, 18, 23]. Cooper 
and Strauss [8 ,9]  introduced the generalized scattering (echo) kernel 
K* (s', co'; s, e3) which makes sense whenever assumptions (i), (ii) are fulfilled. 
The distribution K s is a natural generalization of the kernel of S - I d  and 
K* coincides with it when S exists. A similar generalized kernel can be intro- 
duced in the scattering theory for the wave equation with time-dependent poten- 
tial [24, 25]. 
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In this situation it is natural to study the following inverse problem: 

(IP) Does K ~ determine Q uniquely? 

It is well-known that for stationary bodies S always exists and the answer to 
(IP) is affirmative [14] (see also [2, 21]). As it was shown by the author [24, 
25] the same is true for time-dependent potentials. In the case of moving obsta- 
cles it is known that K ~ determines uniquely the convex hull of (9(0 for each 
t [9]. The proof of this result is based on the analysis of the leading singularity 
of K ~ (see also [1, 17, 19]) in the spirit of the works of Majda [15, 16] and 
Soga [22] where stationary obstacles are studied. Nevertheless, to our knowledge 
there are no works dealing with (IP) for moving obstacles with arbitrary geome- 
try. It looks a little surprising that for general moving obstacles the answer 
to (IP) is negative. This will be proved in Theorem 1.3 below. For this reason 
in order to investigate (IP) we need to impose some additional restrictions. 

Definition 1.1 We say that Q ~  if Q satisfies (i), (ii) and the following condition 

(iii) There exists some T > 0 such that v~ = 0 for ] t] > T. 

In other words ~ includes all obstacles which are stationary in the far past 
and in the far future. Let Uo(t) be the unitary group related to the Cauchy 
problem for the wave equation [14] and denote by U(t, s) the propagator asso- 
ciated with (1.1) (see Sect. 2). It is not hard to prove that for Q ~  the scattering 
operator 

S = s -  lira Uo(- t )  U(t, - t )  Uo( - t )  
t ~ oO 

exists (see Proposition 2.1). Our first result is the following. 

Theorem 1.2 Let QiE~, i= 1, 2 and let the scattering operators Si, i= 1, 2, asso- 
ciated with Qi, coincide. Then Q1 ----Q2. 

Next, we show that in general the answer to (IP) is negative, even for periodi- 
cally moving obstacles. Before stating the corresponding theorem we need to 
recall the definition of K ~ (see [8, 9]). Set g(~)= - ( 2  rt)-(n-1)/2~ for ( >  0, g(~)= 0 
otherwise. Denote by u(t, x; s, co) that solution of (1.1) which coincides with 
the plane wave g ( t + s - x . c o )  for t < - s - p .  Then the function u~c(t, x; s, co) 
= u(t, x; s, co)-g( t  + s - x .  co) admits an asymptotic wave profile u~, i.e. the limit 

u~(s', co'; s, co)= lira (t+s')tn-1)/EOtu~(t, (t + s') co'; s, co) 
t ~ o O  

Lloc(~s,, x S~,, The generalized scattering kernel K ~ is then exists in the space 2 n--1). 
defined by the equality 

" c o ) = ( - ~ / c ~ s ) ~ " + ' / ~ u ~ ( s  ', co'; s, co) K ~ (s', co, s, 

and K* is a continuous function of s, co, co' with values in 9'(~.s,). In the case 
when S exists, K* is the Schwartz kernel of the operator ~ ( S - I d ) ~  -1 (see 
[8]), ~ being the translation representation of Uo(t) introduced by Lax and 
Phillips [14]. Our second result is the following�9 

Theorem 1.3 There exists a family of infinitely many distinct periodically moving 
obstacles satisfying (i), (ii) with the same generalized scattering (echo) kernel. 
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Below we describe briefly our approach. Let Q1 and Q2 be two distinct 
domains in .~ whose scattering operators St, i=  1, 2 coincide. Fix some s e n  
and fix ~oe[C~(l t")x  C~(IR")] c~DO., D ~ being the incoming space of Lax and 
Phillips [14]. We denote by u~ the solution of (1.1) related to Q~ having initial 
data ~o for t=s. In Proposition 2.2 we prove that $1 =$2 implies that u = u l - u 2  
vanishes for Ixl > p  and all tMR, where p is chosen so that (gi(t)c B~ = {x; Ixl <p} 
for all t, i =  1, 2. In the stationary case it is not hard to show that, in fact, 
u vanishes in the unbounded connected component of f21 c~22 which easily 
yields s = 0 2  [14] (see also [2, 21]). Indeed, in this case the function v(k, x) 
= S e x p ( - i t k ) u ( t ,  x)dt  is a solution to the Helmholtz equation, consequently 
v is a real-analytic function with respect to x. Clearly, in the case of moving 
obstacles this argument is no more available. Nevertheless, assuming for definite- 
ness that ~ Q2 c~ Q~4= O, we aim to prove that there exists (t o, Xo)e g Q2 c~ Q1 such 
that U(to,') vanishes in a neighborhood of Xo in ~f22(to). This fact makes possible 
to obtain contradiction. Its proof is based essentially on two new ideas. First, 
we construct a two-parameter family Ft,s: f2(s)--* s of diffeomorphisms related 
to a domain Q satisfying (i), (ii). We choose Ft, s to be the flow associated with 
a (time-dependent) vector field v e C ~ ( ( ~ ; l l  ") which is chosen so that ]v]<l ,  
v(t, x ) = 0  for Ix[>p and (1, v) is tangent to 0Q. In some sense v(t, x) can be 
considered as the velocity of xef2(t) at the moment t. Thus we treat all points 
in the exterior of the obstacle as moving ones. Secondly, we formulate and 
prove a Holmgren type theorem exploiting the flow Ft,~ (see Theorem 3.1 below). 
It has a form suitable for the examination of noncylindric domains Q. By this 
theorem we conclude in Sect. 5 that there exists (to, Xo)et?Q2nQ1 such that 
U(to,. ) vanishes in some neighborhood of x o in Of22(to) , as required. 

In Sect. 6 we prove Theorem 1.3. To this end we construct explicitly a family 
of periodically moving obstacles with the same generalized scattering kernel. 
First we build an obstacle (9(t) that has a part of the boundary which cannot 
be reached by the waves coming from IR"\B o. More precisely, there is an open 
set V, such that Vn0f2(t)  is non-empty, stationary and the following property 
is satisfied: There is no curve x(t) such that x(O)r [x'(t)[< 1, x(t)eO(t) for 
any t, and x( l )eVnO(l)  for some I. This implies that every solution of (1.1) 
with initial data in D p_ vanishes on Vc~f2(t). Thus the generalized scattering 
kernel K* does not contain any information about the shape of VnOf2(t). 
So we may change this part of 0f2(t) and this will not reflect on K*.  

2 Preliminary 

Given f =  (f l ,  f2)e C~ (O(t))x C~ (O(t)) define the energy norm of f by 

Ilfll~)-- ~ ([VfllZ+[f212)dx. 
~(t) 

Denote by ~ ( t )  the closure of C~(Q(t))x C~(O(t)) with respect to the norm 
II'[l(m ~ff(t) is a Hilbert space with energy scalar product (see e.g. [8]). Given 
f e ~ ( s )  we consider the mixed problem 

(2.1) utt--Au~-O , (t, x)eQ, 
u-0 ,  (t, x)e~Q, 

(u, ut) = (f l ,  f2) for t = s. 
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The solution of (2.1) is given by (u, u,)= U(t, s)f, where the propagator U(t, s) 
is a two-parameter family of operators U(t, s): ~ ( s )  ~ o~(t) (see [8]). 

Let ~o  be the Hilbert space associated with the Cauchy problem for the 
free wave equation i f ]u=0  in IR, xIR~. OUgo has the same definition as ~,ug(t) 
with O(t)=N". We denote by Uo(t ) the unitary group in Jr'o, related to the 
free wave equation [14]. Recall the definition of the scattering operator S asso- 
ciated with U(t, s) and Uo(t) given in the introduction. This definition is to 
be considered in the following sense (see also [14]). For any f S ~ o  with compact 
support U o ( - t ) f  vanishes in Bp for large t, therefore it can be considered as 
an element in ~r  thus U ( t , - t ) U o ( - t ) f  is well defined. Next, we regard 
o~ff(t) as a subspace of ~ffo, thus for large t the expression U o ( - t ) U ( t , - t ) U o (  
- t ) f  is well defined. We say that S exists if the limit S f  exists for any f e ~ o  
with compact support and S is bounded. Then S f  can be defined for any f e  ~o.  
In general S does not exists. Moreover, in some cases the local energy increases 
exponentially [5, 20]. Sufficient conditions for the existence of S can be found, 
for example, in [7, 8, 11, 17, 18, 23]. In our case the situation is simpler since 
we have assumed (iii). 

Proposition 2.1 Let Q~.~. Then the scattering operator S exists. 

Proof. Condition (iii)implies that s t>__T, and Q(t )=O(- -T)  for 
t _<_ --T. Denote by U+ (t) the unitary groups in ~r (_+ T) related to the stationary 
obstacles C(_+ T). Then we have U(t, s)= U+(t -  T) U(T, s) for t__> T and U(t, s) 
= U(t, - T) U_ ( -  T - s )  for s__< - T. Using these relations and the fact that the 
wave operators associated with U• and Uo(t ) exist [14], we complete the 
proof of the proposition. Note that in particular we obtain that the energy 
HU(t, s)ll is uniformly bounded in t, s. 

In the remainder of this section we will proceed with the first step of the 
proof of Theorem 1.2. Let Qi, i= 1, 2 be two domains satisfying (i), (ii), (iii) and 
denote by U~(t, s), Si the corresponding propagators and scattering operators. 
Recall the definition of the spaces D R of Lax-Phillips [14] 

D R = {feJt~ [Uo(t)f](x)=O for [x[< i t + p ,  i t > 0 } .  

Fix p > 0 such that 01 (t)w (92(t) ~ Bp/2 for each t. 

Proposition 2.2 Suppose S 1 =$2. Then for all ~p~[C~(]R") x C~(]R")] c~ D ~ and 
all t, s ~ R  2 we have [U1 (t, s) ~p] (x) = [U2 (t, s) ~p] (x) for Ixl > p. 

Proof Fix r and s and set ui(t, x)=[Ui(t, s)tp]l, u = u l - u 2 ,  [v]l being the first 
component of the vector v. Pick a cut-off function x~C ~, such that )~(x)=0 
in a neighborhood of Bp/2, Z(x)= 1 for Ix l>  p and set v = Z u. Then we have 

(2.2) [-lv= - - ( A z ) u - 2 V z  - Vu, 

since [ - lu=0 for Ixt>p/2. Moreover, Ui(t, s)q)=Uo(t-s)tp for t < s  [8], hence 
u = 0 for t ~ s. Therefore, 

(2.3) (v, v,)= i U0(t-z)(0, q(z, '))dr 
S 
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with qeC(lRt;L2(N~)) given by the right hand side of (2.2). Note that 
supp q (t, x) c {x; p/2 < ix] < p} for all t. Given a > s, set 

x 

f " =  i Uo(-r)(  0, q(z,'))dr, (v a, r = Uo(t)ff . 
s 

From (2.3) we find v - v " =  Uo ( t - r ) (0 ,  q(~,.))d r . The finite speed of propaga- 
L o  | 

tions argument implies that 

(2.4) v=v"=u for I x l > t - a + p ,  t>a. 

Furthermore, the equality $1 =$2 yields (u, u,)= Ut(t, s)~o- U2(t, s)q) --,0 in ~o ,  
as t ~ oo. Combining this with (2.4) we get 

(2.5) ~ IOtva(t,x)12dx~O, as t ~ o o .  
t - a + p < l x l  

On the other hand, Theorem 2.4 in [14, Ch. IV.] (see also [8, Theorem 16]) 
says that 

(2.6) I OtVa--(--]xl)-(n-1)/2(~,~f a) Ixl--t, dx ~O, 
t - a + o < l x l  

as t ~  0% with ~f"~L2(~,. • S "-1) being the translation representer of f "  [14]. 
Limits (2.5) and (2.6) together imply that ~ f " ( a ,  co)= 0 for a > p - a ,  hence 

~(Uo(t)ff)(a, co)=0 for a > t - a + p .  (2.7) 

Furthermore, 

Uo(t) f ~= ] Uo(t- ~)(O, q(~,'))d~. 
s 

Huygens' principle implies that for t>=a+p we have Uo(t)f"~D ~ thus 
~(Uo(t)fa)(a, co)=0 for a < 0 ,  t > a + p  by Theorem 2.3 in [14, Ch. IV.]. Conse- 
quently, 

(2.8) #l(Uo(t)f")(a, co)=0 for a< - p ,  t>=a. 

Combining (2.7) and (2.8) we find 

~(Uo(t)f")(a , ~o)=0 for [ a l > t - a + p ,  t>=a. 

On the other hand, Uo(t)f" has compact support for each t. An application 
of Corollary 3.3 of [14, Ch. IV.] implies that 

a C supp Uo(t)f Bt-,+p for t>a, 
x 
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therefore u(t, x ) = 0  for I x l > t - a + p ,  t>___a in view of (2.4). Setting t=a we find 
u(a, x ) = 0  for Ixt>p. Since a>s may be chosen arbitrary, it follows that the 
assertion of the proposition is valid for t>s. As we have mentioned above, 
u(t, x) vanishes for t __< s. The proof is complete. 

3 The flow F,,~ and the Holmgren type theorem 

In the beginning of this section we will show that there exists a (not unique) 
family of diffeomorphisms Ft. ~ associated with Q satisfying (i), (ii), with the follow- 
ing properties: 

(a) Ft,~: O(s)--* fJ(t) is a diffeomorphism smoothly depending on t, s. 
(b) Ft,~oF~.r=Ft,, for all t, s, r; F~,~=Id. 
(c) I(d/dt)Ft,~(x)t<l, Ft,~(x)=x for Ix[>p, all t, s. 

Note that the plane t=t  o intersects Q transversally in view of (ii), so Oo(t) 
is a smooth manifold for each t. 

We seek Ft, ~ as a solution of the following ordinary differential equation 

d 
(3.1) ~ -  F~,~(x)= v(t, Ft,~(x)), teN,  xef2(s), 

f~,Ax)= x, xef~(s), 

where v(t, x) is a suitably chosen vector field. We interpret v(t, x) as the velocity 
of xe~(t)  at the moment t. First we define the normal velocity vN(t, x) for 
xeOf2(t) by the equality VN=--vtvJtVxl 2. Next, we peek a velocity field 
v e C ~ (Q; N") satisfying the conditions 

(3.2) VloQ=V~, VIQ\(R• IVI<I. 

In other words, we assume that each xe~E2(t) moves with velocity VN, each 
xeE2(t) moves with velocity v, while the points outside Bp remain stationary. 
Moreover, the last equality in (3.2) means that every point has a speed less 
than 1. Of course, there are many ways to construct a solution to (3.2). For  
example, we can proceed as follows. The collar neighborhood theorem says 
that there is a C~ ~: 0Q x [0, oe)--. Q, such that ~(t, x; 0)= (t, x) 
for (t, x)eOQ. We set q~(t, x; a)=g(a)vN(t, X) for (t, x)'eaQ, ~>0, where g is a 
smooth cut-off function, such that g(e)= 1 for 0 < ~ <  1, g ( e )=0  for e > 2  and 
0 < g < l .  Put ~(t, x )=~o(~- l ( t ,  x)) for (t, x)e~((?Q x [-0, oo)) and g = 0  otherwise. 
Now, let Z be another smooth cut-off function, such that Z(x)= 1 for ]xl <p/2, 
)~(x)=0 for Ix[ > p  and 0N)~< 1. Then v = z g  is a solution to (3.2). 

Given v satisfying (3.2), set w-- (1, v)e C ~ ((~; N" + ~). We claim that the vector 
field w is tangent to the boundary ~ .  Indeed, let (t, x)eOQ. Then w(t, x) 
=(1, vN(t, X)) and w. v = vt+ vx" VN = 0. This property together with the estimate 

lwl<V ~ imply that w defines a global flow on Q [12]. A standard argument 
shows that this flow induces a family of diffeomorphisms F~., that solves (3.1). 
Clearly, F~, ~ satisfies (a), (b), (c). 

Note  that our construction of F,.~ does not require (iii). However, if (iii) 
holds, we can choose v such that v = 0  for l t l>2T.  In this case, in addition 
to (a), (b), (c) we have 
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(d) Fr, s= Id  for t <  - 2 T ,  s<  - 2 T  and for t>2T,  s>2T.  

Note that in the coordinates (t, y)= (t, F,o.t(x)) Q becomes cylindric domain. 
However, the wave operator [] in these coordinates looks too complicated. 

The next construction is necessary to formulate the Holmgren type theorem. 
Using F~,s one can easily show that f2(t) is connected for each t. We omit the 
trivial proof of this assertion. However, it should be noted that this is not 
evident if we do not exploit Ft,~. Fix t o and let Xo~Xl  be two points in f2(to). 
Let 

(3.3) ? = { x ~ N f ;  x=x(a ) ,  O<=a<l} 

be a smooth curve in f2(to), which is not self-intersecting, such that x(0) 
=x0 ,  x(l)=Xl, Ix'(o)14:0. It is convenient to assume that the function x(a) is 
defined on some interval I =  [ - 6 ,  l+  6], 6 >0,  larger than [0, l]. To the end 
of this section we fix a family Ft.s with properties (a), (b), (c), (d), generated 
by a velocity field v satisfying (3.2). Consider the two-dimensional surface 

(3.4) F =  {(t, x); x=Ft.to(X(a)), aeI ,  t e l R } c Q .  

It is not hard to check that F is a smooth manifold and a, t are global coordinates 
on F. We define two vector fields A +- ~ TF by the equality 

0 
A -+ t) - -  

= ~ a  + a •  c~t' 

Here the functions a •  are chosen so that for each (a, t) the vector A • 
considered as a vector in IR "+1 is characteristic. This condition leads us to 
the equation 

(3.5) Iv(t, F~, to (x(a)))_ a~ 1 DxFt,to(X(a))x'(a)I = 1. 

Since Iv[ < 1, there exist two positive smooth functions a•  satisfying (3.5). More- 
over, we can find constants cl ,  c2, such that 

(3.6) 0 < c 1 ~ a •  , t)<=cz<~x) for all t and aeI .  

Indeed, let t>2T .  Then DxFt, to=DxFt, 2TDxF2T, to=-DxF2T, to in view of (a), (b), 
(c), (d). Similarly DxFt.to=DxF_2T, ro for t < - 2 T .  Hence a• does not depend 
on t for It l>2T. This proves (3.6). Note that here we have used condition (iii) 
essentially. 

Let a--*(t,x)=(t• be the integral curve of A • passing 
through (to, Xo) for a = 0 .  In other words, t• (a) solves the following problem 

d 
(3.7) ~-a t• (a)= +a• t• 

t • (0)  = t o .  

Condition (3.6) implies that the function t• is defined globally on I. As we 
will see in Sect. 6 in general the solutions of (3.7) cannot be continued on I. 
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Further, t+ is monotonically increasing, while t_ is monotonically decreasing. 
We define a subset X of F by 

(3.8) X = {(t, x); x=Ft, to(x(a)), O<=a<l, t_(a)<=t<t+(a)}. 

We especially note that X depends on t o, Xo, x~, V and Ft, ~. 
Now we are ready to state and prove the following Holmgren type theorem. 

Theorem 3.1 Let u be a distribution satisfying the wave equation [] u = 0 in an 
open subset of ~,+1 containing X. Suppose that u vanishes in a neighborhood 
of the curve 

(3.9) {(t, x); x = Ft. to (x (1)), t_ (/) < t < t + (/)}. 

Then supp u n X = 0. 

Before giving the proof  we make the following observation. Consider the 
special case when the obstacle Q is stationary and Ft.s=Id. If Ix'(~)l= 1, then 
F is a cylindric set and 

X =  {(t, x); x = x(o'), O<=a<=l, to-a<_t<_to+cr}. 

Then Theorem 3.1 says that if u solves the wave equation near X and u(t, x ) = 0  
for t o - l - ~ < t < t o + l + e ,  I x - x~[<e  with some e>0,  then u vanishes in a neigh- 
borhood of X. This assertion can be easily proved by approximating Y with 
polygons and by applying the Holmgren theorem for the wave equation (see 
[14, Ch. IV., Theorem 1.5], or [13, Theorem 8.6.8]. 

4 Proof  of  Theorem 3.1 

The idea of the proof is the following. We construct a sequence X~(m), me [0, l) 
of open subsets of ~ "  § ~ with non-characteristic C 1-boundary depending contin- 
uously on m, such that F-]u=0 in a neighborhood of X~(m) for any m, X c X , ( 0 )  
and u = 0  in X~(m) for m close to I. Then we prove that X, (m)nsuppu=O for 
any m by applying the local Holmgren theorem ([13, Theorem 8.6.5]). 

According to the assumptions, we have R u = 0  in A, u = 0  in A0, where 
A and A o are open sets such that A ~ X ,  Ao contains (3.9). We can assume 
that Ao c A. Denote 

17v'= {(or, t); - - 6 < a < I + 6 ,  t _ ( l ) - f < t < t + ( 1 ) + 6 }  x( - -1 ,  1) "-1 

By a standard argument we can find a diffeomorphism GI: ITv~ Gl(ff4r)~X, 
such that Gl(a, t,O)=(t,F~ao(X(a))). We can assume that AcGI(17V). Set W 
= G?I(A). Then G~: W ~  A is a diffeomorphism, too. Without loss of generality 
we can assume that W o ".=G~-1 (Ao) is given by the conditions (a, t, q)e W, l - #  < tr 
with some # > 0 ,  where q=(q~ . . . .  , q,_x). 
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Given any me[0,  l - l~ /2]  we search a number ct> 1 and a function t(tr) such 
that 

d 
(4.1+) d~r t(tr)=~a+(tr, t), trEI, 

t (m)  = to,  

t ( l )=t+( l )+v .  

Here v is a positive number which will be specified later. To solve (4.1)+ denote 
by t~(a) the function t(~r) satisfying the first and the second equation in (4.1+). 
To deal with the third equation, observe that t l ( l )<t+( l  ) (see (3.7)). On the 
other hand, t,(l) depends continuously and monotonically on ct and t , ( l )> t  o 
+ ~ c o ( l - m ) ~ ,  as ~ .  Thus there exists a unique ~>1  such that t = t ,  
satisfies the third equation in (4.1+). Denote by ct+,,,, t+,,,(a) the solution of 
(4.1 +). Similarly, let ~_ , , ,  t_ ,,(or) solve the problem 

d 
(4.1_) dtr t(tr)= - ~ a _  (tr, t), tr~I, 

t (m) = to, 

t(l) = t_ (1)-- v. 

Given me [0, I - # / 2 ]  we define the following analog of X: 

X(m)= {(t, x); x = F~,to(X(Cr)), m < a < l ,  t_ , , ( t r )<t<t+,m(tr)}  c E  

Clearly, X ( m l ) = X ( m 2 )  for m l > m 2 , X = X ( O ) .  We choose v > 0  smatl enough 
to ensure the inclusion X(0)~  A. We aim to show that X (0 )n  supp u--0. Observe 
that for rne(1-~ ,  1 - # / 2 ]  we have X ( m ) c A o ,  thus X ( m ) n s u p p u = O .  

Given rn6[0, l--~t/2] consider the map G2,,,: W ~ P -  "+ 1, defined by 

(4.2) Yl = (t+,,. (tr) - t _  ,.(tr))/(t +, ,.(l)-- t_, re(l)), 

Y2 = (2 t -- t +,,. (tr) - t _  ,, (a))/(t +, ,, (1) - t_, ,, (l)), 

yk=qk_2,  k = 3  . . . . .  n +  1, 

(a, t, q)e W. Using the fact that t + , , , - t _ , ,  is monotonically increasing function, 
we deduce that G2.,,: W-~ G2,,,(W) is a diffeomorphism. Consider the composi- 
tion Gin= G1 o - 1 G2,m, Gin: G z , . , ( W ) ~  A. Observe that if we consider the triangle 

Y= {yelR"+ 1 ; 0<y~ < 1, [Y2t <Yl,  Y3 . . . . .  y.+ ~ =0}, 

then we have X(m)= GIn(Y). Since G2,m depends continuously on m, we deduce 
that 

Uo,= 0 G~,.(W) 
O<-m<_l-t~/2 

is open. Let U be another open set, such that Y c  UCUo .  So, we restricted 
G,. to a diffeomorphism G,.: U --* G,.(U), where Y c  U, X (m)c  G. , (U)= A. 

Next we introduce a family of open sets X~(m) in the following way. Set 

r~ -- U B~(y), X~(m) =Gm (r~). 
y~Y 
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Here B,(y)={x; I x - Y t < e }  and e > 0  is chosen so that Y ~U .  Clearly, X~(m) 
is open, X(m)cX , (m)cA  for any m. Furthermore, if e is small enough, then 
X,(m)~Ao for m =  1-1~/2 and therefore for m sufficiently close to 1-#/2. Hence, 
for such m we have X~(m)n supp u = 0. We shall prove that in fact 

(4.3) X,(m)nsuppu=O for all me[0,  1-#/2]. 

Note that (4.3) yields Theorem 3.1 because X ~ X (0)~ X~(0). 
Assume that (4.3) is not true. Set mo = sup {m; X~(m) c~ supp u + 0} < t -  I~/2. 

Then one can easily prove that 

(4.4) 8X~(mo)nsuppu~-O, X,(mo)nsuppu=O. 

Since A o n s u p p u = 0 ,  we can replace 8X~(mo) in (4.4) by 8X~(mo)\A o. Below 
we will show that for any m the surface 8X,(m)\Ao is non-characteristic. Accord- 
ing to the local Holmgren theorem [13, Theorem 8.6.8], (4.4) implies that u 
must vanish in a neighborhood of OX~(rno)\A o which contradicts the choice 
of mo. 

It remains to prove that e can be chosen so that for any me[0,  l -#/2] 
the surface 8X,(m)\A o is non-characteristic. In order to simplify the proof first 
we will show that this can be done for a fixed m. Let the outer normal 
to t3X~(m) at some point (~, 2)q~A o be a characteristic vector (i.e. I~1 = I~1). With- 
out loss of generality we can assume r =(1, ~),  I~xl= 1. We interpret (t, ~, ~) 
as a covector. After a change of coordinates y = G~, 1 (t, x), (?,, Yc, ~) is transformed 
into (y, r/), where ~ = (DGm)* (y)~, y = G~(~  ,2). Then ~/is normal to 8 Y~ at ye  ~ Y~. 
On the other hand, ~eSB,  O) with some ) e Y  and ~/ is normal to 8B~()) at 
y. Therefore, e ~ / = y - ) .  Since y is a boundary element, then B,(y)n Y=0. By 
the convexity of Y we get 

(4.5) ( y - ) ) . r / < 0  for all y e Y  

Passing to the coordinates (t, x )=  Gin(y) we transform the covector O, r/) into 
(t, ~, ~), where (t, :~)eX(m). Since I ) -y l=e ,  we have ](t, ~)-(~, 2)]<Ce,  I~-r 
< Ce. Since (~, ~)r changing the size of Ao a little bit we may assume that 
(~ :~)r Relation (4.5) implies that for any curve t(s), x(s) such that t(0)= ?, 
x (0) = ~, (t (s), x (s)) e X (m) for s > 0 sufficiently small, we have ~. (t' (0), x'(0)) < 0, 
therefore ~.(t'(0), x'(O))/l(t'(O), x'(O))l<Ce. To get a contradiction it suffices to 
show that there exists f l>0,  such that for any (t, ~)eX(m)\A o we can find 
a curve of the type described above, such that 

(4.6) r (t'(0), x'(O))/l(t'(O), x'(0))t ~ 3. 

We have to consider two cases. Recall that ) =  G~ 1 (t, :~), 0 <)1  < 1, I)21__<)1. 

Case A. 0 < ) ~  < 1, It21<t~. Consider the line y '=(0,  1, 0 . . . . .  0), y (0 )=) .  Then 
the tangent to the curve (t(s), x(s))= Gm(y(s)) at s = 0  has the form C(I, v), where 
v=v(t, :~), C>0.  Then (1, v).(1, ~x)= 1 +v.r where f l=min{1-1v( t ,  x)l; 
(t, x)eX(m)} >0. Thus (4.6) holds. 

Case B. 0 < ) 1 < 1 ,  1)21--)~. First assume )~=)~. Then /'=t+.m(a) for some 
a e  [0, l) and x = ~. to(x(tr)). Consider the line y ' =  (1, 1, 0 . . . .  ,0), y(0)= ). The tan- 
gent to the curve G,(y(s)) at s = 0  is given by C2, where C>0 ,  2=(1,  2~), 2x 
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=v( t , :~)+e ; lma+(a ,  t)Dx~,to(X(a))x'(a) and e + . , , > l .  According to (3.5) we 
have 12~1<1 and moreover [R~l<Ro<l, where 20 does not depend on 
(~ 2)eX(m). Therefore ~.2>[Rlfl, with some constant /3>0, which proves (4.6) 
in this case. If -j~2=291>0 we can proceed in a similar manner considering 
the curve y'= ( -  1, 1, O, ..., 0), y (0)= ~. 

Therefore, (4.6) holds and for any fixed me[0, l-p~2] the surface dX,(m)\Ao 
is non-characteristic for 0 <e  < e(m). Since m runs over a compact interval and 
e(m) depends on the behavior of G,, on a compact set, we deduce that ~>0  
can be chosen so that OX,(m)\Ao is non-characteristic for all me[0,  l -~/2] .  
This completes the proof of Theorem 3.1. 

Remark. In the proof we have several times used estimate (3.6) which is implied 
by (iii). Nevertheless, we note that Theorem 3.1 remains true without condition 
(iii) with minor changes in the proof. However then we must assume that the 
set X is well-defined, i.e. the solutions t• of (3.7) can be continued on [0, l]. 

5 Proof of Theorem 1.2 

In this section we prove Theorem 1.2 by means of Theorem 3.1. Let Q~e~, i=  1, 2 
and suppose that $1=$2.  Denote by U~(t, s) the corresponding propagators. 
We fix selR and q~e [C~ (N.") x C~ (I1")] c~O ~ and set 

(5.1) ui(t,x)=Eq(t,s)~o],,  u=u~-u~.  

The number p > 0  is chosen so that (91( t )~(gz( t )cBo/2 for all t. Fix T > 0  satisfy- 
ing (iii) both for Q1 and Q2. By Proposition 2.2 we have 

(5.2) u(t,x)=O for Ixl>p, all t. 

Suppose that Q14:Q2. Then without loss of generality we can assume that 
Q1 nOQ2+0.  Further we will show that u vanishes on a part of OQ2. For  this 
reason we prepare the following. 

Proposition 5.1 Suppose that Q1 c~ OQ2 4: O. Then there exists (to, Xo)eQx c~ OQ2 
and a neighborhood UCO~(to) of Xo, such that every solution u of the wave 
equation in QI nQ2 which is smooth in QI ~Q2 and satisfies (5.2), vanishes on 
{to} • ~2(to)C~ U. 

Proof Pick (to, Xo)~Qlf~OQ2 and fix some xlCB2p. Let ~ 2 1 ( t o )  be a curve 
of the kind (3.3) joining Xo and x 1 . Choose some family Ft!ls ) of diffeomorphisms 
related to Q1 with properties (a), (b), (c), (d) listed in Sect. 3. Denote by F and 
X the sets (3.4) and (3.8) respectively, associated with to, Xo, Xl, V and E (x) t , $  " 

We have X c Q 1 ,  (to, Xo)eaQ2. Clearly, a = a ( t ,  x) is a well-defined function on 
F. Set 

(5.3) # =  sup a(t, x). 
(t,x)6rn(R ,~+ 1\Q2) 
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According to (d), the supremum above could be taken only for It[ < 2T. Hence, 
there exists (?,, 2 ) e F  n( lR  "+ 1\Q2), such that  ti = a(~, 2), i.e. 2 = F~,to(X(0)). By (5.3), 
(?,, 2)~ O Q2. Moreover ,  6 < l  because otherwise we would have 2 = x ~  B2 ~. Set 

s  {(t, x); x = Ft~)(2(a)), ~ a ~ l ,  t'_ (o-)~ t ~ ~+ (~)}, 

d 
where t'_+ solve the problem ~ t • = _ a +_ (a, ~'• t'• (~) = ~, and ~ (a) = Ft, ~o (x (tr)) 

(compare with (3.7)). These arguments  show that  without  loss of generality we 
can assume that  (t, 2 )= ( t  o, Xo) and that  for the set X defined by (3.8) (with 
Ft!l~ ) instead of Ft.~), we have 

(5.4) (t,F~,,o(X(a)))eQlnQ2 for a > 0  and 

X~Q1 n Q 2 ,  Xnc~Q2=(to, Xo). 

Clearly, Ixo[ < p/2. We will first show that  

(5.5) U(to, Xo)=0. 

Given e~(0,/), denote  by X~ the set (3.8) associated with to, x(e), x~, 7 and 
F W More  precisely, let t~ (a) solve the problem 

, S  " 

d 
(5.6) d~- t~ = _+ a +_ (a, t~), t~ (e) = t o . 

Then X~ is given by 

~tX) (x(a)), e ~ a < l, t% X~ = {(t, x); x = " , to-  (tr) _< t _<-- t*+ (tr)}. 

Compar ing  (3.7) and (5.6) we see that t_ (a) < tL (a) and t~+ (a) < t + (tr), thus X~ c X 
and from (5.3) we get X~cQlnQ2.  N o w  we are in posi t ion to apply Theo-  
rem 3.1. No te  that  F,!~)o(x(l))=x(t)=xlCB2p,hence u vanishes for x close to x 1 
and all t in view of  (5.2). Thus  Theorem 3.1 yields u = 0  on X~. In part icular  
we get U(to, x(e))= 0. Taking e ~ 0 we obta in  (5.5). 

Arguing as before we see that  in order  to prove the proposi t ion  it suffices 
to find a ne ighborhood  U of  Xo with the following property.  

(.) Fo r  any 2~Of22(t2)n U we can construct  a curve ~7 joining 2 and xl  
such that  the set )~ (see (3.8)) associated with t 0, ~, x l ,  the curve ~ and ~t.~-~l), 
satisfies ) ~ c Q l  n Q 2 ,  f~nOQ2=(to, 2). 

We will construct  ~7 as a small per turba t ion  of  7. Using a s tandard argument  
we find an open set V~f21(to)nB p and a diffeomorphism M: V ~ B ~ = { y ;  tY[ 
<1} such that  xo~V and M(O~z(to)nV ) is given by y , = 0 .  Pick a smooth  
function ~k so that  ~k(y)= 1 for [Yt < 1/3 and ~k(y)= 0 for lYt > 2/3. Given ~ e ~ " -  ~ 
consider the map Pc(y)=y+~k(y)(~, 0). Here  (r 0)=(r  . . . .  , ~ , -1 ,0 ) .  Clearly, 
Pc: Ba--*B~ is a di f feomorphism provided I~1 is sufficiently small and so is Re 
= M - ~  o Pc ~ M: V ~  E We choose/~ > 0 so that  F~t2)o(V)c 01(t)n Bp for I t -  to I< ~. 
Here Ft~ 2) is a family of the kind cons t ruc t ed ' i n  Sect. 3 associated with Q2 
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Further ,  let q~(t) be a smooth  cut-off function such that  ~b(t)= 1 for I t - t o ]  <# /3 ,  
qS(t)=0 for It-tol >2# /3 .  We set 

(2) o o (2) R~(x) ~ "[F~'t~ R~162 Fto, t](x) for xtF~!Z)o(V), 
= [ x ,  otherwise. 

Clearly, R~ is a global diffeomorphism in IR" and/~r x).'=(t, R~(x)) is a diffeo- 
morphism in IR "+1. No te  that  R e preserves Q~, Q2 and any plane t = c o n s t .  
In fact, /~r  only in a small ne ighborhood of (to, Xo). Moreover ,  /~e ~ Id 
together  with its derivatives, as 141 ~ 0. Set x e = R~ ~ (Xo) t ~ f22 (to). 

Let X(O)cQ~ be the same as in Sect. 4 (with Ft(,~2 instead of F~,~): According 
to (5.4) we have x(O)cQ~c~Q2, x(o)c~OQ2=(to, Xo). Set F~=Re(F), Xr 
=/~r (X (0)) c Ft. Clearly, 

(5.7) Fr = {(t, x); x = F~;at!to(Xe(a)), atI ,  t t~} ,  
Xr = {(t, x); x=F~;~!to(Xe(a)); a t [ 0 ,  l], t_,o(a)<=t<=t+,o(a) }, 

where ~(1) _ o t  ~ ~(~) ~ t o ~ -  1 �9 e ; t .~-"r  ~ "e J  , xr176 In other  words, Fr is defined as 
F with the same to, x~ and with Xo, 7, and F~I~ ~ replaced by xr ~,e= {x; x=xe(a)} 
and ~(1) ~,(1) ei;t.~. Note  that ,r is generated by the vector field wr where 
we is of the kind we=(1,  re). Since v~=v for 4 = 0  we can choose 141 small enough 
to arrange the inequality [vel < 1. Thus v e satisfies (3.2) and F~;I~),~ o satisfies condi- 
tions (a), (b), (c), (d) of Sect. 2. 

Next  we construct  a set X e c  Fr of the kind (3.8) associated with t 0, x e, x~, 7r 
and F (~) In o ther  words, e;t,s" 

(5.8) Xr = {(t, x); x = F~;', ), ,o (xr (a)); a t [0, l], t ~_ (a) < t < tr (a)}. 

Here t~ solves an equat ion of the kind (3.7) with a_+ = a~ (a, t) defined as in 
(3.5). Consider  (5.7). We have (d/da)t• +e•177 t• where ~ •  
Since a~=a• for 4 = 0 ,  we see that  a~<c~•177 for 141<~ with some ~>0.  
Therefore we get t_o(a)<t~_(a), tc+(a)<t+,o(a). Compare  (5.7) and (5.8) to 
deduce X e c Xr (0). Hence,  X~ c Q a c~ (~2, Xr ~ 0 Q2 = (t o, x C) for 14[ < e. This veri- 
fies (.). Arguing as in the p roof  of (5.5) we complete  the proof  of Proposi t ion 
5.1. 

Now,  let u be as in (5.1). By Proposi t ion  5.1, u~(to,.)-u2(to,') vanishes 
o n  0~e~ 2 (to)("5 U, where U C f21 (to). Since u2 satisfies the Dirichlet bounda ry  condi- 
t ion o n  r , we get 

(5.9) [U1 ( to ,  s )qg ' ] l  Idf22(to) Ca U ~--0 

for all s t iR,  ~ot [C~ (IR") x C~ (IR")] ~D~ 
Choose  a smooth  f=(fl,f2)tJegl(to), such that  f14=0 on O02(to)nU. We 

claim that  there exist sequences sktlR, ~okt[C~~ ") x C~(IR")] c~D~ with the 
proper ty  

(5.10) G(to, Sk)~ok~f in ~ l ( to) ,  as k---*~. 

According to the p roof  of Proposi t ion  2.1, we have Ul(s, to) f = U_ (s + T) 
. U1 ( -  T, to) f for s < -- T. Here  U_ (t) is the p ropaga to r  related to the s ta t ionary 
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obstacle C1(-  T). Since the wave operator s -  lim U o ( - t  ) U_ (t) exists [14], 
t ~ -  ~t3 

there is a g e  Jr~ such that 

(5.11) tlUo(s)g-Ul(s, to)fll~ro~O, as s ~  - ~ .  

Given keN,  choose g k G C ~ x C ~  with IIg--gk[]Jeo<l/k. Then pick Sk< 
--max{Ixl; XEsuppgk}--p such that IIUo(s)g- Ul(s, to)fll~eo< 1/k for S<Sk. 
Thus 

2 
l] Uo (sO gk -- UI (Sk, to) f II ~eo < ~.  

Setting q~k = Uo (Sk)gk, we see that for t < 0 Uo (t)(~k = 0 in Bp +, by Huygens' princi- 
ple, therefore (pkGDP_. In particular, (pkG'1 (Sk) and 

2C 
t] U1 (to, Sk) CPk--f [I,,o) < - ~ - ,  

where C =  sup II U(t, s)ll. Thus (5.10) is verified. 
S , t  

Poincar6 inequality combined with (5.10) implies that [U:(to, Sk) CPk]l--'f~ 
in n~oc(O: (to)). Therefore, 

[u, (to, sk) ~ok]110o2(,o)n ~,-'A 10,~2(,o)n 

in H1/2(802(to)n U), as k ~  oo. Taking into account (5.9) we deduce that f l  =0  
on 8f22(to)c~ U, which contradicts our choice off1. 

The proof of Theorem 1.2 is complete. 

Remark. It should be mentioned that condition (iii) has been used twice in 
the proof of Theorem 1.2. First, to show that the solutions of (3.7) can be contin- 
ued in the whole interval [0,/] (which is not true in general) and, secondly, 
to show that the set {U(to, s)q~; sER, ~pE[C~(F.")x C~(~" ) ]nDC} is dense 
in ~ ( to )  (see (5.10)). The second condition is related to the local energy decay 
at t ~  - m  (see (5.11)). 

6 The example 

In this section we prove Theorem 1.3. To this end we construct explicitly a 
family of periodically moving obstacles satisfying (i), (ii) with the same general- 
ized scattering kernel. For the sake of simplicity we assume n =  3. To avoid 
confusions in the notations we note that for any vector x the subscript j in 
xj will always denote the j-th component of x. For example, x~, xl(t) denote 
the first component of x k and x(t), respectively. 

It is not hard to see that there exists a function ~k E C~ (]R) with the properties 

(6.1) O(a)={10, ' for [al<2, 
for [al> 11/4, 

t01<1, 1~01=3/2. 
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Next  we set ~b(t, a ) = ~ ( a ) s i n ( k ( a - t / 2 ) ) .  Here k is a large parameter .  In what  
follows we assume k fixed so that  

(6.2) k > 2 n. 

Consider  the hypersurface 27 c ~ 4  and the domain  Qo c ]R 4 given by 

27 = {(t, X)G]R4; ( X 2 - - ~ ( t  , X1))2 q'-X2 = r  2, t ~ R ,  Ixal < 3}, 

Qo = {(t, x)elR4; ( x 2 - ( 9 ( t  , xl))2 +x2  < r  2, ten:~, [xx[<3}. 

Here re(0,  1/2) is a small parameter  which will be specified later. Clearly, 27 
is a smooth  manifold and 27cOQo. We set f2o(t)= {x; (t, x)~Qo}. The domain  
f2o(t ) can be considered as a small ne ighborhood  of the curve 

(6.3) Yt ~--- {X; X 2 = ~ ( t ,  X1) , X 3 = 0 ,  IX11 "~ 3}. 

We shall prove below that  Z is time-like, i.e. that  the normal  to 2; satisfies 
(ii). 

Let  us define a velocity field v associated with 2;. Fur ther  we denote  by 
K,  the cube 

K~= {xeFx3; Ixil =<~x, i =  1, 2, 3}. 

Pick a function Z e C~ (~3), such that  I xl =< 1, ~(x) = 1 for x e K1 1/4 and Z(x) = 0 
for x r  Given (t, x ) e N  4 we set 

v(t, x) = �89 O'(xl) sin(k(Xl - t/2)), 0) 

Clearly, v(t, x)=(1/2 ,  0, 0) for x s K 2  while v = 0  for xq~K 3. Let us estimate Ivl. 
We have 

Ivl z -<_ �88 + [-~'(xl) sin(k(xa - t/2))] 2) < �88 + 9) < 1, 

by virtue of (6.1). Next,  we claim that  w=(1 ,  v) is tangent  to Z. Indeed, the 
vector 

V=((q~- -X2)  ~ t ,  (~b--X2) ~)x ' , - - ( (~ - -X2) ,  X3), 

where x ~ S , $ = c k ( t ,  xl), is normal  to 2:. Since x l e s u p p t ~  and x ~ Z  yields 
x ~ K l l / ,  and therefore Z(X)= 1, we find 

v. w = (c~ - x2) [ dp, + �89 Z (x)(49xl - $'  (x l) sin (k (Xl - t/2)))] = 0. 

In particular,  it follows that  I v,I < I vx[. Indeed, 0 = vt + v x. v implies I vtl = Ivy" v l 
<ivy]. No te  that  v satisfies only the second and the third condi t ion in (3.2) 
while instead of v = v N on 0Qo we have that  w = (1, v) is tangent  to 0Qo. Never the-  
less, this is sufficient to conclude that  v(t, x) generates a flow F~.,: ~ x 3 - - ~ x  3 
that  maps  f2o(S ) on to  f2o(t ). Note  that  Ft.~= Id o n  n;?~3\K3 . Denote  Vo =(1/2,  0, 0). 

L e m m a  6.1 Let x ~ K  2. Then Ft ,~(x)=x+ ( t -S )Vo  for  I t - s l  ~2d i s t (x ,  OK2). 
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Proof. Put Gt,s(x)=x + ( t -S)Vo.  Then (d/dt)Gt.s(x)=vo. Fur thermore ,  if I t - s [  
< 2 dist (x, 0K2), then Gt, s (x )eK 2 thus Vo = v(t, Gt,~(x)). Therefore,  bo th  y = Ft,~(x) 
and y = Gt,~(x) solve the p rob lem 

d 
d t Y = V ( t ,  y), I t - s l < 2 d i s t ( x ,  8K2), 

y ( s )  = x .  

Consequent ly ,  Ft, ~ = Gt, ~ for  such s, t which completes  the proof.  

Proposit ion 6.2 There is no piecewise smooth curve {x; x=x( t ) ,  a<=t<=b} such 
that Xl (a) = 3, x ( t )e  •o (t) for a <_ t <- b, x~ (b) = - 3, and Ix' (t)l < 1. 

Piecewise smoo th  here means  that  x(t) is cont inuous  and there exists a part i-  
t ion a=to<t~  < ... < t N = b  of [a, b], such that  x(t) is C ~  on each subin- 
terval Its_ 1, tj], j = 1 . . . . .  N. 

Proof. Suppose  the contrary.  Let  p = {x = x(t), a <__ t <= b} be a curve with proper -  
ties given above.  Set 

ao=sup{ te [a ,  b];  xl  ( t )>0}.  

Clearly, x l  (ao)= 0. Since xl  (b)=  - 3  and  l x'[ =< 1, it follows that  b - a  o > 3. Thus  
setting 

bo = ao + 2 g/k, 

we conclude that  bo - ao _-< 1 (see (6.2)) hence [a o, bo] c [a, b]. Consider  the curves 

po = {x; x=x( t ) ,  a o < t < b o } c p ,  

po = {x; x =~( t ) ,  ao<=t<=bo} c Oo(ao), 

where s ( t )=  F,o.t(x(t)). Assume  in what  follows that  t e [ao, b o]. Since x~ (ao)= 0, 
l x'f N 1, 0 < b o -  ao < 1, we have I x~ (t)] < 1. Fur ther ,  since x(t) e •o(t) it follows 
that  Ix2 (t)l _-< 1 + r, fx3 (t)t _-< r. Hence  dist (x(t), 0K2) > 1 - r > 1/2, By L e m m a  6.1, 
2 (t) = F,o,t(x(t)) = x ( t ) -  ( t - -  ao) v o e K2. Therefore/~o is given by 

po = {x; x = x ( t ) - ( t - a o ) v o ,  ao<=t<=bo}. 

F r o m  the inequalities 12'1_-< 3/2, 0 <  b o - a o  < 1 we deduce that  the length l(i~o) 
of/~o admi ts  the es t imate  l(/~o)N 3/2. On the o ther  hand,/~o c f~o(ao)c~ K2,  which 
can be considered as a ne ighbo rhood  of the curve 

7 ' =  {x; x2 = sin(k(xl  - ao/2)), x3 = 0 ,  Ixt] <2}  c 7 .  o, 

( compare  with (6.3)) with a size depending on r. I t  is not  hard  to see that  
the length I(7") o f  the pa th  

7"  = {X; X 2 = sin(k (x 1 - ao/2)), x3 = 0, - n/k < x~ < 0} c 7' 

is greater  than  2. Therefore,  the length of  the shortest  curve {x = y(t), A < t < B} 
in f20(ao) ~ {x; -- rc/k ~ x l  < 0} with the proper t ies  Yl (A) = 0, Yi (B) = - rc/k tends 
to l ( r  as r ~ 0 .  Since /(/~o)N3/2, we conclude tha t  for r small enough  
21 (bo) > - folk. Thus  x l (bo) = 2x (bo) + (bo - ao)/2 = 21 (bo) + rc/k > 0. This fact con- 
tradicts the choice of ao. This comple tes  the p r o o f  of the proposi t ion.  
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Let Q c N  4 be a domain with smooth boundary such that s {x; (t, x)eQ} 
satisfies the conditions 

(A1) (2(t)nKa=f2o(t);  
(A2) s (N3\Ka) is stationary (time-independent); 
(A3) i f K ' = { x ;  -4-<xl---  - 3 ,  [x2]=< 1, [x31= 1}, then 

80( t )c~OK'=ag2o( t )c~K'= {x; x l=  --3, x2 + x2=r2} ; 
(A4) f2(t) c Ks; 

(see Fig. 1). Clearly, Q satisfies (i), (ii) with p > 5 l / 3 = � 8 9  5. Moreover, 
O(t + 4n/k)= Q(t) thus the motion is periodic with period 4rt/k. Below we denote 
s163 K', which does not depend on t by virtue of (A2). 

As a consequence of Proposition 6.2 we obtain. 

CoroUary 6.3 There is no piecewise smooth curve {x=x(t) ,  aNt<=b} such that 
x(a)q~B o, x(t)efJ(t) for any te[a, b], x(b)es and [x'] < 1. 

In other words, if we travel in the exterior of the obstacle with a speed 
not greater than 1, starting from N3\Bo,  we will never reach s Let us compare 
Corollary 6.3 with the approach in Sect. 3. It is not hard to see that for any 
choice of to, Xo~fJ', Ft.~ and ~ joining x o and some xlCBo the solution t_(a) 
of problem (3.7) cannot be continued on I. Indeed, supposing the contrary we 
would obtain a contradiction with Corollary 6.3. Moreover, following the con- 
struction given above one can find a moving obstacle for which the unique 
continuation property fails, i.e. there exists a non-trivial solution of (1.i) vanish- 
ing for large [xl, all t. 

Using the above proposition we shall show that every solution U(b, a) f, b > a, 
with s u p p f n  Bp = 0 vanishes in ~2'. To this end we are going to apply the princi- 
ple of causality. It is known (see [9, Lemma 2] or [1]) that if f = 0  in BR c~ (2(a), 
then U ( b , a ) f = O  in BR_lb_alnO(b). Therefore, given y ~ s u p p U ( b , a ) f c O ( b )  
there exists x ~supp f c s such that ] y -  x[ N ]b -  a]. Iterating this argument 
N times we obtain the following. 

Lemma 6.4 (causality) Let Q satisfy (i), (ii). Let yesuppU(b ,  a) f, f~o~(a), b> a. 
Then for any N e N  and for any partition a = to < t l <. . .  < tN = b of the interval 
[a, b], there exists x ~  and a polygon 

p={x ;  x=x( t ) ,  a < t < b }  
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with vertices x ~ . . . . .  x N, of the kind 

x j  - -  X j - -  1 
x(t)=xJ-l  + (t--ti_ 0 for tj_l <t<=tj, 

t j  - -  t j _  1 

j = l  . . . . .  N, such that x~ y=xN=x(tN) and xJ=x(tj)~f2(t), IxJ--x2-11 
<=ltj--tj_ alfor j=  1 . . . . .  X. 

Remark. It is natural to conjecture that the principle of causality for (1.1) admits 
the following formulation: Under the assumptions of Lemma 6.4 there exists 
a piecewise smooth curve x=x(t), a<_t<_b joining y=x(b) with some x ~ 
=x(a)~suppfcO(a) ,  such that [x'(t)]< 1, x(t)eg2(t)for any t. The proof of this 
assertion however seems to be very technical. Nevertheless, the above lemma 
is sufficient for our purposes. Note that we have [x'(t)[ < 1 in Lemma 6.4, but 
in general x(t) may leave f2(t) for t + tj, j=  1 . . . . .  N. 

Combining Proposition 6.2 and Lemma 6.4 we are going to prove the follow- 
ing. 

Proposition 6.5 Let Q be a domain with properties (A1)-(A4). Then for any b> a 
and for any f~o~(a) with supp f nBo=O we have U(b, a ) f = 0  in f2'. 

Proof Suppose the contrary. Then given N E N  there exists a polygon of the 
kind given in Lemma 6.4 joining some x~ with some xN=x(b)Ef2 '. 
As mentioned above, in general x(t) may leave f2(t) for some t, thus we cannot 
apply directly Corollary 6.3 to obtain a contradiction. Below it is convenient 
to assume that t j=a+j (b -a ) /N ,  j=  1 . . . . .  N. The integer N will be specified 
later. 

By (A1)-(A4) we see that if max l t j - t j_  1[ is sufficiently small (smaller than 
J 

1/2 is sufficient), then p must pass through K 3. In particular, there exist 4, 
such that xl (4)= 3, xl (b')= - 3 .  Set 

a '=sup{t ;  x, (t)> 3}, b' =inf{t;  xl(t)<= -3} .  

Clearly, xl (a') = 3, xl (b') = - 3 and xl (t)e [ -  3, 33 for t s  [a', b'] c [a, bl. 
Next we observe that f2o(t ) admits the following characterization. Put 

y(t, a)=(a,  r a), 0). Then 7t is given by x=y(t ,  a), Icrl < 3  (see (6.3)); and XeOo(t ) 
if and only if Ix~l<3 and Ix-y( t ,  xOl<r. Let te[a', b'] and pick tje[a', b'] 
such that I t -  tj[ <(b-a) /N.  Then 

Ix(t)-  y(t, xl (t))[ < Ix(t)-  xJl + IxJ- y(tj, x{)[ + ly(tj, x { ) -  y(t, xl (t))[ 

b - a  
< It-tjl +r+ C, lt-tgl <(1 + C , ) T + r ,  

where Ce > 0 depends only on the derivatives of r We choose N so that 

Then we have 

b - a  
(1 + C , ) T < r .  

ix( t ) -  y(t, xl (t))t < 2 r, 
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which shows that if we replace r with 2 r in the definition of f2 o (t), then x(t)ef2 o (t) 
for any te[a',b']. Recall that x l ( a ' )=3 ,  x l ( b ' ) = - 3 ,  Ix ' [< l .  An application 
of Proposition 6.2 yields a contradiction and the proof  is complete. 

Now consider a family f f  of domains Q with the properties: 

(B1) each Qe.~- satisfies (A1)-(A4); 
(B2) f2~(t)c~(lR3\K')=f22(t)n(N3\K ') for any Qleo~, Q 2 e ~ .  

Note  that we do not impose any restriction on f2(t)n K', thus the geometry 
of Of 2(t)~K' may be arbitrary, provided that (A3) holds. Hence ~- consists 
of infinitely many distinct domains Q and the corresponding obstacles C(t) move 
with the same period 4n/k. Below we shall prove that all obstacles in ~ have 
the same generalized scattering kernel. 

Let Q I ~ ,  Q 2 ~  ~. Choose ~p~C~(IR 3) x C~~ 3) and set f=Uo(--R-p)q~, 
where R > m a x { l x l ;  xesupptp}.  Huygens '  principle implies feDP_. Set u~ 
= [ U / ( t , - - R - p ) f ] l ,  where U/(t, s) is the propagator  related to Qi, i =  1, 2. By 
Proposition 6.5, u~=0 in O'~=f2i(t )nK', i = 1 , 2 .  On the other hand, 
f21(t)n(~x3\K')---Q2(t)n(]R3\K') by (B2). Therefore, both u 1 and u 2 solve the 
problem 

Hence 

[S]u = 0  in Q1, 

u = 0  on OQ1, 
(u, u,)=f for t =  - R - p .  

ul=u2. Now let Ki* be the generalized scattering kernels related to 
Qi, i= 1, 2. By [9, Sect. 3] (see also [8, Theorem 9]) ul has an asymptotic wave 
profile u/* (s, co) and 

u?(s',co')=--N?q)(s',co')-- I S K?(s',o';s,o)~lq~(s,o)dsd~o, 
icol= t -o0 

~ttp being the translation representer of ~0. Since u~* = u2 ~ we get 

S (K~ -K~)(s', o9'; s, co)~qg(s, co)dsdog=O 

for any (~oeC~ (~  3) x C~ (R3), Therefore, K~ = K ~ .  
This completes the proof  of Theorem 1.3. 
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