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1. Introduction

This survey is based on a series of joint papers [SU4, SU5, SU6, SU7] by the author and Gunther
Uhlmann. It is an extended version of the mini-course given by the author on the Symposium of
Inverse Problems in Honor of Alberto Calderón in Rio de Janeiro, January 10–19, 2007.

We are not trying to give a full account on the progress in Tensor Tomography and Boundary
and Lens Rigidity. While we will certainly acknowledge the contribution of other authors on this
subject, our main goal is to present a microlocal point of view. Another powerful method, that we
will not discuss, is the energy estimates method, initiated by Mukhometov (see [Mu1, Mu2, MuR]
and the references there), and developed further by others; most recently by Pestov, Sharafutdinov,
and Dairbekov, see [PS, Sh1, Sh2, Sh3, D].

We try to explain the ideas behind the proofs and skip details often. Clear references to where
to find complete proofs are always given. We emphasize more on the analysis of simple manifolds
in sections 3, 4 to make the presentation more accessible. The recent results on a more general
class of manifolds, that we call regular, that in fact include all simple ones, will be only formulated
and briefly discussed in section 5.

These notes target a graduate student audience. Basic knowledge of differential and Riemannian
geometry is assumed. Knowledge of pseudo-differential operator (ΨDO) theory is also needed. In
fact, we do not go beyond the construction of a parametrix of an elliptic ΨDO and the mapping
properties of ΨDOs in Sobolev spaces. In section 3.10, we use analytic ΨDOs.

2. Formulation of the main problems

In what follows, M is a compact manifold of dimension n ≥ 2 with boundary. We fix a finite
analytic atlas on it. Thus the term real analytic function/metric on it makes sense. Moreover, for
any function f (or more generally, a tensor field f) on M , the norm ‖f‖Ck(M) is well defined as the
maximum of the localized norm over all coordinate charts. In sections 3, 4, M will be diffeomorphic
to a ball in Rn. We keep M fixed and we will study different Riemannian metrics g on M . We
freely use the Einstein summation convention and when g is fixed, we will use the convention of
raising and lowering indices thus identifying covariant and contravariant tensor fields.

We will formulate below the three basic problems we are interested in: the linear tensor tomog-
raphy problem, and the non-linear boundary rigidity and lens rigidity ones. We will show later
that the tensor tomography problem is a linearization of the boundary rigidity.

2.1. Tensor Tomography. Informally speaking, tensor tomography tries to recover a tensor field
from its integrals along geodesics connecting boundary points. We will make this more precise
below.

Let M be as above, and let g be a smooth Riemannian metric on it that will be kept fixed in
this section. We will parametrize the maximal geodesics in M with (at least one) endpoint on ∂M
by their incoming points and directions.

Set
∂±SM := {(x, ω) ∈ TM ; x ∈ ∂M, |ω| = 1, ±〈ω, ν〉 > 0} ,

where ν(x) is the outer unit normal to ∂M (normal w.r.t. g, of course). Here and in what follows,
we denote by 〈ω, ν〉 the inner product of the vectors ω, ν, and |ω| is meant w.r.t. g. Let γx,ω(t)
be the (unit speed) geodesic through (x, ω), defined on its maximal interval contained in [0,∞). It
may happen that γx,ω(t) is defined for all t > 0; then we call the latter trapping, and we call (M, g)
a trapping manifold. Otherwise, we call γx,ω non-trapping. In the latter case, the endpoint of γx,ω
must be on ∂M . If all geodesics are non-trapping, then (M, g) is called a non-trapping manifold.
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Let f be a covariant symmetric tensor field of order m, i.e., locally, f is given by its components
fi1i2...im(x). As we mentioned above, we will freely raise indices if needed. Given a vector field v,
introduce the notation 〈f, vm〉 by writing in any local coordinates

(2.1) 〈f, vm〉 = fi1i2...imv
i1vi2 . . . vim .

The superscript m is there to reminds us that 〈f, vm〉 is non-linear w.r.t. v.
We define the geodesic ray transform of f by

(2.2) If(γ) =
∫
〈f(γ(t)), γ̇m(t)〉dt,

where γ is any maximal geodesic in M . Unless otherwise stated, we assume that the geodesics are
parametrized by an arc-length parameter. If is well defined at least when M is non-trapping and
f is continuous. To emphasize on the dependence on the metric g, we sometimes denote I by Ig.
Using the parametrization above, with some abuse of notation, we write

(2.3) If(x, ω) =
∫
〈f(γx,ω(t)), γ̇mx,ω(t)〉dt, (x, ω) ∈ ∂−SM.

Our main interest is in symmetric 2-tensors. Then

(2.4) If(x, ω) =
∫
fij(γx,ω(t))γ̇ix,ω(t)γ̇jx,ω(t) dt, (x, ω) ∈ ∂−SM,

where the integrand is written in local coordinates (somewhat incorrectly since this assumes ex-
istence of coordinates defined near the whole γxω; on the other hand, one can easily define such
coordinates in a neighborhood of any non-trapping and non self-intersecting geodesic).

The natural question that arises is the following: is f uniquely determined by its ray transform
If? Since I is a linear operator, this is equivalent to asking; does If = 0 imply f = 0? For now, f
is continuous, but we will be more specific below. The answer is negative for any (M, g), if m ≥ 1.
To understand this better, start with the case m = 1. Let φ ∈ C1(M), and consider the 1-form
f = dφ given locally by f = dφ = φxidxi. Then

(2.5) 〈f(γ), γ̇〉 = φxi(γ(t))γ̇i(t) =
d
dt
φ(γ(t)).

Therefore, if φ = 0 on ∂M , the fundamental theorem of calculus implies that

(2.6) I(dφ) = 0.

On the other hand, dφ does not need to vanish. Note that γ does not need to be a geodesic for
(2.5) to hold, and therefore, (2.6) holds even if we integrate over any curve(s) connecting boundary
points!

This generalizes to tensors of any order m ≥ 1, but for geodesics only. Consider first the case
m = 2. Then for any geodesic γ, (see the proof in section (3.2.2))

(2.7)
d
dt
〈v(γ(t)), γ̇m−1(t)〉 = 〈dv, γ̇m(t)〉,

(m = 2), where dv is the symmetric differential of f given in local coordinates by

(2.8) (dv)ij =
1
2
(vi,j + vj,i).

We use the notational convention vi,j = ∇jvi, where ∇ is the covariant derivative. For tensors of
arbitrary order m, the symmetric differential dv is defined as the symmetrization of ∇v, i.e., as the
mean of ∇v over all permutations of its indices. Then (2.7) still holds. Note that γ in (2.7) really
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has to be a geodesic, and in the proof, we use the geodesic equation. Then (2.7) implies that for
any vector field v with v = 0 on ∂M , one has

(2.9) I(dv) = 0.

It will become clear by the mapping properties of I that the regularity of v can be reduced to
v ∈ H1

0 (M).

Definition 2.1. We call the tensor field f of order m ≥ 1 potential, if f = dv for some tensor
field v ∈ H1

0 (M) of order m− 1.

As we just saw, potential fields belong naturally to the kernel of I. We expect that at least for
simple manifolds introduced below, this is the whole kernel of I.

Definition 2.2. We say that I is s-injective (m ≥ 1), if If = 0 for f ∈ L2(M) implies that f is
potential, i.e., f = dv with some v ∈ H1

0 (M).

If m = 0, i.e., if we integrate functions, then we study the injectivity of I in classical sense.

Solenoidal projections of tensor fields. Since I vanishes on potential tensors, it is quite rea-
sonable to study I restricted on the orthogonal complement of all potential tensors. To this end, we
have to define a certain scalar product of tensor fields. We will work in the L2 space of symmetric
tensor fields in M with scalar product

(2.10) (f, h)L2(M) =
∫
M
fi1i2...im(x)h̄i1i2...im(x) dVol(x).

Here, dVol(x) is the volume measure given locally by (det g)1/2dx. We hope that our choice of
notation will not cause confusion with the L2 space of functions (and tensor fields of different
orders). It will be clear form the contest which space we mean. We define similarly Sobolev spaces.
We define the divergence δf of a symmetric m-tensor field f (m ≥ 1) as the formal adjoint of −d.
In other words, δf is a symmetric (m− 1) tensor that in local coordinates is given by

(2.11) (δf)i1...im−1 = ∇mfi1...im−1m,

where ∇m = gmi∇i. In particular, if m = 2, then δf is a covector field, and locally, (δf)i = ∇jfij .
Then we have the following (see [Sh1, SU4] and section 3.4).

Theorem 2.1. In the space L2(M) of symmetric m-tensors, there exist a unique choice of orthog-
onal projections P and S, P+S = Id, so that any f ∈ L2(M) admits the orthogonal decomposition

(2.12) f = fs + dv, fs = Sf, dv = Pf
with some v ∈ H1

0 (M), and δfs = 0.

We call fs = Sf the solenoidal projection of f , and any tensor f with δf = 0 will be called
solenoidal. The theorem above then states that any f admits unique decomposition into a potential
and a solenoidal part. The s-injectivity of f can then be reformulated as follows.

Definition 2.3. We say that I is s-injective (m ≥ 1), if If = 0 for f ∈ L2(M) implies that fs = 0.

Clearly, Definitions 2.2 and 2.3 are equivalent.
We will briefly summarize some of the known results about the s-injectivity of I. Let us start with

m = 0, i.e., integrals of functions. There are simple counter examples to injectivity in that case.
Take the sphere S2, and any function that is equal to 1, and respectively −1 in small neighborhoods
of two symmetric neighborhoods of the North and the South pole, respectively. Here, symmetry is
define by the antipodal map. Then f integrates to zero over any geodesic (grand circle). Now, to
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make this a manifold with boundary, cut a small neighborhood U of a point on the equator. Then
If = 0 but f 6≡ 0. More generally, take any odd f vanishing on U and remove U again. Therefore,
some assumptions on (M, g) are needed, if we want to get an injective ray transform I. One such
assumption is that (M, g) is simple.

Definition 2.4 (simple manifold). We say that (M, g) is a simple manifold, if ∂M is strictly convex
w.r.t. g, and for any x ∈M , the exponential map expx : exp−1

x (M) →M is a diffeomorphism.

Any metric g on M so that (M, g) is simple will be called a simple metric on M . The boundary
∂M is called strictly convex, if the second fundamental form on ∂M is strictly positive. The second
condition above hides the requirement that any two points x, y in M are connected by a unique
geodesic in M that depends smoothly on x, y. In particular, there are no conjugate points on any
geodesic in M . Any simple M (w.r.t. some g) is necessarily diffeomorphic to a ball in Rn, see e.g.,
[Sh1]. Therefore, in the analysis of simple manifolds, we can assume that M is a domain Ω ⊂ Rn.

If (M,∂M) is simple, then the geodesic ray transform I of functions and 1-forms is injective,
respectively s-injective, see [Mu2, MuR, BG, AR]. The proof of this relies on energy estimates
methods.

The case m ≥ 2 is tougher, and m = 2 already possesses most, if not all of the difficulties. S-
injectivity of Ig for m ≥ 2 was previously proved in [PS] for metrics with negative curvature, in [Sh1]
for metrics with small curvature. In the 2D case, it was proved in [Sh4] for all simple Riemannian
surfaces with boundary, following the approach in [PU]. A conditional and non-sharp stability
estimate for metrics with small curvature is also established in [Sh1]. Our main results about the
Tensor Tomography problem are Theorems 3.1, 3.2 for simple manifolds, and Theorems 5.1, 5.2
about a more general class that we call regular manifolds.

2.2. Boundary Rigidity. Let M be as above. We equip M with different Riemannian metrics g.
For any two points in M , let ρg(x, y) be the distance between x and y measured in the metric g.
In other words, ρg(x, y) is the infimum of the lengths of all piecewise C1 curves in M connecting x
and y. We want to recall that the length of a curve c : [0, 1] 7→M is given by

length(c) =
∫ 1

0
|ċ(t)|dt,

where, as always, |ċ(t)| is the length of the vector ċ in the metric, i.e., in local coordinates, |ċ(t)| =√
gij(c(t))ċi(t)ċi(t). Then we ask whether one can determine g by knowledge of ρg(x, y) restricted

to all x ∈ ∂M , y ∈ ∂M . There is a clear obstruction to this. If ψ : M →M is any diffeomorphism
so that ψ = Id on ∂M , one can easily show that ρg = ρψ∗g, on ∂M ×∂M , where ψ∗ is the pull-back
of g under ψ. We will call g and any such ψ∗g isometric. The natural question then is the following:

The Boundary rigidity question. Given g and ĝ on M , does

ρg = ρĝ on ∂M × ∂M

imply that there is a diffeomorphism ψ : M →M so that ψ|∂M = Id, and

ĝ = ψ∗g?

More generally, one can ask whether one can recover the topology ofM as well from the boundary
distance function, if only the boundary is given. We will assume however, that M is known.

Definition 2.5 (boundary rigidity). We say that (M, g) is boundary rigid, if for any metric ĝ
on M so that ρg = ρĝ on ∂M × ∂M , one has ĝ = ψ∗g with some diffeomorphism ψ fixing ∂M
pointwise.
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It is not hard to find counter-examples to boundary rigidity. If there is an open set in M where
g is very large, then all the minimizing curves will avoid that set. Therefore, ρg will not carry
any information about g inside that set and we can modify g there (by keeping it large), and ρg
on ∂M × ∂M will be the same. It is easy to see that those modifications do not need to be all
isometric to g. A more specific example of this kind is the following. Let M be the northern closed
hemisphere of S2 with its natural metric that we will denote by g0. Then ρg0(x, y) for any two
boundary points is realized as the length of the shortest arc on ∂M connecting x and y. Let 0 ≤ φ
be a smooth function supported in the interior of M , not identically zero. Then ρ(1+φ)g0 = ρg0 on
∂M × ∂M . On the other hand, g0 and (1 + φ)g0 are not isometric because the volume of M in the
second metric is strictly greater than that in the first one, if φ 6≡ 0.

Therefore, the boundary rigidity problem has to be considered on a class of manifolds in order
to avoid counter-examples like those. One such class is the class of simple manifolds introduced
above. A more general class of manifolds where one expects boundary rigidity is the class of SGM
(strong geodesically minimizing) manifolds, see [C].

Unique recovery of g (up to an action of a diffeomorphism) is known for simple metrics conformal
to each other [C, B, Mu1, Mu2, MuR, BG], for flat metrics [Gr], for simple locally symmetric spaces
of negative curvature [BCG]. In two dimensions it was known for simple metrics with negative
curvature [C2] and [O], and recently it was shown in [PU] for simple metrics with no restrictions
on the curvature. In [SU3], the authors proved this for metrics in a small neighborhood of the
Euclidean one. This result was used in [LSU] to prove a semiglobal solvability result. Our main
results are local boundary rigidity near generic metrics, more precisely, near any metric with an
s-injective ray transform Ig, see Theorems 4.1; and Theorem 4.3 about a conditional Hölder type
of stability estimate.

The boundary rigidity problem arose in geophysics in an attempt to determine the inner structure
of the Earth by measuring the travel times of seismic waves. It goes back to Herglotz [H] and
Wiechert and Zoeppritz [WZ]. Although the emphasis has been in the case that the medium is
isotropic, the anisotropic case has been of interest in geophysics since it has been found that the
inner core of the Earth exhibits anisotropic behavior [Cr]. In differential geometry this inverse
problem has been studied because of rigidity questions and is known as the boundary rigidity
problem. In its present form, it was formulated by Michel [Mi].

2.3. Lens Rigidity. Let now M be a compact manifold with boundary, not necessarily diffeomor-
phic to a ball anymore. Let g be a Riemannian metric on it. As we saw above, such manifolds may
fail to be boundary rigid. Instead of the boundary rigidity problem, we will study a closely related
but a different one: the lens rigidity problem.

Let Φt be the geodesic flow on SM . We define the scattering relation

(2.13) Σ : ∂−SM → ∂+SM,

Σ(x, ξ) = (y, η) = ΦL(x, ξ), where L > 0 is the first moment, at which the unit speed geodesic
through (x, ξ) hits ∂M again. Note that at that point, the geodesic may touch ∂M tangentially, and
may have an extension beyond t = L; and eventually it may hit ∂M again or to remain trapping.
This defines also L(x, ξ) as a function L : ∂−SM → [0,∞]. Note that Σ and L are not necessarily
continuous.

It is convenient to think of Σ and L as defined on the whole ∂SM with Σ = Id and L = 0 on
∂+SM .

The lens rigidity question asks whether Σ, L determine g. Clearly, the way we posed this problem,
one needs to know g on ∂M . Moreover, a diffeomorphism ψ fixing ∂M pointwise may not preserve
(x, ξ) ∈ ∂±SM ; it only preserves the orthogonal projection of ξ on ∂M . If it does, then we have



TENSOR TOMOGRAPHY; BOUNDARY AND LENS RIGIDITY 7

the same obstruction to uniqueness as in the boundary rigidity problem. So we have two options:
either to require that ψ = Id on ∂M and Dψ = Id on ∂M , or to redefine the scattering relation in
order to avoid the second condition. We will do the latter.

Since for (x, ξ) ∈ ∂−SM , ξ is unit, it is determined by its orthogonal projection on the boundary.
We will think of Σ as mapping x and the orthogonal projection of ξ onto a point y ∈ ∂M and
the orthogonal projection of the direction at y. More formally, let κ± : ∂±SM → B(∂M) be the
orthogonal projection onto the (open) unit ball tangent bundle. It extends continuously to the
closure of ∂±SM . Then κ± are homeomorphisms, and we set

(2.14) σ = κ+ ◦ Σ ◦ κ−1
− : B(∂M) −→ B(∂M), ` = L ◦ κ−1

− .

According to our convention, σ = Id, ` = 0 on ∂(B(∂M)) = S(∂M). We equip B(∂M) with the
relative topology induced by T (∂M), where neighborhoods of boundary points (those in S(∂M))
are given by half-neighborhoods.

We still need to know g on ∂M but only acting on tangent vectors to ∂M . The map σ however,
that we still are going to call scattering relation, is invariant under isometric changes of g by ψ∗g,
if ψ fixes ∂M pointwise. This justifies the following formulation.

The Lens Rigidity question. Given g and ĝ on M , so that g = ĝ on T (∂M), does

(2.15) σg = σĝ, `g = `ĝ on B(∂M)

imply that there is a diffeomorphism ψ : M →M so that ψ|M = Id, and

ĝ = ψ∗g?

As before, one can ask whether one can recover the topology of M as well from σg, `g, if only the
boundary is given. We will assume again that M is known.

Definition 2.6 (lens rigidity). We say that (M, g) is lens rigid, if for any metric ĝ on M so that
g = ĝ on T (∂M), and (2.15) is fulfilled, one has ĝ = ψ∗g with some diffeomorphism ψ fixing ∂M
pointwise.

The reason we call this lens rigidity is because of two manifolds are lens rigid, they act in the
same way as lenses when viewed from outside. The scattering relation is encoded in the hyperbolic
DN map for the wave equation (∂2

t −∆g)u = 0 or in the scattering operator.
There are very few results about this problem when the manifold is not simple. Croke [C2] has

shown that if a manifold is lens rigid, a finite quotient of it is also lens rigid. A counter-example
to lens rigidity is given in [CK].

2.4. The Boundary Rigidity and the Lens Rigidity problems are equivalent on simple
manifolds. Assume now that M is simple. The following observation is due to Michel [Mi].

Lemma 2.1. Let (M, g) be simple. Then, for any (x, y) ∈ ∂M × ∂M ,

Σ(x,−gradx ρ(x, y)) = (y, grady ρ(x, y)),

L(x,−gradx ρ(x, y)) = ρ(x, y);

and

σ(x,−grad′x ρ(x, y)) = (y, grad′y ρ(x, y)),

`(x,−grad′x ρ(x, y)) = ρ(x, y),

where grad′φ stands for the tangential component of gradφ on T (∂M).
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Proof. Recall that in Riemannian geometry, in local coordinates, (grad f)i = gij∂jf . Fix (x, ξ) ∈
∂−SM . Let (y, η) = Σ(x, ξ) ∈ ∂+SM .

We have grady ρ(x, y) = η. This follows from the Jacobi theory of solving the eikonal equation
but perhaps the shortest way to see this here is the following. By the Gauss lemma, η is orthogonal
(in the metric) to the geodesic sphere ρ(x, y) = const. On the other hand, grady ρ(x, y) has the
same property. Therefore, grady ρ(x, y) must be parallel to η. Since the directional derivative of
ρ(x, y) w.r.t. to y in the direction of η has length one (in the metric), and η has the same property,
then grady ρ(x, y) = η. Similarly, one gets gradx ρ(x, y) = −ξ. This proves the lemma. �

Lemma 2.1 shows that the boundary rigidity and the lens rigidity problems are equivalent on
simple manifolds. Actually, we get that a knowledge of the first component of σ is enough to
recover ρ. More precisely, we have the following. The map π below is the natural projection, i.e.,
π(x, ξ) = x.

Proposition 2.1. Let g, ĝ be simple metrics on M . Then
(a) If ρg = ρĝ on ∂M × ∂M , then g = ĝ on T (∂M) and σg = σĝ, and `g = `ĝ.
(b) If g = ĝ on T (∂M) and π ◦ σg = π ◦ σĝ, then ρg = ρĝ on ∂M × ∂M .

Proof. To prove (a), notice fist that if ρ is given on ∂M × ∂M , one can easily recover g on T (∂M)
by taking the limit y → x. Then we can recover grad′x ρ(x, y) and grad′y ρ(x, y) because we can
differentiate in tangential directions. Then by the lemma, we know σ(x, ξ′), and therefore Σ(x, ξ),
where ξ = gradx ρ(x, y). We also know `(x, ξ′) = ρ(x, y). This implies that, under the conditions
of the proposition, σg = σĝ, ` = `ĝ on that particular (x, ξ). Finally, by the simplicity assumption,
given x, the map y 7→ ξ is a bijection, so those identities hold for all possible (x, ξ′).

Next, we have ρ(x, y) = `(x, π ◦ σ(x, ξ)), where ξ is determined by the equation π ◦ Σ(x, ξ) = y,
i.e, ξ = exp−1

x y. This easily implies (b). �

3. Analysis of the linear Tensor Tomography problem for simple metrics

The purpose of this rather long section is to present the central ideas in [SU4, SU5] on the
analysis of the linear operator I on simple manifolds. Those ideas also work on a class on non-
simple manifolds with integrals over suitable subsets of geodesics, as shown in [SU6]. This is
discussed in sections 4 and 5. We prefer however to emphasize on simple manifolds, and then to
explain briefly how one can extend this approach as in [SU6].

3.1. Main result: generic s-injectivity, and main ideas. The purpose of this section is to
sketch the proof of the following two theorems. We say that a function f defined on M is (real)
analytic, if it extends as a real analytic one in a neighborhood of M , and we write f ∈ A(M).
Similarly we define analytic functions on not necessarily open subsets of M .

Theorem 3.1. Let g be a simple analytic metric in M . Then Ig is s-injective.

We will introduce the norm ‖ · ‖H̃2(Me)
later, see (3.43). Now, we will just mention that Me ⊃M

and that H2 ⊂ H̃2 ⊂ H1. Here and below, Me ⊃M is another simple manifold so that its interior
contains M , see section 3.2.3. Instead of I, we will study the normal operator N = I∗I in Me, where
the adjoint I∗ is defined through a choice of a natural measure on ∂−SM , see (3.11). We give a
formal definition later. Then s-injectivity of I is equivalent to s-injectivity of N : L2(M) → L2(Me),
see Lemma 3.2. One can also replace L2(M) in this statement by C∞(M), see Theorem 3.3.
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Theorem 3.2. There exists k0 such that for each k ≥ k0, the set Gk(M) of simple Ck(M) metrics
in M for which Ig is s-injective is open and dense in the Ck(M) topology. Moreover, for any g ∈ Gk,
(3.1) ‖fsM‖L2(M) ≤ C‖Ngf‖H̃2(Me)

, ∀f ∈ H1(M),

with a constant C > 0 that can be chosen locally uniform in Gk in the Ck(M) topology.

We will sketch the main ideas below.
We will show that N is a ΨDO of order −1 in the interior M int of M . It cannot be elliptic, since

it has an infinite dimensional kernel, but we will show that it is elliptic on solenoidal tensors. This
will allow us to construct a parametrix Q so that QNf recovers fs up to a smooth term in M int.
Since we work in a manifold M with boundary, we will do this in the slightly larger manifold Me,
and an additional step will be needed to reduce this to M .

The parametrix shows that solving Nf = h (that also can be written as Nf s = h) for fs is
reduced to a Fredholm equation (Id + K)fs = Qh. One can also arrange that K is self-adjoint.
Therefore, if I, and therefore N , is s-injective, one gets that Id +K is injective on SL2(M) (this
requires a careful choice of Q so that QN is still injective there). On the other hand, if Id +K is
injective, then it is invertible, and one can get the estimate (3.1).

So this estimate follows from the ellipticity of N on solenoidal tensors, and the assumption that
I is s-injective.

So far g was fixed. Suppose now that Ig0 is s-injective. We want to show that (3.1) can be
perturbed and remains true for g close to g0. There is a lost of one derivative in the norm ‖·‖H̃2(Me)

,

however. We have ‖Nf‖H1(Me) ≤ C‖f‖L2(M) but this does not hold for the H̃2 norm of Nf . So
(3.1) cannot be perturbed directly. On the other hand, the Fredholm equation (Id+K)fs = Qh can,
where Q = Qg, K = Kg (and fs = Sf with S = Sg). If Id +Kg is injective, it is also invertible (on
the space of the solenoidal tensors) by the theory of compact operators, then it remains invertible
under small perturbation of g. It remains to construct Q with more care to make sure that QN
and N have the same kernel (i.e., Q does not increase the kernel). Those arguments will allow us to
prove that the set of simple metrics G for which Ig is s-injective is open. Note that this argument
alone does not show that this set is even non-empty, and the latter is guaranteed by Theorem 3.1.
It was known previously that metric with small enough curvature belong to G, see [Sh1].

To show that G is dense, we will show that all real analytic simple metrics belong to it, i.e.,
Ig is s-injective for any such g. We do that by using analytic microlocal ΨDOs. We show that
N : L2(M) → L2(Me) is such a ΨDO. Elliptic analytic ΨDOs have the nice property to recover the
analytic singularities. Suppose for a moment that f is a function. Then N is elliptic, and Nf = 0
implies that f , extended as 0 outside M , is real analytic. Therefore, f = 0. Well, f is a tensor,
N is elliptic only on solenoidal tensors, and the boundary causes some troubles. A modification of
this argument still works, fortunately.

3.2. Preliminaries.

3.2.1. Covariant derivatives. We start with some preliminaries on tensor analysis. We refer to
[Sh1, Sh2] for a more detailed exposition.

We want to recall first that a tensor field is defined invariantly as a multilinear map and that
the component representation fi1...im changes under a coordinate change according to the law

f ′i1...im = fi1...im
∂xi1

∂x′i1
. . .

∂xim

∂x′im
.

If we think of f as the form fi1...imdx
i1 . . . dxim , then the formula above becomes self-evident. We

will be interested mostly in symmetric tensor fields. Next, the operator∇ of covariant differentiation
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sends m-tensors to (m + 1)-tensors. If f is a function, then (∇f)i = ∂xif locally, i.e., ∇f is just
the usual gradient. For tensor fields of order m ≥ 1, we want ∇ to satisfy the product rule, among
other properties, which leads to the coordinate representation:

(3.2) (∇fi1...im)k =: ∇kfi1...im = ∂xkfi1...im −
m∑
α=1

Γpkiαfi1...iα−1piα+1im .

Here Γkij are the Christofell symbols

Γkij =
1
2
gkp

(
∂gjp
∂xi

+
∂gip
∂xj

− ∂gij
∂xp

)
.

There is a similar formula for ∇kf
j1...jp , and more generally, for ∇kf

j1...jp
i1...im

, see [Sh1]. The most
interesting cases for us are

(3.3) ∇kfij = ∂xkfij − Γpkifpj − Γpkjfip,

and

(3.4) ∇kvi = ∂xkvi − Γpkivp, ∇kw
i = ∂xkwi + Γikpw

p.

Note that the operation of lowering or raising an index commutes with taking a covariant derivative.
Given a vector field X, one denotes by ∇X the covariant derivative along X given in local

coordinates by ∇X = Xi∇i. The geodesic equation then reads

∇γ̇ γ̇ = 0,

i.e., in local coordinates,
γ̈k + Γkij γ̇

iγ̇j = 0.

3.2.2. Proof of (2.7). Using the rules of covariant differentiation, we write
d
dt
〈v(γ(t)), γ̇m−1(t)〉 = 〈∇γ̇v, γ̇

m(t)〉 = 〈dv, γ̇m〉,

where v = v(γ(t)).

3.2.3. Extension of M as a simple manifold. One can check that the simplicity condition is an open
one, i.e., it is preserved under a small C2 perturbation of g. Using this, one can construct another
manifold Me ⊃ M of the same dimension, and extend g there so that (Me, g) is still simple, and
M b Me. The later means that there is an open U ⊂Me so that M ⊂ U ⊂Me.

3.2.4. Semigeodesic (boundary normal) coordinates. Given x ∈ Rn, we write x′ = (x1, . . . , xn−1).
Let x′ = x′(p) be local coordinates on ∂M , and set xn = ρ(p, ∂M). Then x = (x′, xn) are called

semigeodesic, or boundary normal coordinates. In those coordinates, gin = 0, ∀i. This is easy to see
on the boundary xn = 0 because ∂/∂xn is orthogonal to ∂M . For xn > 0 (and xn � 1), it follows
from the Gauss Lemma that ∂/∂xα is orthogonal to ∂/∂xn for α 6= n, and this implies gαn = 0.
This yields Γinn = Γnin = 0, ∀i. Those coordinates cannot be extended to the whole M , of course.
In those coordinates, the lines x′ = const. are geodesics, normal to the surfaces xn = const., and in
particular to ∂M .

Let p0 ∈Me\M . Consider all geodesics issued from p0: γp0,θ(t), where θ ∈ Sp0Me. Then, one can
consider (θ, t) as polar coordinates on Tx0M . One can easily see that θ runs over a closed subset of
a hemisphere on Sp0Me. Therefore, one can choose coordinates near p0 so that θ′ are coordinates on
that subset. Considering (t, θ′) as Cartesian coordinates, see also [SU4, sec. 9], one gets coordinates
(x′, xn) = (θ′, t) near γx0,θ0 so that the latter is given by {(0, . . . , 0, t), 0 ≤ t ≤ l+}. Moreover, those
geodesics (lines in the x coordinates) are orthogonal to the geodesics spheres xn = const. by the
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Gauss lemma. Therefore, gin = δin, and Γinn = Γnin = 0, ∀i, as above. This should not be surprising
— those coordinates are actually boundary normal coordinates as in the paragraph above, normal
to (a part of) the geodesic sphere ρ(p, p0) = ε, 0 < ε� 1; and we parametrize that sphere by θ′.

3.3. The linearization of the Boundary Rigidity problem is the tensor Tomography
problem. The boundary distance function ρg depends on g in a non-linear way. We will show now
that the linearization of the boundary rigidity problem is reduced to the tensor tomography one.

Proposition 3.1. Let (M, g) be simple, and let ‖ĝ− g‖C2 ≤ ε, g = ĝ on ∂M . Then for 0 ≤ ε� 1,
ĝ is still simple, and

(3.5) ρg(x, y)− ρĝ(x, y) =
1
2
(If)(x, exp−1

x y) +Rg,ĝ(f),

where f = ĝ − g, and

(3.6) ‖Rg,ĝ(f)‖L∞(∂M×∂M) ≤ C‖f‖2
C1(M).

The constant C > 0 depends on M and on an a priori bound on ‖g‖C2.

Proof. See also [Sh1, Sh2, DPSU], and [E]. Set gτ = g + τf , τ ∈ [0, 1]. Fix x, y on ∂M . Set also

φ(s, τ) =
∫ 1

0
|γ̇s(t)|gτ dt,

where γs is the geodesic in the metric gs connecting x and y. Here t is not an arc length parameter
but is proportional to it. Note that φ(s, s) = ρgs . Then

dρgs

ds
=
∂φ

∂s
(s, s) +

∂φ

∂τ
(s, s).

Since γs minimizes the length functional related to gs, for τ fixed, (∂φ/∂s)(s, s) = 0, and we get

dρgs

ds
=

1
2

∫ 1

0

fij γ̇
i
sγ̇
j
s

|γ̇s|gs
dt =

1
2
(Igsf)(x, exp−1

x y).

In the last step, we used the fact that the integral in the middle is independent of the parametriza-
tion, so we can pass from t to an arc length parameter. Differentiate again to get

d2ρgs

ds2
=

∫ (
(∇γ′sfij)γ̇

i
sγ̇
j
s + 2fij γ̇is(∇γ′s γ̇

j
s)

)
dt,

where γ′s = dγs/ds, and t now is an arc length parameter. Therefore,∣∣∣∣d2ρgs

ds2

∣∣∣∣ ≤ C‖f‖C1

(
‖γ′s‖C0 + ‖∇γ′s γ̇

j
s‖C0

)
.

Since γs solves the geodesic equation, it follows easily by differentiating w.r.t. a parameter that the
term in the parentheses in the r.h.s. above is bounded by C‖f‖C1 . �

The proof implies that (3.6) can be strengthened a bit to |Rg,ĝ(f)(x, y)| ≤ C|x− y|‖f‖2
C1(M), see

also [E].
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3.4. Decomposition into a solenoidal and a potential part. We will prove Theorem 2.1 here.
In fact, we will do something more — we will construct S,P explicitly. We follow [Sh1, Sh2].

Proof of Theorem 2.1. Assume that Theorem 2.1 is true and such projections exist. Then for any
f , f = fs + dv, with δfs = 0. Take divergence of both sides to get δf = δdv, and v ∈ H1

0 (M), i.e.,
v ∈ H1(M), v = 0 on ∂M . Therefore, v solves

(3.7)

{
δdv = δf in M,

v|∂M = 0.

It is not hard to see that −δd is an elliptic non-negative differential operator of order 2. We can
think of symmetric tensors as vector-valued functions (if m = 2, the dimension is n(n + 1)/2).
Then −δd can be thought of as a matrix-valued differential operator (a system). Note first that
−δd is formally self-adjoint, and clearly non-negative because (−δdv, v) = ‖dv‖2 for any v ∈ H1

0 .
Here (·, ·) is the scalar product in the L2 space of (m− 1)-tensors. One can do the same thing, but
without integrating to get the same for the principal symbols σp(δ), σp(d) w.r.t. the scalar product
as in (2.10) but without the integration. One could actually write down σp(δ), σp(d) explicitly. In
the case m = 2, we get

(3.8)
1
i
(
σp(δ)f

)
i
= ξjfij ,

1
i
(
σp(d)v

)
ij

=
1
2
(
ξjvi + ξivj

)
.

Recall that ξi = gij(x)ξj , so in particular, those symbols depend on x in a “hidden” way. The
ellipticity is then easy to check directly. In fact, we get that −δd is strongly elliptic, i.e., not only
σp(x, ξ) vanishes for ξ = 0 only, but it in fact, is a strictly positive tensor (matrix) for ξ 6= 0. The
Dirichlet boundary conditions for such a strongly elliptic system are automatically coercive [Ta2].
Since the kernel and the cokernel of that system are trivial, we get that there is a unique solution
satisfying the usual Sobolev estimates. We will denote the solution u to the system δdu = f , u = 0
on ∂M by u = (δd)−1

D u. Then (δd)−1
D : H−1 → H1

0 , see [Ta2, p. 307]. Its norm depends continuously
on g ∈ C1, see [SU6, Lemma 1]. Also, (δd)−1

D : Hs → Hs+2∩H1
0 , s = 0, 1, . . . with a norm bounded

by a constant depending on an upper bound of ‖g‖Ck , k = k(m) � 1. So we get from (3.7) that

(3.9) v = (δd)−1
D δf.

This motivates the following definition

(3.10) P = d(δd)−1
D δ, S = Id− P.

It is not hard now to see that those two operators indeed have the properties required.
Notice that the 1-form v so that Pf = dv, v ∈ H1

0 (M), is uniquely determined. �

Remark 1. If f = 0 on ∂M (and if f is smooth enough so that the trace on ∂M makes sense), then
we do not need to have the same for fs! Moreover, even if f = 0 in a neighborhood of ∂M , we still
may not have fs = 0 on ∂M ! The reason is that fs = Sf is obtained by applying the non-local
operator S to f . This innocent fact is responsible for much of the difficulties in the analysis of I
acting on tensors.

3.5. An integral representation of the normal operator N . Since M is diffeomorphic to a
ball, we can think that M = Ω̄, where Ω is a bounded domain on Rn with smooth boundary.
Therefore, we have global coordinates x on M . We can therefore freely use coordinate notation
whenever needed.

On ∂−SM , introduce the measure

(3.11) dµ(x, ω) = |ω · ν(x)|dSx dσx(ω),
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where dSx and dσx(ω) are the surface measures on ∂M and SxM in the metric, respectively. Simi-
larly, dσ is the induced measure on SM . In boundary normal coordinates, dSx = (det g)1/2dx1 . . .dxn−1,
and dσx(ω) = (det g)1/2dσ0(ω), where dσ0(ω) is the measure on Sn−1 induced by the Euclidean
one. Denote by dσ the Liouville measure on SM . In the notation above, it is given by dσ =
dVol(x) dσx(ω) = (det g) dx′ dσ0(ω).

3.5.1. Santaló’s formula. The following result, known as Santaló’s formula, is useful in this analysis.

Lemma 3.1. For every continuous function φ : SM 7→ C, we have∫
SM

φdσ =
∫
∂−SM

∫ `(z,ω)

0
φ
(
γz,ω(t), γ̇z,ω(t)

)
dtdµ(z, ω).

Sketch of the proof. The proof is based on Fubini’s theorem. Note that (z, ω, t), where z ∈ ∂M ,
ω ∈ SzM , t > 0 are coordinates in SM , given by x = γz,ω(t), ξ = γ̇z,ω(t). Passing to those
variables, in the l.h.s. above, we integrate first w.r.t. t, then w.r.t. (z, ω). The Jacobian of that
change is 1 (w.r.t. the measures as in the lemma) because the geodesic flow preserves the Liouville
measure. We refer to [Sh2] for more details. �

Lemma 3.1 easily implies that the map I : L2(M) → L2(∂−SM, dµ) is bounded, and therefore
the normal operator N := I∗I is a well defined bounded operator in L2(M).

3.5.2. An expression for I∗. Let ψ(x, ξ) ∈ C(∂−SM), and assume for simplicity that m = 2. Then

(If, ψ) =
∫
∂−SM

ψ̄(x, ξ)
∫ `(x,ξ)

0
fij(γx,ξ(t))γ̇ix,ξ(t)γ̇

j
x,ξ(t))γ̇

i
x,ξ(t) dtdµ(x, ξ).

By Lemma 3.1, we get

(If, ψ) =
∫
SM

fij(x)ξiξjψ̄](x, ξ) dσ(x, ξ),

where ψ](x, ξ) is defined as the function that is constant along the orbits of the geodesic flow and
that equals ψ(x, ξ) on ∂−SM . Then

(If, ψ) =
∫
M
fij(x)

∫
SxM

ξiξjψ̄](x, ξ) dσx(ξ) dVol(x).

Therefore,

(3.12) I∗ψ =
∫
SxM

ξiξjψ](x, ξ) dσx(ξ).

3.5.3. Two integral representations for N . Using (3.12), we arrive at the following.

Proposition 3.2.

(3.13) (Nf)i
′j′(x) =

∫
SxM

ωi
′
ωj

′
∫
fij(γx,ω(t))γ̇ix,ω(t)γ̇jx,ω(t) dtdσx(ω).

To simplify the notation, we assume that f is extended as zero outside M , and we integrate for
all t. The generalization of the proposition for tensors of any order m is obvious.

Let us define N on L2(Me) again by Ñ = I∗I. A priori, this definition gives us a different
operator, even if restricted to tensors supported in M . The reason is that the adjoint is in a
different space. On the other hand, (3.13) shows that for such f , Ñf |M = Nf . Those remarks
justify the notation N both for Ñ and N ; we just think of N as the operator given by (3.13). Note
that the Liouville theorem is the one responsible for this nice symmetry.
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Lemma 3.2. The following statements are equivalent:
(a) I is s-injective on L2(M);
(b) N : L2(M) → L2(M) is s-injective;
(c) N : L2(M) → L2(Me) is s-injective;

Proof. Let I be s-injective, and assume that Nf = 0 in M for some f ∈ L2(M). Then

0 = (Nf, f)L2(M) =
∑

‖If‖2
L2(∂−SM,dµ) =⇒ fs = 0.

This proves the implication (a) ⇒ (b). Next, (b) ⇒ (c) is immediate. Assume (c) and let f ∈ L2(M)
be such that If = 0. Then Nf = 0 in Me by Proposition 3.2, therefore fs = 0. Therefore,
(c) ⇒ (a). �

Remark 2. It follows from the proof above that if f is supported in M , then the equality Nf = 0 in
M implies that If = 0 (on ∂−SM), therefore Nf = 0 in Me. This is not so clear from the integral
representation below.

Split the integration in (3.13) w.r.t. t into two parts: for t ≥ 0, and for t ≤ 0. In the second
integral, use the time-reversibility of the geodesic flow, i.e., the property γx,ξ(t) = γx,−ξ(−t). Then
we can write

(Nf)i
′j′(x) = 2

∫
SxM

ωi
′
ωj

′
∫ ∞

0
fij(γx,ω(t))γ̇ix,ω(t)γ̇jx,ω(t) dtdσx(ω).

Perform the change of variables ξ = tω first, and then y = expx(ξ). The Jacobian of the first change
is t−n+1 = |ξ|−n+1. Note that here |ξ| is considered in the metric, as always. Then |ξ| = ρ(x, y).
Moreover, ω = ξ/|ξ| = −gradxρ(x, y), and ξ = −1

2gradxρ2(x, y). Therefore the Jacobian of the
second change is |det(dξ/dy)| = 1

2 |det(∂2ρ2/∂x∂y)|/det g(x) (the term det g(x) comes from the
definition of grad). Since dσx = (det g(x)1/2)dσ0, we see that the measure after the change of
variables is transformed into |det(∂2(ρ2/2)/∂x∂y)|dy. Actually, by (3.29), that determinant is
negative on the diagonal, and since it never vanishes, it is always negative; so the absolute value
can be replaced by a negative sign. We therefore obtained the following.

Proposition 3.3.

(3.14) (Nf)kl(x) =
2√

det g(x)

∫
f ij(y)

ρ(x, y)n−1

∂ρ

∂yi
∂ρ

∂yj
∂ρ

∂xk
∂ρ

∂xl

∣∣∣det
∂2(ρ2/2)
∂x∂y

∣∣∣ dy, x ∈Me.

Let us recall that we always assume that g is extended as a simple metric in Me. Also, we always
extend functions or tensors defined in Ω, or similar domains, as 0 outside the domain.

3.6. The Euclidean case. In this section we explicitly compute the normal operator in the Eu-
clidean case. Moreover, we show that then I is s-injective. We are going to prove much more
general theorems below. The Euclidean case however, gives a deeper insight that one may think.
We will show later that N is a ΨDO for any simple metric. It turns out, that the principal symbol
of N in the general case is the same as in the Euclidean case, with a proper invariant interpretation
of the formula! Moreover, the general procedure we are going to follow next for generic g is inspired
by the Euclidean case. In this section, we use the notation Ω for the interior of M . Recall that
Ω ⊂ Rn. We always extend functions or tensors fields supported in Ω as 0 outside Ω.
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3.6.1. The classical X-ray transform. Let us start with the classical X-ray transform of functions

Xf(z, ω) =
∫
f(z + tω) dt, z ∈ Rn, ω ∈ Sn−1.

Note that this is a partial case of I. If we parametrize Xf in the way we did before, we get

Nf(x) = X∗Xf(x) = 2
∫

f(y)
|x− y|n−1

dy.

We now consider this in the whole Rn but applied to functions supported in Ω (or more generally,
decaying fast enough). It is easy to see that

N = cnF−1|ξ|−1F ,

with some cn > 0, where F stands for the Fourier transform. In other words, N = cn|D|−1. The
injectivity of N on C0(Rn) is now immediate, and in fact, f = c−1

n |D|Nf .

3.6.2. Back to tensors, the Euclidean case. We now turn our attention to I acting on symmetric 2-
tensors. Instead of studying g = e, we will consider the equivalent case of a constant metric. Several
of the calculations below can be found in [Sh1] for g = e = {δij} and can be easily generalized to
constant g by transforming g into e, for example by the symplectic transform y = g1/2x, η = g−1/2ξ,
then ds2 =

∑
(dyi)2.

Let g be a constant coefficients metric. We will work in Rn first, assuming that f is compactly
supported. Then we parameterize the geodesics (lines) by the direction ω and by the point z on
the hyperplane ziωi = 0 where the line crosses that hyperplane. Then

Igf(z, ω) =
∫
fij(z + tω)ωiωj dt.

Any f ∈ L2(Rn) can then be orthogonally decomposed uniquely into a solenoidal and potential
part (different from the decomposition above!)

f = fsRn + dvRn in Rn,

such that δfsRn = 0 in Rn and fsRn , dvRn are in L2(Rn). Similarly to (3.10), we have

(3.15) vRn = (δd)−1 δf, f sRn = f − d (δd)−1 δf,

with δd acting in the whole Rn, and the notation vRn indicates that v is defined in the whole Rn

and does not necessarily satisfy boundary conditions if f is supported in Ω̄. The inverse (δd)−1 is
defined through the Fourier transform. Actually, the latter provides a more detailed form of this
decomposition. We have

(3.16) (f̂sRn)kl = λijkl(ξ)f̂ij(ξ),

where

(3.17) λijkl(ξ) =
(
δik −

ξkξ
i

|ξ|2

) (
δjl −

ξlξ
j

|ξ|2

)
.

It is important to note that in general, fsRn and dvRn are not compactly supported even if f is. It
follows from Proposition 3.3, that for f ∈ C0,

(3.18) (Nef)kl(x) = 2fij ∗
xixjxkxl

|x|n+3

√
det g.
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Taking into account that F|x|α = (cn/2)(det g)−1/2|ξ|−α−n with cn as below, and Fourier trans-
forming the latter, we get

(3.19) F(Nef)kl(ξ) = cnf̂ij(ξ)
∂4

∂ξi∂ξj∂ξk∂ξl
|ξ|3, cn =

π(n+1)/2

3Γ(n/2 + 3/2)
,

and

(3.20) ∂4|ξ|3/∂ξi∂ξj∂ξk∂ξl = 3|ξ|−1σ(εijεkl), εij(ξ) = δij − ξiξj/|ξ|2.

Here σ(εijεkl) is the symmetrization of εijεkl, i.e., the mean of all similar products with all possible
permutation of i, j, k, l, see [Sh1]. It is easy to see that δNef = 0 and that fsRn can be recovered
from Nef by the formula

(3.21) [f̂sRn ]ij =
(
δklij − λklij

)
f̂kl = aijklF(Nef)kl = aklijF(Nef)kl,

where aijkl(ξ) is a rational function, homogeneous of order 1 singular only at ξ = 0 with explicit
form

(3.22) aijkl = |ξ|
(
c1δikδjl + c2(δij − |ξ|−2ξiξj)δkl

)
.

The coefficients c1 and c2 depend on n only [Sh1]. So we get that given Nef , one can recover fsRn

by

(3.23) fsRn = ANef,

where A = A(D) has the symbol in (3.22). In particular, Ief = 0 =⇒ fsRn = 0 =⇒ f = dsvRn . We
are halfway towards proving the following.

Proposition 3.4. Let Ω ⊂ Rn be convex, and let g be a constant metric, and let (Ω, g) be simple.
Then I is s-injective.

Proof. We claim that if If = 0 and supp f ⊂ Ω̄, then supp vRn ⊂ Ω̄. Indeed, we already showed
that f = dvRn . Next, since v can be obtained from f by applying a ΨDO of order −1 with
homogeneous constant (w.r.t. x) symbol, see (3.15), we easily get that |v| = O(|x|−1), as |x| → ∞.
Now, dvRn = 0 outside Ω. By (2.7), we get

(3.24) vRn(x) · ξ = vRn(x+ sξ) · ξ, ∀(x, ξ) ∈ ∂+SΩ, s > 0.

Take the limit s→∞ to conclude that vRn(x) · ξ = 0. Varying ξ, we get vRn = 0 on ∂Ω. This also
holds if we extend ∂Ω, then we get that supp v ⊂ Ω̄. So we get that vRn , restricted to Ω, coincides
with v in the decomposition f = fs + dv! Moreover, that restriction commutes with taking the
symmetric differential d because v = 0 on ∂Ω. So we get f = dv, i.e., f is potential field.

We want to emphasize that in general, given f and v, vRn related to f , we have vRn 6= v in Ω,
and in particular, vRn 6= 0 on ∂Ω. We got an equality only under the assumption If = 0! �

Remark. It is worth mentioning, that if our goal is not a proof of s-injectivity of Ie but a recovery
of fs from Nef , then we can proceed as above. Namely, since fsRn = f − dvRn in Ω, d commutes
with the extension as zero, and f = 0 outside Ω, similarly to (3.24), we can write

(3.25) vRn(x) · ξ − vRn(x+ sξ) · ξ =
∫ s

0
(ANef)(x+ tv) dt, ∀(x, ξ) ∈ ∂+SΩ, s > 0.

Take the limit s→∞, to get

(3.26) vRn(x) · ξ =
∫ ∞

0
(ANef)(x+ tv) dt, ∀(x, ξ) ∈ ∂+SΩ, s > 0.
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Choose n − 1 linearly independent ξ’s above, and we have recovered h := vRn(x)|∂Ω in terms of
Nef . Now, let w be the solution w of the BVP

(3.27) δdw = 0 in Ω, wRn |∂Ω = h,

Then in Ω,

(3.28) fs = fsRn + dw = ANef + dw,

and w is expressible in terms of Nef .

We would like to explicitly emphasize again that the decomposition of f in the whole Rn (in case
g = const.) described in this section is different than the one in Ω described in section 3.4. Even
if g = e, formulas (3.9) and (3.15) differ by the fact that the latter involves the resolvent (δd)−1

in the whole space while (3.9) involves the solution of a boundary value problem δdv = δf in Ω,
v = 0 on ∂Ω.

Explicit expressions of this kind for tensors of any order m can be found in [Sh1]. For our
purposes however, it is important to know that N is a ΨDO elliptic on solenoidal tensors, and this
can be done with a different representation of the principal symbol of N (different than (3.19)) that
generalizes easily for any m, see (3.36).

3.7. N is a pseudodifferential operator. We show next that N is a ΨDO in the interior of Me.
Next proposition says that N is elliptic on solenoidal tensors in Me. We want to warn the reader
about hidden reefs here. Solenoidal tensors in M satisfy δf = 0 in M . The extension of f as zero
to Me, that we still denote by f , may not be solenoidal in Me! Indeed, if f does not vanish on ∂M ,
then δf may produce non-zero delta type of terms and will then fail to be zero. For this reason,
given f ∈ L2(M), fsM (extended as zero) and fsMe

are different in general. This is the reason we
study N in Me first.

Proposition 3.5. N is a classical ΨDO of order −1 in M int
e . The principal symbol σp(N) vanishes

on tensors of the kind fij = (ξivj + ξjvi)/2 and is non-negative on tensors satisfying ξifij = 0.

Proof. To express N as a pseudo-differential operator, we proceed as in [SU4, SU5], with a starting
point (3.14). It is easy to see that for x close to y we have

ρ2(x, y) = G
(1)
ij (x, y)(x− y)i(x− y)j ,

∂ρ2(x, y)
∂xj

= 2G(2)
ij (x, y)(x− y)i,

∂2ρ2(x, y)
∂xj∂yj

= −2G(3)
ij (x, y),

(3.29)

where G(1)
ij , G(2)

ij G
(3)
ij are smooth and on the diagonal and

G
(1)
ij (x, x) = G

(2)
ij (x, x) = G

(3)
ij (x, x) = gij(x).

Then N is a formal pseudo-differential operator with amplitude

Mijkl(x, y, ξ) = 2
∫
e−iξ·z

(
G(1)z · z

)−n+1
2

−2

×
[
G(2)z

]
i

[
G(2)z

]
j

[
G̃(2)z

]
k

[
G̃(2)z

]
l

detG(3)

√
det g

dz,
(3.30)
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where G̃(2)
ij (x, y) = G

(2)
ij (y, x). Note that Mijkl is the Fourier transform of a positively homogeneous

distribution in the z variable, of order n − 1. Therefore, Mijkl itself is positively homogeneous of
order −1 in ξ. Write

(3.31) M(x, y, ξ) = 2
∫
e−iξ·z|z|−n+1m(x, y, θ) dz, θ = z/|z|,

where, contrary to our convention, | · | stands for the Euclidean norm, and

mijkl(x, y, θ) =2
(
G(1)θ · θ

)−n+1
2

−2

×
[
G(2)θ

]
i

[
G(2)θ

]
j

[
G̃(2)θ

]
k

[
G̃(2)θ

]
l

detG(3)√
det g(x)

,

(3.32)

and pass to polar coordinates z = rθ. Since m is an even function of θ, smooth w.r.t. all variables,
we get (see also [H, Theorem 7.1.24])

(3.33) M(x, y, ξ) = 2π
∫
|θ|=1

m(x, y, θ)δ(θ · ξ) dθ.

Again, |θ| is the Euclidean norm of θ. Now it is easy to see that M is an amplitude of order −1.
Indeed, it is positively homogeneous of order −1 in ξ, and this makes it a classical amplitude.

To obtain the principal symbol, we set x = y above to get

(3.34) σp(N)(x, ξ) = M(x, x, ξ) = 2π
∫
|θ|=1

m(x, x, θ)δ(θ · ξ) dθ,

where

(3.35) mijkl(x, x, θ) = 2
√

det g(x)
(
gij(x)θiθj

)−n+1
2

−2
θiθjθkθl,

One can show that (3.34), (3.35) can be written in a more elegant way as

(3.36) σp(N)ijkl(x, ξ) = 2π
∫
SxMe

ωiωjωkωlδ(ξ · ω) dσx(ω),

where ξ · ω = ξiω
i. Compare this with (3.19).

To prove ellipticity of M(x, ξ) on solenoidal tensors at (x0, ξ
0), notice that for any symmetric

real fij , we have

(3.37) mijkl(x0, x0, θ)fijfkl = 2
√

det g(x0)
(
gij(x0)θiθj

)−n+1
2

−2(
fijθ

iθj
)2 ≥ 0.

This and (3.34) imply that M ijkl(x0, x0, ξ
0)fijfkl = 0 yields fijθiθj = 0 for θ perpendicular to ξ0,

and close enough to θ0. If in addition (ξ0)jfij = 0, then this implies fijθiθj = 0 for θ ∈ neigh(θ0),
and that easily implies that it vanishes for all θ. Since f is symmetric, this means that f = 0.

The last statement of the lemma follows directly from (3.34), (3.35), (3.37).
Finally, we note that (3.35), (3.37) and the proof above generalizes easily for tensors of any

order. �

3.8. Construction of a parametrix for N . Since N is not elliptic, we cannot construct a
parametrix in the classical sense. What we can do however is to construct a parametrix Q, so
that QN = S +K, where K is smoothing, and S is the solenoidal projection. In the interior of M ,
this can be done as follows. Consider W := N + |D|−1P, where |D|−1 is any properly supported
parametrix of (−∆g)1/2. Then that operator is elliptic of order −1, and has a parametrix L of order
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1 so that LW = Id+K, K smoothing. Now, apply S to the left and right to get that PN = S+K1,
where P = SLS and K1 is smoothing. Note that S is a ΨDO inside M but not near the boundary.

There is an essential problem with that construction. It holds for tensors supported in any
compact inside M int but not for general tensors. This is related to the following: when applied to
such tensors, our operators are not ΨDOs near ∂M anymore (unless we want to use a specialized
calculus), but the corresponding terms, for example Sf , are smooth near ∂M , up tp ∂M , by
standard elliptic regularity for boundary value problems.

We will push ∂M a bit, in other words, we will work in Me. Then we work with tensors f in M ,
extended as zero outside M . It seems that this resolves our problems, but not quite. For any such
f , we have

(3.38) PNf = fsMe
+K1f.

However, fsMe
there is the solenoidal projection of f (extended as zero to Me \M) related to Me,

which explains the notation), not the one we want! This is similar to the need to work with two
solenoidal projections of f in the Euclidean case:fs in Ω and fsRn in Rn, see section 3.6.2. Let us
denote the usual solenoidal projection fs by fsM .

So, we have recovered fsMe
from Nf , up to a smoothing term but it remains to recover fsM , given

fsMe
.

Let us compare fsM and fsMe
for f ∈ L2(M). We have fsM = f − dvM , where vM = (δd)−1

D δf ,
similarly for fsMe

. Thus fsM = fsMe
+ dw in M , where the vector field w = vMe − vM ∈ H1(M)

solves

(3.39) δdw = 0 in M , w|∂M = vMe .

We need to express vMe |∂M in terms of Nf . This can be done as follows. Our inspiration comes
from the Euclidean case, see the proof of Proposition 3.4 and the remark after it. By (3.38), and
the fact that f = 0 outside M , one has

(3.40) −dvMe = P1Nf −K2f in Me \M.

For (x, ξ) in a one-sided neighborhood of (x0, ν(x0)) ∈ Γ+ in T (Me \M), where ν(x0) is the outer
unit normal to ∂M , integrate the above along γx,ξ until this geodesic hits ∂M1, where vMe = 0;
denote the corresponding time by τ(x, ξ). We therefore get

(3.41) [vMe(x)]i ξ
i =

∫ τ(x,ξ)

0
[P1Nf −K2f ]ij(γx,ξ(t))γ̇ix,ξ(t)γ̇

j
x,ξ(t) dt.

Compare this with (3.25), (3.26). Note that in the Euclidean case, K2 = 0 because the parametrix
is an exact inverse (but in the whole Rn).

Clearly, for any fixed x, a set of n linearly independent ξ’s in any neighborhood of ν(x0) is
enough to determine vMe(x). This is done by solving a linear n × n system. We choose this set
independent of x in a neighborhood of each x0 ∈ ∂M , then by compactness argument we choose
a finite covering and finite number of such sets. This allows us to construct an operator P2, such
that

(3.42) vMe |∂M = P2(P1N −K2)f.

To understand the mapping properties of P2, consider first the case m = 1, i.e., f is an 1-form, and
then v is just a function. Then P2 is just antidifferentiation with zero initial conditions on ∂M1.
Let h be the r.h.s. of (3.40). Then one can express v through h as in (3.41), and this and (3.40)
allows us easily to conclude that P2 : L2(Me \M) → H1(Me \M). Therefore, P2P1N : L2 → H1
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(remember, P1N is of order 0). Then we can take the trace on ∂M to get that vMe ∈ H1/2(∂M),
and this is exactly what we need below.

Let us go back to the case m = 2. If we try to do the same, there we face an essential difficulty:
the symmetric differential d mapping 1-tensors into 2-tensors is elliptic, indeed, but dv (the usual
differential of v) can be expressed through dv (the symmetric one) by a non-local operator, and we
only have (3.40) on the exterior side of M . This does not allow us to use the arguments above to
establish the same mapping properties of P2. Instead, we do the following.

Let us denote again the r.h.s. of (3.40) by h ∈ L2. Then express the r.h.s. of (3.41) as P̃2h. To
estimate ‖P2h‖H1 inM int

e \M , differentiate P̃2h. If we differentiate in the direction of ξ, this kills the
integral and the result is in L2. If we differentiate in any other direction, then the smoothing effect
of the integral does not help and we need to differentiate h that is only in L2. Let us assume now
that actually, h ∈ H1(M). Then everything will be OK, but this would require that f , extended
as zero is in H1. In other words, f needs to be in H1(M), and in addition, we need to know that
f = 0 on ∂M . This is a requirement that we do not want to impose because we really want to work
eventually with fs instead of f and there are no reasonable assumptions on f that would guarantee
that fs = 0 on ∂M .

By inspecting our argument carefully, we see that the derivative in any direction can be whiten as
a tangential derivative plus a derivative in the direction of ξ. The latter one just kills the integral,
as above. So we only need to worry about tangential derivatives. If x is not on ∂M , we work in local
coordinates x = (x′, xn), and “tangential” means tangent to xn = const, i.e., ∂x′ . Any f ∈ H1(M),
extended as zero outside M has such derivatives (in L2). Moreover, if we apply any zero order
ΨDO A to f , then the same applies to Af , because A and ∂x′ commute up to an operator of order
−1. Therefore, tangential derivatives of h exist.

Those arguments motivate the need to introduce the Hilbert space H̃2(Me) below. Let x =
(x′, xn) be local coordinates in a neighborhood U of a point on ∂M such that xn = 0 defines ∂M .
Then we set

‖f‖2
H̃1(U)

=
∫
U

( n−1∑
j=1

|∂xjf |2 + |xn∂xnf |2 + |f |2
)

dx.

This can be extended to a small enough neighborhood V of ∂M contained in Me. Then we set

(3.43) ‖f‖H̃2(Me)
=

n∑
j=1

‖∂xjf‖H̃1(V ) + ‖f‖H̃1(Me)
.

This norm defines a Hilbert space and H2(Me) ⊂ H̃2(Me) ⊂ H1(Me). We also define the H̃2(Me)
space of symmetric 2-tensors and 1-forms. Note that it is “almost” H2 but near ∂M , we take only
tangential derivatives of ∇f to define the second order terms in the norm.

The space H̃2(Me) has the property that for each f ∈ H1(M) (extended as zero outside M), we
have Nf ∈ H̃2(Me). This is not true if we replace H̃2(Me) by H2(Me).

We can return now to our parametrix construction. The arguments above show that

‖P2P1h‖H1/2(∂M) ≤ C‖h‖H̃2(Me)
, ∀h ∈ H̃2(Me),

and one can see that P2K2 depends continuously on g ∈ Ck, k � 1.
Let R : Ht− 1

2 (∂M) → Ht(M), be the solution operator u = Rh of the boundary value problem

(3.44) δdu = 0 in M , u|∂M = h.
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Then R depends continuously on g ∈ C2, see [SU5]. Then (3.39) and (3.42) show that w|M =
RP2(P1N −K2)f . Therefore,

fsM = fsMe
+ dw = (P1N −K2)f + dRP2(P1N −K2)f

= (Id + dRP2)P1Nf +Kf,

where K is smoothing. Apply SM to the identity above and set Q = SM (Id + dRP2)P1 = (SM +
dRP2)P1. This completes the sketch of the proof of the following.

Proposition 3.6. Let g ∈ Ck(M) be simple. Then for any t = 1, 2, . . . , there exists k > 0 and a
bounded linear operator

(3.45) Q : H̃2(Me) −→ SL2(M),

such that

(3.46) QNf = fsM +Kf, ∀f ∈ H1(M),

where K : H1(M) → SH1+t(M) extends to K : L2(M) → SHt(M). If t = ∞, then k = ∞.
Moreover, Q can be constructed so that K depends continuously on g in a small neighborhood of a
fixed g0 ∈ Ck(M).

This proposition shows, that If , and therefore Nf , determine the singularities of fs uniquely.
In other words, we can recover fs up to a term that is as smooth as we want. Moreover, it allows
us to prove the first important result: finiteness and smoothness of Ker I. This follows immediately
from the fact that if If = 0, then fs solves the Fredholm equation (Id +K)f = 0.

Theorem 3.3. Assume that g is simple metric in M and extend g as a simple metric in Me.
(a) The following estimate holds for each symmetric 2-tensor f in H1(M):

‖fsM‖L2(M) ≤ C‖Ngf‖H̃2(Me)
+ Cs‖f‖H−s(Me), ∀s > 0.

(b) Ker Ig ∩ SL2(M) is finite dimensional and included in C∞(M).
(c) Assume that Ig is s-injective in M , i.e., that Ker Ig∩SL2(M) = {0}. Then for any symmetric

2-tensor f in H1(M) we have

(3.47) ‖fs‖L2(M) ≤ C‖Ngf‖H̃2(Me)
.

Part (b) follows from (a) [Ta1, Proposition V.3.1], and also can be deduced from the following
argument: if K is compact and Id +K is injective, then it is invertible.

Remark 3. If g ∈ Ck(M), then C∞(M) in (b) should be replaced by C l(M) with l = l(k) →∞, as
k →∞, by the arguments in section 3.9 below.

3.9. Openness of the set of s-injective simple metrics. Proof of the a priori linear
estimate. We will now use the results of the previous section to show that the set of metrics with
s-injective ray transform Ig is open in Ck(M) for k � 1, and moreover, we have (3.1). In other
words, we will prove Theorem 3.2 without the statement that Gk(M) is dense. As explained in the
beginning of this long section, we start with the observation that K in (3.46) is a compact operator
in SgL2(M). Therefore, if Id + Kg is injective for some g = g0, then it is invertible, and remains
so for g close to g. The later has to be understood in a topology that makes the maps g 7→ Kg,
Sg continuous. There is a small inconvenience here that the space SgL2(M) depends on g as well
but this can be fixed by adding Pg to Id +Kg. We claim that the Ck(M) with k � 1 is one such
topology. This can be justified as follows. Instead of working with ΨDOs with C∞ symbols, we
work with Ck symbols. ΨDOs of non-positive order are still bounded in any bounded domain, if
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the symbol is in C2n+1, see [H, Theorem 18.1.11’] and [SU1]. In all basic operations with ΨDOs
like composition, constructing a parametrix, etc., we work with finite symbol expansions, instead
of infinite ones. Then the parametrix will invert the elliptic operator modulo an operator with a
kernel that is C l only, where l = l(k) →∞, as k →∞.

To make the argument above work, we have to resolve one more problem. Namely, we have to
make sure that in (3.46), if Ng0 is s-injective, then so is Qg0Ng0 . Notice that any perturbation of
Q by a finite rank operator Q0 will contribute a finite rank term to Kg0 , so Kg0 will stay compact.
So, if Id + Kg0 is not s-injective but Ng0 is, then Ker(Id + Kg0) is finite. Then we construct Q0

so that (Qg0 + Q0)Ng0 has a trivial kernel. Roughly speaking, Q0 maps Ng0 Ker(Id + Kg0) into
Ker(Id +Kg0). We refer to [SU5, section 5] for more details.

3.10. S-injectivity for analytic metrics. We will sketch the proof of Theorem 3.1 here. Let g
be real analytic in M . We can assume that ∂M is analytic, and that g ∈ A(Me).

We will show first that then N is an analytic ΨDO in M int. Our reference for analytic ΨDOs is
[Tre]. Roughly speaking, those are ΨDOs with amplitudes a(x, y, ξ), (x, y, ξ) ∈ X×X×Rn analytic
in all variables and satisfying the usual symbol estimates (actually, only the one about the zero
order derivatives is enough) in a complex neighborhood of X ×X ×Rn. The negligible operators
then are the ones that are analytic-regularizing, i.e., they send any distribution of compact support
into a real analytic function. One can change the amplitude and therefore, destroy the analyticity
in any compact in the ξ variable, and this will result in an analytically regularizing error. Next,
one can ask that only (x, y) stay complex but ξ is real. Then the symbol estimates look like this:∣∣Dα

ξ a(x, y, ξ)
∣∣ ≤ C |α|+1α!|ξ|m−|α|, |ξ| ≥ R0 sup(|α|, 1).

Then the (x, y)-derivatives can be estimated by the Cauchy integral formula. Such an amplitude
is called in [Tre] a pseudoanalytic amplitude, see [Tre, Definition V.2.1]. The corresponding ΨDO
is called an analytic ΨDO.

An elliptic analytic ΨDO has the useful property that it has a parametrix that is a left inverse up
to an analytic-regularizing operator. Now, suppose that N : L2(M) → L2(Me) acts on functions,
and we have already proved that N is an order −1 elliptic ΨDO. Then there is a parametrix Q
so that QN = Id + K when acting of functions of compact support in Me, and K is analytic-
regularizing in M int. If Nf = 0, then f = −Kf , where, as always, we extend f as zero outside M .
Therefore, f is real analytic in M int \M , and vanishes in M int \M . Therefore, f = 0. So, N has
a trivial kernel.

In case of tensors, N is an analytic ΨDO in M int as follows from the representation (3.33), (3.32)
of its amplitude. We have to choose the coordinates in (3.29) carefully however to make sure that
(3.29) hold globally in M (other arguments can be applied here as well, see [SU5]). We work in a
neighborhood of a fixed x0, and then we choose x to be normal coordinates centered at x0. Note
that M in (3.33) has a singularity of the type |ξ|−1 at ξ = 0 but it can be easily resolved.

Proposition 3.7. Let g ∈ A(Me) and assume that If = 0 with some f ∈ L2(M). Then fsMe
∈

A(Me)

Proof. Let us first work in M instead of working in Me in order to see why Me is needed. Let
If = 0. Replace f by fs, then we still have Ifs = 0. We have δfs = 0 in M . Since N is elliptic
on solenoidal tensors, the pair (|D|N, δ) is an elliptic analytic ΨDO inside M so we get that fs is
analytic inside M . That does not tell us however what happens near ∂M , i.e., we do not know
from those arguments that fs extends as a real analytic tensor up to ∂M . The later means that
fs extends analytically to some neighborhood of ∂M .
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We apply the same arguments to the extension of f to Me as zero, in Me. Then we get that
its solenoidal projection, that we denote by fsMe

is analytic inside Me but perhaps not up to ∂Me.
We can always assume that the latter is analytic. Then fsMe

= f − dvMe , and in Me \M , we have
fsMe

= −dvMe . On the other hand, vMe satisfies

δdvMe = 0 in Me \M, v|∂Me = 0.

Any solution to this equation is analytic up to the boundary ∂Me [MN]. So we get the same for
fsMe

. �

Remark 4. We can quickly conclude that fs ∈ A(M) as well, as in (3.39)–(3.42). This is not needed
however because now we can simply replace M by Me. Eventually, we will show that fs = 0, and
fsMe

= 0.

The next lemma is a boundary recovery result. We expect that If = 0 implies f = dv with some
v ∈ H1

0 (M). We still cannot prove that for all simple metrics but the lemma below says that we
can show that this is true at ∂M of infinite order.

Lemma 3.3. Let g ∈ Ck(M) be a simple metric. Then if If = 0 with f ∈ L2(M), then there exists
a vector field v ∈ C l(M), with v|∂M = 0 and l = l(k) → ∞, as k → ∞, such that for h := f − dv
we have

(3.48) ∂αh|∂M = 0, |α| ≤ l,

and in boundary normal coordinates near any point on ∂M we have

(3.49) hni = 0, ∀i.

Proof. Without loss of generality, we may assume that ∂Me is at distance ε > 0 with ε > 0 small
enough, i.e., ∂Me = {x ∈Me \M, ρ(x,M) = ε}. By Theorem 3.3, applied to Me,

(3.50) fsMe
∈ C l(Me),

where l� 1, if k � 1.
Let x = (x′, xn) be boundary normal coordinates in a neighborhood of some boundary point.

We recall how to construct v defined in M so that (3.49) holds, see [SU3] for a similar argument
for the non-linear boundary rigidity problem, and [E, Sh3, SU4, SU5] for the present one. The
condition (f − dv)in = 0 is equivalent to

(3.51) ∇nvi +∇ivn = 2fin, v|xn=0 = 0, i = 1, . . . , n.

Recall that ∇ivj = ∂ivj−Γkijvk, and that in those coordinates, Γknn = Γnkn = 0. If i = n, then (3.51)
reduces to ∇nvn = ∂nvn = fnn, vn = 0 for xn = 0; we solve this by integration over 0 ≤ xn ≤ ε� 1;
this gives us vn. Next, we solve the remaining linear system of n− 1 equations for i = 1, . . . , n− 1
that is of the form ∇nvi = 2fin −∇ivn, or, equivalently,

(3.52) ∂nvi − 2Γαnivα = 2fin − ∂ivn, vi|xn=0 = 0, i = 1, . . . , n− 1,

(here α = 1, . . . , n − 1). Clearly, if g and f are smooth enough near ∂M , then so is v. If we set
f = fs above (they both belong to Ker I), then by (a) we get the statement about the smoothness
of v. Since the condition (3.49) has an invariant meaning, this in fact defines a construction in
some one-sided neighborhood of ∂M in M . One can cut v outside that neighborhood in a smooth
way to define v globally in M . We also note that this can be done for tensors of any order m, see
[Sh3], then we have to solve consecutively m ODEs.

Let h = f − dv, where v is as above. Then h satisfies (3.49), and let

(3.53) hsMe
= h− dwMe



24 P. STEFANOV

be the solenoidal projection of h in Me. Recall that h, according to our convention, is extended
as zero in Me \M that in principle, could create jumps across ∂M . Clearly, hsMe

= fsMe
because

f − h = dv in M with v as in the previous paragraph, and this is also true in Me with h, f and
v extended as zero (and then v = 0 on ∂Me). In (3.53), the l.h.s. is smooth in Me by (3.50), and
h satisfies (3.49) even outside M , where it is zero. Then one can get wMe by solving (3.51) with
M replaced by Me, and f there replaced by hsMe

∈ C l(Me). Therefore, one gets that wMe , and
therefore h, is smooth enough across ∂M , if g ∈ Ck, k � 1, which proves (3.48).

One can give the following alternative proof of (3.48). One can easily check that N , restricted
to tensors satisfying (3.49), is elliptic for ξn 6= 0. Since Nh = 0 near M , with h extended as 0
outside M , as above, we get that this extension cannot have conormal singularities across ∂M .
This implies (3.48), at least when g ∈ C∞. The case of g of finite smoothness can be treated by
using parametrices of finite order in the conormal singularities calculus. �

Proof of Theorem 3.1. To simplify the notation, we will replace M by Me. If we show that fsMe
= 0,

we are done, because then we would get f = dv with some v vanishing on ∂Me, and f = 0 in Me\M .
This easily implies that v = 0 in Me \M , see (3.40), (3.41).

So, denote Me by M . By Lemma 3.3 applied to fs, there exists a smooth v0 vanishing on ∂M , so
that fs− dv0 has zero jet on ∂M . The proof of the lemma also implies that v0 is real analytic near
∂M . On the other hand, fs is analytic by Proposition 3.7. Therefore, fs = dv0 in a neighborhood
of ∂M .

We need to show now that v0 has an analytic extension everywhere in M . Consider

u±(x, ξ) =
∫ τ±(x,ξ)

0
fsij(γx,ξ(t))γ̇x,ξ(t)

iγ̇jx,ξ(t) dt,

where τ±(x, ξ) is the time needed to reach ∂M from (x,±ξ). We have

(3.54) u− + u+ = 0

because If = 0. Next, u± is real analytic inside SM . For x close to ∂M , and ξ close to normal
direction to the boundary (in other words, if ∂M = {xn = 0} locally, we want 0 < xn � 1,
|ξ′| � 1), we have u±(x, ξ) = (v0(x))jξj , thus ∂αξ u± = 0 for such (x, ξ) and |α| = 2. This extends
analytically to the whole SM . Therefore, u+ is a linear function of ξ. Relation (3.54) shows that
u+ must be odd in ξ. Therefore, u+ = vj(x)ξj with v real analytic inside M , and near ∂M , v = v0.
So we showed that v0 extends analytically. Since fs = dv near ∂M , by analytic extension, we get
the same everywhere in M . That however implies fs = 0. �

3.11. End of the Proof of Theorem 3.2. In section 3.9, we sketched the proof of Theorem 3.2
without the statement that Gk(M) is dense. Theorem 3.1 provides the missing part.

4. Generic Boundary Rigidity for simple metrics

We will formulate here a generic boundary rigidity result for simple manifolds, and will sketch
its proof. We linearize near a metric with an s-injective Ig using the results in the previous section.
For complete details, we refer to [SU5].

Theorem 4.1 ([SU5]). Let k0 and Gk(M) be as in Theorem 3.2. There exists k ≥ k0, such that
for any g0 ∈ Gk, there is ε > 0, such that for any two metrics g1, g2 with ‖gm − g0‖Ck(M) ≤ ε,
m = 1, 2, we have the following:

(4.1) ρg1 = ρg2 on (∂M)2 implies g2 = ψ∗g1

with some Ck+1(M)-diffeomorphism ψ : M →M fixing the boundary pointwise.
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We would like to note that if two metrics are isometric, i.e., g2 = ψ∗g1 with ψ ∈ C3, and if
g1,2 ∈ Ck(M), k ≥ 2, then ψ must be in Ck+1, and moreover, if ‖g1‖Ck + ‖g2‖Ck ≤ A, then
‖ψ‖Ck+1 ≤ C(A), see [SU5, Lemma 6].

4.1. Recovery of the get of g in boundary normal coordinates. We start with a boundary
recover result. The next theorem can be considered as a non-linear version of Lemma 3.3.

Theorem 4.2. Let g1 and g2 be two simple smooth metrics on M with the same boundary distance
function. Then there exists a smooth diffeomorphism ψ : M → M fixing the boundary pointwise
so that

(4.2) ∂αg1 = ∂α(ψ∗g2) on ∂M

in any coordinate system, for any multiindex α.

Proof. We will prove something more specific. Choose boundary normal coordinates related to
gi, i = 1, 2. In principle, they depend on gi. Identify them now. In other words, we consider
a diffeomorphism ψ that maps the g1 boundary normal coordinates to the g2 boundary normal
coordinates near ∂M , and then we extend it inside M . Then we set ĝ2 = ψ∗g2. Now g1 and ĝ2
have the same boundary normal coordinates. let us call them x. We will denote ĝ2 again by g2 and
will show that g1 and g2 have the same jet at ∂M . It is enough to show that

(4.3) ∂kxnf = 0 for xn = 0, ∀k, where f = g1 − g2.

We will sketch the proof in [LSU]. The equality (4.3) for k = 0 is immediate by studying the
lengths of geodesics connecting x, y on ∂M and letting y → x. Assume that (4.3) is wrong. Then
there is an integer l so that ∂lxnf 6≡ 0 for xn = 0 and let l be the least integer with that property.
Then ∂lxnf(x0) 6= 0 for some x0 ∈ ∂M . By studying the Taylor expansion of f w.r.t. xn near
xn = 0, and with x′ = x′0 fixed, we see that there exists a unit vector ξ0 tangent to ∂M so that
either fij(x)ξiξj > 0 or fij(x)ξiξj < 0 for (x, ξ) near (x0, ξ0) and x 6∈ ∂M . We can assume the first
inequality. Then we get Igjf(x, ξ) > 0, j = 1, 2 for all (x, ξ) close enough to (x0, ξ0), and ξ0 not
tangent to ∂M (we use the strict convexity here). Now, Ig1g1 = ρg1(x, y), where y ∈ ∂M is the
exit point of γg1x,ξ (the superscript g1 indicates that this is the geodesic in the metric g1). So we
get ρg1(x, y) > Ig2f(x, ξ). On the other hand, Ig2f(x, ξ) ≥ ρg2(x, y) because the energy form for
all smooth curves connecting x and y is minimized by γg2x,ξ. Those two inequalities contradict the
given equality ρg1 = ρg2 on ∂M × ∂M . �

If g1,2 in Theorem 4.2 are of finite smoothness Ck, then (4.2) remains true for |α| ≤ k − 2.
A more general boundary recovery results was recently proved by the author and G. Uhlmann

in [SU7], see Theorem 5.3.

4.2. Proof of the generic boundary rigidity.

Sketch of the Proof of Theorem 4.1. Let g0 ∈ Gk with k large enough. Let g1 and g2 be two metrics
such that ρg1 = ρg2 on ∂M × ∂M , and

(4.4) g1, g2 ∈ B =
{
g ∈ Ck(M); ‖g − g0‖Ck(M) ≤ ε

}
We will show that for 0 < ε� 1, g2 is isometric to g1.

First, by Theorem 4.2, we may assume that g1 and g2 have the same boundary normal coor-
dinates, and that (4.2) holds for |α| as large as needed, if k � 1. One can see that we still may
assume that (4.4) holds. Using (4.2), we extend g1 and g2 in the same way to Me by keeping
those extensions Ck. Then we pass to semigeodesic coordinates as in the second paragraph of
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Section 3.2.4, related to each metric. Each such coordinate system gives as a diffeomorphism φj
from M to a domain Ωj ⊂ Rn, j = 1, 2. A priori, Ω1 may be different from Ω2 but since g1 and
g2 have the same scattering relation, we get that actually, φ1 = φ2 in Me \M , and in particular,
Ω1 = Ω2, that we will call just Ω. Denote also Ωe = φ1(Me) = φ2(Me). Then we consider the push
forwards φ1∗g1, φ2∗g2. It is important to note that the new metrics still agree at ∂Ω at any fixed
order, if k � 1 because φ1 = φ2 in Me \M . As above, we can still assume that the new metrics
are in B. This gives us that for f := φ1∗g1 − φ2∗g2 we have

(4.5) f ∈ Ck(Ωe), supp f ⊂ Ω, fin = 0, i = 1, . . . , n.

We now use the fact that the linearization of ρ2
g1(x, y) for (x, y) ∈ (∂Ω)2 is Ig1f(x, ξ), see Proposi-

tion 3.1, with ξ = exp−1
x y/| exp−1

x y|, to get

(4.6) ‖Ng1f‖L∞(Ωe) ≤ C‖f‖2
C1 ,

with C uniform, if k ≥ 2. Let ε > 0 be such that B ⊂ Gk, and the constant C in (3.1) is uniform
in B. Then using (3.1), (4.6), and interpolation estimates, we get that for any 0 < µ < 1,

‖fs‖L2 ≤ C‖f‖1+µ
L2

with C > 0 uniform in B, if k = k(µ) � 1. The final step is to estimate f by fs. There is no
such estimate for generals f ’s, but we have the advantage here that f satisfies (4.5). Now, fni = 0
allows us to prove that ‖f‖L2 ≤ C‖fs‖H2 . Here is a brief sketch of that. Write f = fs + dv. Then
(dv)in = −fsin. We can solve this equations for v, wee (3.51), and therefore estimate v and dv in
terms of fs. Therefore, we can estimate f in terms of fs. For more details, see [E] and [SU5,
Sec. 7.2]

Using interpolation estimates again, we get

‖f‖L2 ≤ C‖f‖1+µ
L2

with a new µ > 0. This implies f = 0, if ‖f‖L2 � 1, and the latter condition is fulfilled, if ε� 1.
This concludes the sketch of the proof of Theorem 4.1.

This sketch leaves hidden the need to know that f has zero derivatives across ∂M up to any
fixed order, i.e., that the first condition in (4.5) holds. That is used in the interpolation estimates,
to make sure that Ng1f is bounded in Hk+1(Ωe) with some k � 1, if f ∈ Ck. �

4.3. Stability. The linear stability estimate (3.1) in Theorem 3.2 and the “stable” proof of Theo-
rem 4.1 above allow us to prove a Hölder type of conditional stability estimate.

Theorem 4.3 ([SU5]). Let k0 and Gk(M) be as in Theorem 3.2. Then for any µ < 1, there exits
k ≥ k0 such that for any g0 ∈ Gk, there are ε0 > 0 and C > 0 with the property that that for any
two metrics g1, g2 with ‖gm − g0‖C(M) ≤ ε0, and ‖gm‖Ck(M) ≤ A, m = 1, 2, with some A > 0, we
have the following stability estimate

‖g2 − ψ∗g1‖C2(M) ≤ C(A)‖ρg1 − ρg2‖
µ
C(∂M×∂M)

with some diffeomorphism ψ : M →M fixing the boundary pointwise.

We will not present the proof here, see [SU5]. We basically follow the uniqueness proof above,
and any time we use the fact that ρg1 = ρg2 on (∂M)2, we replace it with the condition that
ρg1 − ρg2 = O(δ), on (∂M)2 with 0 ≤ δ � 1, and we want to get eventually that f = O(δµ). The
proof is rather long and technical, although not really surprising. One of the important ingredients
is the following stability at the boundary result, that is also of independent interest.
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Theorem 4.4. Let g1 and g2 be two simple metrics in M , and Γ ⊂⊂ Γ′ ⊂ ∂M be two sufficiently
small open subsets of the boundary. Let ψ be as above. Then∥∥∂kxn(ψ∗g2 − g1)

∥∥
Cm(M)

≤ Ck,m
∥∥ρ2

g2 − ρ2
g1

∥∥
Cm+2k+2

(
Γ′×Γ′

),
where Ck,m depends only on M and on a upper bound of g1, g2 in Cm+2k+5(M).

The proof of Theorem 4.4 is actually the most difficult step in proving Theorem 4.3. It generalizes
Theorem 4.2, but since the proof of the latter is not constructive, we could not just go over its steps
and prove stability that way. On the other hand, one would expect that all derivatives of ρg(x, y)
at y = x ∈ ∂M would recover recursively all derivatives of g in boundary normal coordinates at
x. This is actually true, and done in [SU7], where the data is the scattering relation (determined
uniquely by the boundary distance function). Having a constructive way to recover ∂αg1,2, one
could prove stability, too. We refer to [SU5] for the proof of Theorem 4.4, done before [SU7] that
is still not constructive.

5. Generic Lens Rigidity for regular manifolds

We will describe here the results in [SU6, SU7] and we will be very sketchy about the proofs,
even more than in the previous sections.

We study the lens rigidity question on M . Now, M is not necessarily diffeomorphic to a ball, and
we may not have a global coordinate system anymore. The topology of M can be more complicated
but we will still impose some topological condition. Next, we do not assume that ∂M is convex.
We work with a subset of geodesics, i.e., we study the problem with incomplete data (under some
conditions, of course). Finally, we do not assume lack of conjugate points anymore. We allow
geodesics with conjugate points, but we need “enough” geodesics without conjugate points, and we
use them only. Finally, (M, g) does not need to be non-trapping. The main results are of generic
type, similarly to the ones above for simple metrics.

We start describing our assumptions.
Let D be an open subset of B(∂M). Given (x, ξ) ∈ D, let γκ−1

− (x,ξ) denote the geodesic issued

from κ−1
− (x, ξ) with endpoint π(σ(x, ξ)), where π is the natural projection onto the base point.

With some abuse of notation, we define

ID(x, ξ) = I(γκ−1
− (x,ξ)), (x, ξ) ∈ D.

It is clear that one cannot hope to recover g from the scattering relation σ and the travel time `
restricted to D, if (the closure of) the geodesics issued from D do not cover the whole M . The
next condition is similar to that but it is in the phase space: we want the conormal bundle of those
geodesics to cover T ∗M so that we can recover the singularities. Moreover, we want those geodesics
to be simple ones, since otherwise, one has examples where the singularities cannot be recovered.

Definition 5.1. We say that D is complete for the metric g, if for any (z, ζ) ∈ T ∗M there exists
a maximal in M , finite length unit speed geodesic γ : [0, l] →M through z, normal to ζ, such that

{(γ(t), γ̇(t)); 0 ≤ t ≤ l} ∩ S(∂M) ⊂ D,(5.1)

there are no conjugate points on γ.(5.2)

We call the Ck metric g regular, if a complete set D exists, i.e., if B(∂M) is complete.

If z ∈ ∂M and ζ is conormal to ∂M , then γ may reduce to one point. Since (5.1) includes
points where γ is tangent to ∂M , and σ = Id, ` = 0 there, knowing σ and ` on them provides
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no information about the metric g. On the other hand, we require below that D is open, so the
purpose of (5.1) is to make sure that we know σ, ` near such tangent points.

Definition 5.2. We say that (M, g) satisfies the Topological Condition (T) if any path in M
connecting two boundary points is homotopic to a polygon c1 ∪ γ1 ∪ c2 ∪ γ2 ∪ · · · ∪ γk ∪ ck+1 with the
properties that for any j,

(i) cj is a path on ∂M ;
(ii) γj : [0, lj ] → M is a geodesic lying in M int with the exception of its endpoints and is

transversal to ∂M at both ends; moreover, κ−(γj(0), γ̇j(0)) ∈ D;

Notice that (T) is an open condition w.r.t. g, i.e., it is preserved under small C2 perturbations
of g.

5.1. The Linear Problem for regular manifolds. We will describe the results in [SU6] about
the ray transform with incomplete data on regular manifolds.

To define the CK(M) norm in a unique way, and to make sense of real analytic g’s, we choose
and fix a finite real analytic atlas on M .

Theorem 5.1 ([SU6, SU7]). Let G ⊂ Ck(M), with k � 2 depending on dim(M) only, be an open
set of regular Riemannian metrics on M such that (T) is satisfied for each one of them. Let the
set D ⊂ B(∂M) be open and complete for each g ∈ G. Then there exists an open and dense subset
Gs of G such that Ig,D is s-injective for any g ∈ Gs.

Moreover, there is a stability estimate similar to (3.1). The density in the theorem above is
provided by the following result (compare with Theorem 3.1).

Theorem 5.2 ([SU6]). Let g be an analytic, regular metric on M . Let D be complete. Then ID
is s-injective.

The proof of Theorem 5.2 that we give in [SU6] is quite different from that of Theorem 3.1.
The critical step is to show that ID recovers the analytic wave front set of fs inside T ∗M . If
one wants to recover the usual C∞ wave front set of fs inside T ∗M , then this can be done by
localizing near simple geodesics by standard cut-offs in the x and ξ variables. In the analytic
case, however, such cut-offs would destroy the analyticity of the symbols. In the theory of the
analytic ΨDOs, one works with special cut-offs χN (x) and gR(ξ) depending on large parameters
with “good” control of the derivatives. We refer to [Tre] for details. Another approach based on
complex deformation of the contour of the integration can be found in [Sj]. In our case, however,
ID is an FIO, and we need a cut-off before composing it with I∗D. This cannot be done, at least
directly, with the pseudodifferential cut-offs χN and gR. Instead, we apply the complex stationary
phase method of [Sj]. As a result, we get that IDf = 0 implies that the FBI transform of fs inside
T ∗M , with analytic phase, and an analytic elliptic symbol, decays exponentially fast. This is one
of the characterizations of absence of analytic wave front set. See [SU6] for details. We still have
the same problems near the boundary, as before.

A new moment in the proof is the following. Using the microlocal analytic arguments above,
we show that fs = dvp locally, in a neighborhood Up of any point on p ∈ M with vp that can
depend on p. If Up ∩ ∂M 6= ∅, then we also have vp = 0 on ∂M . To complete the proof, we need
to show that vp can be chosen independently of p on the whole M . This is done by starting from
a neighborhood of ∂M where one can uniquely define v = v0, and showing that v0 admits analytic
continuation in the whole M . To show that this continuation is independent of the path, we need
(T).
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Having proved Theorem 5.2, we prove Theorem 5.1 by choosing an open subset of D, still
complete, so that the corresponding set of geodesics is a manifold. Using suitable smooth cot-off α
on that manifold, we study Iα := αI (another notation abuse), instead of ID, where the cut-off is
a characteristic function. Then we follow the analysis of simple manifolds.

5.2. The non-linear Lens Rigidity problem. Here we sketch the results in [SU7]. We start
with a boundary determination result that generalizes Theorem 4.2.

Theorem 5.3. Let (M, g) be a compact Riemannian manifold with boundary and assume that we
know g|∂M . Let (x0, ξ0) ∈ S(∂M) be such that the maximal geodesic γ0 through it is of finite
length, and assume that x0 is not conjugate to any point in γ0 ∩ ∂M . If σ and ` are known on
some neighborhood of (x0, ξ0), then the jet of g at x0 in boundary normal coordinates is determined
uniquely.

Note that regularity of g is not needed here, nor (T) is needed. Also the boundary does not need
to be convex, as in Theorem 4.2. The proof is based on analysis of the eikonal equation.

Theorem 5.4 below says, loosely speaking, that for the classes of manifolds and metrics we
study, the uniqueness question for the non-linear lens rigidity problem can be answered locally by
linearization. This is a non-trivial implicit function type of theorem however because our success
heavily depends on the a priori stability estimate that the s-injectivity of ID implies, see Theorem 5.1
and the remark after it. We work with two metrics g and ĝ; and will denote objects related to ĝ
by σ̂, ˆ̀, etc. Note that (T) is not assumed in the first theorem.

Theorem 5.4. Let g0 ∈ Ck(M) be a regular Riemannian metric on M with k � 2 depending on
dim(M) only. Let D be open and complete for g0, and assume that there exists D′ b D so that
Ig0,D′ is s-injective. Then there exists ε > 0, such that for any two metrics g, ĝ satisfying

(5.3) ‖g − g0‖Ck(M) + ‖ĝ − g0‖Ck(M) ≤ ε,

the relations
σ = σ̂, ` = ˆ̀ on D

imply that there is a Ck+1 diffeomorphism ψ : M →M fixing the boundary such that

ĝ = ψ∗g.

Next theorem is a version of [SU6, Theorem 3]. It states that the requirement that Ig0,D′ is
s-injective is a generic one for g0.

Theorem 5.5. Let G ⊂ Ck(M), k � 2 depending on dim(M) only, be an open set of regular
Riemannian metrics on M such that (T) is satisfied for each one of them. Let the set D′ ⊂ B(∂M)
be open and complete for each g ∈ G. Then there exists an open and dense subset Gs of G such that
Ig,D′ is s-injective for any g ∈ Gs.

Theorems 5.4 and 5.5 combined imply that there is local uniqueness, up to isometry, near a
generic set of regular metrics.

Corollary 5.1. Let D′ b D, G, Gs be as in Theorem 5.5. Then the conclusion of Theorem 5.4
holds for any g0 ∈ Gs.

Remark 5. Condition (T) in Theorem 5.5, and Corollary 5.1 in some cases can be replaced by the
assumption that (M, g) can be extended to (M̃, g̃) that satisfies (T). One such case is if (M̃, g̃) is
a simple manifold, and we study σ, ` on its maximal domain, i.e., D = B(∂M). In particular, we
get local generic lens rigidity for subdomains of simple manifolds when D is maximal.
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6. Further results

The methods developed so far apply to other problems. In [FSU], B. Frigyik, G. Uhlmann and
the author study the integral geometry problem of integrating functions over general family of
curves, with a variable weight. We show that one has injectivity and stability for generic curves
and weights.

In a joint work [DPSU] with N. Dairbekov, G. Paternain, and G. Uhlmann, we study boundary
rigidity for magnetic systems. The dynamics there is described by the magnetic Hamiltonian
(D + α)2g, where g is a Riemannian metric, and α is an one-form. The corresponding Hamiltonian
curves γ (in the base) are called magnetic geodesics. The linearized problem then is to integrate
functions of the type

φ(x, ξ) = hij(x)ξiξj + βi(x)ξi

over the magnetic flow in the phase space, i.e., when (x, ξ) = (γ(t), γ̇(t)). The reason we have
functions that are quadratic polynomials of ξ is that the Hamiltonian is of the same type. The non-
linear problem is to recover g, α up to a gauge transformation, given either the scattering relation,
or the magnetic action on the boundary that replaced the distance. Gauge transformations are
given by g 7→ ψ∗g, α 7→ ψ∗α + dφ, where ψ is a diffeomorphism fixing ∂M as above, and φ is a
function vanishing on ∂M . We prove generic uniqueness results of the type above.
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