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IS A CURVED FLIGHT PATH IN SAR BETTER THAN A
STRAIGHT ONE?∗

PLAMEN STEFANOV† AND GUNTHER UHLMANN‡

Abstract. In the plane, we study the transform Rγf of integrating an unknown function f over
circles centered at a given curve γ. This is a simplified model of synthetic aperture radar (SAR), when
the radar is not directed but has other applications, like thermoacoustic tomography, for example.
We study the problem of recovering the wave front set WF(f). If the visible singularities of f hit γ
once, we show that WF(f) cannot be recovered; i.e., the artifacts cannot be resolved. If γ = ∂Ω is
the boundary of a strictly convex domain Ω, we show that this is still true. On the other hand, in the
latter case, if f is known a priori to have singularities in a compact set, then we show that one can
recover WF(f |Ω), and moreover, this can be done in a simple explicit way, using backpropagation
for the wave equation.
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1. Introduction. In synthetic aperture radar (SAR) imaging an airplane flies
along a curve in R3 and collects data from the surface, which we consider to be flat
in this paper. A simplified model of this is to project the curve on the plane R2,
call it γ; then the data are integrals of an unknown density function on the surface
over circles with various radii centered at the curve. See Figure 1.1. Those circles
represent the intersection of spheres centered at the plane with the 2D plane. Then

Fig. 1.1. A plane surveying a flat surface.
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the model is the inversion of the circular transform

(1.1) Rγf(r, p) =

∫
|x−p|=r

f(x) d�(x), p ∈ γ, r ≥ 0,

where d�(x) is the Euclidean arc-length measure and the center p is restricted to a
given curve γ(t). This transform has been studied extensively; injectivity sets for Rγ

on C∞
0 have been described in full [4]; see also [7]. In particular, each nonflat curve,

no matter how small, is enough for uniqueness. There is no uniqueness without the
compact support assumption; see [1]. In view of the direct relation to the wave equa-
tion, this transform and its 3D analogue (see section 5) have been studied extensively
as well, and in particular in thermoacoustic tomography with constant acoustic speed;
see, e.g., [2, 3, 6, 9, 10, 11, 12, 15, 18, 23]. A related transform is studied in [5, 17].

The problem we study is the following: what part of the wave front set WF(f)
can we recover? Clearly, we can hope to recover only the visible singularities: those
conormal to the circles involved in the transform; see also section 4.1.

If γ is a straight line, there is obvious nonuniqueness due to symmetry, known as
left-right ambiguity. In particular, we can have cancellation of singularities symmetric
about that line. More precisely, we can recover the singularities of the even part of f
and cannot recover those of the odd part.

Based on this example, it has been suggested that a curved trajectory γ might
be a batter flight path. This question has been studied in [21], and some numerical
examples have been presented suggesting that when the curvature of γ is nonzero, the
artifacts are “weaker,” and with increase of the curvature, they become even weaker.
By artifacts, they mean singularities in the wave front set of R∗

γRγf that are not in
WF(f) located at mirror points ; see Figure 2.1. The same problem but formulated in
terms of the wave equation model problem has been studied from a point of view of
Fourier integral operators (FIOs) in [22] (see also [8]), where the artifacts have been
explained in terms of the Lagrangian of Rγ . These authors found that the artifacts
are of the same strength as an order of the corresponding FIO. More precisely, this
is true at least away from the set of measure zero consisting of the points whose
projections to the base fall on γ (points right below the plane’s path, i.e., r = 0), and
for (x, ξ) such that the line through it is tangent to γ at some point. The latter set is
responsible for the existence of a submanifold of the Lagrangian near which the left
and right projections are not diffeomorphisms. What part of the singularities of f
can be recovered, however, has not been studied, except for the cases when there is
an amplitude which vanishes at the mirror points; then the artifacts can be ruled out
by a priori knowledge. Examples of lack of microlocal injectivity for restricted X-ray
transforms can be also found in [14].

The main purpose of this paper is twofold. First, we study the local problem—
what can be said about WF(f) knowing WF(Rγf) near some point, which localizes
possible singularities of f near two mirror points. More generally, we assume in
(2.1) that each line through WF(f) crosses γ once, transversely. Then we show in
Theorem 2.1 that curved trajectories γ are no better than straight lines—singularities
can still cancel; moreover, the artifacts are unitary images of the original. We also
describe microlocally the kernel of Rγ modulo C∞. For simplicity, we stay away from
the measure zero set mentioned above. While this could be generalized globally for
arbitrary curves, without the single intersection condition, we do not do it but study
a closed curve encompassing a strictly convex domain. Then we show in Theorem 2.4
that, again, recovery of singularities is not possible. In this sense, a curved or even a
closed path is no better than a straight one.
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On the other hand, when γ is closed and strictly convex and we know a priori
that WF(f) lies over a compact set (i.e., the projection of WF(f) onto the x-space
is in a fixed compact set), then we show in Theorem 2.3 that one can recover the
singularities of f inside the contour γ. We even present a simple way to do that by
backprojecting boundary data for the wave equation; see Proposition 4.3. In this
sense, a curved trajectory is better. The effect which makes it possible is based on
the fact that any singularity inside should be canceled by two outside if we see no
singularities on the boundary, but the latter should be canceled by other singularities
farther away, etc. At some point, this sequence would leave the compact set over
which WF(f) lies a priori, thus contradicting the assumption on f . This argument is
similar to the displacement of singularities proposed in [8], but it is done in a more
geometric and intuitive way.

This transform belongs to the class of the X-ray transforms with conjugate point
studied by the authors in [25]. The circle centered at γ and passing through x in the
direction θ has a conjugate point at the mirror image of (x, θ⊥). The approach which
we follow here is different, however.

2. Main results. Fix a smooth non–self-intersecting curve (s1, s2) � s �→ γ(s).
For convenience, assume that s is an arc-length parameter. We parameterizeRγf then
by s and the radius r > 0, so we write Rγf(r, s) instead of Rγf(r, γ(s)); compare with
(1.1). The possible obstruction to recovery of singularities is well understood. Fix
an orientation along γ by choosing the normal field γ̇⊥ := (−γ̇2, γ̇1). This defines a
“left” and a “right” side of γ near γ. Let (xL, ξL) ∈ T ∗R2 \ 0 and xL �∈ γ. Assume
that the line through (xL, ξL) intersects γ from the left, at some point p0 = γ(s0),
and that this intersection is transversal. If it is tangent, then the Lagrangian of Rγ

is not of a graph type; see, e.g., [22]. We call such a singularity visible from γ. We
want to emphasize now that visible does not necessarily mean recoverable from Rγf ,
which is the whole point of this paper. Let xR be the point symmetric to xL about
the line tangent to γ at p (a “mirror” point w.r.t. p), and let ξR be the symmetric
image of ξL; see Figure 2.1. Note that ξL, ξR may both point towards γ or both point
away from it. Then (xL, ξL) and (xR, ξR) are symmetric images to each other w.r.t.
the symmetry about that tangent line to γ at p0. Denote this symmetry map by C,
i.e., C(xL,±ξL) = (xR,±ξR).

Set t0 = |xL − γ(s0)| = |xR − γ(s0)|. The circular transform Rγf(r, s), for (t, s)
close to (t0, s0) and acting on a function f supported in a small neighborhood of xL

Fig. 2.1. Mirror points: (xR,±ξR) are mirror points to (xL,±ξL), and vice versa.
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and yL, can detect only singularities close to (xL,±ξL) and (xR,±ξR), respectively
(see section 4.1), but it is not clear whether it can distinguish between them. We can
expect that a singularity at (xL,±ξL) might be canceled by a singularity at (xR,±ξR),
and we might not be able to resolve the visible singularities.

Any open conic set in T ∗R2 \ 0 satisfying the assumptions so far (also implied
by the assumption below) can be written naturally as the union ΣL ∪ΣR of two sets
satisfying the following:

For any (x, ξ) ∈ ΣL (or ΣR), the line through (x, ξ) hits γ(2.1)

transversely from the left (right), at exactly one point different from x.

Note that xL and xR are allowed to lie on γ and may even be on the same side of
γ. On the other hand, they lie on opposite sides of the tangent line to γ at the point
where the ray through (xL, ξL) intersects γ. Condition (2.1) implies that ΣL, ΣR are
unions of disjoint open sets: ΣL = Σ+

L ∪ Σ−
L , ΣR = Σ+

R ∪ Σ−
R, where the positive and

the negative signs indicate that x + tξ hits γ for t > 0 and t < 0, respectively. Then
C : Σ±

L → Σ±
R. Let f be a compactly supported distribution with WF(f) ⊂ ΣL ∪ΣR.

The question we study is: What can we say about WF(f), knowing WF(Rγf)? Since
Rγ is linear, it is enough to answer the following question: Let Rγf ∈ C∞(γ ×R+)
(or let it be smooth microlocally only, in a certain conic set). What can we say about
WF(f)?

Without loss of generality, by shrinking ΣL and ΣR if necessary, we can assume
that C(ΣL) = ΣR. In section 4.4 below, we show that Rγ , restricted to distributions
with wave front sets in ΣL or ΣR, is an FIO associated with a canonical graph denoted
by CL or CR, respectively. In particular, the projection π(CL(xL,±ξL)) on the base is
(t0, s0); i.e., t0 is the time it takes to get to γ with unit speed, and s0 corresponds to
the point p0 where that line hits γ. Then we set

(2.2) Σγ := CL(ΣL) = CR(ΣR) ⊂ T ∗(R+ × γ).

The possible singularities of Rγf with f as above can only be in Σγ .
Theorem 2.1. Let γ be a smooth curve; let ΣL, ΣR, Σγ, C be as above, satis-

fying (2.1), and let fL, fR be compactly supported distributions with WF(fL) ⊂ ΣL,
WF(fR) ⊂ ΣR. Then there exists a unitary FIO U with canonical relation to the
graph of C so that

(2.3) Rγ(fL + fR) ∈ C∞(Σγ) ⇐⇒ fR − UfL ∈ C∞(ΣR).

Moreover, U = −Λ−1
R ΛL, with ΛL and ΛR described in section 4.4 and Proposi-

tion 4.2.
The unitarity of U above is considered in the microlocal sense: U∗U − Id and

UU∗− Id are smoothing in ΣL and ΣR, respectively, where the adjoint is taken in the
L2 sense.

The practical implication of Theorem 2.1 is that, under assumption (2.1), only
the singularities of fR − UfL (or, equivalently, U∗fR − fL) can be recovered. We
can think of it as the “even part” of f in this case. In particular, for any fL ∈ D′

with WF(fL) ⊂ ΣL there exists fR ∈ D′ with WF(fR) ⊂ ΣR so that Rγ(fL + fR) ∈
C∞(Σγ). An explicit radial example illustrating this is presented in the example in
section 3. Thus when using R∗

γRγf to recover WF(f), the artifacts are not just a
problem with that particular method; they are unavoidable, and they are a unitary
image of the original, i.e., “equal” in strength. From that point of view, a curved path
is no better than a straight one.
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Fig. 2.2. Singularities that cannot be resolved. Left: (x, ξ) has mirror images (x−1, ξ−1) and
(x1, ξ1). Singularities at any two of those three points are related by unitary maps. Right: an
example with more than three points.

We next study the case where the paths γ and f are such that there are singular-
ities (x, ξ) of f for which the line through them hits γ more than once. Of course, this
can happen for a curved path only. Consider the examples in Figure 2.2, where each
of the dashed lines intersects γ at most twice, and the one through (x, ξ) intersects
γ twice. We assume that there are no more intersection points than shown. On the
left, the trace that (x, ξ) leaves on γ at p1 can be canceled by its mirror image (x1, ξ1)
about (the tangent at) p1. Equivalently, (x1, ξ1) can create an artifact at (x1, ξ1), and
vice versa, related by a unitary map. Similarly, the singularity on γ caused by (x, ξ)
at p−1 can be canceled by its mirror image (x−1, ξ−1) about p−1. We assume there
that the lines through (x1, ξ1) and (x−1, ξ−1) do not intersect γ again. If we know
that one of the three singularities cannot exist, then none does. In particular, we can
recover (x, ξ) if we know a priori that either (x1, ξ1) or (x−1, ξ−1) cannot be in WF(f).
Without any prior knowledge, we cannot. On the right, all those five singularities can
cancel if they are related by suitable unitary operators. If we know that one of them
cannot be in WF(f), then none can.

Notice that p−1pp1p2p3 is a geometric optics ray reflected by γ. To obtain (x2, ξ2),
for example, we start from (x, ξ) going along the broken path, and at any point
between p2 and p3 we go back the same distance but along a straight line. If we go
along the broken ray past p3 (not shown in the picture), and come back along a line
the same distance, we end up at x3. The point x−1 can be obtained similarly, going
in the direction opposite to ξ.

So far we have assumed that each line appearing in the construction intersects γ
at most twice. If this is not true, the mirror points to (x, ξ) form a directed graph.
We do not study this case.

Assume now that γ is a closed curve that encompasses a strictly convex domain
Ω. The discussion above suggests the following. For any (x, ξ) ∈ T ∗R2 \ 0, let
Φt(x, ξ) = (x + tξ/|ξ|, ξ). Let Φt

γ be defined on T ∗Ω \ 0 in the same way for small
|t|, then extended by reflection, etc. At the values of tj corresponding to reflections,

where Φt
γ is discontinuous, define Φ

tj
γ as its limit from the left, t → tj , t < tj . We call

this path, extended for all positive and negative t, a broken line through (x, ξ). Then
all mirror points of (x, ξ), where possible artifacts might lie, are given by

(2.4) M(x, ξ) =
{
Φ−t ◦ Φt

γ(x, ξ); t ∈ R
}
, x ∈ Ω.

This is a discrete set of distinct points under our assumption; see, e.g., [20]. In the
examples in Figure 2.2, this set is finite in each case, consisting of (x, ξ), (x±1, ξ±1),
etc. Since γ is a closed curve now, in our case it is infinite, and by the proof of
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Theorem 2.4, it is locally finite. The next three theorems show that if we have a
priori knowledge that would allow us to rule out at least one of those artifacts, then
we can recover a singularity at (x, ξ). Otherwise, we cannot.

We state first a “propagation of singularities theorem,” inspired by the examples
discussed above.

Theorem 2.2. Let γ = ∂Ω, where Ω ⊂ R2 is a strictly convex smooth domain.
Let f ∈ D′(R2), and assume that Rγf ∈ C∞. Then for any (x, ξ) ∈ T ∗Ω \ 0, either
M(x, ξ) ⊂ WF(f) or M(x, ξ) ∩WF(f) = ∅.

As in the example above, if we know a priori that one of those points cannot be
in WF(f), then none is, and in particular, f is smooth at (x, ξ). One such case is
when WF(f) a priori lies over a fixed compact set.

Theorem 2.3. Let γ be as in Theorem 2.2. Let f ∈ E ′(R2). If Rγf ∈ C∞,
then f |Ω ∈ C∞. Moreover, f |Ω can be obtained from Rγf modulo C∞ by the back-
projection operator described in Proposition 4.3.

If we do not have a priori information about f , then WF(f) cannot be recon-
structed.

Theorem 2.4. Let γ be as in Theorem 2.2. Then there exists f ∈ D′(R2\γ)\C∞

so that Rγf ∈ C∞(R+ × γ). Moreover, for any f with singsupp f ⊂ Ω, there is g
with singsupp g ⊂ R2 \ Ω so that Rγ(f − g) ∈ C∞(R+ × γ).

The second statement of the theorem says that we can take any f singular in Ω
and extend it outside Ω so that its circular transform will be smooth on γ. Therefore,
not only is it the case that singularities cannot be detected, but any chosen f singular
in Ω can be neutralized by choosing a suitable extension singular outside Ω. We refer
also to section 3 and the remark at the end of it for a radial example.

One can prove a similar but somewhat weaker result for uniqueness of recovery
of the visible singularities outside T ∗Ω under the a priori compactness assumption,
but we have to exclude the points which might be mirror images of (x, ξ) with x ∈ γ,
and their mirror images after iterations.

Those problems and the methods are related to the thermoacoustic problem with
sources inside and outside Ω; see Remark 4.1 and section 5.

3. An example of cancelation of singularities. We start with an example of
cancelation of singularities. Let γ = S1 be the unit circle parameterized by its polar
angle s. Then |γ̇| = 1. Let f be the characteristic function of the circle |x| = 1/2, i.e.,
f(x) = H(1/4− |x|2), where H is the Heaviside function. Then, clearly, Rγf(r, θ) is

singular at r = 1/2 (not only), with a singularity of the type
√
(r − 1/2)+; see also

Figure 3.2 below. We will construct a radial function g supported outside the unit
disk so that Rγ(f − g)(r, θ) is smooth in a neighborhood of r = 1/2. We refer to
Figure 3.1 for a plot of f and g, and to Figure 3.2 for a plot of the data.

We will work with radial functions only, i.e., functions of the form F (|x|2). We
will identify the latter with F , somewhat incorrectly. Then RγF is independent of
the angle s, and it is enough to fix s = 0 corresponding to x = (1, 0). Then we have

1

r
RγF (r) =

∫ π

−π

F
(
(1 + r cos θ)2 + (r sin θ)2

)
dθ.

The factor 1/r can be explained by the requirement that the measure along each circle
must be Euclidean. Since 1/r is a smooth factor near r = 1, we will drop it. We also
use the fact that the integrand is an even function of θ, so we denote (1/(2r))Rγ by R:

RF (r) =

∫ π

0

F
(
1 + r2 + 2r cos θ

)
dθ.
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Fig. 3.1. Left: density plot (white = 1, black = 0). Right: a graph of f and g with R(f − g)
smooth near r = 1/2.

Fig. 3.2. Solid line: the graph of r �→ R(f − g) near r = 1/2 computed numerically with three
terms in the expansion of g. Dotted line: the graph of Rf , which is zero for r < 0.5, having a square
root type of singularity at r = 0.5.

Set r = 1/2+h. We are interested in the singularities near h = 0, and in what follows,
|h| � 1. After replacing θ by π − θ, we get, with f as above,

Rf(1/2 + h) =

∫ π

0

H
(
2r cos θ − r2 − 3/4

) ∣∣∣
r=1/2+h

dθ

= H(h) arccos
(1/2 + h)2 + 3/4

1 + 2h
.

The following calculations were performed with Maple. The series expansion of the
expression above is

(3.1) Rf(1/2 + h) = H(h)

(√
2h1/2 − 17

√
2

12
h3/2 +

243
√
2

160
h5/2 +O(h7/2)

)
.

We are looking for a radial g of the type

(3.2) g(|x|2) = H(t)(a0 + a1t+ a2t
2 + · · · )|t=|x|2−9/4.

Then

Rg(1/2 + h) =

∫ π

0

H(h)(a0 + a1t+ a2t
2 + · · · )∣∣

t=(1+2h) cos θ+(1/2+h)2−5/4
dθ

= a0A0(h) + a1A1(h) + a2A2(h) + · · · .
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For A0 we easily get

A0(h) = arccos
5/4− (1/2 + h)2

1 + 2h
=

√
6h1/2−7

√
6

12
h3/2+

1243
√
6

1440
h5/2+O(h7/2), h ≥ 0.

By (3.1), to cancel the h1/2 term in R(f − g) we need to choose

a0 =

√
3

3
.

Then

R(f − g0) = −5
√
2

6
h3/2 +O(h7/2), g0 := a0H(t)|t=|x|2−9/4.

To improve the smoothness near h = 0, we compute

A1(h) =
8
√
2

3
h3/2 − 37

√
2

15
h5/2 +O(h7/2).

Then, as before, we find that we need to choose

a2 = −−5

16

to kill the O(h3/2) term, and then

R (f − g1) = −83
√
2

720
h5/2 +O(h7/2), g1 := H(t)(a0 + a1t)|t=|x|2−9/4.

Note that this was possible to do because the leading coefficient (the one in front of
h3/2) in the expansion of A1 is nonzero. The latter also follows from the ellipticity of
Λ. Proceeding in the same way, we can get a full expansion of the conormal singularity
of g at |x| = 3/2 that would make R(f − g) smooth at r = 1/2.

The first three coefficients of g are shown below:

g = H(t)

(√
3

3
− 5

16
t+

83

5184
t2 +O

(
t3
))

, t := |x|2 − 9

4
.

We could continue this process to kill all the singularities for all r, not just at r = 3/2,
by constructing a suitable jump of g at r = 5/2, then at r = 7/2, etc., which also
illustrates Theorem 2.4.

4. Proofs.

4.1. The wave front set of the kernel of Rγ . The Schwartz kernel of Rγ is
given by

R(r, s, x) =
1

r
δS1

(
x− γ(s)

r

)
, r > 0, s1 < s < s2, x ∈ R2,

where δS1 is the delta function of the unit circle S1. The factor 1/r is not singular
for r > 0, where we work. By the calculus of wave front sets,

WF(R) =

{
(r, s, x, (dr,s,xF )tη); x− γ(s) ∈ rS1, η = k

x− γ(s)

|x− γ(s)| , k �= 0

}
,
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where F = (x− γ(s))/r. Set ω = F |S1 to write this as

WF(R) =

{(
r, s, γ(s) + rω,−k

r
,−k

r
ω · γ̇(s), k

r
ω

)
; ω ∈ S1, r > 0, k �= 0

}
.

Set ξ = −kω/r; then ω = −εξ/|ξ|, k/r = ε|ξ|, where ε = ±1 is the sign of k, giving

(4.1) WF(R) =

{
(r, s, x,−ε|ξ|, ξ · γ̇(s),−ξ) ; x+ εr

ξ

|ξ| = γ(s), r > 0, ε = ±1

}
.

By the calculus of wave front sets, if we invert the sign of the sixth component there,
ξ, and consider WF(R) as a relation, this tells us where WF(f) is mapped under the
action of Rγ .

Comparing this with the definition (4.14), (4.15) of CL, and similarly for CR below,
we get

WF(Rγf) ⊂ CL(WF(f)) ∪ CR(WF(f))

for f such that, for any (x, ξ) ∈ WF(f), the line x+ sξ through (x, ξ) meets γ exactly
once, for s �= 0. In particular, this includes f as in Theorem 2.1.

Let (τ, σ) be the dual variables to (r, s). The reason we use τ instead of the more
intuitive choice ρ for a dual variable to r is that by applying the pseudodifferential
operator (ΨDO) A below, we will transform r into a variable denoted by t. Then

(4.2) WF(Rγf) ⊂ {|σ| < |τ |} .
Moreover, for any f as in Theorem 2.1, the transversality condition (2.1) implies
|σ| < δ|τ |, δ < 1.

4.2. Reduction to a problem for the wave equation. Let u solve the prob-
lem

(4.3)

⎧⎨
⎩

(∂2
t −Δ)u = 0 in Rt ×R2

x,
u|t=0 = 0,

∂tu|t=0 = f,

and set Λf = u|R+×γ , i.e.,

(4.4) Λf =
sin(t|D|)

|D| f
∣∣∣
R+×γ

,

where D = −i∂x as usual. The well-known solution formula then implies

(4.5) Λf(t, s) =

∫ t

0

rRγf(r, s)√
t2 − r2

dr, p ∈ γ.

Our assumptions imply that Rγf(r, p) = 0 for 0 ≤ r � 1. The integral above then has
a kernel singular at the diagonal t = r only. It belongs to the class of Abel operators

(4.6) Ah(t) =

∫ t

0

rh(r)√
t2 − r2

dr, t > 0.

Then

(4.7) Λ = (A⊗ Id)Rγ ;
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in other words, Λ is just ARγ but A acts in the first variable. The explicit left inverse
of A (see, e.g., [13, 16]) is

(4.8) h(r) = Bh(r) :=
2

πr

d

dr

∫ r

0

h(t)√
r2 − t2

dt, r > 0.

Proposition 4.1. The operator A restricted to E ′(R+) is an elliptic ΨDO of
order −1/2 with principal symbol

σp(A)(r, τ) =
√
π/2e−iπ/4√r

(
τ
−1/2
+ + iτ

−1/2
−

)
.

The operator B on E ′(R+) is an elliptic ΨDO of order 1/2 with principal symbol given
by the inverse of that of A.

Proof. The Schwartz kernel of A can be written as

A(t, r) = A�(t, r, t− r), where A�(t, r, w) =
r√
t+ r

w
−1/2
+

and w+ = max(w, 0). The Fourier transform of w
−1/2
+ is equal to

√
πe−iπ/4

(
τ
−1/2
+ + iτ

−1/2
−

)
.

Then A is a formal ΨDO with an amplitude given by the partial Fourier transform
of A� w.r.t. w, i.e.,

√
πe−iπ/4 r√

t+ r

(
τ
−1/2
+ + iτ

−1/2
−

)
.

Since t and r are strictly positive, there is no singularity in 1/
√
t+ r. The singularity

at ξ = 0 can be cut off at the expense of a smoothing term. Set t = r to get the
principal symbol of A. Since B is a parametrix of A, the second assertion follows
directly.

Note that the full symbol of A can be computed from the asymptotic expansion
of the Bessel function J0 since A is the composition of the Fourier sine transform and
the zeroth order Hankel transform; see [13].

4.3. Working with the Darboux equation. The unrestricted spherical means
Gf(t, x) := (2πt)−1Rf solve the Darboux equation

(
∂2
t +

1

t
∂t −Δ

)
Gf(t, x) = 0

with boundary conditions Gf(0, x) = f(x), ∂tGf(0, x) = 0; see, e.g., [3] and the
references there. The Darboux equation has the same principal symbol as the wave
equation and therefore the same propagation of singularities for t �= 0. Replacing the
wave equation with the Darboux one seems a natural thing to do—this would have
eliminated the need for the operators A and B. On the other hand, t = 0 is a singular
point which poses technical problems with the backprojection, and for this reason we
prefer to work with the wave equation.
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4.4. Geometric optics. The solution of (4.3) is given by

(4.9) u =
sin(t|D|)

|D| f = −e−it|D|

2i|D| f +
eit|D|

2i|D|f = u+ + u−,

where

u+ =
1

(2π)2

∫
ei((x−y)·ξ−t|ξ|) (−1)

2i|ξ| f(y) dy dξ,(4.10)

u− =
1

(2π)2

∫
ei((x−y)·ξ+t|ξ|) 1

2i|ξ|f(y) dy dξ.(4.11)

The first term u− is in the kernel of ∂t + i|D|, and if we consider t as a parameter, it
is an FIO associated with the canonical relation (x, ξ) �→ (x + tξ/|ξ|, ξ). The second
term u− is in the kernel of ∂t − i|D| associated with (x, ξ) �→ (x− tξ/|ξ|, ξ).

We assume now that WF(f) ⊂ ΣL; see (2.1). Then we set ΛLf = Λf with f as
above. We define ΛR in a similar way.

Restrict (4.9) to R× γ (see (4.4)) to get

(4.12) ΛL = Λ+
L + Λ−

L ,

where Λ±f are the restrictions of the two terms above to R × γ. For the first term,
we set x = γ(s) to get

(4.13) Λ+
Lf := −e−it|D|

2i|D| f
∣∣∣∣
R+×γ

= (2π)−2

∫
ei((γ(s)−y)·ξ−t|ξ|) (−1)

2i|ξ| f(y) dy dξ.

This is an elliptic FIO with a nondegenerate phase function (see, e.g., [26, Chaps. VI.4
and VIII.6]) of order−1. It is associated with the canonical relation given by the graph
of the map

C+
L : (γ(s)− tξ/|ξ|, ξ) �−→ (t, s,−|ξ|, γ̇(s) · ξ),

well defined on Σ+
L . Another way to write this is the following. Let t(x, ξ) > 0, s(x, ξ)

be such that x+ t(x, ξ)ξ/|ξ| = γ(s(x, ξ)). Then

(4.14) C+
L : (x, ξ) �−→ (t(x, ξ), s(x, ξ),−|ξ|, γ̇(s) · ξ).

Similarly, the second term in (4.9) defines

Λ−
Lf :=

eit|D|

2i|D|f
∣∣∣∣
R+×γ

= (2π)−2

∫
ei((γ(s)−y)·ξ+t|ξ|) 1

2i|ξ|f(y) dy dξ.

This is an FIO associated with the canonical relation given by the graph of

(4.15) C−
L : (x, ξ) �−→ (t(x,−ξ), s(x,−ξ), |ξ|, γ̇(s) · ξ),

since x − t(x,−ξ)ξ/|ξ| = γ(s(x,−ξ)) for (x, ξ) ∈ Σ−
L . We now define CL as C+

L on
Σ+

L , and C−
L on Σ−

L . Similarly, ΛLf is defined as Λ+
Lf when WF(f) ∈ Σ+

L . Also, set
Σ = C(ΣL) ⊂ T ∗(R+ × γ); see also (2.2).

We define C±
R , CR, Λ±

Rf , ΛRf in the same way. In fact, they are the same maps
as the “L” ones but restricted to Σ±

R, ΣR, and f with wave front sets there. Clearly,
the map C defined in the introduction satisfies

C = C−1
R CL : ΣL −→ ΣR,
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and (2.2) holds.
Relations (4.14), (4.15) imply also the following (compare with (4.2)):

(4.16) WF(Λ±
Lf) ∪WF(Λ±

Rf) ⊂ {(t, s, τ, σ); |σ| ≤ ∓δτ} ,
where 0 < δ < 1 is the cosine of the smallest angle at which a line through (x, ξ) ∈
WF(f) can hit γ; see (4.14), (4.15).

Since ΛL and ΛR are elliptic FIOs (associated with canonical graphs), they have
left and right parametrices Λ−1

L and Λ−1
R , of order 1, associated with C−1

L and C−1
R ,

respectively. We have the following more conventional representation of those inverses.
We recall the definition of incoming and outgoing solutions in a domain Ω. Let

u(t, x) solve the wave equation in [0, T ]×Ω up to smooth error, i.e., (∂2
t −Δ)u ∈ C∞,

where Ω ⊂ R2 is a fixed domain and T > 0. We call u outgoing if u(0, ·) = ut(0, ·) = 0
in Ω, and we call u incoming if u(T, ·) = ut(T, ·) = 0 in Ω. We microlocalize those
definitions as follows. A solution of the wave equation modulo smooth functions near
R×γ, on the left (or right) of γ, is called outgoing/incoming if all singularities starting
from points on R × γ propagate to the future only (t > 0) (respectively, to the past
(t < 0)).

Proposition 4.2. Let uL be the incoming solution of the wave equation with
Dirichlet data h on R+ × γ, where WF(h) ⊂ Σ, and assume (2.1). Then

(4.17) Λ−1
L h = 2∂tuL|t=0.

Proof. Call the operator on the right-hand side of (4.17) M for a moment. To
compute MΛLf , recall (4.4). Assume first that WF(f) ⊂ Σ+

L . Then ΛLf = Λ+
Lf (see

(4.13)); i.e., ΛLf is the trace on the boundary of u+ defined in (4.10). Now, to obtain
MΛLf , we have to find the incoming solution of the wave equation with boundary
data ΛLf . That solution would be u+ modulo C∞; i.e., u+ = uL in this case. Then
MΛLf = 2∂tu+|t=0, by the definition of M . The latter equals f , by the definition of
u+. If WF(f) ⊂ Σ−

L , then ΛLf = Λ−
Lf , and MΛLf = 2∂tu−|t=0 = f . In the general

case, f is a sum of two terms with wave front sets in Σ+
L and Σ−

L , respectively.
To see that M is a right inverse as well (which in principle follows from the

characterization of ΛL as an elliptic FIO of graph type), let uL be as in the proposition.
Then Mh = 2∂tuL|t=0. To compute ΛLMh, we need first to find the outgoing solution
of the wave equation with Cauchy data (0,Mh) at t = 0. This solution must be uL.
Indeed, call that solution v for the moment and write v = v++v− as in (4.9). Assume
first that WF(h) is included in τ < 0, where τ is the dual variable to t; see (4.14).
Then the singularities of v+ hit R× γ, but those of v− do not, by (2.1). The solution
v+ has Cauchy data at t = 0 given by

(4.18)

(
− 1

2i
|D|−1Mh,

1

2
Mh

)
;

see (4.9). Now, uL has the same Cauchy data, which proves that u+ = uL. Then
ΛLMh is the trace of u+ on the boundary, which is h. The case τ > 0, and the general
one, can be handled in a similar way.

4.5. Proof of Theorem 2.1. Set f = fL+fR. Assume now that Rγf ∈ C∞(Σ).
Apply A⊗ Id to that, where A acts w.r.t. to r and Id is w.r.t. s, to get Λf ∈ C∞(Σ).
Since A has a left inverse on R+, this is actually equivalent to Rγf ∈ C∞(Σ); i.e.,

(4.19) Rγf ∈ C∞(Σ) ⇐⇒ ΛfL + ΛfR ∈ C∞(Σ).
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Indeed, recall that (τ, σ) is the dual variable to (t, r); then A⊗Id is elliptic on {τ �= 0}.
By (4.16), A ⊗ Id is elliptic in a conic neighborhood of WF(Λf), which proves our
claim. The restrictions of the wave front sets of fL and fR imply that we can replace
Λ above by its microlocalized versions ΛL and ΛR:

(4.20) Rγf ∈ C∞(Σ) ⇐⇒ ΛLfL + ΛRfR ∈ C∞(Σ).

Now, apply the parametrix Λ−1
L to (4.20) to get

(4.21) fL + Λ−1
L ΛRfR ∈ C∞(Σ).

Of course, starting from (4.21) we can always go back to (4.20). Therefore, (4.8) and
(4.20) are equivalent, and they are both equivalent to Λ−1

R ΛLfL + fR ∈ C∞(Σ).
To show that U is unitary, we will compute ‖UfL‖L2 first. Let fL be as above.

Denote by uL the solution with Cauchy data (0, fL) at t = 0. To obtain Λ−1
R , we

need to solve backwards (to find the incoming solution) of the wave equation on the
right-hand side of γ with boundary data Λ+f = uL|R+×γ . Let us call that solution
uR. On the other hand, uL restricted to the right of γ is an outgoing solution with the
same trace on the boundary. Then v := uR−uL solves the wave equation on the right
of γ, and for t = 0 we have v = uR, while for t = T � 1, we have v = −uL. Moreover,
v has zero Dirichlet data on the boundary. Therefore, up to a smoothing operator
applied to fL, the energy of uL at t = T coincides with that of uR at t = 0. The
former is equal to the energy of the Cauchy data (0, fL), up to smoothing operator,
and therefore E(uR(0)) = ‖fL +KfL‖L2 , where K is smoothing. If WF(fL) ⊂ Σ+

L ,
then uL solves (∂t+i|D|)uL ∈ C∞, and then so does uR. Then E(uR(0)) = ‖Λ−1

R h‖2L2

(see (4.18)), where h = ΛLfL. Therefore we showed that

‖(Id +K)fL‖L2 = ‖Λ−1
R ΛLfL‖L2.

This proves that U∗U = Id modulo an operator that is smoothing on Σ+
L . In the

same way we show that this holds on Σ−
L , which is disconnected from Σ+

L . Since U is
microlocally invertible on ΣL, we get that U is unitary up to a smoothing operator
on ΣL, as claimed.

This completes the proof of the theorem.

4.6. Proof of Theorem 2.2. Let (x, ξ) ∈ WF(f), with x ∈ Ω. Declare Ω to be
the left-hand side of γ. Then Rγ(f |Ω) has singularities at C±

L (x, ξ) on T ∗(R+ × γ),
where we used the notation above. Take the plus sign first. Since Rγf is smooth, by
Theorem 2.1, there must be another singularity that cancels this one, at the mirror
point (x1, ξ1) of (x, ξ) about the line tangent to γ at p1; see Figure 2.1. Clearly,
(x1, ξ1) belongs to the set M(x, ξ); it corresponds actually to the first point t > 0
in (2.4) not equal to (x, ξ). Since the line through (x1, ξ1) crosses γ transversely,
it has to cross it again, also transversely. This creates another singularity on the
boundary, represented in Figure 2.1 by p2 (of course, that singularity is an element
of T ∗(R+ × γ)). It needs to be canceled by another one, etc. We repeat the same
argument for C−

L (x, ξ). Therefore, we have shown that if (x, ξ) ∈ WF(f), then the
whole set M(x, ξ) is in WF(f).

4.7. Proof of Theorem 2.3. Let (x, ξ) ∈ T ∗Ω \ 0. For any t, the projection
π ◦ Φt

γ(x, ξ) onto the base is in Ω̄. Then |π ◦ Φ−t ◦ Φt
γ(x, ξ)| > |t| − CK , where

CK := max(|y|; y ∈ Ω̄). Therefore, M(x, ξ) does not lie over any compact set; by
the compactness assumption of the theorem, it has elements outside WF(f). Then
by Theorem 2.2, (x, ξ) �∈ WF(f).
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4.8. Constructing a parametrix for Rγf in Ω when WF(f) lies over a
fixed compact set. We will give another, constructive proof of Theorem 2.3 for the
singularities of f inside T ∗Ω. Let singsupp f ⊂ K, where K is a fixed compact set.
Fix T so that

(4.22) T > max (|x− y|; x ∈ ∂Ω, y ∈ K) .

Then all singularities of the solution u of (4.3) would leave Ω̄ for t ≥ T , and Rγf ∈
C∞ for r > T . The latter is obvious even without the propagation of singularities
theory. Let v be the incoming solution of the wave equation in Ω with Dirichlet data
Λf = (A⊗ Id)Rγf on [0, T ]× ∂Ω, cut-off smoothly near t = T . More precisely, let χ
be a smooth function of t so that χ(t) = 0 for t > T , and χ(t) = 1 for 0 ≤ t ≤ T0,
where T0 < T is chosen so that T0 satisfies (4.22) as well. Let v solve

(4.23)

⎧⎪⎪⎨
⎪⎪⎩

(∂2
t −Δ)v = 0 in [0, T ]× Ω,

u|t=T = 0 in Ω,
∂tu|t=T = 0 in Ω,

u|[0,T ]×∂Ω = h,

where h will be chosen in a moment to be χΛf . Set

(4.24) Gh = ∂tv|t=0.

Then GχΛf = f in Ω modulo C∞. Indeed, consider w := u− v. It solves

(4.25)

⎧⎪⎪⎨
⎪⎪⎩

(∂2
t −Δ)w = 0 in [0, T ]× Ω,

w|t=T ∈ C∞(Ω),
∂tw|t=T ∈ C∞(Ω),

w|[0,T ]×∂Ω = (1 − χ)u.

Then f −Gh = ∂tw|t=0 ∈ C∞(Ω), which proves our claim.
To summarize this, we have proved the following.
Proposition 4.3. Let γ be as in Theorem 2.2, and let f ∈ D′(R2) be such that

singsupp f ⊂ K \ γ, where K is a fixed compact set. Let T > 0, χ be as in (4.22) and
(4.23). Then

Gχ(A ⊗ Id)Rγf = f |Ω mod C∞(Ω).

To complete the proof we need only to notice that, by assumption, singsupp f is at
positive distance to γ = ∂Ω, which guarantees that WF(h), with h = χ(A⊗Id)Rγf , is
separated from t = 0, and the singularities of w are never tangent to ∂Ω. This makes
the operatorG an FIO of order 0 with a canonical relation a graph, like in the previous
sections, and in particular G is well defined on such h. Therefore, Gχ(A⊗ Id)Rγf is
well defined.

4.9. Proof of Theorem 2.4. We first present a proof along the lines of the
proof of Theorem 2.2 above. We prove a somewhat weaker version first: for any
T > 0, we can complete f to a distribution in R2 \ γ so that Rγf ∈ C∞((0, T )× γ).
Fix (x, ξ) ∈ T ∗Ω \ 0, and let f have a wave front set in some small neighborhood of
that point. Let u0 be the solution of the wave equation in the plane with Cauchy
data (0, f). Then, by section 4.1, Rγf will have singularities only on T ∗(R+×γ) near
points on γ defined by the line through (x, ξ) which lie over (t−1, p−1) and (t1, p1),
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where t±1 are the arrival times; see Figure 2.2. To cancel those singularities, we chose
g1 with singularities near (x−1, ξ−1) and (x1, ξ1) (see Figure 2.2 again), unitarily
related to the singularity of f near (x, ξ); see Theorem 2.1. Then u0 + u1, where u1

is the solution with Cauchy data (0,−g1), will have no singularities near the points
mentioned above which project to (t−1, p−1) and (t1, p1). On the other hand, u1 will
cause new singularities at points above (t±2, p±2); see Figure 2.2, where only p2 is
shown. We then construct g2 and a related u2 that would cancel them, etc. After a
finite number of steps, the time component of the points (t±k, p±k), above which we
have a singularity, will exceed T , and then we stop and set g = g1 + g2 + · · · . Then
we use a microlocal partition of unity to construct g so that f − g would have the
required properties without the assumption on WF(f).

To prove the general case (i.e., to take T = ∞ above), let gk (the subscript
k now has a different meaning) be the distribution corresponding to T = n. Then
gk−gm = (f−gm)−f−gk has a circular transform smooth on (0,min(k,m))×γ, and
gk − gm = 0 in Ω. The only possible singularities of that distribution could be those
with the property that the line through each one of them intersects γ transversely;
then that singularity will leave a trace on γ. This implies that there are no singularities
with travel time to γ less than min(k,m). Therefore, on some ball centered at the
origin of radius min(k,m)−C, the distribution gk coincides with gm up to a smooth
function. Then we can easily construct g as a “limit” of gk with a partition of unity,
and this g would have the property Rγ(f − g) ∈ C∞.

Remark 4.1. The main results in this paper are also related to the thermo-
acoustic/photoacoustic model with sources inside and outside Ω. The wave equation
then is the underlying model, and there is no need for the operator A. Theorems
2.1 and 2.4 then prove nonuniqueness of recovery of WF(f) as singularities of the
data, with partial or full measurements. Theorem 2.3 proves that this is actually
possible if singsupp f is contained in a fixed compact set. The recovery is given by
time reversal with T as in (4.22). The only formal difference is that in thermoacous-
tic/photoacoustic tomography, the wave equation is solved with Cauchy data (f, 0)
at t = 0 instead of (0, f), and the time reversal operator (see (4.17) and (4.24)) does
not contain ∂t. We refer also to the remarks in the next section about thermoacous-
tic/photoacoustic tomography with external sources, which apply to any dimension
n ≥ 2.

5. The 3D case: Recovery of the singularities from integrals over
spheres centered on a surface. Let Γ be a given smooth (relatively open) sur-
face in R3. Let

(5.1) RΓf(r, p) =

∫
|x−p|=r

f(x) dSx, r > 0, p ∈ Γ,

where dSx is the Euclidean surface measure on the sphere |x−p| = r. We show below
that the results of the previous section generalize easily to this case as well.

We assume again that f ∈ E ′(R3) is supported away from Γ, and that for any
(x, ξ) ∈ WF(f) the line through (x, ξ) hits Γ only once, transversely. The main notions
in section 4 are defined in the same way with a few minor and obvious modifications.
In (4.1) and in the definitions (4.14) and (4.15) of CL and CR we need to replace γ̇ · ξ
by the projection of ξ onto the boundary, i.e., onto T ∗

pΓ, where p ∈ Γ is the point
where the line through (x, ξ) hits Γ.

In this case, RΓf is more directly related to the solution of the wave equation;



SYNTHETIC APERTURE RADAR 1611

indeed,

u(t, x) =
1

4πt
RΓf(t, x)

is the solution of the wave equation in the whole space with Cauchy data (0, f) at
t = 0 restricted to R+×Γ. Then Λ = (4πt)−1RΓ; compare with (4.6). Multiplication
by (4πt)−1 is, of course, an elliptic ΨDO for t �= 0 (which is implied by our assump-
tions), and we get that Theorem 2.1 applies to this case as well. In particular, we
get that, microlocally, we cannot distinguish between sources inside and outside the
domain Ω occupied by the “patient’s body” in thermoacoustic tomography. If the
external sources have compactly supported singularities, then we can, and time rever-
sal reconstructs the singularities for a large enough time T such that each singularity
coming from outside would exit before time T . This has been observed numerically in
[18]. Time reversal also constructs the whole f |Ω when T = ∞, by local energy decay.
One can achieve the same goal with the eigenfunction method (requiring T = ∞ as
well); see [19].

Finally, we remark that, in applications to thermoacoustic tomography, the wave
equation point of view is the natural one, actually. Those results extend to variable
speeds using the analysis in [24].
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