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Adjoint State Method for the Identification Problem in SPECT: Recovery of
Both the Source and the Attenuation in the Attenuated X-Ray Transform∗

Songting Luo†, Jianliang Qian‡, and Plamen Stefanov§

Abstract. Motivated by recent theoretical results obtained by the third author for the identification problem
arising in single-photon emission computerized tomography (SPECT), we propose an adjoint state
method for recovering both the source and the attenuation in the attenuated X-ray transform. Our
starting point is the transport-equation characterization of the attenuated X-ray transform, and we
apply efficient fast sweeping methods to solve static transport equations and adjoint state equations.
Numerous examples are presented to demonstrate various features of the identification problem, such
as uniqueness and nonuniqueness, stability and instability, and recovery of the wave front set.
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1. Introduction. We study the attenuated X-ray transform in the plane arising in single-
photon emission computerized tomography (SPECT):

(1.1) Xaf(x, θ) =

∫
e−Ba(x+tθ,θ)f(x+ tθ) dt, x ∈ R2, θ ∈ S1,

with a source f(x) and an attenuation a(x) that we want to recover. Here

(1.2) Ba(x, θ) =

∫ ∞

0
a(x+ tθ) dt

is the “beam transform” of a, usually denoted by Da. We assume that both attenuation a
and source f are compactly supported. The experimental setup for SPECT is the following:
radioactive markers are injected into a patient’s body and the emitted gamma rays, attenuated
by the body, are detected outside of the body. Since the measured emitted radiation reflects
both the distribution of the emitter and the attenuation, the purpose is to reconstruct the
source (the distribution of the emitter) with an unknown attenuation coefficient. In clinical
applications, additional transmission measurements have to be taken to reconstruct a first [27],
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and eliminating or reducing those additional measurements remains an important problem
[27, 5].

Mathematically, the problem we study is the following: can we recover both f and a
knowing Xaf? It is sometimes called the identification problem for SPECT. The answer
in general is negative; for example, if f = 0, we cannot recover a. When the attenuation a
is identically zero, the attenuated X-ray transform reduces to the ordinary X-ray transform;
when the attenuation a is a constant on a convex set containing the support of f , then the
attenuated X-ray transform reduces to the so-called exponential X-ray transform.

When the attenuation a is known, f can be reconstructed uniquely even by means of
explicit formulas. The first analytic reconstruction method was developed in [1], and the
first Radon-type explicit inversion formula was given in [21]. For more information, see also
[6, 20, 22, 11].

Recovery of both a and f simultaneously from Xaf is a much harder problem, and there
has not been much progress in the mathematical understanding of the identification problem
so far. A related but not identical problem for finding both a constant attenuation and the
source in the exponential X-ray transform has been studied in [25]. The main result in [25]
can be stated that specific pairs of constant a and radial f cannot be distinguished but all
others pairs can. The identification problem has also been studied in [18, 19, 3, 2] under
the assumption that f consists of finitely many delta sources, and those results do not imply
uniqueness; the problem has also been studied in [7] by assuming that a is a constant multiple
of the characteristic function of a star-shaped domain. Range conditions [21, 22] have been
viewed as a possible tool for solving the problem both numerically [4, 5, 27] and analytically [2].

Although mathematically it is not always clear whether both a and f can be recovered
simultaneously uniquely and stably, numerically one can always formulate the inverse problem
as an abstract operator equation with both a and f as unknowns and appeal to a certain
regularization strategy to stabilize the possible ill-posedness. This approach has been tried
in various settings with limited success in [8, 17, 23, 12, 28]. In [8], a direct approach is
proposed to discretize the attenuated X-ray transform by treating both attenuation and source
as unknowns, and a constrained optimization method is applied to solve the resulting nonlinear
system. In [10, 12], Tikhonov regularization methods have been applied to deal with the
abstract operator equation resulting from the inverse problem of recovering both a and f ,
and numerical results have been shown to demonstrate the feasibility of the approach in
certain situations. In this work, we also aim at recovering both a and f from the boundary
measurement of emission data by inverting Xaf as a system for (a, f), but our approach is
based on applying the adjoint state method to the transport-equation characterization of Xaf ,
which is different from the works in [8, 12]; moreover, our approach is largely motivated by
the recent theoretical results obtained by the third author in [26].

The third author studied the problem in [26] and found conditions under which (a, f) can
be recovered even in a stable way. Complete theoretical understanding of this problem is still
lacking, and we do not have if and only if conditions for uniqueness and for stability. The goal
of this work is trifold: first, to develop an efficient numerical approach and, in particular, to
demonstrate the nonuniqueness and instability in some cases and the uniqueness and stability
in others; second, to validate the theory developed in [26] and to study examples for which
the theory is not yet complete; third, to demonstrate numerically which part of the wave
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front set (describing, in particular, jumps across curves) of a and f can be recovered in the
fully nonlinear setting of the inverse problem. The theoretical understanding of recovering
the wave front set of a and f is much more complete in the linearized setting as shown in [26];
see Theorems 2.2 and 2.3 below.

2. Theoretical background. In this section, we review some of the results in [26]. Assume
that a and f are supported in some smooth domain Ω. Set

Γ± = {(x, θ) ∈ ∂Ω× S1 : ±θ · n(x) ≥ 0},
where n(x) is the unit outer normal to ∂Ω. The operator Xaf can be also characterized as
follows. Let u(x, θ) solve the transport equation

(2.1) (θ · ∇+ a(x, θ))u(x, θ) = f(x, θ), u|Γ− = 0.

Then
Xaf = u|Γ+ .

The transport equation is sometimes more convenient to work with than formula (1.1). To
linearize near some background (a, f), denote by δa and δf the perturbations of a and f , and
by δu the perturbation of u. Then we get

(2.2) (θ · ∇+ a)δu + (δa)u = δf, δu|Γ− = 0.

This implies

(2.3) δu|Γ+ = δXa(δf, δa) = Xaδf − Ie−Bauδa.

Here and below, Iw denotes the X-ray transform with weight w(x, θ). In particular, Xa =
Ie−Ba , and thus

(2.4) δXa(δf, δa) = Ie−Baδf − Ie−Bauδa.

2.1. Nonuniqueness for radial pairs.
Theorem 2.1 (see [26]). Let a ∈ C∞

0 and f ∈ C∞
0 be radial. Then there exists a radial

f0 ∈ C∞
0 so that

(2.5) Xaf = X0f0.

The smoothness requirement is too strong and can be weakened considerably. In fact,
given f and a, one can find f0 in an explicit form by computing a certain Abel type of
integral; see [26]. We have a similar result for the linearized map δXa as well.

The theorem does not say that for any radial pair we have infinite many pairs with the
same data. It does provide an example, however, of infinite many radial pairs, including those
with a �= 0, with the same data. In the numerical example shown in Figure 1, we start with
radial (a, f) with a �= 0, and the reconstruction suggests nonuniqueness even in that case,
with the result strongly depending on the initial guess.

The nonuniqueness for radial a and f affects the problem when (a, f) are close to radial,
as shown in Figure 2. We choose the background (a, f), as well as the initial guesses, to be
as in Figure 1 and perturb (a, f) with small phantoms. Different initial guesses lead to the
totally wrong background (a, f) as before, and the phantoms are not recovered well either.
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Figure 1. Nonuniqueness for radial (a, f). Top row: a; bottom row: f . First column: exact a and f ;
second and third columns: computed with different guesses.
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Figure 2. Ill-posedness for perturbed radial (a, f). Top row: a; bottom row: f . First column: exact a and f ;
second and third columns: computed with the same different guesses as in Figure 1.

2.2. Microlocal properties of the linearization. Most of the analysis in [26] is about the
microlocal properties of δXa. We are first interested in which part of the wave front sets
WF(δa) and WF(δf) can be recovered. The wave front sets, in particular, describe the curves
over which those functions jump and the size of those jumps.

2.2.1. Reducing the problem to a 2 × 2 pseudodifferential system. If a is known and
smooth, then it is well known that Xaf given on an open family of lines determines in a stable
way WF(f) on the conormals to those lines. Note that in Xa and in δXa defined in (2.3), we
integrate over each line twice: once in each direction. Loosely speaking, this is a system of
two equations for two unknowns. In fact, we can write it as a 2× 2 pseudodifferential system
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for (δa, δf) with the principal part

(2.6)

( −e−Bau e−Ba

−e−JBaJu e−JBa

)
(x, ξ⊥/|ξ|),

where u is the solution to the problem (2.1), and (x, ξ⊥/|ξ|) = (x, θ). Here we denote

v⊥ := (−v2, v1), v = (v1, v2) ∈ R2, Ju(x, θ) := u(x,−θ).

2.2.2. Microlocal invertibility based on ellipticity. To determine WF(δa) and WF(δf)
at some point (x, ξ) ∈ T ∗Rn \ 0 by ellipticity, we need to make sure that the determinant of
that system is not zero. That determinant turns out to be given by W̃ (x, ξ⊥), where

W̃ (x, θ) = −e−Bae−JBaW, W := u− Ju,

extended for convenience to a positively homogeneous function of θ of degree 1. Therefore,
up to an elliptic factor, W̃ coincides with

W (x, θ) = u(x, θ)− u(x,−θ).

This is intuitively clear as well. When W (x, θ) = 0, the weights in (2.4) at x are proportional
in the directions θ and −θ because the determinant of (2.6) vanishes in that case. Then
δXa(δa, δf)(x, θ) and δXa(δa, δf)(x,−θ) “provide the same information” for δa and δf (mi-
crolocally, at (x, ξ)), and the system is then degenerate. Therefore, W (x, ξ⊥) �= 0 is a sufficient
condition for microlocal invertibility. In the examples below, we sometimes call the zeros of
W “instability directions” even though the actual stability or instability at them depends on
other factors, as we explain below. When there is actual instability at those directions, jumps
over curves having those directions at x would be unstably reconstructed. Therefore, the first
practical test that we apply to each configuration is to identify those “instability directions”
at each point based on some choice of approximate “background” a and f ; this is where we
can expect (not always!) unstable recovery of jumps. Figures 11 and 13 visualize that; there
we can work directly with the actual f and choose the background a to be zero.

We use the following notion of stable reconstruction of wave front sets. Letting U be an
open conic set in T ∗Rn \ 0, we say that we can stably reconstruct WF(f) in U from Af , with
A a linear operator, if for any conically compact set K � U and any s1 there is s2 so that

‖χf‖Hs1 ≤ Cs3 (‖Af‖Hs2 + ‖f‖Hs3 ) ∀s3,

where χ = χ(x,D) is a zero-order pseudodifferential operator (ΨDO) with χ = 1 on K. Such
estimates are typically implied by parametrix constructions; see also estimate (26.1.5) in [13]
and the argument leading to it. For a slightly different definition using seminorms, we refer
the reader to [24]. When such an estimate holds, we say that we can recover f from Af with
the loss (or gain) of s2− s1 derivatives if that number is positive (or negative). Note that this
definition ignores the order of the operator A. In the theorem below, the estimate is sharp,
and in that case, there is no actual loss. Going back to the linearized transform, it is of order
−1/2 as a Fourier integral operator (FIO). The proof of the microlocal invertibility is to show
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that (δXa)
∗δXa is a ΨDO of order −1. The loss is therefore 1/2, the same as in the X-ray

transform case, and in this sense, the theorem below gives a sharp result.
Theorem 2.2. Let W (x0, ξ

⊥
0 ) �= 0. Then in a conic neighborhood of (x0, ξ0), WF(δa) and

WF(δf) can be stably reconstructed from δXa(δa, δf) with a loss of 1/2 derivative.
In Theorem 2.3 below, we show that under a weaker nontrapping condition we can still

recover WF(δa) and WF(δf) but with a loss of 3/2 derivatives.

2.2.3. Microlocal invertibility with loss of one more derivative under a nontrapping
condition. A closer look at the function W reveals that it is odd w.r.t. θ. Then for any x,
there are at least two characteristic directions θ at whichW (x, θ) = 0 and therefore at least two
characteristic co-directions ξ at which W (x, ξ⊥) = 0. Then W cannot be elliptic over any set
in Ω. The following nondegeneracy condition guarantees that the characteristic co-directions
form a finite set at a given x0:

(2.7) W (x0, θ) = 0 =⇒ ∂θ⊥W (x0, θ) �= 0 ∀θ ∈ S1.

If (x, ξ) is characteristic, then this still does not mean that we cannot recover the wave front
sets at that point in a stable way. The following classical example illustrates that the operator
∂/∂x1 is not elliptic, and (x, (0, ξ′)) are all characteristic co-directions, where ξ′ = (ξ2, . . . , ξn).
On the other hand, if we a priori know that supp f is compact, we can recover f from ∂f/∂x1
just by integrating over lines in the x1 direction, starting from points outside supp f . We do
not gain or lose derivatives (i.e., s1 = s2 here), but since that operator is of order 1 and we
do not gain a derivative, we may count this as a loss. Note that this recovery of singularities
is not local like with the ellipticity argument.

The analogue of this example in our situation appears when we consider the Hamiltonian
flow of W (x, ξ⊥) on the zero energy level. The Hamiltonian vector field can be degenerate;
for example, it can be zero in open sets. It is of real principal type in Ω (i.e., dW (x, ξ⊥) is not
collinear to ξdx on W (x, ξ⊥) = 0; in other words, the Hamiltonian field of W is not radial) if
and only if

(2.8) W , θ · ∂xW , ∂θ⊥W cannot be all zero at the same time for any point in Ω× S1.

If W (x, ξ⊥) is of real principal type, then so is the matrix ΨDO (2.6); see [9]. For our purpose,
the theory of ΨDO’s with a scalar real principal–type principal symbol will suffice, however.
Then microlocally, the operator W (x,D⊥) is equivalent to ∂/∂x1. We can still recover the
singularities in a given compact set K if the Hamiltonian flow eventually leaves K. If so,
we call K nontrapping. Note that we are not gaining a derivative in this construction. The
analysis in [26] also shows that we need the nontrapping condition only for supp a since the
problem is elliptic for δf .

Theorem 2.3. If condition (2.8) holds at (x0, ξ
⊥
0 ) and if the Hamiltonian curve through

(x0, ξ0) leaves the compact set (where δa is a priori supported) in at least one of the two direc-
tions, then in a conic neighborhood of (x0, ξ0), WF(δa) and WF(δf) can be stably reconstructed
from δXa(δa, δf) with a loss of 3/2 derivatives.

An example of artifacts along trapped (closed) Hamiltonian curves is presented in Figure 6.
In Figure 7, we show how the problem is stabilized if we use the a priori information that δa
is in a nontrapping set.
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2.2.4. When the ellipticity and the nontrapping conditions fail. When the nontrapping
condition is not fulfilled, the unrecoverable (stably) singularities can lie only on the charac-
teristic variety W (x, ξ⊥) = 0. Note that the flow being trapping does not necessarily imply
no stable recovery since the behavior depends on the lower-order terms then. The matrix
ΨDO (2.6) has rank at least one all the time, so a certain one-dimensional space should be
recoverable. In fact, this is related to the polarization set in [9]. As shown in [26], we can
recover the wave front set of a certain linear combination stably when (2.7) holds microlocally.

Proposition 2.4. Fix (x0, θ0) ∈ R2 × S1. Let W (x0, θ0) = 0 and ∂θ⊥W (x0, θ0) �= 0. Let

(2.9) v(x) = u(x, θ(x)) for x near x0,

where θ(x) is the unique local solution of W (x, θ) = 0 with θ(x0) = θ0, and u is defined by
(2.1). Then we can recover the wave front set of

(2.10) vδa− δf

near (x0,±θ⊥0 ) with a loss of 1/2 derivative.
Since f , and therefore u, is nonnegative in applications, we get that errors in the recon-

struction of δa, microlocally, must appear as errors of the same sign in the reconstruction of
δf , multiplied by v. The statement of the proposition remains true even when the nonde-
generacy condition does not hold, but then v is the ΨDO, v = u(x,D⊥/|D|). This follows
directly from (2.6). Therefore, jumps across smooth curves at characteristic co-directions, for
example, are related by (2.10) with v equal to u(x, θ) with θ = ν⊥, where ν is the unit normal
to the curve. This can be seen in our numerical examples below, for example, in Figures 8
and 9.

Condition (2.8) may fail in a whole neighborhood of some (x0, ξ
⊥
0 ). Then the Hamiltonian

flow can just possibly change the length of ξ0 and nothing else; its projection on R2 × S1,
however, does not change. One extreme example of this is when W = 0 for x in an open set
and all directions. This can happen when a = 0 and f is the characteristic function of the
region between two concentric ellipses, and x is in the interior of the smaller one. Then δXa

is smoothing on that set and no point of the wave front set of (δa, δf) with x there can be
stably recovered. The quantity (2.10) can still be stably recovered, however, with v the ΨDO
as above.

Examples illustrating this type of instability are shown in Figures 8 and 9.

2.2.5. Explanation of the “crosstalk” artifacts. In our numerical reconstructions, as
well as in those in previous papers [10], one can see that “phantoms” (relatively well localized
perturbations of a smoothly varying background) in a can appear in the reconstructed f , with
different amplitudes, and vice versa. This phenomenon can be explained by our analysis. If we
think of the phantoms as approximate singularities (with densities approximating functions
with jumps across smooth curves, for example), then we can recover (2.10) or at least its
singularities in a stable way; see also the remark in the paragraph below (2.10). If we cannot
recover stably δa and δf , as explained above, this means that we can have relatively large
errors in the reconstructed δa and δf , but those errors are of the same sign and related as in
(2.10). Those errors depend on the reconstruction algorithm, but if we fix one of them, the
other one is determined by (2.10). If there is stability, the crosstalk is minimized; cf., e.g.,
Figures 12 and 10 to Figure 8; or Figure 7 to Figure 6.



THE IDENTIFICATION PROBLEM IN SPECT 703

2.2.6. Radial geometry. Whether the Hamiltonian flow is trapping or not is not easy to
verify analytically. In the radial case, one can compute it explicitly under some nondegeneracy
assumptions. Let first a = 0, and let f be the characteristic function of the unit ball B(0, 1).
A direct calculation then shows that the Hamiltonian flow is given by

(2.11) x = R(sin t, cos t), ξ = λ(sin t, cos t), R ≥ 0, λ �= 0.

In particular, the projections to the x-space, which we call rays, are the concentric circles
|x| = R, 0 ≤ R < 1 (including the degenerate case of the point 0). Then no radial singularities
can be recovered and all others can be recovered.

On the other hand, if we restrict the support of δa to an open set not containing any
full circle |x| = R, 0 ≤ R, then that set is nontrapping, and we can recover WF(δa) and
WF(δf) with a loss of 3/2 derivatives. One such choice is the set x2 < 0. Numerical examples
illustrating this are Figures 6 and 7.

Let, more generally, f and a be radial, with f supported in the ball B(0, 1) =: Ω, and
f = 0 outside that ball. Assume that (2.8) holds. Then W (x, θ) = 0 for |x| < 1 when x · θ = 0
because of the radial symmetry. Moreover, (2.8) implies that W has a simple zero at x ·θ = 0.
Then zero bicharacteristics associated with W (x, ξ⊥) contain those of x · ξ⊥, given by (2.11)
with perhaps a different parameterization. Therefore, (2.11) are still rays in this case, but
there might be more rays associated with other zeros of W . One case when we can easily
guarantee that there are no other rays is when f > 0 in the unit ball and a = 0. Then one
has θ · ∂xW = 2f(x) > 0 by using the transport equation; thus (2.8) holds, and the positivity
of f easily implies that the only zeros of W are at x · θ = 0.

2.3. Uniqueness and stability results. The discussion above was about the recovery of
the singularities of δa and δf from the linearization. In some cases, we can derive uniqueness
and stability results for the nonlinear inverse problem from the results above. One needs
to add a slightly stronger condition to the nontrapping one on the set K where δa can be
possibly supported—pseudoconvexity: K is included in a nontrapping open set Ω, and any
zero bicharacteristic with endpoints over K lies over some compact set K1 ⊂ Ω. Below, u0 is
the solution of the transport equation (2.1) corresponding to a0 and f0, and W0 is related to
them as well.

Theorem 2.5. Let K be a compact set and be included in a pseudoconvex Ω ⊂ R2 w.r.t.
W0(x, ξ

⊥). Let u0 and Ba0 be real analytic in Ω × S1. Then for (a, f) in a Ck, k � 1,
neighborhood of (a0, f0) with

supp(a− a0) ⊂ K

and f − f0 supported in a fixed compact set, there is uniqueness and a stability estimate of
conditional Hölder type.

The next theorem states uniqueness in a small enough set under explicit conditions.
Theorem 2.6. Let (a, f) belong to a set of smooth pairs so that supp(a − a0) ⊂ K1 and

supp(f − f0) ⊂ K2, where K1, K2 are fixed compact sets. Fix x0 ∈ R2 so that either x0 �∈
K2 \ K1 or (2.7) holds. Then there is a (small enough) neighborhood U of x0 so that if
K1,2 ⊂ U , there is uniqueness and a stability estimate of conditional Hölder type.

The proof of the above theorems is given in [26].
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3. Methods.

3.1. Minimization. The attenuated X-ray transform is the restriction of the solution of
the PDE (2.1) to Γ+. The inverse problem is as follows: given the measurement on the
boundary Γ+, reconstruct both the source f and the attenuation a. We will design an efficient
adjoint state method to solve this inverse problem in terms of transport equations; such
approaches have been used in [15, 16].

To achieve this, let us define the mismatching (energy) functional

(3.1) E(a, f ;u, u∗) =
1

2

∫
Γ+

|u− u∗|2n · θ dSdθ,

where u∗|Γ+ is the measurement on Γ+. This energy measures the L2-difference between the
experimental measurement u∗ and the solution u of the transport equation (2.1). We want to
minimize the energy to reconstruct f and a, that is,

(3.2) find {a, f} such that E(a, f ;u, u∗) = min
a′,f ′ E(a′, f ′;u, u∗).

We apply the method of gradient descent to solve the optimization problem (3.2). We
first perturb {a, f} by {δa, δf}, that is,

a← a+ δa, f ← f + δf,

which induces the change of u by δu,

u← u+ δu.

Then

(3.3)

(θ · ∇+ (a+ δa))(u + δu) = f + δf

⇒(θ · ∇+ a)u+ (θ · ∇+ a)δu + δau+ δaδu = f + δf

⇒(θ · ∇+ a)δu+ δau+ δaδu = δf.

After dropping the higher-order terms, we have

(3.4) (θ · ∇+ a)δu + δau ≈ δf.

Then the change of the energy δE is given by

(3.5)

E + δE =
1

2

∫
Γ+

|u+ δu− u∗|2n · θ dSdθ

⇒ E + δE =
1

2

∫
Γ+

(|u− u∗|2 + 2δu(u − u∗) + (δu)2
)
n · θ dSdθ

⇒ δE =
1

2

∫
Γ+

(
2δu(u − u∗) + (δu)2

)
n · θ dSdθ

⇒ δE ≈
∫
Γ+

δu(u− u∗)n · θ dSdθ,

after dropping the higher-order terms.
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Introducing the adjoint state λ, multiplying (3.4) by λ, taking the integral over Ω × S1,
and integrating by parts, we get

(θ · ∇+ a)δu+ δau ≈ δf

⇒
∫
Ω×S1

[λ(θ · ∇+ a)δu+ λδau] dxdθ ≈
∫
Ω×S1

λδf dxdθ

⇒
∫
Γ+

λδuθ · n dS −
∫
Ω×S1

[∇ · (θλ)− aλ]δu dxdθ +

∫
Ω×S1

λuδa dxdθ ≈
∫
Ω×S1

λδf dxdθ;

(3.6)

that is, we have

(3.7)

∫
Γ+

λδuθ ·n dS−
∫
Ω×S1

[θ ·∇λ−aλ]δu dx dθ+

∫
Ω×S1

λuδa dx dθ−
∫
Ω×S1

λδf dx dθ = 0.

Adding (3.5) and (3.7), we get

(3.8)

δE −
∫
Γ+

δu(u− u∗)θ · ndS dθ +

∫
Γ+

λδuθ · n dS

−
∫
Ω×S1

[∇ · (θλ)− aλ]δu dx dθ +

∫
Ω×S1

λuδa dx dθ −
∫
Ω×S1

λδf dx dθ = 0.

Choosing λ = λ(x, θ) such that

(3.9)
aλ− θ · ∇λ = 0 in Ω,

λ = u− u∗ on Γ+,

we have

(3.10) δE =

∫
Ω×S1

(λδf − λuδa) dx dθ =

∫
Ω

(
λ̄δf − λuδa

)
dx,

where v̄ =
∫
S1 v dθ. To minimize the energy using the method of gradient descent, we can

choose the perturbations,

(3.11) δf = −λ̄, δa = λu.

This implies

(3.12) δE = −
∫
Ω

(
λ̄2 +

(
λu

)2)
dx = −

∫
Ω

(|δf |2 + |δa|2) dx ≤ 0,

and the equality holds if and only if δa = 0 and δf = 0. To further regularize the perturbations,
we choose the descent direction as follows: for some ν > 0, we solve

(3.13)
(−νΔ+ 1)δa = λu in Ω,

δa = 0 on ∂Ω
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and

(3.14)
(−νΔ+ 1)δf = −λ̄ in Ω,

δf = 0 on ∂Ω.

Then we update {a, f} with

(3.15) a← a+ δa, f ← f + δf.

With this particular direction, we have

(3.16) δE = −
∫
Ω
(|δa|2 + ν|∇δa|2) dx−

∫
Ω
(|δf |2 + ν|∇δf |2) dx ≤ 0,

and the equality holds when ||δa||H1
ν (Ω) = 0 and ||δf ||H1

ν (Ω) = 0 for some weighted Sobolev
space H1

ν (Ω).

3.2. Minimization with constraints. In Figure 7, we impose the constraint

supp a ⊂ Ū ,

where U ⊂ Ω is a fixed open subset. We use this to illustrate the results in Theorems 2.3
and 2.5. The modified scheme then is the following. Let 1U be the characteristic function of
U . Then instead of (3.11), we choose

(3.17) δf = −λ̄, δa = 1Uλu.

Then

δE = −
∫
Ω
|δf |2 dx−

∫
U
|δa|2 dx ≤ 0,

with equality if and only if δf = 0 in Ω and δa = 0 in U .
To regularize, we solve

(3.18)

{
(−νΔ+ 1)φ = λu in U,

φ = 0 on ∂U

and set

δa =

{
φ in U,
0 in Ω \ U.

Then

(3.19) δE = −
∫
U
(|δa|2 + ν|∇δa|2) dx−

∫
Ω
(|δf |2 + ν|∇δf |2) dx ≤ 0,

and this turns into an equality if and only if δf = 0 in Ω and δa = 0 in U .
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3.3. Discretization. The discretization of the above algorithm is implemented as follows.
Let us assume that there are N directions: {θi : i = 1, 2, . . . , N}. Each of them is associated
with a measurement u∗i for i = 1, 2, . . . , N . The energy is

(3.20) EN (a, f ; {ui}N1 , {u∗i }N1 ) =

N∑
i=1

∫
Γ+
θi

|ui − u∗i |2n · θi dS,

where ui is the solution of (2.1) corresponding to θi for i = 1, 2, . . . , N , and

Γ±
θi
= {x ∈ ∂Ω : ±θi · n(x) ≥ 0}.

The perturbation of the energy is given by

(3.21) δEN =

N∑
i=1

{∫
Ω
λiδf dΩ−

∫
Ω
λiuiδa dx

}
,

which is slightly different from (3.10). Here λi is the adjoint variable of ui for i = 1, 2, . . . , N ,
solving

(3.22)
aλi −∇ · (θiλi) = 0 in Ω,

λi = ui − u∗ on ∂Ω+
θi
.

We choose the regularized direction as

(3.23) δa = (−νΔ+ 1)−1

{
N∑
i=1

λiui

}
, δf = (−νΔ+ 1)−1

{
N∑
i=1

−λi

}

with a properly chosen regularization parameter ν > 0. Finally, we update {a, f} as
a← a+ δa, f ← f + δf ;

see also (3.11).

3.4. Algorithm. We summarize an algorithm for the inverse attenuated X-ray problem.
Algorithm for inverse attenuated X-ray problem.
1. Initialization of {ak, fk} for k = 0 (refer to examples in section 4).
2. Compute {ui}Ni=1 by solving (2.1) with {θi}Ni=1 using {ak, fk}.
3. Obtain {λi}Ni=1 by solving (3.22).
4. Obtain {δak, δfk} using (3.23).
5. Determine step size εk using, for example, the Armijo–Goldstein (AG) rule or simply

choosing εk = ε for given ε.
6. Update

ak+1 = ak + εkδak, fk+1 = fk + εkδfk.

7. Repeat from step 2 until ||δak|| ≤ δ0 and ||δfk|| ≤ δ0, or k ≥ kmax, where δ0 and kmax

are given convergence criteria.
In steps 2 and 3, both equations are solved with the fast sweeping method [14, 15, 16, 29].

In step 4, a fourth-order solver with the fast Fourier transform (FFT) is used to solve the
elliptic equation. The L-BFGS quasi-Newton method is applied to speed up the iterations for
solving the optimization problem (3.2). In the L-BFGS code, the gradient descent direction
is computed with the above adjoint state approach.
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4. Numerical examples. We present numerical examples to demonstrate the proposed
method and the theoretical understanding of the problem. Our examples also demonstrate
the importance of the nontrapping condition and the importance of the real nondegeneracy
conditions (2.7) and (2.8). In particular, the latter determine what part of the wave front
set of f and a can be reconstructed, assuming smooth background a and f , based on the
linearization (see Theorems 2.2 and 2.3), but we test this for the nonlinear problem.

4.1. Robustness of the method. We start with an example showing the performance of
the method with a good initial guess.

Figure 3. In this example, a0 = 0 and f0 = 1, which are represented by the black color
in the pictures below (notice the different gray scales used for a and f). The Hamiltonian is
not even C1 here because f0 is not zero near the corners. As we can see, the reconstruction
is good, in general. Aside from the points and directions determining lines hitting one of the
corners, the nondegeneracy condition (2.7) is fulfilled everywhere except for x on one of the
coordinate axes and θ perpendicular to it. At those points, however, condition (2.8) holds, so
the real principal–type property still holds, which in particular excludes open instability sets
like in section 4.4 below.
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Figure 3. “Good guesses” a0 = 0, f0 = 1. Top row: a; bottom row: f . First column: exact a and f ; second
column: computed with those guesses.

In contrast, if we use a constant approximation for the attenuation and try to recover f
only, the reconstruction is quite bad; see Figure 4.
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Figure 4. A reconstruction attempt of f in Figure 3 with a constant (and kept fixed): (a) a = 0; (b) a = 0.5.
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Figure 5. Apparent nonuniqueness for “elliptic” (a, f). Top row: a; bottom row: f . First column: exact
a and f ; second and third columns: computed with different initial guesses.

4.2. Ill-posedness in elliptically symmetric geometry.

Figure 5. In addition to the spherical nonuniqueness example in Figure 1, we get numerical
nonuniqueness for (a, f) with level curves consisting of concentric ellipses. The results are
presented in Figure 5. While one can show that the Hamiltonian flow is trapping and the rays
consist of those ellipses, there is no known nonuniqueness theorem in this case.

Perturbing them with small non-“elliptic” δa, δf produces results (not shown here) similar
to those in Figure 2.

4.3. Trapping geometry. The next two examples are intended to show the ill-posedness
with trapping geometry and how we can stabilize the problem by using the a priori knowledge
that the perturbations are supported in a nontrapping domain. The initial guesses are not
“good,” as in Figure 3. On the other hand, with “good” guesses, the reconstructions would
be similar to those there. Notice that in Figures 1, 2, and 5, the geometry is trapping already.

Figure 6. The background functions a0 and f0 are a0 = 0 and f0 equal to the characteristic
function of the unit disk. They are radial, and different initial guesses lead to circular artifacts
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Figure 6. Ill-posedness with circular rays. Top row: a; bottom row: f . First column: exact a and f ; second
and third columns: computed with different guesses. The artifacts are circular, dictated by the Hamiltonian
flow.
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Figure 7. Stabilized example with circular rays. A constraint condition for supp a to be in y < 0 was used.
The initial guesses were the same as in Figure 6. Top row: a; bottom row: f . First column: exact a and f ;
second column: computed with guess 1; third column: computed with guess 2.

because the errors propagate along the rays (the circles |x| = const. in this case). The initial
guesses for a are like the original a but with (guessed) phantoms shifted upward and with
different amplitudes. The attenuation a (more precisely, its X ray transform) is too small to
affect significantly the reconstruction of f in this case. Notice the different gray scales on the
first row, chosen so that the negative values can be displayed.

Figure 7. In the next experiment, we use the a priori knowledge that a is supported in
the lower half of the square, which is nontrapping because it contains no complete circle. The
recovery is shown in Figure 7. The support constraint stabilizes the problem. This example
and the previous one illustrate Theorem 2.5.
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Figure 8. A large open set of unstable points. Top row: a; bottom row: f . First column: exact a and f ;
second column: computed with guess zero for both a and f with the LBFGS solver; third column: computed
with guess zero for both a and f with the AG solver.

4.4. Open characteristic (instability) set. In the next examples, W has an open set of
zeros (x, θ), and therefore the Hamiltonian W (x, ξ⊥) has an open set of characteristic points
(zeros) and co-directions (x, ξ) at them. The real principal–type condition (2.8) does not hold
anymore. This creates microlocal instability, and one cannot recover the wave front set at
such (x, ξ). This instability is much stronger than in the trapping but still of real principal
type, where the characteristic variety is a codimension-one submanifold.

We choose below attenuation a with a zero “background” a0 perturbed by an oval spot
with amplitude 1. This raises the question of whether such a perturbation can be considered
“small.” As can be seen from (2.2) and (2.4), δa is multiplied by u, so in fact we need uδa to
be “small.” In the examples below, u is an unweighted integral of f , and the relative small
width of the “walls” of f ensures the required smallness.

Figure 8. In the next two examples, the source f is represented by four “walls” near the
border of the computational region. We choose f = 1 there, and f = 0 otherwise. There is
a large open set in the phase space consisting of x between the “walls” and θ such that the
line determined by (x, θ) intersects the “walls” at both ends at opposite sides but not too
close to the corners. If the line intersects two adjacent sides (away from some neighborhood
of the corners again), W has a simple zero when the slope is ±1. Here and below, the slope
is defined in the usual (right-hand) coordinate system, not the one indicated in the graphs.
If x is close to the center, then such lines form a small set, and W vanishes for a large set of
directions θ not too close to one of the two diagonals. This creates strong instability for the
linearization. This is illustrated in the lower left subfigure of Figure 8: integrals of f along
the dotted and along the solid rays, for each such line, are equal.

The recovery is shown in Figure 8. The results depend strongly on the number N of
directions used and on the solver used. With the L-BFGS solver, the recovered a takes values
in the range (−0.31, 0.70) instead of (0, 1), while with the AG solver (the gradient descent
solver with the AG step-size rule), that range is (−0.25, 0.34). On the other hand, the two
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Figure 9. The phantom was moved closer to a corner compared to the previous example. This decreases
the set of unstable points (the zeros of W ). Top row: a; bottom row: f . First column: exact a and f ; second
column: computed with guess zero for both a and f with the LBFGS solver; third column: computed with guess
zero for both a and f with the AG solver.

solvers show very similar results in more stable and even in milder unstable cases. Note
that the initial guesses are “good” but the reconstruction is still poor. The artifacts in the
reconstructed f in the form of a dark phantom mirroring that in a are quite strong.

Figure 9. In the next example, we moved the phantom closer to one of the corners.
The set of points and directions corresponding to zeros of W shrinks, and as a consequence,
stability increases. The stable lines actually appear in the reconstruction as faint brighter
lines connecting the phantom and some small neighborhoods of the corners. There is still an
open set over the phantom where W = 0 and the problem is still very unstable. The results
are shown in Figure 9, and the rays in the bottom left subfigure have the same meaning as in
Figure 8; they represent unstable directions.

Figure 10. We choose a as in the previous example, but we remove two “walls” from f .
This changes the determinant W drastically. Integrals of u along opposite rays vanish in a
much smaller angle now; see Figure 11.

In Figure 11, one such line is the one hitting the left and the bottom sides, while the lines
hitting the top side are “stable” (in green)—integrals are zero in one of the directions and
are positive in the opposite directions, and hence W �= 0 there. We still have W = 0 in an
open set in the phase space, but that set is smaller than before. As a result, the artifact in
the reconstructed f , the oval caused by the corresponding oval in a, has more contrast along
the edges having slopes close to 1. Those are the unstable directions, and since the contrast
should be zero, this is where the error maximizes. On the other hand, near the edges with
slope close to −1, the contrast is lower, i.e., closer to the truth. In contrast, in Figure 9, the
same artifact in the recovery of f is stronger, with approximately uniform edges.

Figure 12. In this example, f has the same support as in Figure 9 and the same average
value, but the amplitude increases linearly in the direction (−1, 1) (see Figure 13), where the
stable lines are in green, and the stable co-directions are normal to them; and the unstable
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Figure 10. Two “walls” removed. For computed a, (min a,max a) = (−0.2041, 1.0638). The nontrapping
set is smaller and hence has better stability. First column: exact a and f ; second column: computed with guess
zero for both a and f with the LBFGS solver; third column: computed with guess zero for both a and f with
the AG solver.

Figure 11. In Figure 10, we have a smaller but still open instability set represented here by the line with
negative slope.
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Figure 12. Back to four “walls” but with linearly changing density of f along the direction (−1, 1). The
zeros of W are (almost) a set of lower dimension: two opposite θ’s at each x. First column: exact a and f ;
second column: computed with guess zero for both a and f with the LBFGS solver; third column: computed
with guess zero for both a and f with the AG solver.
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Figure 13. In Figure 12, for x between the walls, there are two instability directions corresponding here to
the line with slope approximately 1.

lines are in red, with unstable co-directions normal to them again. As a result, for all lines not
intersecting the square close to the corners, condition (2.7) is satisfied, and for each x between
the walls, there are two (opposite) directions where W = 0. The unstable (co-)directions are
those along ±(−1, 1) and those close to these two directions because of a small denominator.
The most stable ones are those close to ±(1, 1). As a result, in the third picture in the first
row in Figure 12, the reconstructed a with the AG solver, the contrast along the edges of the
phantom normal to ±(1, 1) is best reconstructed. Since this configuration is more stable than
that in Figure 9, the artifacts in the reconstructed f are much less pronounced.

5. Conclusion. Motivated by recent theoretical results obtained by the third author
for the identification problem arising in single-photon emission computerized tomography
(SPECT), we designed an adjoint state method for recovering both the source and the at-
tenuation in the attenuated X-ray transform. Our starting point is the transport-equation
characterization of the attenuated X-ray transform, and we apply efficient fast sweeping meth-
ods to solve static transport equations and adjoint state equations. Numerous examples are
presented to demonstrate various features of the identification problem, such as uniqueness
and nonuniqueness, stability and instability, and propagation of wave front sets. Future work
includes a three-dimensional implementation of the method.
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