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Abstract. We study microlocally the transmission problem at the interface between an isotropic
linear elastic solid and a linear inviscid fluid. We set up a system of evolution equations describing
the particle displacement and velocity in the solid, and pressure and velocity in the fluid, coupled
by suitable transmission conditions at the interface. We show well posedness for the coupled system
and study the problem microlocally, constructing a parametrix for it using geometric optics. This
construction describes the reflected and transmitted waves, including mode converted ones, related
to incoming waves from either side. We also study formation of surface Scholte waves. Finally, we
prove that under suitable assumptions, we can recover the s- and the p-speeds, as well as the speed
of the liquid, from boundary measurements.

1. Introduction

The analysis of waves meeting an interface between a solid and liquid body is of great interest
in seismology, where it is of importance to understand the behavior of seismic waves in the interior
of the Earth. It is well known that the Earth’s outer core is liquid, and of course the same is
true of the oceans, whereas the crust, mantle and inner core are solid. Earthquakes occur in the
crust or upper mantle, so it is desirable to investigate their behavior when they encounter a liquid
medium. The purpose of the present work is to study microlocally the transmission problem at the
interface between an isotropic linear elastic solid and a compressible inviscid fluid. We assume that
the interface is smooth and that the Lamé parameters λs, µs in the solid, the bulk modulus λf in
the fluid, and the two respective densities ρs and ρf are spatially varying. We construct and justify
a parametrix (an approximate solution up to a smooth error) for a coupled system describing the
pressure and particle velocity in the fluid side and the particle displacement and velocity in the
solid. The pressure-velocity in the fluid is coupled with the displacement-velocity in the solid via
two transmission conditions: the kinematic condition requires that the normal component of the
velocity at the interface must match for the two bodies; unlike the case of a solid-solid interface,
tangential slipping is allowed. The dynamic transmission condition requires that the vector valued
traction across the interface must be continuous across it and normal to it. Those transmission
conditions determine how parametrices constructed separately in the two sides of the interface must
be combined to yield a parametrix for the full system.

In seismology, the oceans and the outer core are often treated as inviscid fluids: it is mentioned
in [AR02, p.128] that the assumption of zero viscosity is reasonable for wavelengths and periods
typical of seismic waves. Models assuming a viscous outer core have also been studied by some
authors, see e.g [GMZN04] and the references there. In a solid, the main quantity one is interested
in describing is particle displacement. In a fluid, one is generally more interested in the fluctuations
of hydrostatic pressure and not as much in the displacement (see [SG95, §2.4.3]), so our primary
model (2.1a-2.1g) below involves a linear first order system of coupled velocity-pressure equations in
the fluid. This system can be easily decoupled into second order equations for the velocity and the
pressure, though the transmission conditions at the solid-fluid interface for a displacement-pressure
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or displacement-velocity system do not appear to be very natural from a physical point of view, at
least in the time dependent formulation of the problem. This is our reason for using the coupled
first order velocity-pressure system in the fluid, which leads to naturally expressed transmission
conditions. The velocity-pressure system in a fluid was studied, e.g. in [BKPR98], and, coupled
with a solid via transmission conditions, in [BGL18], [LZ19] (with constant Lamé parameters and
densities). Displacement-pressure systems for a solid-fluid in the stationary formulation have been
studied e.g. in [LM95], [CQ20]. Regarding our assumptions in the solid side, we use the classical
model of linear elasticity describing the displacement in an isotropic linear elastic body (see e.g.
[AR02], [MH94]).

In order to simplify the presentation, our setup consists of a fluid occupying a bounded domain
M− ⊂ R3, enclosed by a solid occupying a bounded domain M+ ⊂ R3, such that M− and M :=
M− ∪M+ are diffeomorphic to a ball (see Fig. 1 below); we write Γ =M+ ∩M− for the interface
between the two. If one wished to use a model more closely resembling the Earth structure, one
might work on a manifold diffeomorphic to a ball which contains a number of layers, each occupied
by a solid or fluid, with transmission conditions imposed at the various interfaces between layers; see
[DT98], [dHHP17] and [SUV21], with only solid layers in the latter. Since the microlocal analysis of
the transmission systems is local in nature and the solid-solid and fluid-fluid transmission problems
are handled, for instance, in [SUV21], our study of the transmission problem does not become
less comprehensive by our choice of a simplified setup. We mention that within the regime of
linear elasticity it is also possible to use more involved models taking into account factors such
as self-gravitation and rotation of the Earth (see e.g. [DT98], [dHHP17]). One may also work
with anisotropic solids; the transmission problem at the interface between anisotropic elastic solids
was analyzed microlocally in the recent paper [Han22] as part of a study of the propagation of
polarizations for geometric systems of real principal type.

The first question we address is the well posedness of our system of evolution equations. For
this purpose, in Section 3, we turn the initial system for displacement and velocity in the solid,
and pressure and velocity in the fluid, into a system of second order equations for the particle
displacement fields in both the solid and fluid, subject to transmission conditions. This results
in a PDE system of the form ∂2t u = Pu, where u = (u+, u−) is the pair of the displacements
in the solid and fluid region respectively, and P = diag(P+, P−) with P± second order matrix
differential operators. We show that P with an appropriate domain D(P ) is a self-adjoint operator
on L2(M+) × L2(M−) (with suitable measures) and produces a solution for given initial Cauchy
data using functional calculus. Well posedness for solid-fluid systems is also shown in e.g. [LZ19],
[dHHP17]. We actually take the extra step of identifying the domain of the self adjoint operator P
explicitly. Although this is not strictly necessary to show well posedness, it is helpful for justifying
the parametrix, i.e. showing that our parametrix differs from an actual solution by a smooth error.
For the case of an interface between two fluids, with acoustic equations satisfied on both sides, the
justification of the parametrix follows from [Wil92]. Identifying the domain of P takes substantial
effort; one needs to show regularity estimates closely resembling elliptic regularity estimates for
solutions to a transmission problem for a pair of elliptic differential operators with smooth coeffi-
cients up to an interface (see e.g. [McL00, Ch. 4]). However, the operator P− is not elliptic, thus
such regularity results do not appear to be immediately quotable and we had to adapt the proofs
to our situation; as they are somewhat lengthy and technical we included them in the Appendix.

Next, we need to construct a parametrix for our solid-fluid system. The study of the elastic
wave system with constant Lamé parameters is often simplified using potentials (see e.g. [SG95]).
In this way one obtains a decomposition of elastic waves into shear (s) and pressure (p) waves,
which are transversal and longitudinal respectively. In [SUV21], it was shown that the elastic
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system with non-constant Lamé parameters can be decoupled microlocally, up to lower order matrix
pseudodifferential operators. In this way, from a microlocal point of view, its study reduces to the
study of potentials satisfying principally scalar hyperbolic pseudodifferential systems. For those,
the construction of a parametrix via geometric optics is standard (see e.g. [Tay81]). One also
obtains a decomposition of an elastic wave into a microlocal s and p wave up to lower order terms.
In the fluid side, we similarly use a potential to reduce the study of the evolution of the “momentum
density” ρfv

−, where v− is the velocity in the fluid, to the study of a scalar hyperbolic equation
with a source supported away from the interface at all times. For such an equation we can again
construct a parametrix away from the interface and boundary.

The parametrices constructed on the two sides of the interface between the solid and fluid must
be matched using the transmission conditions. Suppose that we have solutions of the elastic and
acoustic wave equation on the solid and fluid side respectively, consisting of incoming and outgoing
waves (incoming/outgoing waves propagate singularities only in the past/future respectively, in
their respective domains). The Dirichlet and Neumann data of those solutions at the interface
Γ × R are coupled by the transmission conditions. To show microlocal well posedness for the
transmission problem, it suffices to show that the Dirichlet data of the outgoing waves at Γ × R
can be uniquely produced from Dirichlet data for the incoming ones. If this is the case, then the
geometric optics construction can be used to yield parametrices for the outgoing waves; combining
them with parametrices for the incoming ones, we can obtain a parametrix for the full system
near the interface. With the aid of appropriate incoming and outgoing Dirichlet to Neumann maps
relating Neumann and Dirichlet data, the system induced by the transmission conditions can be
reduced to a pseudodifferential system on Γ × R for the Dirichlet data of the outgoing waves, in
a conical neighborhood of the Dirichlet data of the incoming waves. In this way, microlocal well
posedness of the transmission problem is reduced to the microlocal solvability (ellipticity) of this
system.

It turns out that the form of those microlocal systems and their solutions (i.e. of the waves
produced) depends on the traces of the incoming waves, and we have to study six cases separately
(we do not investigate the case of wave front sets in the glancing regions, see below). In some of
those cases, evanescent waves are produced on either or both sides of the interface, that is, waves
which decay exponentially fast away from Γ. Those do not propagate singularities into the interior
of the solid or fluid region. Of particular interest are surface waves which are evanescent on both
sides of Γ×R and propagate singularities along Γ×R. In the geophysical literature, surface waves
at the interface between a solid and a fluid are known as Scholte waves. For constant densities and
Lamé parameters and a flat interface between two solids, the analogous surface waves (known as
Stoneley waves), do not always exist; however, in the constant parameter case, Scholte waves are
known to always be possible (see [Sch47], [SG95, §2.5.3], [AR02, p. 156], [Ans72]).

We will always assume that the Dirichlet data of our solutions at Γ × R are away from the
glancing regions in T ∗(Γ × R) with respect to the wave speed of the fluid and the microlocal p
and s waves in the solid (see Sections 4.1 and 4.2). The projections to M of bicharacteristic rays
emanating from glancing covectors are tangential to the hypersurface Γ. The construction of a
parametrix for the acoustic or elastic wave equation given Dirichlet data with wave front set in the
glancing region corresponding to the acoustic or s/p wave speed respectively is more delicate (see e.g.
[Tay81, SV95, Yam09]) and we do not consider it here, partly to avoid lengthening the exposition
further. Besides that, it follows from the arguments in Section 7 that a detailed analysis of the
behavior of glancing rays is not necessary for the study of the inverse problem (see next paragraph),
essentially because they constitute a set of measure zero within the set of all bicharacteristics. We
should also mention that in order to construct a full parametrix for our system, one also needs to
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consider the behavior of singularities of elastic waves meeting the outer boundary ∂M . We do not
pursue this here, since it has been studied in detail in [SUV16, Section 8].

We apply the analysis above to study the inverse problem of recovering the densities and the
Lamé parameters of the solid and fluid from the Neumann to Dirichlet map at the boundary ∂M .
In Theorem 2, stated in Section 7 and somewhat informally summarized here, we prove that we
can recover the shear and the pressure elastic speeds cs =

√
(λs + 2µs)/ρs and cp =

√
µs/ρs in

M+, and the liquid speed cf =
√
λf/ρf in M

− under a foliation condition. The density ρs is also
recoverable under an additional technical assumption. The main idea is to reduce this problem to
the lens/boundary rigidity one and use the result in [SUV16], see also [SUV18, SUV21, CdHKU21].
We do not recover λf and ρf separately though; the recovery of the density below the interface
requires recovering all material parameters as well as their higher order derivatives at the interface,
and for this one typically needs information about the full amplitude of the reflected waves (not
just its principal part). Interface determination of the material parameters from such information
has been studied in the solid-solid and fluid-fluid case in [BdHKU22b], and it is plausible that in
our case the density in the fluid region can be recovered using techniques similar to those there and
in the subsequent paper of the same authors ([BdHKU22a]), but we have not pursued this question.

The paper is organized as follows: in Section 2 we describe our geometric setup and main model
and elaborate on the various physical quantities appearing in it. In Section 3 we show well posedness
for the coupled system of evolution equations in the solid and fluid and identify the domain of the
self-adjoint operator P mentioned before. In Section 4 we transform the system to one involving a
potential in the fluid region and in Subsections 4.1 and 4.2 we discuss some necessary background
on the geometric optics construction for the acoustic and elastic equation respectively. Section
5 is perhaps the most central of the paper. There, we study the transmission systems and show
microlocal well posedness of the transmission problem, that is, we show that a parametrix can
be constructed for the solid-fluid system near the interface, away from the glancing region. The
most important results of the section are summarized in Theorem 1. In Section 6 we justify the
parametrix, i.e. we show that it differs from an actual solution by a smooth error. The inverse
problem is studied in Section 7, where Theorem 2 is stated and proved. In Appendix A we explain
how well posedness and parametrix justification work for the solid-solid and fluid-fluid case, quoting
some readily available results. In Appendix B we present two lengthy proofs omitted from Section
3.

Acknowledgments: P.S. was partly supported by NSF Grant DMS-1900475. The authors would
like to thank Mark Williams and Yang Zhang for helpful discussions, and the anonymous referee for
carefully reading the manuscript and for detailed comments which greatly improved the exposition.

2. The setup and main model

Suppose M ⊂ R3 and M− ⊂⊂M are precompact domains diffeomorphic to an open ball, and g
is a smooth background Riemannian metric on M , whose purpose will be to help us conveniently

change coordinates whenever necessary. Let M+ = M \M−
(see Figure 1). We assume that M+

is occupied by an isotropic elastic solid and M− is occupied by a compressible inviscid fluid. Let ν
be the outer pointing unit normal to ∂M+, and set Γ = ∂M−. We will study the first order system
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∂tu
+ = v+ in M+ × R,(2.1a)

∂tv
+ = ρ−1

s Eu+ in M+ × R,(2.1b)

∂tv
− = −ρ−1

f ∇p− in M− × R,(2.1c)

∂tp
− = −λf div v− in M− × R,(2.1d)

v+ · ν = v− · ν on Γ× R,(2.1e)

N(u+) = −p−ν on Γ× R,(2.1f)

N(u+) = 0 on ∂M × R,(2.1g)

with prescribed Cauchy data

(u+, v+, p−, v−)
∣∣
t=0

=(u+0 , v
+
0 , p

−
0 , v

−
0 ).(2.1h)

We will later place assumptions on the data as needed. The densities ρs, ρf are assumed to be
smooth and positive spatially varying functions, and the same is assumed for the bulk modulus λf
of the fluid. In (2.1e) and throughout, · denotes pairing with respect to the metric g. Physically,
the vector fields u+ and v+ stand for the displacement and velocity field in the solid respectively,
whereas v− and p− stand for the velocity and pressure in the fluid, respectively. In (2.1b),

Eu+ = div σ(u+),

where σ is the Cauchy Stress tensor, see (2.2) below. We denote by

N(u+) = σ(u+) · ν
the traction across Γ and ∂M . The transmission condition (2.1e) indicates that the normal compo-
nent of the velocity is continuous across the interface, allowing tangential slipping. (2.1f) indicates
that the tangential components of the traction at the interface vanish, whereas its normal compo-
nent is continuous. At the interface between a solid and vacuum (or air, by approximation) one
requires vanishing of the normal traction, i.e. (2.1g). Those transmission and boundary condi-
tions for the interface between a solid and a fluid are physically reasonable and widely used in the
geophysical literature, see e.g. [SG95, Problem 2.10], [AR02, Section 5.2].

Given u+ ∈ C∞(M
+
;TM), the Cauchy Stress tensor is a symmetric (2,0)-tensor field, given by

(2.2) σ(u+) = λs(div u
+)g−1 + 2µsd

su+.

In (2.2), λs, µs are the Lamé parameters, which are assumed to be smooth, positive and spatially

varying on M
+

but constant in time. We denote by dsu the symmetrized covariant differential of
a vector field u, with a raised index, becoming a (2, 0)-tensor field. In local coordinates,

(2.3) (dsu)ab =
1

2
(∇aub +∇bua) =

1

2
(gakub;k + gbkua;k + gakgbℓgkℓ;mu

m),

where repeated indices indicate summation and for a vector field u we write ∇aub = gak∇ku
b =

gak(ub;k +Γb
kℓu

ℓ) with Γb
kℓ denoting the Christoffel symbols of g (also see Remark 2.1 below). Thus

Eu can be written in local coordinates as

(2.4) (Eu)a = ∇a(λs∇ku
k) +∇k

(
µs(∇auk +∇kua)

)
.

Note that in the first term above, the covariant derivative of a scalar function, with a raised index,
agrees with the gradient ∇ = grad, and this is the interpretation we will place on ∇f for f scalar,
i.e. ∇f will be an (1, 0) tensor field.
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Remark 2.1. Following [MH94, Section 4.3], u+ is considered a vector field, but it is also possible
to treat it as a covector field, as done in [SUV21]; one can switch between the two by lowering or
raising an index with respect to g. A slight advantage of viewing u+ as a vector field is the natural
interpretation of the strain tensor as 1

2Lu+g, where L denotes Lie derivative (see [MH94]). On
the other hand, a disadvantage is that the notation ds is more commonly used in the literature to
denote the symmetrized covariant derivative of a covector field ω, with no indices raised. Denoting
the latter by ds♭, we can see that it is related to ds as defined in (2.3) in a natural way. In

local coordinates we have (ds♭ω)αβ = 1
2(ωa;b + ωb;α − 2Γk

abωk), thus a computation shows that

dsu+ = (ds♭(u
+)♭)♯♯ = 1

2(Lu+g)♯♯, where ♯ and ♭ indicate raising and lowering of indices respectively.

We make the following assumption on our initial data, whose relevance will become clear in
Section 3 below.

Assumption 2.2. We have
∫
M− p

−
0 /λf dvg =

∫
Γ u

+
0 · ν dA, where dvg, dA are the natural measures

induced by g on M− and Γ respectively. Note that ν is inward pointing with respect to M−.

ν

ν

M−

M+

solidfluid

Γ

Figure 1. The geometric setting.

3. Well posedness of the acoustic-elastic wave equation

In order to prove well posedness for the system (2.1a-2.1g) we consider an auxiliary system,
which physically corresponds to equations for the displacement in the solid and fluid. As we show
below, the system (2.1a-2.1g) with initial conditions (2.1h) satisfying Assumption 2.2 is equivalent
to the system

∂2t u
+ = ρ−1

s Eu+ in M+ × R,(3.1a)

∂2t u
− = ρ−1

f ∇λf div u− in M− × R,(3.1b)

u+ · ν = u− · ν on Γ× R,(3.1c)

N(u+) = λf(div u
−) ν on Γ× R,(3.1d)

N(u+) = 0 on ∂M × R,(3.1e)

for u = (u+, u−) with initial data

u = u0, ∂tu = v0 at t = 0(3.1f)
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chosen as follows: given sufficiently regular initial data as in (2.1h) satisfying Assumption 2.2, we
choose initial data (u0,v0) = (u+0 , u

−
0 , v

+
0 , v

−
0 ) by choosing u−0 such that

(3.2) p−0 = −λf div u−0 on M−, u+0 · ν = u−0 · ν on Γ.

We find such a u−0 as follows: solve

(3.3) ∆ω0 = −p0/λf on M−, ∂νω0 = u+0 · ν on Γ,

and take u−0 = ∇ω0. Assumption 2.2 guarantees the existence of a solution to (3.3), unique up
to a constant, for appropriate regularity of the initial data. Moreover, if (3.2) is satisfied (as is
the case for a reasonable simple model for a fluid, see e.g. [AR02, (8.2)]), then Assumption 2.2 is
automatically satisfied.

The choice of initial data u−0 satisfying (3.2) is not unique. Any other such choice u−0
′ will

differ from u−0 by a divergence free vector field z0 with z0 · ν = 0 on Γ. The solution u′ of
(3.1a-3.1e) with initial data (3.1f), where u−0 is replaced by u−0

′, satisfies u − u′∣∣
t=0

= (0, z0) and

∂t(u − u′)
∣∣
t=0

= (0, 0). By the energy conservation (3.13) below, u − u′ has vanishing energy for

all time (since this is the case for t = 0). Therefore, ∂t(u− u′) ≡ 0, implying that u− u′ = (0, z0)
for all time, thus constant (as before the pair stands for the + and − component of u− u′).

Now to produce a solution of the original system (2.1a-2.1g) given one of (3.1a-3.1e), set v+ =
∂tu

+, v− = ∂tu
− and p− = −λf div u−. The solution of (2.1a-2.1g) obtained using those substi-

tutions is independent of adding a pair (0, z0) to u = (u+, u−), where z0 is constant, divergence
free and satisfies z0 · ν

∣∣
Γ
= 0, since such a term does not alter p− or v−. Moreover, Assumption

2.2 is satisfied automatically by the divergence theorem and (3.1c). Conversely, given a solution
to (2.1a-2.1g) with Assumption 2.2 in effect for the initial data, one can produce a solution for

(3.1a-3.1e) by taking u− = u−0 +
∫ t
0 v

−(τ)dτ with u−0 chosen as described above (the solution is

not unique due to the ambiguity in the choice of u−0 ). To verify (3.1b), one needs to use that

∂2t u
− = ∂tv

− = −ρ−1
f ∇p−, and the fact that ∂tp

− = −λf div v− implies ∂t(p
− + λf div u

−) = 0, to
obtain p− = −λf div u− for all time by (3.2). Note that since the initial data are chosen so that
u+0 ·ν = u−0 ·ν, (3.1c) follows from (2.1e). In summary, solutions (u+, v+, p−, v−) of (2.1a-2.1g) with
initial data subject to Assumption 2.2 are in 1-1 correspondence with solutions u = (u+, u−) of
(3.1a-3.1e) with initial data chosen as described before, modulo the addition of a pair (0, z0) with
the aforementioned properties.

We would like to show that (3.1a-3.1e) has a unique solution given initial data (3.1f) lying in an
appropriate space; consider the unbounded densely defined matrix operator P0 on

(3.4) H0 := L2(M+, ρsdvg;C⊗ TM)× L2(M−, ρfdvg;C⊗ TM),

given by

P0 =

(
P+ 0
0 P−

)
:=

(
ρ−1
s E 0
0 ρ−1

f ∇λf div

)
,

with domain

(3.5)
D(P0) =

{
(u+, u−) ∈ C∞(M

+
;C⊗ TM)× C∞(M

−
;C⊗ TM)

with u+ · ν
∣∣
Γ
= u− · ν

∣∣
Γ
, N(u+)

∣∣
Γ
= λf(div u

−) ν
∣∣
Γ
, N(u+) = 0 on ∂M

}
.

Note that P− = ρ−1
f E with E as in (2.4) but with the Lamé parameters given by λ = λf , µ = 0.

The operator P− is not elliptic. In (3.4) and (3.5) we view u± as sections of the complexified
tangent bundles, so that H0 becomes a complex Hilbert space. Once we have shown well posedness
for the system (3.1a-3.1e) with initial data which are real vector fields in a subset of H0, we will be
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able to produce real vector fields satisfying (3.1a-3.1e) by taking real parts of the a priori complex
vector field valued solution associated with the given data.

Remark 3.1. One can equivalently let the measures in the L2 spaces in (3.4) be the Lebesgue
measure on R3; the specific choice of measures is only relevant for the definition of the corresponding
inner products. Similarly, below we will use L2 based Sobolev spaces, all of which are defined using
smooth measures on precompact domains. To avoid cluttering the notation, we will often not
indicate the measure explicitly when writing them, but we will indicate the target space, when it is
different from C; for instance we will write u− ∈ L2(M−;C⊗TM) to mean that

∫
M− |u−|2gρf dvg <

∞; we will also write ∥u−∥2L2(M−) < ∞ in this case. On the other hand, when writing inner

products we will specify the measure, e.g. we will write (u−1 , u
−
2 )L2(M−,ρfdvg) :=

∫
M− u

−
1 · u−2 ρf dvg.

We henceforth assume everywhere that we have fixed Sobolev norms on M±, Γ and ∂M .

Below we write

(u1,u2)L2 = (u1,u2)H0 := (u+1 , u
+
2 )L2(M+,ρsdvg) + (u−1 , u

−
2 )L2(M−,ρfdvg),

and

∥u∥2L2 = ∥u∥2H0 = ∥u+∥2L2(M+,ρsdvg)
+ ∥u−∥2L2(M−,ρfdvg)

.

Using the identities∫
M+

Eu+ · w+dvg −
∫
M+

u+ · Ew+dvg =

∫
∂M+

N(u+) · w+ − u+ ·N(w+)dA,

and ∫
M−

∇(λf div u
−) · w−dvg −

∫
M−

u− · ∇(λf divw
−)dvg

=

∫
Γ

(
−λf(div u−)w− · ν + λf(u

− · ν) div(w−)
)
dA,

valid for u±, w± ∈ C∞(M
±
;C⊗TM) (recall that ν is inward pointing for M−), one sees that P0 is

symmetric on D(P0). By a similar computation using the transmission conditions and the identity∫
M+

Eu+ · w+dvg = −
∫
M+

λs(div u
+ divw−) + 2µs(d

su+ · dsw+)dvg +

∫
∂M+

N(u+) · w+dA,

we find

(u,−P0u)L2 ≥ 0, u ∈ D(P0).

By the Friedrichs extension construction (see e.g. [Lax02]), P0 can be extended to a self-adjoint
operator P with domain D(P ). In Section 3.1 below we investigate D(P ) in more detail; this will
be useful for showing well posedness for the system (3.1a-3.1e) and for justifying our parametrix.

3.1. The domain of P . We briefly recall the Friedrichs construction, which produces a self-adjoint
extension of P0. The first step in the construction of the domain D(P ) consists of completing
D(P0) with respect to the norm ∥u∥2q = (−P0u,u)H0 + ∥u∥2H0 . This norm is induced by the
positive definite quadratic form q0(u,w) = (−P0u,w)H0 + (u,w)H0 with domain D(P0). Then
the completion of D(P0) in ∥ · ∥q is the domain of the closure of q0; we denote this closure by q
and its domain by D(q). We note that D(q) can be identified with a subset of H0 (the inclusion
ι : (D(P0), ∥ · ∥q) → (H0, ∥ · ∥H0) extends to an injective bounded linear map ι̂ : (D(q), ∥ · ∥q) →
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(H0, ∥ · ∥H0)). The operator P0 subsequently extends to a bounded operator P : D(q) → D(q)∗ by
letting (−Pu,v)H0 := q(u,v)− (u,v)H0 , u, v ∈ D(q). Then one takes

(3.6) D(P ) = {w ∈ D(q) : q(u,w) ≤ C∥u∥H0 for all u ∈ D(q)}.
Hence for w ∈ D(P ), q(·,w) extends to a bounded linear functional on H0, and by the Riesz
representation theorem there exists a unique w̃ ∈ H0 such that q(u,w) = (u, w̃)H0 ; set Pw =
−w̃ +w, which is a self-adjoint extension of P0.

We first identify the domain of the quadratic form q. Below we set, for integer k ≥ 1,

Hk
div(M

−;C⊗ TM) = {u− ∈ L2(M−;C⊗ TM) : div u− ∈ Hk−1(M−)},
where the divergence is with respect to g, and div u− is a priori defined in a distributional sense.
If u− ∈ H1

div(M
−;C⊗TM), then the trace τ(u− · ν) of the normal component of u− can be weakly

defined as an element of H−1/2(Γ) via

(3.7) −⟨τ(u− · ν), ϕ⟩L2(Γ,dA) := (div u−, ϕ̃)L2(M−,dvg) + (u−,∇ϕ̃)L2(M−,dvg), ϕ ∈ H1/2(Γ),

where ϕ̃ ∈ H1(M−) is an extension of ϕ off Γ depending continuously on ∥ϕ∥H1/2(Γ) (it can be

shown that the choice of extension does not affect the result). Moreover, ∥τ(u− · ν)∥H−1/2(Γ)

depends continuously on the norm ∥u−∥H1
div(M

−) := (∥u−∥2L2(M−,dvg)
+ ∥ div u−∥2L2(M−,dvg)

)1/2.

Lemma 3.2. We have

(3.8)
D(q) = H1

div,tr

: = {(u+, u−) ∈ H1(M+;C⊗ TM)×H1
div(M

−;C⊗ TM) : τ(u+) · ν = τ(u− · ν)}.
The subscript “tr” in (3.8) stands for “transmission”. The proof of Lemma 3.2 is contained in

Appendix B. We also include there the proofs of Proposition 3.3 and Corollary 3.5 below, which
employ standard arguments used to show regularity estimates for the transmission problem for
elliptic operators (see e.g. [McL00]).

Proposition 3.3. Let u ∈ D(P ). We have the estimate

(3.9)
∥u+∥2H2(M+) + ∥ div u−∥2H1(M−)

≤ C
(
∥P+u+∥2L2(M+) + ∥P−u−∥2L2(M−) + ∥u+∥2H1(M+) + ∥ div u−∥2L2(M−)

)
.

By Proposition 3.3,

(3.10)
D(P ) ⊂ H2

div,tr :=
{
(u+, u−) ∈ H2(M+;C⊗ TM)×H2

div(M
−;C⊗ TM) :

τ(u+) · ν = τ(u− · ν) on Γ, N(u+) = λf(div u
−) ν on Γ, N(u+) = 0 on ∂M

}
.

The regularity follows directly from the estimate (3.9), whereas the transmission conditions follow
since (Pu,v) = (u, Pv) for u ∈ D(P ), v ∈ D(P0). Conversely, if w ∈ H2

div,tr, an integration by

parts and Cauchy-Schwarz imply that q(u,w) ≤ C∥u∥L2 for all u ∈ D(q). Thus we have:

Proposition 3.4. The domain of the self-adjoint operator P is given by D(P ) = H2
div,tr.

The following corollary will be useful in the justification of the parametrix.

Corollary 3.5. If u ∈ D(P ) with P±u± ∈ Hk(M±;C⊗ TM), then for k = 0, 1, 2 . . . we have

(3.11)
∥u+∥2Hk+2(M+) + ∥ div u−∥2Hk+1(M−)

≤ C
(
∥P+u+∥2Hk(M+) + ∥P−u−∥2Hk(M−) + ∥u+∥2H1(M+) + ∥ div u−∥2L2(M−)

)
.

If u = (u+, u−) ∈ D(Pm), m ≥ 1 then u+ ∈ H2m(M+;C⊗ TM) and u− ∈ H2m
div (M

−;C⊗ TM).
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3.2. Well posedness. Since (−Pu,u) ≥ 0 for u ∈ D(P ), there exists a unique non-negative self-
adjoint square root of −P , written as

√
−P , and its domain is the completion of D(P ) in the graph

norm, which implies that D(
√
−P ) = D(q) = H1

div,tr. Moreover, by the functional calculus we can

define the operators cos(
√
−P t) and sin (

√
−P t)√
−P

= tsinc(
√
−P t), which are strongly continuous in

t and satisfy cos(
√
−P t)D(P ) ⊂ D(P ), sin (

√
−P t)√
−P

D(
√
−P ) ⊂ D(P ). Now set

(3.12) u(t) = cos
(√

−P t
)
u0 +

sin (
√
−P t)√
−P

v0 ∈ D(P ),

where u0 ∈ D(P ) and v0 ∈ D(
√
−P ), which solves

∂2t u = Pu, u
∣∣
t=0

= u0, ∂tu
∣∣
t=0

= v0

subject to transmission conditions satisfied by elements of D(P ), i.e. it solves (3.1a-3.1e). We also
have ∂tu ∈ D(

√
−P ) ⊂ H0 for each t, thus the energy

E(t) = (u,−Pu)L2 + ∥∂tu∥2L2

= ∥ div(u+)∥2L2(M+,λsdvg)
+ ∥ds(u+)∥2L2(M+,2µsdvg)

+ ∥ div u−∥2L2(M−,λfdvg)
+ ∥∂tu∥2L2(3.13)

is well defined for all time. Moreover, since u ∈ D(P ) and ∂tu ∈ D(
√
−P ) = H1

div,tr, we can check

that E is constant upon differentiating E in time and substituting ∂2t u = Pu in E ′(t).
Returning to the original system (2.1a-2.1g) with the substitutions mentioned earlier, (3.13)

implies that the energy

(3.14)
∥div(u+)∥2L2(M+,λsdvg)

+ ∥ds(u+)∥2L2(M+,2µsdvg)
+ ∥v+∥2L2(M+,ρsdvg)

+∥v−∥2L2(M−,ρfdvg)
+ ∥p−∥2

L2(M−,λ−1
f dvg)

is constant. Now call H the image of D(P )×D(
√
−P ) under the map

(3.15) D(P )×D(
√
−P ) ∋ ((u+, u−), (v+, v−)) 7→ (u+, v+,−λf div u−, v−) = (u+, v+, p−, v−).

Since D(
√
−P ) = H1

div,tr, by Proposition 3.4 and Lemma 3.2 it follows that H is contained in

{
(u+, v+, p−, v−) ∈ H2(M+;C⊗ TM)×H1(M+;C⊗ TM)×H1(M−)×H1

div(M
−;C⊗ TM) :

τ(v+) · ν = τ(v− · ν) and N(u+) = −p−ν on Γ, N(u+) = 0 on ∂M,(3.16) ∫
M−

p−/λfdvg =

∫
Γ
u+ · νdA

}
.

It turns out that H is actually equal to (3.16): given (u+, v+, p−, v−) as in (3.16), one can produce
u− ∈ H2

div(M
−;C⊗TM) such that ((u+, u−), (v+, v−)) ∈ D(P )×D(

√
−P ) is in its preimage under

the map (3.15) by solving ∆ω = −p/λf on M−, ∂νω = u+ · ν on Γ and taking u− = ∇ω (just like
in (3.3)). The last condition in (3.16) guarantees the solvability of this problem and the various
transmission conditions are not hard to check. Note that the map (3.15) has non-trivial kernel;
however, any element in its kernel has 0 energy. Therefore any solution of (3.1a-3.1e) produced
by an element in the kernel as initial data via (3.12) will be of constant 0 energy and will thus be
constant, staying in the kernel for all times. We have shown the following:
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Proposition 3.6. The system (2.1a-2.1g) subject to initial conditions contained in the space H
given by (3.16) has a unique solution in C(R;H). The solution is given by the image of (u, ∂tu) as
in (3.12) under the map (3.15), where the initial data u0, v0 are produced by given initial data in
H using the procedure described after (3.16). The energy (3.14) of such a solution is constant.

4. The Solid-Fluid Transmission System and Geometric Optics

Our goal in this section will be to review the geometric optics construction and show how it can
be used to construct an approximate solution for the equations describing the evolution in the solid
and the fluid. In the fluid region it will be convenient (and, as we will show, sufficient) to work
with potentials. We start by explaining this point.

Let (u+, v+, p−, v−) be the solution to (2.1a-2.1g) subject to initial data (2.1h). To simplify
the notations, henceforth we assume that the vector fields and functions we use are sections of
appropriate regularity of TM and M × R respectively, instead of their complexified counterparts.
As mentioned earlier, the existence of real solutions of (3.1a-3.1e) is justified since we can find them
by taking the real part of complex ones. Then we can pass to real solutions of (2.1a-2.1g). If in the
initial data (2.1h) we have ρfv

−
0 ∈ H1

div(M
−;TM) and v+0 ∈ H1(M+;TM), there exists a potential

ψ−
0 ∈ H2(M−) and a divergence free vector field Z0 ∈ L2(M−;TM) with τ(Z0 · ν) = 0 on Γ (in a

weak sense) such that

(4.1) ρfv
−
0 = Z0 −∇ψ−

0 .

They can be found by solving up to a constant

(4.2) ∆ψ−
0 = −div(ρfv

−
0 ) on M

−, ∂νψ
−
0 = −ρfv+0 · ν on Γ,

and taking Z0 = ρfv
−
0 +∇ψ−

0 . Here (4.2) is solvable because of the transmission condition (2.1e)
which guarantees that

∫
M− −div(ρfv

−
0 )dvg =

∫
Γ ρfv

+
0 · ν dA. Setting

(4.3) ψ−(t) = ψ−
0 +

∫ t

0
p−(τ)dτ,

we find that ρfv
− +∇ψ− is constant in time by (2.1c), so by (4.1),

(4.4) ρfv
−(t) = Z0 −∇ψ−(t).

Now one checks that (u+, ψ−) satisfies the following system of hyperbolic equations subject to
transmission conditions and Cauchy data:

∂2t u
+ − ρ−1

s Eu+ = 0 in M+ × R,(4.5a)

∂2t ψ
− − λf div(ρ

−1
f ∇ψ−) = F in M− × R,(4.5b)

ν · ∂tu+ = −ρ−1
f ∂νψ

− on Γ× R,(4.5c)

N(u+) = −∂tψ− ν on Γ× R,(4.5d)

N(u+) = 0 on ∂M × R,(4.5e)

with

(u+, ∂tu
+, ψ−, ∂tψ

−)
∣∣
t=0

=(u+0 , v
+
0 , ψ

−
0 , p

−
0 ),(4.5f)

where F (x) = −λf(∇ρ−1
f ) · Z0(x) is constant in time and Assumption 2.2 applies to the initial

data in (4.5f). Note that by the construction of the initial potential ψ−
0 , Z0 has no effect on the

transmission conditions. Moreover, the fact that ψ−
0 is determined by v−0 up to constant is of no

serious consequence. Indeed, if (u+, ψ−), (u+′, ψ−′) are two solutions of (4.5a-4.5e) for which the
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initial data (4.5f) differ by (0, 0, c, 0) for some constant c, then their difference (ũ+, ψ̃−) satisfies a
homogeneous version of (4.5a-4.5e), i.e. with F = 0, for which the energy

∥div(ũ+)∥2L2(M+,λsdvg)
+ ∥ds(ũ+)∥2L2(M+,2µsdvg)

+ ∥∂tũ+∥2L2(M+,ρsdvg)

+∥∂tψ̃−∥2
L2(M−,λ−1

f dvg)
+ ∥∇ψ̃−∥2

L2(M−,ρ−1
f dvg)

is constant in time. Therefore, (ũ+, ψ̃−) = (0, c) for all time.
Conversely, we can produce a solution of (2.1a-2.1g) with initial conditions (2.1h) by first de-

composing ρv−0 using (4.1), then solving (4.5a-4.5e) subject to (4.5f), and finally setting

(4.6) (u+, v+, p−, v−) = (u+, ∂tu
+, ∂tψ

−, ρ−1
f (Z0 −∇ψ−)).

Note that the fact that ψ−
0 is only determined up to constant does not affect (4.6).

For the construction of our parametrix we will make the following assumption:

Assumption 4.1. The initial data (2.1h) are supported away from Γ and ∂M .

Note that this assumption implies that ψ−
0 is smooth near the interface Γ, by (4.2) and elliptic

regularity (notice that the Neumann condition becomes homogeneous under Assumption 4.1). Thus
by (4.4), Z0 is also smooth near Γ. Now let χ ∈ C∞

c (M−) be 1 in a neighborhood of the singular
support of Z0 and ψ−

0 . With the techniques we use in Section 6 to justify the parametrix, it can
be shown that the difference of a solution of (4.5a-4.5f) from one of the same system, but with F
replaced by χF and ψ−

0 replaced by χψ−
0 , is smooth up to Γ and ∂M . Hence for the purposes of

studying the transmission problem microlocally, it can be assumed without loss of generality that
ψ−
0 and F are supported away from Γ (for all time in the case of the latter, since it does not depend

on t), and we henceforth assume that this is the case. If the fluid is initially at rest (i.e. v−0 = 0)
then ψ−

0 = 0 and Z0 = 0, hence F vanishes, leading to (4.5b) being homogeneous.
The following lemma justifies that, with Assumption 4.1 in effect, it suffices to use the system

(4.5a)-(4.5e) to study the transmission problem microlocally, in the sense that the singularities
of the quantities v−, p− in the original system (2.1a-2.1g) are the same as those of the potential
ψ− away from the singularities of Z0 (also see the discussion before (4.10) regarding traces at the
interface Γ):

Lemma 4.2. In any conical neighborhood U in T ∗(M− × R) with U ∩ WF(Z0) = ∅ we have
WF(ψ−) = WF(p−) = WF(v−).

Proof. Note that WF(F ) ⊂ WF(Z0) ⊂
{
(x, t, ξ, τ) ∈ T ∗(M × R) \ 0 : τ = 0

}
. By (4.5b) and the

analogous hyperbolic equation ∂2t p
− − λf div(ρ

−1
f ∇p−) = 0 for p− it follows that

U ∩
(
WF(p−) ∪WF(ψ−)

)
⊂ Σf :=

{
(x, t, ξ, τ) ∈ T ∗(M− × R) \ 0 : c−2

f τ2 = |ξ|2g
}
,

where we set cf =
√
λf/ρf for the speed of the fluid. Since p− = ∂tψ

− and ∂t is elliptic in a
conical neighborhood of Σf , we conclude that in U we have WF(p−) = WF(ψ−). By (4.4), on
U we have WF(v−) = WF(∇ψ−) ⊂ WF(ψ−). Since the metric is non-degenerate, in terms of
local coordinates in a conical neighborhood of a covector ζ = (x, t, ξ, τ) ∈ Σf at least one of the

ξk :=
∑3

j=1 g
kjξj , k = 1, 2, 3, is non-zero. Assume that ξ3 is non-zero (without loss of generality).

Then write ∇ψ− = A(0, 0, ψ−)T , where A is a matrix differential operator with principal symbol

i

1 0 ξ1

0 1 ξ2

0 0 ξ3

. Then A is elliptic in a conical neighborhood of ζ, in the Douglis-Nirenberg sense,

which shows that WF(ψ−) = WF(∇ψ−), proving the claim. □
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4.1. Geometric optics for the acoustic wave equation. We will use the geometric optics
construction to produce solutions up to a smooth error to the acoustic equation (4.5b) in the
fluid region near the interface Γ. We focus on what happens near the interface; away from it,
the construction of a parametrix for (4.5b) given initial data ψ−∣∣

t=0
, ∂tψ

−∣∣
t=0

can be carried out
using geometric optics and Duhamel’s formula (see e.g [GS94], [Tay81]). Choose local coordinates
(x′, x3, t) = (x1, x2, x3, t) near a point (p0, t0) ∈ Γ×R such that the interface Γ×R is given locally
by x3 = 0 and the unit normal is ν = −∂x3

∣∣
Γ
(so the solid region M+ is locally given as x3 > 0).

This can be done by using semigeodesic normal coordinates for Γ centered at p0. We further assume
that the metric is Euclidean at p0 with our choice of spatial coordinates and below, we compute
various symbols at that point; this simplifies the notation.

Suppose we are given f ∈ E ′(Γ×R) in a small neighborhood of (p0, t0). A covector (x′, t, ξ′, τ) ∈
WF(f) lies in one of the following three regions with respect to the acoustic speed of the fluid:

(1) Hyperbolic: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : c−2
f τ2 − |ξ′|2g > 0},

(2) Elliptic: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : c−2
f τ2 − |ξ′|2g < 0},

(3) Glancing: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : c−2
f τ2 − |ξ′|2g = 0}.

In the three sets above cf is always evaluated at x = (x′, 0). In everything below we assume that the
wave front set of f is disjoint from the glancing region. As an intermediate step towards constructing
a parametrix for the transmission problem, we seek approximate solutions up to smooth error for
(4.5b) in the fluid region using f as Dirichlet data on the interface; their form depends on whether
WF(f) is contained in the hyperbolic or elliptic region. We will also need to relate Dirichlet data
with Neumann data at Γ × R using the Dirichlet to Neumann (DtN) map for an incoming or
outgoing solution, see below.

First suppose that WF(f) is contained in the connected component of the hyperbolic region
where τ < 0 (in the τ > 0 component the arguments are similar). We extend λf and ρf smoothly in
a neighborhood of p0 and use the geometric optics ansatz to produce an outgoing/incoming solution
ψ−
out/in which solves, in some neighborhood U of (p0, t0) in M × R,

∂2t ψ
−
out/in − λf div(ρ

−1
f ∇ψ−

out/in) =0 in U mod C∞,(4.7)

ψ−
out/in

∣∣
Γ×R =f in U ∩ (Γ× R) mod C∞,(4.8)

ψ−
out/in

∣∣
t≪t0/t≫t0

=0 in U ∩M−
mod C∞.(4.9)

The defining property of the outgoing (resp. incoming) solution is that its singularities propagate to
the future (resp. past) in the fluid region, along the null bicharacteristics of c−2

f τ2−|ξ|2g. Note that
the equation (4.7) is taken to be homogeneous because we can assume without loss of generality that
the source in (4.5b) is supported outside of U , by Assumption 4.1. Taking a trace in (4.8) makes
sense, since WF(ψ−

out/in) is disjoint from the conormal bundle of Γ × R. The outgoing/incoming

parametrix has the form (see [Tay81])

(4.10) ψ−
out/in =

1

(2π)3

∫
e
iφ−

out/in
(x′,x3,t,ξ′,τ)a−out/in(x

′, x3, t, ξ
′, τ)f̂(ξ′, τ)dξ′dτ,

where the phase function solves an eikonal equation and satisfies

(4.11) φ−
out/in(x

′, x3, t, ξ
′, τ) = x′ · ξ′ + tτ ∓ x3

√
c2f τ

2 − |ξ′|2g +O(x23);

the amplitude a−out/in solves a transport equation with a−out/in(x
′, 0, t, ξ′, τ) = 1. In (4.10), ·̂ denotes

the Fourier transform. In (4.11) and in what follows, when we write “out/in” and “±” (resp. “∓”)
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in the same equation, we mean that the “+” (resp. “−”) sign corresponds to the outgoing object,
whereas the “−” (resp. “+”) sign corresponds to the incoming object. We remark that the signs
of the square root term in (4.11) are switched for the outgoing/incoming solution when WF(f) is
contained in the component of the hyperbolic region where τ > 0.

Differentiating ψ−
out/in in the direction of ν = −∂x3 we obtain the outgoing/incoming DtN map

associated with our parametrix, which is defined by

Λ−
out/inf = ∂νψ

−
out/in

∣∣
Γ×R

and is a pseudodifferential operator of order 1 on Γ× R with principal symbol

σp0(Λ
−
out/in) = ±i

√
c−2
f τ2 − |ξ′|2g.

Now suppose that f ∈ E ′(Γ × R) has wave front set in the elliptic region for the fluid, with
τ < 0. One can produce a parametrix for

∂2t ψ
−
ev − λf div(ρ

−1
f ∇ψ−

ev) =0 in U mod C∞

ψ−
ev

∣∣
Γ×R =f in U ∩ (Γ× R) mod C∞

in the form (4.10) but the phase function φ−
ev will now not be real. To avoid exponentially growing

waves we require that Imφ−
ev ≥ 0, which leads to evanescent waves. The phase function can be

constructed asymptotically up to O(x∞3 ), having an expansion

φ−
ev(x

′, x3, t, ξ
′, τ) ∼ x′ · ξ′ + tτ − x3i

√
|ξ′|2g − c−2

f τ2 +
∞∑
j=0

x2+j
3 ψ̃j(x

′, t, ξ′, τ),

where ψ̃j are symbols of order 1, that is, they satisfy locally uniform estimates of the form

|∂αx′∂mt ∂
β
ξ′∂

k
τ ψ̃j | ≤ C(1 + |ξ′|+ |τ |)1−|β|−k

for all multi-indices α, β and integers m, k ≥ 0 (recall that we are interested in constructing an
evanescent wave in the region x3 ≤ 0, which dictates the negative sign in the square root term).
For more details on the construction see [Tay81], [SUV21]. The corresponding microlocal DtN map

Λ−
evf = ∂νψ

−
ev

∣∣
Γ×R

is a pseudodifferential operator on Γ× R with principal symbol

σp0(Λ
−
ev) = −

√
|ξ′|2g − c−2

f τ2.

4.2. Geometric optics for the elastic wave equation. On the solid side we follow [SUV21]
to simplify the analysis. A body wave in an isotropic elastic solid with constant Lamé parameters
splits into a sum of a longitudinal wave (p-wave) and a transversal one (s-wave). The wave speed of

the former is given by cp =
√

(λs + 2µs)/ρs whereas the one of the latter is given by cs =
√
µs/ρs.

Note that cs < cp, since λs, µs > 0. A p-wave (resp. s-wave) propagates singularities along the null
bicharacteristics of τ2− c2p|ξ|2g (resp. τ2− c2s |ξ|2g). In our case the Lamé parameters and density are
not constant, however as shown in [SUV21], in this setting one can decouple the system defined
by the elastic wave equation up to smoothing operators. By constructing a parametrix for the
decoupled system one obtains a microlocal splitting of elastic waves into microlocal s- and p-waves
at leading order, for which the statement on propagation of singularities still holds. We let

Σs = {(x, t, ξ, τ) ∈ T ∗(M+ × R) \ 0 : τ2 = c2s |ξ|2g},
Σp = {(x, t, ξ, τ) ∈ T ∗(M+ × R) \ 0 : τ2 = c2p|ξ|2g}.
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Note that Σp ∩ Σs = ∅. Using local coordinates, one can identify a neighborhood of a point in the
domain M+ or a neighborhood of a point p ∈ ∂M+ with R3, and, upon extending λs, µs and ρs
past the boundary in the latter case, view Σs/p as subsets of T ∗(R3×R). We do so in the statement
of the following proposition.

Proposition 4.3 ([SUV21]). Assume that local coordinates have been used to identify a neigh-

borhood of a point in M
+

with R3, as above. Let u+ be a solution of the elastic wave equation
∂2t u

+ − ρ−1
s Eu+ = 0 on an open set in R3 ×R in the metric setting, and let up and us be microlo-

calizations of u+ near Σp, Σs respectively. With respect to coordinates (x, ξ, t, τ) ∈ T ∗R3 ×T ∗R, in
any conical set with ξ3 ̸= 0 there exist a scalar function qp and a vector valued function qs = (qs1, q

s
2)

such that microlocally u+ = us + up, where

us = (−i curl+Vs)(qs1, qs2, 0)T , up = −i∇qp + Vp(0, 0, q
p)T , Vs, Vp ∈ Ψ0(R3),

and qs, qp satisfy

∂2t q
s = (c2s∆+As)q

s +Rs(q
s, qp)T ,(4.12)

∂2t q
p = (c2p∆+Ap)q

p +Rp(q
s, qp)T(4.13)

with matrix valued pseudodifferential operators As, Ap ∈ Ψ1(R3), Rs, Rp ∈ Ψ−∞(R3). The curl, gra-
dient ∇ and Laplace-Beltrami operator ∆ are in the Riemannian sense and ∆ is acting component-
wise in (4.12).

Note that the characteristic variety corresponding to (4.12) (resp. (4.13)) is Σs (resp. Σp).

We use the semigeodesic local coordinate setup introduced in the beginning of Section 4.1.
Moreover, extend smoothly the functions ρs, µs and λs near p0 in order to make sense of a solution
u+ of ∂2t u

+ − ρ−1
s Eu+ = 0 in an open set containing (p0, t0). Then by Proposition 4.3, in a conic

neighborhood of T ∗
(p0,t0)

(M × R) where ξ3 ̸= 0, we can write microlocally u+ = us + up and

(4.14) us = U+(qs1, q
s
2, 0)

T , up = U+(0, 0, qp)T ,

where U+ is an elliptic matrix valued pseudodifferential operator of order 1 with respect to the
spatial variables. Its principal symbol at a covector in T ∗

p0M is

σp0(U
+) =

 0 −ξ3 ξ1
ξ3 0 ξ2
−ξ2 ξ1 ξ3

 .

Recall our assumption that the initial data in the solid region has support disjoint from ∂M+.
Then away from ∂M+ one can locally use geometric optics for principally scalar hyperbolic systems
to construct a parametrix for the potentials qs, qp with Cauchy data at t = 0, see [Tay81], [SUV21],
yielding parametrices for the microlocal s and p waves by (4.14). In the discussion below we focus
on the transmission problem in a neighborhood of a point at the interface Γ × R. As before, we
describe the construction of a parametrix to the boundary value problem with Dirichlet data at the
interface Γ × R, as an intermediate step towards constructing an parametrix for the transmission
problem. We also relate Neumann data at Γ × R to Dirichlet data using the DtN map for the
incoming/outgoing parametrices. The geometric optics construction near the outer boundary ∂M
with homogeneous Neumann boundary condition can be done using the tools described in this
section, and is discussed in detail in [SUV21, Section 8].

So suppose that we are given Dirichlet data f(x′, t) ∈ E ′(Γ×R;R3). Similarly to the acoustic case,
the parametrix construction for the elastic equation depends on the location of the singularities of
f . A covector (x′, ξ′, t, τ) ∈ WF(f) can lie in one of the following regions:
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(1) Hyperbolic: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : τ2 > c2p|ξ′|2g},
(2) p-glancing: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : τ2 = c2p|ξ′|2g},
(3) Mixed: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : c2p|ξ′|2g > τ2 > c2s |ξ′|2g},
(4) s-glancing: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : τ2 = c2s |ξ′|2g},
(5) Elliptic: {(x′, t, ξ′, τ) ∈ T ∗(Γ× R) \ 0 : τ2 < c2s |ξ′|2g}.

We will always assume that our data have wave front set disjoint from the two glancing regions.
First assume that f has wave front set in the component of the hyperbolic region where τ < 0.

In a neighborhood U of (p0, t0) in M we will use the geometric optics representation to construct
approximate outgoing/incoming solutions to the elastic wave equation, i.e. one satisfying

(4.15)

∂2t u
+
out/in − ρ−1

s Eu+out/in =0 mod C∞ on U ,

u+out/in =f mod C∞ on U ∩ (Γ× R),

u+out/in
∣∣
t≪t0/t≫t0

=0 mod C∞ on U ∩M+.

In (4.15), outgoing (resp. incoming) means that the solution propagates singularities to the future
(resp. past) in the solid region x3 ≥ 0. Since WF(f) is in the hyperbolic region and WF(u+out/in) ⊂
Σp∪Σs, with respect to our coordinates we have ξ3 ̸= 0 on WF(u+out/in) sufficiently near (p0, t0). So

as before we can write u+out/in = U+(qsout/in, q
p
out/in)

T . Since qsout/in, q
p
out/in satisfy (4.12)-(4.13), it

suffices to determine data qsj,out/in,b, q
p
out/in,b ∈ E ′(Γ×R), j = 1, 2 in terms of f at the interface and

use them as Dirichlet data for the geometric optics construction for a principally scalar acoustic
system (see [SUV21, Section 3]). As shown in [SUV21], there exist elliptic matrix pseudodifferential
operators U+

out/in on Γ×R which can be microlocally inverted to produce boundary values qsout/in,b,

qpout/in,b such that

(4.16) f = U+
out/in(q

s
out/in,b, q

p
out/in,b)

T .

The subscript b stands for “boundary”. The principal symbols of these operators take the form

(4.17) σ(p0,t0)(U
+
in) =

 0 ξs3 ξ1
−ξs3 0 ξ2
−ξ2 ξ1 −ξp3

 , σ(p0,t0)(U
+
out) =

 0 −ξs3 ξ1
ξs3 0 ξ2
−ξ2 ξ1 ξp3


at the fiber of T ∗(Γ× R) over (p0, t0), where

(4.18) ξs3 =
√
c−2
s τ2 − |ξ′|2g, ξp3 =

√
c−2
p τ2 − |ξ′|2g.

Then our solutions corresponding to potentials for p-waves will have the form

(4.19) qpout/in =
1

(2π)3

∫
e
iφp

out/in
(x′,x3,t,ξ′,τ)apout/in(x

′, x3, t, ξ
′, τ)q̂pout/in,b(ξ

′, τ)dξ′dτ,

where the phase function solves an eikonal equation and satisfies

φp
out/in(x

′, x3, t, ξ
′, τ) = x′ · ξ′ + tτ ± x3

√
c−2
p τ2 − |ξ′|2g +O(x23),

and the amplitude apout/in is a scalar valued classical symbol which solves a transport equation with

apout/in(x
′, 0, t, ξ′, τ) = 1. For qpout/in the geometric optics solution is the same as (4.19) with all

p superscripts replaced by s and with the difference that the amplitude asout/in has now values in

2× 2 matrix valued classical symbols with asout/in(x
′, 0, t, ξ′, τ) = Id. One subsequently obtains the

desired parametrix as u+out/in = upout/in + usout/in, using (4.14).
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From the solution u+out/in we obtain the traction across the interface Γ, given by N(u+out/in).

Define matrix valued operators on Γ× R by

(4.20) M+
in(q

s
in,b, q

p
in,b)

T = iN(u+in)
∣∣
Γ×R, M+

out(q
s
out,b, q

p
out,b)

T = iN(u+out)
∣∣
Γ×R,

where u+out/in solves (4.15) with f and (qsout/in,b, q
p
out/in,b) related by (4.16). The i factors in (4.20)

are there to ensure that the principal symbol of M+
out/in at (p0, t0) ∈ Γ × R is a matrix with real

entries: it is shown in [SUV21] that with our choice of local coordinates

(4.21)

σ(p0,t0)(M
+
in) =

 −µsξ1ξ2 µs(2ξ
2
1 + ξ22)− ρsτ

2 −2µsξ1ξ
p
3

−µs(ξ21 + 2ξ22) + ρsτ
2 µsξ1ξ2 −2µξ2ξ

p
3

2µsξ2ξ
s
3 −2µsξ1ξ

s
3 −2µs(ξ

2
1 + ξ22) + ρsτ

2

 ,

σ(p0,t0)(M
+
out) =

 −µsξ1ξ2 µs(2ξ
2
1 + ξ22)− ρsτ

2 2µsξ1ξ
p
3

−µs(ξ21 + 2ξ22) + ρsτ
2 µsξ1ξ2 2µξ2ξ

p
3

−2µsξ2ξ
s
3 2µsξ1ξ

s
3 −2µs(ξ

2
1 + ξ22) + ρsτ

2

 ,

with ξs3, ξ
p
3 given by (4.18).

Assume now that f has wave front set in the mixed region, with τ < 0. Then the p-wave is
evanescent; we construct qsout/in as before but now the potential for the p wave will be evanescent,

i.e. qpev has complex valued phase function of the form

(4.22) φp
ev(x

′, x3, t, ξ
′, τ) ∼ x′ · ξ′ + tτ + x3i

√
|ξ′|2g − c−2

p τ2 +

∞∑
j=0

x2+j
3 ψ̃j(x

′, t, ξ′, τ),

where ψ̃j is a symbol of order 1. Note that the choice of the first order term in the expansion at
x3 = 0 in (4.22) is chosen so that Imφp

ev ≥ 0 in M+. When the solution with Dirichlet data f has
outgoing (resp. incoming) shear waves, we have

(4.23) f = U+
ev,out(q

s
out,b, q

p
ev,b)

T (resp. f = U+
ev,in(q

s
in,b, q

p
ev,b)

T ),

where

(4.24) σ(p0,t0)(U
+
ev,out) =

 0 −ξs3 ξ1
ξs3 0 ξ2
−ξ2 ξ1 ξ̃p3

 , ξ̃p3 = i

√
|ξ′|2 − c−2

p τ2,

and for the principal symbol of U+
ev,in replace ξs3 by −ξs3 in (4.24), with ξ̃p3 unchanged. Note that

in (4.23), the boundary value of an evanescent p-wave potential appears, regardless of whether the
shear wave is incoming or outgoing. Similarly, let

M+
ev,out/in(q

s
out/in, q

p
ev)

T = iN(u+ev,out/in)
∣∣
Γ×R.

The principal symbol of M+
ev,out at a covector in T ∗

(p0,t0)
(Γ× R) is given by

(4.25) σ(p0,t0)(M
+
ev,out) =

 −µsξ1ξ2 µs(2ξ
2
1 + ξ22)− ρsτ

2 2µsξ1ξ̃
p
3

−µs(ξ21 + 2ξ22) + ρsτ
2 µsξ1ξ2 2µξ2ξ̃

p
3

−2µsξ2ξ
s
3 2µsξ1ξ

s
3 −2µs(ξ

2
1 + ξ22) + ρsτ

2

 .

To obtain σ(p0,t0)(M
+
ev,in) again one only needs to replace ξs3 by −ξs3 in (4.25).
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Finally suppose that f ∈ E ′(Γ×R;R3) has wave front set in the elliptic region, and with τ < 0.
Then we only have evanescent potentials (qsev, q

p
ev) written as described in (4.19) and the subsequent

discussion, with complex valued phase functions φ
p/s
ev having asymptotic expansions at x3 = 0

φp/s
ev (x′, x3, t, ξ

′, τ) = x′ · ξ′ + tτ + ix3

√
|ξ′|2g − c−2

p/sτ
2 +O(x23).

We can still produce a solution in the form u+ev = usev + upev, as before, with usev = U+(qsev, 0),
upev = U+(0, qpev). We have an operator U+

ev on Γ× R analogous to U+
out/in, with principal symbol

σp0(U
+
ev) =

 0 −ξ̃s3 ξ1
ξ̃s3 0 ξ2
−ξ2 ξ1 ξ̃p3

 , ξ̃s3 = i

√
|ξ′|2 − c−2

s τ2.

This operator has the property f = U+
ev(q

s
ev,b, q

p
ev,b). Moreover, writing

M+
ev(q

s
ev,b, q

p
ev,b)

T = iN(u+)
∣∣
Γ×R,

one has

σp0(M+
ev) =

 −µsξ1ξ2 µs(2ξ
2
1 + ξ22)− ρsτ

2 2µsξ1ξ̃
p
3

−µs(ξ21 + 2ξ22) + ρsτ
2 µsξ1ξ2 2µξ2ξ̃

p
3

−2µsξ2ξ̃
s
3 2µsξ1ξ̃

s
3 −2µs(ξ

2
1 + ξ22) + ρsτ

2

 .

5. Microlocal well-posedness of the transmission problem

In this section we study microlocally the transmission problem at the interface between a solid
and fluid. Given waves on the two sides of the interface in a neighborhood of a point p0 ∈ Γ
and for time near a fixed t0, their Dirichlet and Neumann data at Γ × R must match according
to the transmission conditions; a covector in the wave front set of those data can lie in one of 15
possible regions, depending on whether it is in the hyperbolic/p-glancing/mixed/s-glancing/elliptic
region for the solid and the hyperbolic/glancing/elliptic region for the fluid. For instance, given an
incoming microlocal p-wave upin in the solid, the wave front set of its restriction to Γ×R will lie in
the hyperbolic or glancing region for p-waves and in the hyperbolic one for s-waves. With respect
to the acoustic speed in the fluid it can be in any of the elliptic, glancing or hyperbolic region,
depending on the value of the acoustic speed in the fluid at the point of interest. In this section we
consider all possible cases for the location of wave front set of the boundary values of the various
incoming, outgoing and evanescent waves, except the cases when the wave front set is contained in
any of the glancing regions.

To construct the reflected and transmitted waves generated by the arrival at Γ of various combi-
nations of incident p- or s-waves in the solid, or acoustic waves in the fluid, it suffices to determine
Dirichlet data at Γ× R for their potentials, as discussed in Section 4. For this purpose we use the
transmission conditions at Γ and the microlocal DtN maps introduced in Sections 4.1 and 4.2 and
set up systems for the principal amplitudes of the interface values of outgoing potentials; we then
show that those systems can be solved in terms of the principal amplitudes of the incoming ones by
proving ellipticity. Then they can be solved to any order as well. We also investigate the question
of control, namely whether every configuration in the solid (resp. fluid) side can be produced by
choosing appropriate waves in the fluid (respectively, solid) side. This is needed for the inverse
problem.

Throughout this section we will work near a point (p0, t0) ∈ Γ × R, with semigeodesic local
coordinates chosen as described in the beginning of Section 4.1. Our full local coordinate system
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(x′, x3, t) induces local coordinates (x
′, x3, t, ξ

′, ξ3, τ) on T
∗(M ×R) ∼= T ∗M ×T ∗R, and (x′, t, ξ′, τ)

are coordinates on T ∗(Γ× R).

5.1. The hyperbolic-hyperbolic case (Figure 2). Suppose that we have incoming body waves
in the solid and in the fluid. We may assume that the elastic wave in the solid side and the potential
in the fluid side solve (4.5a) and (4.5b) respectively in a neighborhood of a point (p0, t0) ∈ Γ × R
in M ×R, by extending µs, λs, ρs, λf and ρf smoothly near p0 from their respective initial domains
of definition. We first consider the case where the wave front sets of the traces of all waves are
contained in the hyperbolic region for all three speeds cs, cp, cf , with τ < 0 (the case τ > 0
is similar); using a microlocal partition of unity if necessary, it suffices to assume that they are

contained in a small conical neighborhood Σ̃ of a covector
(
(p0, t0), (ξ

′
0, τ0)

)
∈ T ∗(Γ× R) \ 0.

We recall from Section 4.2 that the boundary trace of the incoming wave u+in can be written as

u+in,b = U+
inq

+
in,b, where the principal symbol of U+

in at (p0, t0) is as in (4.17) and q+in,b = (qsin,b, q
p
in,b)

T .

Moreover, the boundary value of the traction at the interface is given by N(u+in)
∣∣
Γ×R = −iM+

inqin,b,

where the principal symbol of M+
in is given by (4.21). The discussion regarding outgoing waves in

the solid region is similar, except the subscripts are now replaced by “out”. On the fluid side, the
normal derivative of ψ−

in is ∂νψ
−
in

∣∣
Γ×R = Λ−

inψ
−
in,b, and similarly for ψ−

out. Hence by the transmission

conditions (4.5c)-(4.5d)

ν · ∂t(U+
inq

+
in,b + U+

outq
+
out,b) =− ρ−1

f Λ−
inψ

−
in,b − ρ−1

f Λ−
outψ

−
out,b(5.1a)

−i(M+
inq

+
in,b +M+

outq
+
out,b) =− ∂tψ

−
in,bν − ∂tψ

−
out,b ν.(5.1b)

Rewrite (5.1a)-(5.1b) as a system for the traces of the outgoing solutions:

(5.2) Ahh
out

(
q+out,b
ψ−
out,b

)
= Ahh

in

(
q+in,b
ψ−
in,b

)
,

where

Ahh
out :=

(
∂t(ν · U+

out) ρ−1
f Λ−

out

−iM+
out ν ∂t

)
, Ahh

in :=

(
−∂t(ν · U+

in) −ρ−1
f Λ−

in
iM+

in −ν ∂t

)
,

and the superscripts stand for hyperbolic-hyperbolic. We would like to show that the system
(5.2) is solvable microlocally, i.e. that the matrix operator Ahh

out on the left hand side is elliptic.
Since the matrix operators in the first column of Ahh

out are of order 2, whereas the ones on the
right column are of order 1, the homogeneous principal symbol of degree 2 of the operator is not
invertible. However we can seek ellipticity in the Douglis-Nirenberg sense ([DN55]), which in this
case amounts to computing the matrix whose entries are the principal symbols of the individual
operators appearing as entries in (5.2), and checking that its determinant is non-zero for (ξ′, τ) ̸= 0
in the hyperbolic-hyperbolic region.

By (4.17) and the fact that ν = −∂x3 in terms of our local coordinates, we have

σp0(ν · U+
out) =

(
ξ2 −ξ1 −ξp3

)
, σp0(ν · U+

in) =
(
ξ2 −ξ1 ξp3

)
.

By the invariance of the principal symbols of U+
in/out, M

+
in/out and Λ−

in/out under rotations in the ξ1-

ξ2 plane observed in [SUV21, Section 7.2] (this uses the specific choice of local coordinates made so
that g is Euclidean at p0), the problem of showing the requisite ellipticity at (ξ′, τ) ∈ T ∗

(p0,t0)
(Γ×R)

reduces to showing it under the assumption ξ2 = 0. Compute the principal symbols σ̃p0(A
hh
out/in) of
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Ahh
out/in, in the Douglis-Nirenberg sense described before, with ξ2 = 0:

σ̃(p0,t0)(A
hh
out) =


0 −iτξ1 −iτξp3 iρ−1

f ξf3
0 −i(2µsξ21 − ρsτ

2) −2iµsξ1ξ
p
3 0

i(µsξ
2
1 − ρsτ

2) 0 0 0
0 −2iµsξ1ξ

s
3 i(2µsξ

2
1 − ρsτ

2) −iτ

 ,(5.3a)

σ̃(p0,t0)(A
hh
in ) =


0 iτξ1 −iτξp3 iρ−1

f ξf3
0 i(2µsξ

2
1 − ρsτ

2) −2iµsξ1ξ
p
3 0

−i(µsξ21 − ρsτ
2) 0 0 0

0 −2iµsξ1ξ
s
3 −i(2µsξ21 − ρsτ

2) iτ

 ,(5.3b)

where ξ•3 =
√
c−2
• τ2 − |ξ′|2g for • = p, s, f , evaluated at ξ′ = (ξ1, 0).

Using (5.3a)-(5.3b), we can rewrite (5.1a)-(5.1b) at the principal symbol level as a system for
the boundary values of the amplitudes of q+out, ψ

−
in. We write (with F the Fourier transform)(

bs1,out/in(ξ
′, τ), bs2,out/in(ξ

′, τ), bpout/in(ξ
′, τ)

)
= F(x′,t)(q

+
out/in,b)(ξ

′, τ),(5.4a)

bfout/in(ξ
′, τ) = F(x′,t)(ψ

−
out/in,b)(ξ

′, τ),(5.4b)

and we seek to determine
(
bs1,out, b

s
2,out, b

p
out

)
and bfout given

(
bs1,in, b

s
2,in, b

p
in

)
and bfin. Once this has

been done, can construct parametrices for q+out, ψ
−
out using the geometric optics ansatz.

We remark here that in the case where the direction of propagation of the wave u+out/in is given

by (ξ1, 0, ξ3) (i.e. ξ2 = 0) and the metric is taken to be Euclidean at p0, the amplitudes bs1,in/out
correspond to microlocal shear horizontal (SH) waves at Γ, in the sense that the corresponding wave
ushout/in = −i curl(qs1,out/in, 0, 0) is tangent to the interface Γ at p0, up to lower order terms. On the

other hand, the amplitudes bs2,in/out correspond to microlocal shear vertical (SV) waves at Γ in the

sense that the corresponding wave usvout/in = −i curl(0, qs2,out/in, 0) satisfies (curlu
sv
out/in) · ν = 0 at Γ.

In our case where the Lamé parameters are non-constant, the decomposition into shear horizontal
and shear vertical waves only makes sense at Γ; for details see [SUV21, Section 7.2].

It now follows from (5.3a)-(5.3b) that the system for the outgoing amplitudes at the principal
symbol level decouples into the following two systems: τξ1 τξp3 −ρ−1

f ξf3
2µsξ

2
1 − ρsτ

2 2µsξ1ξ
p
3 0

2µsξ1ξ
s
3 −2µsξ

2
1 + ρsτ

2 τ

bs2,outbpout
bfout


=

 −τξ1 τξp3 −ρ−1
f ξf3

−2µsξ
2
1 + ρsτ

2 2µsξ1ξ
p
3 0

2µsξ1ξ
s
3 2µsξ

2
1 − ρsτ

2 − τ

bs2,inbpin
bfin

 ,

(5.5a)

and

(−µsξ21 + ρsτ
2)(bs1,in + bs1,out) = 0.(5.5b)

The determinant of the 3× 3 matrix on the left hand side of (5.5a) is given by

(5.6)
(
τ4ρsξ

p
3 + ρ−1

f ξf3
(
(2µsξ

2
1 − ρsτ

2)2 + 4µ2sξ
2
1ξ

s
3ξ

p
3

))
̸= 0

for (ξ′, τ) = (ξ1, 0, τ) ̸= 0. Thus (5.5a)-(5.5b) is solvable for the outgoing amplitudes. Moreover, it
follows from (5.5b) that the microlocal shear horizontal waves are totally reflected. Notice that this
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total internal reflection of the microlocal SH waves takes place without creation of evanescent waves
on the fluid side (unlike the case of total internal reflection of acoustic waves meeting an interface
between two fluids in the hyperbolic-elliptic region, see e.g [SUV21, §3.3.2], where evanescent waves
are created on the other side). This can be explained by the transmission condition: the kinematic
transmission condition (4.5c) imposes no restriction on the SH waves at the interface (at the prin-
cipal symbol level), since they are tangent to it. Moreover, the dynamic transmission condition
(4.5d) forces the tangential components of the traction at Γ to vanish, which, as one can check,
implies F

(
N(ushin +ushout)

)
(ξ1, 0, τ) = 0 modulo lower order terms for ushout/in = −i curl(qs1,out/in, 0, 0),

which is equivalent to (5.5b). In other words, at the leading order the interface behaves like a “hard
boundary” with respect to the SH waves, i.e. like an interface between the solid and vacuum; with
that observation, the full reflection of the SH waves without transmission of singularities to the
fluid side is to be expected, as shown e.g. in [SUV21, §8].

M+

M−ν

upin
upout

ψ−in
ψ−out

usvin usvout

M−ν

ushin ushout
M+

ξ′

p0

ξ′

p0

Figure 2. The hyperbolic-hyperbolic transmission system. The solid occupies the
top region M+, whereas the fluid occupies the bottom one, M−. On the left hand
side we see the p waves and the microlocal shear vertical (SV) waves, as well as the
acoustic waves in the fluid. The microlocal shear horizontal (SH) waves are totally
reflected and are pictured separately, on the right.

Given a solution of the acoustic equation on the fluid side whose Cauchy data at Γ × R has
wave front set in the hyperbolic-hyperbolic region, one can choose suitable waves on the solid side
to produce them: finding appropriate amplitudes at the boundary for the incoming and outgoing
waves in the solid reduces to solvability of the system

(5.7)

 τξ1 τξp3 τξ1 −τξp3
2µsξ

2
1 − ρsτ

2 2µsξ1ξ
p
3 2µsξ

2
1 − ρsτ

2 −2µsξ1ξ
p
3

2µsξ1ξ
s
3 −2µsξ

2
1 + ρsτ

2 −2µsξ1ξ
s
3 −2µsξ

2
1 + ρsτ

2



bs2,out
bpout
bs2,in
bpin


=

−ρ−1
f ξf3 ρ−1

f ξf3
0 0
−τ −τ

(
bfin
bfout

)
,

which is underdetermined as a system for (bs2,out, b
p
out, b

s
2,in, b

p
in)

T . This can be seen by row reduction

(recall that τ ̸= 0 in the hyperbolic-hyperbolic region).
On the other hand, we generally cannot control the solid side from the fluid one. Eq. (5.5b)

implies that microlocal shear horizontal waves in the solid side are structured and independent of
the waves in the fluid one. Arbitrary shear vertical and pressure waves in the solid side also cannot
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be created by an appropriate choice of waves in the fluid side: to do so we would have to solve (5.7)
for (bfin, b

f
out), and this system is overdetermined; for instance it is solvable when(
2µsξ

2
1 − ρsτ

2 2µsξ1ξ
p
3 2µsξ

2
1 − ρsτ

2 −2µsξ1ξ
p
3

) (
bs2,out bpout bs2,in bpin

)T
= 0

in the small conical neighborhood Σ̃ of interest containing WF(u+).

5.2. The mixed-hyperbolic region (Figure 3). This case can happen only if cf(p0) < cp(p0).
We have incoming s-waves in the solid and acoustic waves in the fluid, but no p-waves in the solid;
we seek the latter as evanescent waves. The transmission conditions (4.5c), (4.5d) yield

ν · ∂t(U+
ev,inq

+
ev,in,b + U+

ev,outq
+
ev,out,b) =− ρ−1

f Λ−
inψ

−
in,b − ρ−1

f Λ−
outψ

−
out,b,

−i(M+
ev,inq

+
ev,in,b +M+

ev,outq
+
ev,out,b) =− ∂tψ

−
in,bν − ∂tψ

−
out,b ν.

As in (5.4a)-(5.4b), let (bs1,out/in, b
s
2,out/in, b

p
ev) = F

(
q+ev,out/in,b

)
. We also let bfout/in = F

(
ψ−
out/in,b

)
.

Again we wish to solve a system of the form (5.2), where now Ahh
out/in are replaced by

Amh
out :=

(
∂t(ν · U+

ev,out) ρ−1
f Λ−

out

−iM+
ev,out ν ∂t

)
, Amh

in :=

(
−∂t(ν · U+

ev,in) −ρ−1
f Λ−

in

iM+
ev,in −ν ∂t

)
.

The principal symbol of the Amh
out (resp. Amh

in ) will agree with the one of Ahh
out in (5.3a) (resp.

Ahh
in in (5.3b)), with the difference that occurrences of ξp3 (resp. −ξp3 ) will now be replaced by

ξ̃p3 = i
√

|ξ′|2g − c−2
p τ2. Moreover, there is no pair of bpin/out but only one bpev in the system we set

up. Hence, with ξ2 = 0 as before we reach the decoupled system τξ1 2τ ξ̃p3 −ρ−1
f ξf3

2µsξ
2
1 − ρsτ

2 4µsξ1ξ̃
p
3 0

2µsξ1ξ
s
3 −4µsξ

2
1 + 2ρsτ

2 τ

bs2,outbpev
bfout


=

 −τξ1 −ρ−1
f ξf3

−2µsξ
2
1 + ρsτ

2 0
2µsξ1ξ

s
3 − τ

(
bs2,in
bfin

)
,

(5.8a)

and

(−µsξ21 + ρsτ
2)(bs1,in + bs1,out) = 0.(5.8b)

The determinant of the 3× 3 matrix on the left hand side of (5.8a) is given by

(5.9) 2
(
τ4ρsξ̃

p
3 + ρ−1

f ξf3
(
(2µsξ

2
1 − ρsτ

2)2 + 4µ2sξ
2
1ξ

s
3ξ̃

p
3

))
,

with real part 2ρ−1
f ξf3(2µsξ

2
1 − ρsτ

2)2. When the real part vanishes, that is, when ρsτ
2 = 2µsξ

2
1 , the

imaginary part of (5.9) becomes −4iµsξ̃
p
3 ξ

2
1(τ

2 + 2µsρ
−1
f ξf3ξ

s
3) > 0, thus the system (5.8a) can be

solved for (bs2,out, b
p
ev, bfout)

T . In addition, by (5.8b), the microlocal shear horizontal waves experience
full internal reflection.

In order to produce an arbitrary acoustic wave in the fluid side whose Cauchy data at Γ×R has
wave front set in the mixed-hyperbolic region, using appropriate s waves in the solid and with a
possible creation of evanescent p waves, we have to solve the system

(5.10)

 τξ1 2τ ξ̃p3 τξ1
2µsξ

2
1 − ρsτ

2 4µsξ1ξ̃
p
3 2µsξ

2
1 − ρsτ

2

2µsξ1ξ
s
3 −4µsξ

2
1 + 2ρsτ

2 −2µsξ1ξ
s
3

bs2,outbpev
bs2,in

 =

−ρ−1
f ξf3 ρ−1

f ξf3
0 0
−τ −τ

(
bfin
bfout

)
.
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M+

M−ν

upev

ψ−in
ψ−out

usvin usvout

M−ν

ushin ushout
M+

ξ′

p0

ξ′

p0

Figure 3. The mixed-hyperbolic transmission system. On the left we see microlocal
SV waves in the solid and acoustic waves in the fluid, with creation of an evanescent
p wave. As pictured on the right, the microlocal SH waves are totally reflected.

A computation shows that the determinant in the left hand side of (5.10) equals −8µsρsτ
3ξ1ξ

s
3ξ̃

p
3 .

Since ξ1τ ̸= 0 in the mixed region, the determinant is nonzero there and the system is elliptic.
As in the hyperbolic-hyperbolic case, (5.8b) implies that we cannot produce every configuration

in the solid side by appropriately choosing the waves on the fluid side. However, given incoming
and outgoing microlocal shear vertical waves in the solid side, we can construct them (up to lower
order) using waves in the fluid side, and with creation of evanescent p-waves, if we can solve for
(bfin, b

f
out, b

p
ev) the system−ρ−1
f ξf3 ρ−1

f ξf3 −2τ ξ̃p3
0 0 −4µsξ1ξ̃

p
3

−τ −τ 4µsξ
2
1 − 2ρsτ

2

 bfin
bfout
bpev

 =

 τξ1 τξ1
2µsξ

2
1 − ρsτ

2 2µsξ
2
1 − ρsτ

2

2µsξ1ξ
s
3 −2µsξ1ξ

s
3

(
bs2,out
bs2,in

)
.

The determinant of the matrix on the left is 8ρ−1
f µsτξ1ξ

f
3ξ̃

p
3 ̸= 0, so this system is microlocally

solvable and we can control the microlocal shear vertical waves from the fluid side.

5.3. The elliptic-hyperbolic case (Figure 4). This case can happen only if cf < cs in a neigh-
borhood of the point at the interface we are interested in. We have waves on both sides whose
traces have wave front sets in the elliptic region for cs, cp and the hyperbolic region for cf . We seek
to determine Dirichlet data for an outgoing acoustic wave in the fluid region and an evanescent
wave in the solid in terms of Dirichlet data for an incoming acoustic wave in the fluid. We have
the system

ν · ∂t(U+
evq

b
ev) =− ρ−1

f Λ−
inψ

−
in,b − ρ−1

f Λ−
outψ

−
out,b

−iM+
ev(q

b
ev) =− ∂tψ

−
in,bν − ∂tψ

−
out,b ν.

Its solvability reduces to the ellipticity in terms of the outgoing and evanescent amplitudes of τξ1 τ ξ̃p3 −ρ−1
f ξf3

2µsξ
2
1 − ρsτ

2 2µsξ1ξ̃
p
3 0

2µsξ1ξ̃
s
3 −2µsξ

2
1 + ρsτ

2 τ


bs2,evbpev
bfout

 =

−ρ−1
f ξf3
0
− τ

 bfin,(5.11a)

and

(−µsξ21 + ρsτ
2) bs1,ev = 0,(5.11b)
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with

ξ̃s3 = i
√

|ξ′|2g − c−2
s τ2, ξ̃p3 = i

√
|ξ′|2g − c−2

p τ2, ξf3 =
√
c−2
f τ2 − |ξ′|2g,

all evaluated at ξ′ = (ξ1, 0). From (5.11b), bs1,ev = 0, so there exist no microlocal “SH” evanescent

waves (note here that there is no propagating wave in the solid region, so a distinction between
microlocal “SH” and “SV” evanescent waves is only made by analogy to the case were the wave
front set of the elastic waves is in the hyperbolic region for the solid). The determinant of the
matrix in (5.11a) is

τ4ρsi

√
ξ21 − c−2

p τ2 + ρ−1
f

√
c−2
f τ2 − ξ21

(
(2µsξ

2
1 − ρsτ

2)2 − 4µ2sξ
2
1

√
ξ21 − c−2

s τ2
√
ξ21 − c−2

p τ2
)
,

and it has positive imaginary part (note that τ ̸= 0 since we are in the hyperbolic region for the
fluid and τ can vanish only in the elliptic region for any of the three speeds) so the system is elliptic.
Therefore the principal amplitude of the outgoing acoustic wave in the fluid and the evanescent
wave in the solid are uniquely determined by the one of the incoming acoustic wave in the fluid.

M−ν

upev, u
sv
ev

ψ−in
ψ−out

M+

ξ′

p0

Figure 4. The elliptic-hyperbolic system. The acoustic waves in the fluid expe-
rience total internal reflection, with creation of evanescent p and evanescent “SV”
waves. No microlocal “SH” waves are created.

5.4. The hyperbolic-elliptic region (Figure 5). In this case we the wave front set of the traces
of the various waves is in the hyperbolic region for cp and cs and in the elliptic region for cf (by
assumption in the connected component of the elliptic region in which τ < 0); this case can only
happen if cf > cp at p0. We thus seek solutions in the fluid region as evanescent waves; we obtain
the following system:

ν · ∂t(U+
inq

+
in,b + U+

outq
+
out,b) =− ρ−1

f Λ−
evψ

−
ev,b,

−i(M+
inq

+
in,b +M+

outq
+
out,b) =− ∂tψ

−
ev,b ν.

We write bfev = F(ψ−
ev,b) and, as before, at the principal symbol level our system becomes τξ1 τξp3 −ρ−1

f ξ̃f3
2µsξ

2
1 − ρsτ

2 2µsξ1ξ
p
3 0

2µsξ1ξ
s
3 −2µsξ

2
1 + ρsτ

2 τ

bs2,outbpout
bfev


=

 −τξ1 τξp3
−2µsξ

2
1 + ρsτ

2 2µsξ1ξ
p
3

2µsξ1ξ
s
3 2µsξ

2
1 − ρsτ

2

(
bs2,in
bpin

)(5.12a)

and

(−µsξ21 + ρsτ
2)(bs1,in + bs1,out) = 0,(5.12b)
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where

ξ̃f3 = i
√

|ξ′|2 − c−2
f τ2.

Using (5.6) with ξf3 replaced by ξ̃f3, it is easy to see that the real part of the determinant is given
by τ4ρsξ

p
3 ̸= 0 (recall that τ < 0), demonstrating the ellipticity of the system (5.12a) and the

microlocal well-posedness of the transmission problem in this case. The microlocal shear horizontal
waves experience total internal reflection.

M+

M−ν

upin
upout

ψ−ev

usvin usvout

M−ν

ushin ushout
M+

ξ′

p0

ξ′

p0

Figure 5. The hyperbolic-elliptic transmission system. We have p and SV waves
in the solid and evanescent waves in the fluid. Microlocal SH waves are totally
reflected.

5.5. The mixed-elliptic case (Figure 6). This case can happen only if cs < cf at p0. We have
incoming s waves in the solid meeting the interface at an angle greater than the critical angle for
p waves. The wave front set of the trace at Γ×R is by assumption contained in the elliptic region
for the fluid, with τ < 0. We seek p waves and body waves in the fluid as evanescent modes. Our
transmission system takes the form

ν · ∂t(U+
ev,in q

+
ev,in,b + U+

ev,out q
+
ev,out,b) =− ρ−1

f Λ−
evψ

−
ev,b,

−i(M+
ev,in q

+
ev,in,b +M+

ev,out q
+
ev,out,b) =− ∂tψ

−
ev,b ν.

Then at the principal symbol level and for ξ2 = 0 we find the decoupled system τξ1 2τ ξ̃p3 −ρ−1
f ξ̃f3

2µsξ
2
1 − ρsτ

2 4µsξ1ξ̃
p
3 0

2µsξ1ξ
s
3 −4µsξ

2
1 + 2ρsτ

2 τ

bs2,outbpev
bfev

 =

 −τξ1
−2µsξ

2
1 + ρsτ

2

2µsξ1ξ
s
3

 bs2,in,(5.13a)

and

(−µsξ21 + ρsτ
2)(bs1,in + bs1,out) = 0,(5.13b)

where ξ̃f3 = i
√
|ξ′|2g − c−2

f τ2. The determinant of the square matrix in (5.13a) takes the form

2
(
τ4ρsξ̃

p
3 + ρ−1

f ξ̃f3
(
(2µsξ

2
1 − ρsτ

2)2 + 4µ2sξ
2
1ξ

s
3ξ̃

p
3

))
,

(cf. (5.9)). Its real part is given by 8µ2sρ
−1
f ξ21ξ

s
3ξ̃

p
3 ξ̃

f
3, which does not vanish (recall that one cannot

have ξ1 = 0 in the elliptic region for cp or cf). We reach the conclusion that the matrix on the left
hand side of (5.13a) is elliptic, showing microlocal solvability of the system. Again the microlocal
shear horizontal waves experience total internal reflection. Notice also that by (5.13a), in the
absence of incoming SV waves, i.e. if bs2,in = 0, or if there are no SV waves at all, no evanescent
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waves are created on either side of the interface. In other words, in such a case we do not obtain
surface waves as we do in the elliptic-elliptic case, see below.

M+

M−ν
ψ−ev

usvin usvout

M−ν

ushin ushout
M+

ξ′

p0

ξ′

p0upev

Figure 6. The mixed-elliptic transmission system. We have only s body waves in
the solid (SV on the left, SV on the right); the p waves and the acoustic waves in
the fluid are evanescent.

5.6. The elliptic-elliptic case (Figure 7). Any nontrivial solutions to the system (4.5a)-(4.5d)
whose traces at the interface Γ×R have wave front set in the elliptic region for both cf and cs (thus
also automatically for cp) cannot be produced by body waves on either side. The only possibility
is that they are produced by sources at the interface. We seek such solutions as evanescent waves,
which decay exponentially away from Γ. As mentioned in the introduction, surface waves at the
interface between two media are generally referred to as Stoneley waves and in the particular case
of a solid-fluid interface they are often called Scholte waves. We look for solutions of the system

ν · ∂t(U+
ev q

+
ev,b) =− ρ−1

f Λ−
evψ

−
ev,b

−i(M+
ev q

+
ev,b) =− ∂tψ

−
ev,b ν.

As before, we let (bs1,ev, b
s
2,ev, b

p
ev) = F

(
q+ev

)
and bfev =

(
ψ−
ev

)
. With notations as before, at the

principal symbol level we obtain the system (with ξ2 = 0 as usual)

Aee
ev

bs2,evbpev
bfev

 =

0
0
0

 , Aee
ev =

 τξ1 τ ξ̃p3 −ρ−1
f ξ̃f3

2µsξ
2
1 − ρsτ

2 2µsξ1ξ̃
p
3 0

2µsξ1ξ̃
s
3 −2µsξ

2
1 + ρsτ

2 τ

(5.15a)

and

(−µsξ21 + ρsτ
2) bs1,ev = 0.(5.15b)

We immediately obtain bs1,ev = 0 and the determinant of Aee
ev becomes

i
[
τ4ρs

√
ξ21 − c−2

p τ2 + ρ−1
f

√
ξ21 − c−2

f τ2
(
(2µsξ

2
1 − ρsτ

2)2 − 4µ2sξ
2
1

√
ξ21 − c−2

s τ2
√
ξ21 − c−2

p τ2
)]
.

Setting z = τ2/ξ21 (recall that ξ1 ̸= 0), the vanishing of the determinant is equivalent to the secular
equation for Scholte waves Sp0(z) = 0, where

(5.16) Sp0(z) = ξ51

[
z2ρs

√
1− c−2

p z + ρ−1
f

√
1− c−2

f z
(
(2µs − ρsz)

2 − 4µ2s

√
1− c−2

s z

√
1− c−2

p z
)]
.

Equation (5.16) has been studied in the geophysical literature, see e.g. [SG56], [Ans72]. It follows
from the analysis in [Ans72] that for any positive values of the Lamé parameters and the densities at
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p0 there exists a positive simple root z := c2Sc(p0) with 0 < c2Sc(p0) < min{c2s (p0), c2f (p0)} (along with
possibly other real and complex roots, upon appropriately interpreting the square roots). This root
can be viewed as the only positive zero of a complex valued function S1(ρf , ρs, λf , λs, µs, z) which is
holomorphic in z in a neighborhood of c2Sc(p0) in C and depends smoothly on the rest of its entries,
as long as they are positive. In the invariant formulation we can now replace ξ1 by |ξ′|g, and also
multiply the third column of Aee

ev by a homogeneous real valued elliptic symbol α(ξ′, τ) of order 1
in order to make Aee

ev homogeneous of order 2 (this has the effect of turning (5.15a) into a system

for (bs2,ev, b
p
ev, α−1(ξ′, τ)bfev)). Denote this modified matrix valued symbol by Ãee

ev. Then Ãee
ev(ξ

′, τ)

fails to be elliptic at (p0, t0, ξ
′, τ) ∈ T ∗(Γ × R) \ 0 when τ2 = c2Sc(p0)|ξ′|2g. In fact, for (x′, t) near

(p0, t0) this symbol fails to be elliptic when τ2 = c2Sc(x
′)|ξ′|2g, where c2Sc is a smooth and positive

function near p0. This can be seen by changing to semigeodesic coordinates with the metric being
Euclidean at x′, setting up a system as (5.15a), and defining c2Sc(x

′) as the unique positive zero of
the function S1 mentioned earlier corresponding to the Lamé parameters and densities evaluated
at x′ (this zero is also a simple zero of Sx′). Then smoothness of c2Sc(x

′) can be shown using the
implicit function theorem for z 7→ S1(ρf , ρs, λf , λs, µs, z), viewed as a function from a subset of R2

to one of R2 by writing z = x+ yi.
Now in a conical neighborhood of the characteristic variety ΣSc := {(x′, t, ξ′, τ) ∈ T ∗(U×R) : τ2 =

c2Sc|ξ′|2g} write Sx′(τ2/|ξ′|2g) = (τ2−c2Sc|ξ′|2g)S̃(x′, t, ξ′, τ), where S̃ is an elliptic real valued symbol of

order 3. The adjugate matrix adj(Ãee
ev) is a matrix valued symbol which is homogeneous of order 4,

and −i adj(Ãee
ev)Ã

ee
ev = α(ξ′, τ)(τ2− c2Sc|ξ′|2g)S̃(x′, t, ξ′, τ)Id. This shows that Op(Ãee

ev) is an operator
of real principal type as defined in [Den82], in a suitable open conical set in T ∗(Γ × R), which
propagates singularities along the null bicharacteristics of τ2 − c2Sc(x

′)|ξ′|2g. Using it to propagate
Cauchy data given at a spacelike hypersurface in Γ×R such as Γ×{t = t0}, we obtain microlocally
non-trivial solutions of (5.15a). Those can then be used as Dirichlet data for evanescent waves on
both sides of the interface.

M−ν
ψ−ev

upev, u
s
ev

ξ′

p0
M+

Figure 7. The elliptic-elliptic transmission system, with only evanescent waves on
both sides.

For the convenience of the reader we collect some of the findings of this section in the following
theorem, whose proof consists of a summary of the arguments already presented.

Theorem 1. Suppose we are given solutions of the coupled system of evolution equations (2.1a-
2.1g), with Cauchy data supported away from the interface Γ, and satisfying Assumption 2.2. Then
provided that the wave front set of the boundary data of incoming solutions to the interface Γ ×
R is disjoint from the glancing regions, the transmission problem for the solid-fluid interface is
microlocally well posed, in the sense that geometric optics parametrices can be constructed near
the interface from both sides, matched at the interface via the transmission conditions (2.1e-2.1f).
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Scholte surface waves propagating singularities along the interface Γ × R are always possible and
can be created by sources at the interface, for instance by Cauchy data on Γ×{t0} for some t0 ∈ R.

Proof. Start with a solution of the original system (2.1a-2.1g) for (u+, v+, p−, v−) as in the statement
and follow the process described in the first part of Section 4 to obtain a solution (u+, ψ−) for the
system (4.5a-4.5e). By Assumption 4.1 and the discussion immediately after it, Lemma 4.2 implies
that we have WF(ψ−) = WF(p−) = WF(u−). As already mentioned, the restrictions ψ−∣∣

Γ×R,

u+
∣∣
Γ×R are well defined, and with the aid of a microlocal partition of unity we can assume without

loss of generality that WF(ψ−∣∣
Γ×R), WF(u+

∣∣
Γ×R) are contained in a conical neighborhood of a

covector
(
(p0, t0), (ξ

′
0, τ0)

)
∈ T ∗(Γ × R) \ 0 which lies in one of the five neighborhoods listed in

the titles of subsections 5.1-5.5. Now extend the solid’s density and Lamé parameters in an open
neighborhood U of (p0, t0) in M and construct a geometric optics solution of the elastic wave
equation in U which has the same singularities as u+ for t ≪ t0 via the process described in
Section 4.2. Similarly, extending smoothly the fluid’s density and bulk modulus in U , we construct
a geometric optics solution of the acoustic wave equation there which has the same singularities
as ψ− for t ≪ t0, as described in Section 4.1. Then the ellipticity of the systems (5.5a-5.5b),
(5.8a-5.8b), (5.11a-5.11b), (5.12a-5.12b) and (5.13a-5.13b) implies that the principal parts of the
Dirichlet data of the outgoing solutions and any evanescent waves are uniquely determined from
those of the incoming ones. Therefore, the amplitudes of the outgoing and evanescent solutions
can also be determined to infinite order by the geometric optics construction. By construction, the
incoming, outgoing and evanescent geometric optics parametrices on the two sides of the interface
microlocally satisfy the transmission conditions along it.

As already mentioned, Scholte waves along the interface cannot be produced from incoming
body waves from either the solid or the fluid side, since their wave front set is contained in the
elliptic region for the wave speed of the acoustic wave equation and the speed of the p and s waves.
However, if Cauchy data are given on a hypersurface of Γ×R which is spacelike with respect to the

Scholte speed cSc, then they can propagated via the operator Op(Ãee
ev) mentioned earlier in Section

5.6 to create waves along Γ, and those waves can be used as Dirichlet data for evanescent solutions
of the system (4.5a-4.5e) on both sides of Γ.

Finally, we can obtain a parametrix for the original system (2.1a-2.1g) near the interface upon
using the process in Section 4 to transform the parametrix we constructed for (4.5a-4.5e). □

6. Justification of the Parametrix

In this section we justify the parametrix constructed for (2.1a-2.1g) with initial data supported
away from the interface and boundary as described in the proof of Theorem 1, that is, by first
transforming it to the system (4.5a-4.5e) and then applying the techniques and results of Sections
4 and 5. The term “justification” here refers to showing that the parametrix produced in that
way differs from an actual solution by a smooth function/vector field. The method we use is an
adaptation of one used by Taylor in [Tay79]. For a discussion on the justification of the parametrix
in the more standard solid-solid or fluid-fluid case, see Appendix A.
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The difference (u+, ψ−) between a an actual solution of the system (4.5a-4.5e) and a parametrix
for it satisfies a system of the form

(6.1)



(∂2t − P+)u+ = f+ in M+ × R,
(∂2t − P̃−)ψ− = f− in M− × R,
ν · ∂tu+ + ρ−1

f ∂νψ
− = h1 on Γ× R,

N(u+) + ∂tψ
− ν = h2 on Γ× R,

N(u+) = h3 on ∂M × R,
(u+, ψ−) = 0 for t≪ 0,

where P+ = ρ−1
s E, P̃− = λf div(ρ

−1
f ∇(·)), f+ ∈ C∞(M

+ × R;π∗1TM), f− ∈ C∞(M
− × R),

h1 ∈ C∞(Γ × R), h2 ∈ C∞(Γ × R;π∗1TM), h3 ∈ C∞(∂M × R;π∗1TM) and π1 : M × R → M is
the projection. To justify that the parametrix has the same smoothness properties as the actual
solution we need to show that u+, ψ− are smooth up to the interface and boundary.

The timelike hypersurfaces Γ× R and ∂M × R are non-characteristic for ∂2t − P+ and ∂2t − P̃−

and knowledge of N(w+)
∣∣
Γ×R allows the recovery of ∂νw

+
∣∣
Γ×R from w+

∣∣
Γ×R. With the Cauchy-

Kovalevskaya method and Borel’s lemma we can produce w+, χ− which are smooth up to ∂M ×R
and Γ× R, vanish for t≪ 0, and satisfy

∂kν (∂
2
tw

+ − P+w+ − f+) = 0 for k ≥ 0 on ∂M+ × R,
w+ = 0 on Γ× R,
N(w+) = h2 on Γ× R,
N(w+) = h3 on ∂M × R,

and 
∂kν (∂

2
t χ

− − P̃−χ− − f−) = 0 for k ≥ 0 on Γ× R,
χ− = 0 on Γ× R,
∂νχ

− = ρfh1 on Γ× R.

Then the difference (z+, ϕ−) := (u+ − w+, ψ− − χ−) satisfies

(∂2t − P+)z+ = f̃+ in M+ × R,(6.2a)

(∂2t − P̃−)ϕ− = f̃− in M− × R,(6.2b)

ν · ∂tz+ = −ρ−1
f ∂νϕ

− on Γ× R,(6.2c)

N(z+) = −∂tϕ− ν on Γ× R(6.2d)

N(z+) = 0 on ∂M × R,(6.2e)

(z+, ϕ−) = 0 for t≪ 0,(6.2f)

where f̃± are smooth on M
±
and vanish to infinite order at Γ×R and ∂M ×R. We will show next

that z+, ϕ− are smooth on M
+
, M

−
respectively, which will show smoothness of u+ and ψ−.

Pass to the displacement-displacement system (3.1a-3.1e) we used to show well posedness in

Section 3: set u− = z0 −
∫ t
−∞ ρ−1

f ∇ϕ−(x, τ)dτ , where z0 is divergence free, constant in time and

ν · z0 = 0. Observe that by (3.3), the potential part of the displacement u− vanishes for t≪ 0 since
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the pressure then is 0 by (4.3) and (6.2f). Using that ∂2t u
− = −ρ−1

f ∇∂tϕ− and

(6.3) ∂tϕ
− = −λf div u− +

∫ t

−∞
f̃−(x, τ)dτ,

which follows by (6.2b) upon integrating in time and using the expression above for u−, we find

(6.4)



∂2t z
+ − ρ−1

s Ez+ = f̃+ in M+ × R,
∂2t u

− − ρ−1
f ∇λf div u− = F− in M− × R,

z+ · ν = u− · ν on Γ× R,
N(z+) = λf(div u

−) ν on Γ× R,
N(z+) = 0 on ∂M × R,
(z+, div u−) = 0 for t≪ 0,

where F−(x, t) = −ρ−1
f

∫ t
−∞∇f̃−(x, τ)dτ . Note that f̃+ and F− are smooth and both vanish

to infinite order at Γ × R and ∂M × R, thus for each s ≥ 0, Proposition 3.4 implies F(s) :=

(f̃+(·, s), F−(·, s)) ∈ D(P k) for all k = 1, 2, . . . . Now (6.4) can be solved using Duhamel’s formula:

(z+, u−)(·, t) = (0, z0) +

∫ t

−∞

sin(
√
−P (t− s))√
−P

F(s)ds, div z0 = 0, ∂tz0 ≡ 0, z0 · ν
∣∣
Γ
= 0.

By the functional calculus, (z+, u−) ∈ C∞(R;D(P k)) for all k. Therefore, Corollary 3.5 implies
that z+ ∈ C∞(R;H2k(M+)) and div u−(x, t) ∈ C∞(R;H2k−1(M−)) for all k ≥ 0. Thus by Sobolev
embedding z+ (and hence also u+ in (6.1)) is smooth up to Γ × R and ∂M × R, and div u− is
smooth up to Γ × R. We conclude by (6.3) that ϕ−, hence also ψ− in (6.1), is smooth up to the
interface.

Once a parametrix (ũ+, ψ̃−) has been constructed for (4.5a)-(4.5e), differing from an actual
solution by a smooth vector field/function, we can obtain a (justified) parametrix to the original

system (2.1a-2.1g) by setting (ũ+, ṽ+, p̃−, ṽ−) = (ũ+, ∂tũ
+, ∂tψ̃

−, ρ−1
f (Z0 −∇ψ̃−)), where Z0 is the

solenoidal part of the decomposition (4.1) of the initial data for the actual solution.

7. The inverse problem

In this section, we consider the inverse problem of recovery of the solid coefficients ρs, λs, µs and
the fluid ones ρf , λf from boundary measurements. As explained in the Introduction, we will use
the boundary rigidity result in [SUV16]. We will also quote some results from [SUV21], and for
this reason we will assume that the metric g on M ⊂ R3 is the Euclidean metric, since this is a
standing assumption in Section 10 there. To recover cf in M

−, we would need rays in M− which
can be created by incoming ones from ∂M , eventually creating a ray back to ∂M ; moreover, we
want all such rays in M− to have such property. Hence, we have to exclude speeds cf allowing for
totally reflected rays in M−. This happens only when cf |Γ− < cs|Γ+ , where c|Γ± are limits from
M±. Therefore, we assume

(7.1) cs|Γ+ < cf |Γ− .

Then the rays hitting Γ− would leave a trace on T ∗(Γ × R) either in the hyperbolic-hyperbolic
region (excluding tangential rays), see Section 5.1, or in the mixed-hyperbolic one, see Section 5.2.

We assume the following foliation condition. Assume that there exist two smooth non-positive

functions xs and xp in M
+

with dx ̸= 0, x−1(0) = ∂M , and x−1(−1) = Γ, where x is either xs or
xp. Assume that the level sets x−1

s (c), x−1
p (c), c ∈ [−1, 0], are strictly convex w.r.t. the speed cs, cp

in M+, respectively, when viewed from Γ0 = ∂M . Of course, we may have just one such function,
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i.e., xs = xp is possible. Assume also that there is a smooth non-positive xf defined on M
−
, so that

x−1(0) = Γ, and dxf ̸= 0 except at one interior point, where xf attains its minimum. We require
that the level set x−1

f (c), c < −1, is strictly convex w.r.t. the speed cf in M
−, when viewed from Γ.

Recall that the foliation condition implies non-trapping as noted in [SUV16], for example. In
our case, in M+, this means that rays in M+ not hitting Γ, would hit ∂M both in the future and
in the past. In M−, we have the usual non-trapping property.

We define the outgoing Neumann-to-Dirichlet mapNout as follows. Given f ∈ C∞
0 (∂M×R+; C3),

let u be the solution to (2.1a–2.1f) with the homogeneous condition (2.1g) replaced by N(u+) = f
on ∂M ×R, and zero Cauchy data at t = 0 zero instead of (2.1h). Set Noutf = u on ∂M ×R. Then
Nout measures the response to boundary sources related to waves propagating to the future.

Note first that Nout is well defined since we can construct a solution to N(u+) = f near ∂M ×R
locally (not solving the PDE), subtract it from the actual solution, and reduce the problem to
one with homogeneous Neumann boundary condition but a non-trivial source. Then we can use
Duhamel’s principle to reduce it to a superposition of linear problems of the kind (2.1a–2.1g) with
non-trivial Cauchy data of the kind (2.1h).

Theorem 2. Assume g is Euclidean and that we have two systems in M with coefficients ρs, µs, λs
and ρ̃s, µ̃s, λ̃s in M

+ and M̃+, respectively; and (ρf , λf), and (ρ̃f , λ̃f) in M
− and M̃−, respectively.

Assume Nout = Ñout is known for t ∈ [0, T ] with T ≫ 1. Assume the foliation condition and (7.1)

for each one of them. Then Γ = Γ̃, and cs = c̃s, cp = c̃p in M+, and cf = c̃f in M−. Also, if
cp ̸= 2cs in M

+, then ρs = ρ̃s in M
+.

Proof. The first part of the theorem, concerning the recovery of Γ and the elastic parameters inM+

follows directly from [SUV21, Lemma 10.1]. The only difference is that we have the ND instead of
the DN map but Dirichlet data can be easily converted to Neumann and vice-versa, microlocally,
by ellipticity arguments.

We prove below cf = c̃f in M
−. We follow the proof of [SUV21, Lemma 10.2] here.

Choose two points x, y, on Γ connected by a unit speed geodesic γ0 of c2f g hitting x and y at
times t1 and t2, respectively, see Figure 8. We chose a microlocal solution inM− concentrated near
γ0. The projected singularities near x are either in the hyperbolic-hyperbolic region, see Section 5.1

∂M

Γ x y

M+

M−

Γ+

Γ−

Figure 8. Illustration to the proof of Theorem 2. Here, only an s waves hits x
from M+, and s wave only reflects but we could have two p waves in addition as
well.

or in the mixed-hyperbolic one, see Section 5.2 with the exception of a set of geodesics of measure
zero (giving rise to tangential rays in M+). In either case, the fluid side is controllable from the
solid one: one can choose incoming and outgoing solutions at x to have the refracted fluid wave to
be the prescribed one at x, and no incoming one at x from M−, on principal level. We extend the
outgoing waves back to M+ a bit outside M , where we extend the coefficients (of both systems,
equally) in a smooth way, and cancel possible reflections at ∂M by sending outgoing waves with
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opposite Neumann data back to M+, on principal level. The analysis in [SUV21] shows that this
is possible.

When the wave reaches y, it will create a reflected fluid wave back to M− and two, or one
refracted waves into M+. At least one will be non-zero. We kill possible reflections as above, in
other words, we may assume that they leave M .

Consider the second, “tilded” system now. We apply the same Neumann condition and assume
the same Dirichlet data. By [Rac00], (ρs, µs, λs) and (ρ̃s, µ̃s, λ̃s) coincide at ∂M at infinite order.
By the first step, cp = c̃p, cs = c̃s inM

+. The rays leading to x for both systems would be the same
(and therefore, the “tilded” ones would really hit x as well) but the amplitudes are not necessarily
equal. The energy of the two waves combined would be positive however. The c̃fg geodesic γ̃0 in
M− may not hit Γ again at y a priori but we can do time reversal from ∂M back to Γ to see that
in fact, it does; and that happens at the same time t2. There might be other rays hitting ∂M since
in M−, there is a reflected ray which will eventually refract; and some of them may even hit ∂M
earlier. This is not a problem since we can identify y on Γ+ as the first point at which a singularity
comes back.

This argument proves that the travel time between x and y is the same for both cf and c̃f . This
is true for pairs (x, y) ∈ Γ×Γ away from a zero measure set. We can extend it for all (x, y) ∈ Γ×Γ
by continuity. Therefore, cf = c̃f in M

− by [SUV16]. □

Appendix A. Well Posedness and Justification of Parametrix in the Solid-Solid
and Fluid-Fluid Case

Although the main focus of the present paper is the transmission problem at the interface between
a solid and a fluid, in this appendix we discuss how with similar methods to the ones used in Sections
3 and 6 one can prove the justification of a parametrix in the case of two solids or two fluids being
in contact. Such a parametrix for the solid-solid case was constructed in [SUV21], but it was not
shown that the difference from an actual solution is smooth all the way to the interface. As an
intermediate step, we also discuss well posedness. The results in this appendix in the solid-solid
case were mentioned in [Han22], though without detailed proofs. The justification of the parametrix
again follows [Tay79]. In the fluid-fluid case (with the pressure satisfying an acoustic equation on
both sides of the interface), it also follows from [Wil92], which used different methods.

A.1. Well Posedness. Suppose that instead of our original system (2.1a-2.1g), we either had both
M± occupied by solids or had both of them occupied by inviscid fluids. Below we assume that
the setup regarding the geometry of the domains and the metric is as described in Section 2. So
suppose we had one of the following two systems with transmission conditions:

∂2t u
±
1 = (ρ±1 )

−1E±
1 u

±
1 on M± × R,(A.1a)

N+(u+1 ) = N−(u−1 ) on Γ× R,(A.1b)

u+1 = u−1 on Γ× R,(A.1c)

N+(u+1 ) = 0 on ∂M × R,(A.1d)

or

∂2t p
±
2 = λ±2 div((ρ±2 )

−1∇p±2 ) on M± × R,(A.2a)

(ρ−2 )
−1∂νp

−
2 = (ρ+2 )

−1∂νp
+
2 on Γ× R,(A.2b)

p+2 = p−2 on Γ× R,(A.2c)

p+2 = 0 on ∂M × R,(A.2d)
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both subject to Cauchy data at t = 0, corresponding to the solid-solid and the fluid-fluid case
respectively.

Equations (A.1a-A.1d) are a system for the (complexifications of the) vector valued displacements
in the two solids; by choosing global coordinates we assume for simplicity that u± is C3-valued.
In (A.1a), the elastic wave operator is as described in Section 2 on each side of the interface
Γ, with Lamé parameters λ±1 , µ

±
1 which are positive and smooth all the way to Γ and ∂M but

not necessarily matching at Γ. The transmission conditions (A.1b)-(A.1c) guarantee continuity of
traction and displacement across the interface respectively, whereas (A.1d) stands for vanishing of
the traction across the surface of contact of the solid and vacuum (or air by approximation). The
densities ρ±1 are positive and smooth up to the interface/boundary but might jump at Γ.

The system (A.2a-A.2d) describes the scalar valued acoustic pressure for inviscid fluids on M±.
The transmission condition (A.2c) originates from continuity of traction at the interface Γ, whereas
(A.2b) from continuity of the normal component of displacement at Γ (recall that according to
(2.1c) we have ∂tv

±
2 = −(ρ±2 )

−1∇p±2 , where v
±
2 stands for the velocity field of the fluid in M±).

(A.2d) stands for vanishing of traction across the surface of contact of the fluid and vacuum. Again,
λ±2 and ρ±2 are smooth and positive all the way to ∂M and Γ, generally not matching at Γ.

We unify the presentation by writing, for j = 1, 2,

∂2t z
±
j = P±

j z
±
j on M± × R,(A.3a)

B+
j,νz

−
j = B−

j,νz
+
j on Γ× R,(A.3b)

z+j = z−j on Γ× R,(A.3c)

B+
1,νz

+
1 = 0 or z+2 = 0 on ∂M × R,

corresponding to j = 1, 2 in (A.3a)-(A.3c),
(A.3d)

where

z±1 =u±1 , z±2 =p±2 , P±
1 =(ρ±1 )

−1E±
1 ,

P±
2 =λ±2 div((ρ±2 )

−1∇·), B±
1,ν =N±, B±

2,ν =(ρ±2 )
−1∂ν .

Note that P±
j is an elliptic operator for j = 1, 2 (matrix valued for j = 1).

We view Pj,0 =

(
P+
j 0

0 P−
j

)
as an unbounded operator on

L2(M+, dµ+j ;C
m(j))× L2(M−, dµ−j ;C

m(j)),

where

dµ±1 = ρ±1 dvg, dµ±2 = (λ±2 )
−1dvg, m(1) = 3, and m(2) = 1,

with domain

D(Pj,0) =
{
(z+j , z

+
j ) ∈ C∞(M

+
;Cm(j))× C∞(M

−
;Cm(j)) : z+j = z−j and B+

j,νz
−
j = B−

j,νz
+
j on Γ,

B+
1,νz

+
1 = 0 or z+2 = 0 on ∂M corresponding to j = 1 or j = 2

}
.

By the transmission and boundary conditions, −Pj,0 is symmetric and semibounded below on its
domain, hence Pj,0 admits a self-adjoint extension Pj with domain D(Pj). As before, to construct
the domain first complete D(Pj,0) in the squared norm

∥(z+j , z
−
j )∥

2
qj = ∥z+j ∥

2
q+j

+ ∥z+j ∥
2
L2(M+,dµ+

j )
+ ∥z−j ∥

2
q−j

+ ∥z−j ∥
2
L2(M−,dµ−

j )
,
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where ∥ · ∥q±j are the seminorms induced on C∞(M
±
;Cm(j)) by the quadratic forms

q±1 (z
±
1 , w

±
1 ) = (div z±1 , divw

±
1 )L2(M±,λ±

1 dvg)
+ (dsz±1 , d

sw±
1 )L2(M±,2µ±

1 dvg)
,

q±2 (z
±
2 , w

±
2 ) = (∇z±2 ,∇w

±
2 )L2(M±,ρ±2 dvg)

.

Lemma A.1. Denote the completion of D(Pj,0) in ∥ · ∥qj by D(qj), j = 1, 2. We have

D(q1) = H1
1,tr := {(z+, z−) ∈ H1(M+;C3)×H1(M−;C3) : τ(z+1 ) = τ(z−1 )} and(A.5a)

D(q2) = H1
2,tr := {(z+, z−) ∈ H1(M+)×H1(M−) : τ(z+2 ) = τ(z−2 ) and τ

′(z+2 ) = 0},(A.5b)

where τ , τ ′ are the traces at Γ and ∂M respectively.1 The subscript “tr” stands for transmission.

Proof. The fact that D(qj) ⊂ H1(M+;Cm(j)) × H1(M−;Cm(j)) follows from the equivalence of
∥zj∥2qj with the squared norm ∥z+j ∥2H1(M+) + ∥z−j ∥2H1(M−), where we wrote zj = (z+j , z

−
j ) (in the

case j = 1 the equivalence of norms follows from Korn’s inequality). The transmission/boundary
conditions in (A.5a)-(A.5b) hold by the trace theorem, since they do so for elements of D(Pj,0).

For the other inclusion, suppose that zj = (z+j , z
−
j ) ∈ H1

j,tr is given and we seek an ele-

ment in D(Pj,0) close to it. The transmission condition at Γ guarantees that upon defining

zj =

{
z+j on M+

z−j on M− , we have z1 ∈ H1(M ;C3) and z2 ∈ H1
0 (M). Thus given ε > 0 we can find

X1 ∈ C∞(M ;C3), X2 ∈ C∞
c (M) such that ∥zj −Xj∥H1(M) ≤ ε. Setting Xj = (Xj

∣∣
M+ , Xj

∣∣
M−),

∥z−Xj∥qj ≤ C
(
∥z+j −Xj

∣∣
M+∥H1(M+) + ∥z−j −Xj

∣∣
M−∥H1(M−)

)
≤ C∥zj −Xj∥H1(M) ≤ Cε.

Finally, since Xj does not generally satisfy the requisite Neumann type transmission conditions,

adjust it by finding X̃+
j ∈ C∞(M

+
) with X̃+

j

∣∣
∂M+ = 0, Bj,ν(Xj

∣∣
M+ + X̃+

j ) = Bj,ν(Xj

∣∣
M−) on Γ

and B1,ν(X1

∣∣
M+ + X̃+

1 ) = 0 on ∂M if j = 1. By shrinking its support it can be arranged that

∥X̃+
j ∥H1(M+) < ε, implying that ∥zj − (Xj + (X̃+

j , 0))∥qj ≤ Cε with Xj + (X̃+
j , 0) ∈ D(Pj,0) and

thus showing the claim. □

We now have:

Proposition A.2. For j = 1, 2, if zj = (z+j , z
−
j ) ∈ D(Pj) with P

±
j u

± ∈ Hk(M±) for k = 0, 1, 2 . . .
then we have

(A.6)
∥z+j ∥

2
Hk+2(M+) + ∥z−j ∥

2
Hk+2(M−)

≤ C
(
∥P+

j z
+
j ∥

2
Hk(M+) + ∥P−

j z
−
j ∥

2
Hk(M−) + ∥z+j ∥

2
H1(M+) + ∥z−j ∥

2
H1(M−)

)
.

If zj = (z+j , z
−
j ) ∈ D(Pn

j ), n ≥ 1, then z±j ∈ H2n(M±,Cm(j)).

Proof. The operators P±
j are all elliptic and coercive on H1, with coefficients smooth down to

the interface Γ and the boundary ∂M . Now suppose that zj ∈ D(Pj), j = 1, 2, implying that
τ(z+j )− τ(z−j ) = 0 and τ ′(z+2 ) = 0 if j = 2. Moreover, the integration by parts property

(A.7)
∑
•=±

(
(P •

j z
•
j , w

•
j )L2(M•,dµ•

j )
+ q•j (z

•
j , w

•
j )
)
= 0, (z+j , z

−
j ) ∈ D(Pj), (w+

j , w
−
j ) ∈ D(qj)

1Strictly speaking, for each j = 1, 2 we have two trace operators corresponding to Γ, with different domains,
mapping C∞(M±;Cm(j)) → C∞(Γ;Cm(j)) and extending continuously H1(M±;Cm(j)) → H1/2(Γ;Cm(j)). However,
we will not differentiate between them in the notation and it will be clear from the argument which one is used.
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implies B+
j,ν(z

+
j ) − B−

j,ν(z
−
j ) = 0 and B+

1,ν(z
+) = 0 (those quantities are a priori defined weakly

as elements of H−1/2(Γ;Cm(j)) and H−1/2(∂M ;C3) respectively, see e.g. [McL00, Lemma 4.3]).
Hence (A.6) follows from Theorems 4.18 and 4.20 of [McL00].

For the second statement, if z = (z+j , z
−
j ) ∈ D(Pn

j ), n ≥ 2 then (A.6) for k = 0 implies that

(P±
j )n−1z±j ∈ H2(M±;Cm(j)). Then, using (A.6) for k = 2 and z±j replaced by (P±

j )n−2z±j we

find that (P±
j )n−2z±j ∈ H4(M±;Cm(j)). Proceeding inductively for n − 1 steps, we find that

(z+j , z
−
j ) ∈ D(Pn

j ) implies P±
j z

±
j ∈ H2n−2(M±;Cm(j)). Then the claim follows from (A.6) again

applied for k = 2n. □

As a corollary we obtain the following:

Corollary A.3. The domain of the self-adjoint operator Pj for j = 1, 2 is given by

D(P1) = {(z+1 , z
−
1 ) ∈ H2(M+;C3)×H2(M−;C3) : τ(z+1 ) = τ(z−1 ) on Γ,

B+
1,ν(z

+
1 ) = B−

1,ν(z
−
1 ) on Γ and B+

1,ν(z
+
1 ) = 0 on ∂M} and

(A.8a)

D(P2) = {(z+2 , z
−
2 ) ∈ H2(M+)×H2(M−) : τ(z+2 ) = τ(z−2 ) on Γ,

B+
2,ν(z

+
2 ) = B−

2,ν(z
−
2 ) on Γ and τ ′(z+2 ) = 0 on ∂M}.

(A.8b)

Proof. The regularity of elements inD(Pj) follows from Proposition A.2. The transmission/boundary
conditions follow from the inclusion D(Pj) ⊂ H1

j,tr and the integration by parts property (A.7).

Conversely, any element (z+j , z
−
j ) in the right hand side of (A.8a)-(A.8b) lies in H1

j,tr and satisfies

(A.7) for (w+
j , w

−
j ) ∈ H1

j,tr, implying that

|q+j (z
+
j , w

+
j ) + q−j (z

−
j , w

−
j )| ≤ C

(
∥w+

j ∥
2
L2(M+,dµ+

j )
+ ∥w−

j ∥
2
L2(M−,dµ−

j )

)1/2
,

thus (z+j , z
−
j ) ∈ D(Pj). □

Finally, the Sobolev Embedding Theorem and Proposition A.2 yield the following:

Corollary A.4. For j = 1, 2, if zj = (z+j , z
−
j ) ∈ D(Pn

j ) for all n ≥ 1, then z±j ∈ C∞(M
±
;Cm(j)).

A.2. Parametrix Justification. Using the techniques described in Sections 4.1 and 4.2 one can
construct parametrices for (A.2a-A.2d) and (A.1a-A.1d) respectively (see [SUV21]). With the
combined presentation used in (A.3a)-(A.3d), the difference between an actual solution and a
parametrix satisfies 

∂2t z
±
j − P±

j z
±
j = F±

j on M± × R,
B+

j,νz
+
j −B−

j,νz
−
j = fj on Γ× R,

z+j − z−j = gj on Γ× R,
B+

1,νz
+
1 = h1 on ∂M × R if j = 1,

z+2 = h2 on ∂M × R if j = 2,

z±j = 0 for t≪ 0,

where for j = 1, 2, F±
j ∈ C∞(M

±×R;Rm(j)), fj , gj ∈ C∞(Γ×R;Rm(j)), hj ∈ C∞(∂M ×R;Rm(j))

and we recall the notation m(1) = 3, m(2) = 1.
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As in Section 6, by the Cauchy-Kovalevskaya method and Borel’s lemma, our task reduces to
showing smoothness up to the boundary/interface for the solutions v±j of the system

(A.9)



∂2t v
±
j − P±

j v
±
j = F̃±

j on M± × R,
B+

j,νv
+
j −B−

j,νv
−
j = 0 on Γ× R,

v+j − v−j = 0 on Γ× R,
B+

1,νv
+
1 = 0 on ∂M × R if j = 1,

v+2 = 0 on ∂M × R if j = 2,

v±j = 0 for t≪ 0,

where F̃±
j are smooth and vanish to infinite order at Γ and at ∂M . Therefore, by Corollary (A.3)

we have that F̃j(s) = (F̃+
j (·, s), F̃−

j (·, s)) ∈ D(P k) for all k ≥ 1 and s ∈ R. Thus (A.9) can be
solved using Duhamel’s formula, namely

v(t) =
(
v+j (·, t), v

−
j (·, t)

)
=

∫ t

−∞

sin
(√

−Pj(t− s)
)√

−Pj

Fj(s)ds.

The functional calculus implies that v ∈ C∞(R;D(P k
j )) for all integers k ≥ 0, so by Corollary A.4

we obtain that v±j ∈ C∞(M × R;Cm(j)).

Appendix B. Proofs for Section 3.1

In this appendix we prove Lemma 3.2, Proposition 3.3 and Corollary 3.5. It will be convenient
in what follows to decompose a given u− ∈ H1

div(M
−;C⊗ TM) into a divergence free (solenoidal)

and a potential part. So for such a u, consider ω ∈ H1(M−) satisfying

(B.1) ∆ω = div u− ∈ L2(M−) on M−, ∂νω = τ(u− · ν) ∈ H−1/2(Γ) on Γ.

The requisite compatibility condition
∫
M− div u−dvg =

∫
Γ−τ(u

− · ν)dA for (B.1) is automatically

satisfied by (3.7) (set ϕ̃ ≡ 1 there), so its solvability up to a constant follows from [McL00, Theorem
4.10], for example. Then we define an orthogonal projector on the subspace of divergence free vector
fields in L2(M−, dvg;C⊗ TM) by setting

Πu− := u− −∇ω ∈ L2(M−;C⊗ TM).

Note that Πu− · ν = 0 on Γ (in a weak sense), by construction.
If we are given a pair u = (u+, u−) ∈ H1

div,tr (see (3.8)), we obtain better regularity for the

potential part of u−: since τ(u− · ν) = τ(u+) · ν ∈ H1/2(Γ), we conclude that ω ∈ H2(M−), e.g. by
[McL00, Theorem 4.18 (ii)]. So in this case we have the decomposition

(B.2) u− = ũ− +Πu−, ũ− := ∇ω ∈ H1(M−;C⊗ TM), Πu− ∈ L2(M−;C⊗ TM).

Proof of Lemma 3.2. For u ∈ D(P0) we have

∥u∥2q = ∥ div(u+)∥2L2(M+,λsdvg)
+ ∥ds(u+)∥2L2(M+,2µsdvg)

+ ∥div u−∥2L2(M−,λfdvg)
+ ∥u∥2L2 .

By Korn’s inequality, the squared norm ∥ div(u+)∥2L2(M+)+∥ds(u+)∥2L2(M+)+∥u+∥2L2(M+) is equiv-

alent to ∥u+∥2H1(M+), therefore D(q) ⊂ H1(M+;C ⊗ TM)×H1
div(M

−;C⊗ TM). The continuous

dependence of ∥τ(u+) · ν∥H1/2(Γ) and ∥τ(u− · ν)∥H−1/2(Γ) on ∥u+∥H1(M+) and ∥u−∥H1
div(M

−) respec-

tively implies that the transmission condition in (3.8) is satisfied and hence D(q) ⊂ H1
div,tr (so one

also has τ(u− · ν) ∈ H1/2(Γ)).



THE SOLID-FLUID TRANSMISSION PROBLEM 37

For the converse, assume u = (u+, u−) ∈ H1
div,tr is given; we will show that we can find an

element of D(P0) arbitrarily close to it in ∥ · ∥q. Let ũ− and Πu− be as in (B.2). Further, consider
semigeodesic local coordinates (x1, x2, x3) in a neighborhood U of a point in Γ such that x3 = 0
on Γ, ∂x3

∣∣
Γ
= −ν and ∂x3 · ∂xj

∣∣
Γ
= 0 for j = 1, 2, and write2 u+j = dxj(u

+), ũ−j = dxj(ũ
−).

We deal with the potential and the divergence free part of u− separately. To handle the former,
for j = 1, 2, 3 we will approximate (u+j , ũ

−
j ) in H1(M+) ×H1(M−) by pairs of smooth functions;

specifically for j = 3 we will use the transmission condition u+3
∣∣
Γ
= ũ−3

∣∣
Γ
satisfied by (u+3 , ũ

−
3 ) to

ensure that the approximating pair satisfies it too. For the latter, we will first approximate Πu− in
L2 and then only use the divergence free part of the approximating vector field to build the vector
field approximating u−.

Consider φ ∈ C∞
c (U) and write U± := U ∩M±. Then φu+j ∈ H1(U+), φũ−j ∈ H1(U−) for all j

and they vanish on ∂U ; moreover, the function defined on U as

{
ϕu+3 on U+

ϕũ−3 on U− lies in H1
0 (U), by

[McL00, Exercise 4.5]. Thus given ε > 0 we can find functions X3 ∈ C∞
c (U), X±

j ∈ C∞
c (U ∩M±

),
j = 1, 2 such that

XU =(X+
U , X

−
U ) =

( 2∑
j=1

X+
j ∂xj +X3∂x3 ,

2∑
j=1

X−
j ∂xj +X3∂x3

)
∈ C∞

c (U ∩M+
;C⊗ TM)× C∞

c (U ∩M−
;C⊗ TM) with X+

U · ν
∣∣
Γ
= X−

U · ν
∣∣
Γ

and ∥φu+ − X+
U ∥2H1(U+) + ∥φũ− − X−

U ∥2H1(U−) ≤ ε. In coordinate neighborhoods which do not

intersect Γ we can construct smooth approximations to (u+, ũ−) in a similar, though simpler,
fashion. Using a partition of unity, we find

X = (X+, X−) ∈ C∞(M
+
;C⊗ TM)× C∞(M

−
;C⊗ TM) with X+ · ν

∣∣
Γ
= X− · ν

∣∣
Γ

such that (
∥u+ −X+∥2H1(M+) + ∥ũ− −X−∥2H1(M−)

)
≤ ε.

To deal with the divergence free part of u−, we find Y − ∈ C∞(M
−
;C ⊗ TM) which satisfies

∥Πu− − Y −∥2L2(M−) ≤ ε. Since Π is an orthogonal projector, we have

∥Πu− −ΠY −∥2L2(M−) = ∥Π(Πu− − Y −)∥2L2(M−) ≤ ∥Πu− − Y −∥2L2(M−) ≤ ε.

Now set X1 = X+(0,ΠY −); by construction of Π we have that X+ ·ν
∣∣
Γ
= (X−+ΠY −) ·ν

∣∣
Γ
. Now

∥u−X1∥2q ≤ C
(
∥u+ −X+∥2H1(M+) + ∥ũ− +Πu− − (X− +ΠY −)∥2H1

div(M
−)

)
≤ C

(
∥u+ −X+∥2H1(M+) + ∥ũ− −X−∥2H1

div(M
−) + ∥Πu− −ΠY −∥2L2(M−)

)
≤ C

(
∥u+ −X+∥2H1(M+) + ∥ũ− −X−∥2H1(M−) + ∥Πu− −ΠY −∥2L2(M−)

)
≤ Cε.

The vector field X1 we constructed does not necessarily satisfy all of the requisite transmission

and boundary conditions to lie in D(P0). Hence we adjust X+ by adding a vector field X̃+ ∈
C∞(M

+
;C⊗ TM) satisfying

X̃+ = 0 on ∂M+, N(X+ + X̃+) = λf(divX
−)ν on Γ, N(X+ + X̃+) = 0 on ∂M,

2Here we are not using the convention of writing upper indices for the components of a vector field.
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and supported in a sufficiently small neighborhood of ∂M+ to ensure that ∥X̃+∥2H1(M+) ≤ ε. We

find that X2 = (X+ + X̃+, X− +ΠY −) ∈ D(P0) and ∥u−X2∥2q ≤ Cε, as claimed. □

The proofs for Proposition 3.3 and Corollary 3.5 below closely follow those of elliptic regularity
estimates in [McL00, Ch. 4], though the difficulty here is the lack of ellipticity of P−. We will use
difference quotients: for a function w ∈ L2(Rn) let

δℓ,hw(x) =
1

h

(
w(x+ heℓ)− w(x)

)
, ℓ = 1, . . . , n,

where eℓ is the ℓ-th standard unit vector. If ∂xℓ
w ∈ L2(Rn), then by [McL00, Lemma 4.13],

∥δℓ,hw∥L2(Rn) ≤ C∥∂xℓ
w∥L2(Rn) for h ∈ R, and δℓ,hw

h→0→ ∂xℓ
w in L2. Moreover, the fact that

[δℓ,h, ∂xk
] = 0 and interpolation imply that for any s ∈ R, δℓ,h : Hs+1(Rn) → Hs(Rn) is bounded

for all h ∈ R, uniformly in h.

Proof of Proposition 3.3. We will first assume that Πu− = 0, i.e. that u− = ũ− in (B.2), and show
that if (u+, u−) = (u+, ũ−) ∈ D(P ) then we have the estimate

(B.3)
∥u+∥2H2(M+) + ∥ div u−∥2H1(M−)

≤ C
(
∥P+u+∥2L2(M+) + ∥P−u−∥2L2(M−) + ∥u+∥2H1(M−) + ∥u−∥2H1(M+)

)
, Πu− = 0.

Once (B.3) has been established under the assumption u− = ũ−, the statement of the proposition
follows for general u ∈ D(P ); we now demonstrate how to see this. Let u− = ũ− +Πu− and write
ũ− = ∇ω, where ω is determined up to constant by (B.1) (with τ(u− · ν) = τ(u+) · ν) and it has
been chosen so that ∥ω∥H1(M−) = ∥ω+C∥H1(M−)/C = infz∈C ∥ω+z∥H1(M−) (the precompactness of

M− implies that the infimum is realized for some complex number). Notice that if (u+, u−) ∈ D(q)
then (u+, u−) ∈ D(P ) if and only if (u+, ũ−) ∈ D(P ) because (0,Πu−) ∈ D(P ) by (3.6).

For each r ≥ 0, we have the elliptic regularity estimate

∥ũ−∥Hr+1(M−) = ∥∇ω∥Hr+1(M−) ≤ C∥ω∥Hr+2(M−)

≤ C
(
∥∆ω∥Hr(M−) + ∥ω∥H1(M−) + ∥∂νω∥Hr+1/2(Γ)

)
≤ C

(
∥ div(ũ−)∥Hr(M−) + ∥ω∥H1(M−) + ∥u+ · ν∥Hr+1/2(Γ)

)
≤ C

(
∥ div(u−)∥Hr(M−) + ∥u+∥Hr+1(M+)

)
,(B.4)

using the trace theorem and the fact that [McL00, Theorem 4.10(ii)] implies

(B.5) ∥ω∥H1(M−) = ∥ω + C∥H1(M−)/C ≤ C
(
∥div u−∥L2(M−) + ∥ν · u+∥H1/2(Γ)

)
.

So suppose that (u+, u−) ∈ D(P ) is given. Then (u+, ũ−) ∈ D(P ), so if (B.3) is known to hold with
u− replaced by ũ−, we obtain the original claim (3.9) using that P−ũ− = P−u−, div u− = div ũ−,
and (B.4) for r = 0.

So now assume that u ∈ D(P ) and Πu− = 0. To prove (B.3) we localize in neighborhoods where
we can choose coordinates conveniently. Assume that U is a neighborhood of a point in Γ and
semigeodesic coordinates are chosen on U such that Γ is given locally by x3 = 0 and such that
ν = −∂x3

∣∣
Γ
, and consider χ ∈ C∞

c (U). With some abuse of notation we write χu± := χ
∣∣
M±u

± and

χu := (χu+, χu−). Note that if u ∈ D(P ) we have χu ∈ H1
div,tr but generally not χu ∈ D(P ).

(This is one of the reasons why we have to do the localization explicitly by multiplying by χ instead
of assuming that u ∈ D(P ) and is supported in U ; we would have some loss of generality with such
an assumption.) For ℓ = 1, 2 we can form the difference quotient δℓ,h(χu) := (δℓ,h(χu

+), δℓ,h(χu
−))

(throughout this proof we assume that |h| is small enough that supp δℓ,h(χu) ⊂⊂ U). Again, in
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general u ∈ D(P ) ̸⇒ δh,ℓ(χu) ∈ D(P ) due to the Neumann transmission condition (3.1d), but
u ∈ D(P ) ⊂ H1

div,tr ⇒ δℓ,h(χu) ∈ H1
div,tr.

For v±, w± ∈ H1(M±;C⊗ TM), we set below

q+(v+, w+) =(div v+,divw+)L2(M+,λsdvg) + (dsv+, dsw+)L2(M+,2µsdvg),

q−(v−, w−) =(div v−,divw−)L2(M−,λfdvg).

By [McL00, Lemma 4.15] we then have (assuming v±, u± are supported in U ∩M±
)

|q±(δℓ,hv±, w±)− q±(v±, δℓ,−hw
±)| ≤ C∥v±∥H1(M±)∥w±∥H1(M±), |h| small, ℓ = 1, 2.(B.6)

Inequality (B.3) will be proved by means of the following coerciveness type estimates, which follow
from Korn’s inequality and (B.6):

∥δℓ,h(χu+)∥2H1(M+) + ∥ div δℓ,h(χu−)∥2L2(M−)

≤ C
(
|q+(δℓ,h(χu+), δℓ,h(χu+)) + q−(δℓ,h(χu

−), δℓ,h(χu
−))|+ ∥δℓ,h(χu+)∥2L2(M+)

)
≤ C

(
|q+(χu+, δℓ,−hδℓ,h(χu

+)) + q−(χu−, δℓ,−hδℓ,h(χu
−))|

+ ∥χu+∥H1(M+)∥δℓ,h(χu+)∥H1(M+) + ∥χu−∥H1(M−)∥δℓ,h(χu−)∥H1(M−)

+ ∥δℓ,h(χu+)∥2L2(M+)

)
.(B.7)

Eventually our goal is to let h→ 0, thus turning the difference quotients into derivatives, once we
manage to move all of the expressions involving highest order derivatives and difference quotients
of u± to the left hand side. We will establish two claims that will allow us to further manipulate
(B.7): The purpose of Claim 1 is to estimate ∥δℓ,h(χu−)∥H1(M−), which appears in the right hand

side of (B.7), by ∥ div(δℓ,h(χu−))∥L2(M−)+ ∥δℓ,h(χu+)∥H1(M+) (which appears in its left hand side)
plus controlled quantities. The purpose of Claim 2 is to show how integration by parts can be used
to replace the quadratic form terms in (B.7) by expressions involving P±u±.

Claim 1. If Πu− = 0 and ℓ = 1, 2,

(B.8)
∥δℓ,h(χu−)∥H1(M−)

≤ C
(
∥ div(δℓ,h(χu−))∥L2(M−) + ∥u−∥H1(M−) + ∥u+∥H1(M+) + ∥δℓ,h(χu+)∥H1(M+)

)
.

To prove Claim 1, write u− = ũ− = ∇ω, where ω solves (B.1) (with τ(u− · ν) = τ(u+) · ν) and
satisfies ∥ω∥H1(M−) = ∥ω + C∥H1(M−)/C. Below we write mχ for the operator of multiplication by
χ. Using elliptic regularity estimates (e.g. [McL00, Theorem 4.18])

∥δℓ,h(χu−)∥H1(M−) =∥δℓ,hmχ∇ω∥H1(M−)

≤C
(
∥δℓ,hmχω∥H2(M−) + ∥[δℓ,hmχ,∇]ω∥H1(M−)

)
≤C

(
∥∆(δℓ,hmχω)∥L2(M−) + ∥δℓ,hmχω∥H1(M−)

+ ∥∂ν(δℓ,hmχω)∥H1/2(Γ) + ∥[δℓ,hmχ,∇]ω∥H1(M−)

)
≤C

(
∥div(δℓ,hmχ∇ω)∥L2(M−) + ∥ div([δℓ,hmχ,∇]ω)∥L2(M−) + ∥ω∥H2(M−)

+ ∥∂ν(δℓ,hmχω)∥H1/2(Γ) + ∥[δℓ,hmχ,∇]ω∥H1(M−)

)
≤C

(
∥div(δℓ,h(χu−))∥L2(M−) + ∥∇ω∥H1(M−) + ∥ω∥H1(M−)

+ ∥∂ν(δℓ,hmχω)∥H1/2(Γ) + ∥[δℓ,hmχ,∇]ω∥H1(M−)

)
.(B.9)
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Now one checks that if a ∈ C∞(M
−
) and j = 1, 2, 3

[δℓ,hmχ, a∂xj ] = [δℓ,h,mχa]∂xj + a[mχ, δℓ,h]∂xj + aδℓ,h[mχ, ∂xj ],

so by [McL00, Lemma 4.14(iii)], which describes the behavior of the first two commutators,

∥[δℓ,hmχ,∇]ω∥H1(M−) ≤ C∥ω∥H2(M−) ≤ C
(
∥∇ω∥H1(M−) + ∥ω∥H1(M−)

)
≤ C

(
∥u−∥H1(M−) + ∥ω∥H1(M−)

)
.(B.10)

Further, using the trace theorem, the fact that ∂νω = u+ · ν, and that [δℓ,h, ∂ν ] = 0 in our coordi-
nates, we check that

∥∂ν(δℓ,hmχω)∥H1/2(Γ) ≤ C
(
∥ω∥H2(M−) + ∥δℓ,h(χu+ · ν)∥H1/2(Γ)

)
≤ C

(
∥u−∥H1(M−) + ∥ω∥H1(M−) + ∥δℓ,h(χu+))∥H1(M+)

)
.(B.11)

Finally, estimating ∥ω∥H1(M−) using (B.5) and the trace theorem, we obtain the claim by (B.9),
(B.10), and (B.11).

Claim 2. Given χ ∈ C∞
c (U ;R), u = (u+, u−) ∈ D(P ) with Πu− = 0, and v = (v+, v−) ∈ H1

div,tr,∣∣[q+(χu+, v+) + q−(χu−, v−)
]
−
[
(−P+u+, χv+)L2(M+,ρsdvg) + (−P−u−, χv−)L2(M−,ρfdvg)

]∣∣
≤ C

(
∥u+∥H1(M+)

(
∥v+∥L2(M+) + ∥τ(v+)∥H−1/2(Γ)

)
+ ∥u−∥H1(M−)

(
∥v−∥L2(M−) + ∥τ(v−)∥H−1/2(Γ)

))
.(B.12)

To prove the claim, note that since u ∈ D(P ) and χv ∈ H1
div,tr,

(B.13) (−P+u+, χv+)L2(M+,ρsdvg) + (−P−u−, χv−)L2(M−,ρfdvg) = q+(u+, χv+) + q−(u−, χv−).

The result will follow from moving χ from the second to the first argument of q± and estimating
the resulting additional terms: we have (recall that ν is inward pointing for M−)

q−(u−, χv−) =(div u−,divχv−)L2(M−,λfdvg)

=(χdiv u−, div v−)L2(M−,λfdvg) + (div u−,∇χ · v−)L2(M−,λfdvg)

=q−(χu−, v−)− (λf∇χ · u−, div v−)L2(M−,dvg) + (div u−,∇χ · v−)L2(M−,λfdvg)

=q−(χu−, v−) + (∇(λf∇χ · u−), v−)L2(M−,dvg) + ⟨τ(λf∇χ · u−), ν · τ(v−)⟩L2(Γ,dA)

+ (div u−,∇χ · v−)L2(M+,λfdvg)

and, with S denoting symmetrization,

q+(u+, χv+) =(div u+,divχv+)L2(M+,λsdvg) + (dsu+, dsχv+)L2(M+,2µsdvg)

=(χdiv u+,div v+)L2(M+,λsdvg) + (χdsu+, dsv+)L2(M+,2µsdvg)

+ (div u+,∇χ · v+)L2(M+,λsdvg) + (dsu+, S(∇χ⊗ v+))L2(M+,2µsdvg)

=q+(χu+, v+)− (∇χ · u+,div v+)L2(M+,λsdvg) − (S(∇χ⊗ u+), dsv+)L2(M+,2µsdvg)

+ (div u+,∇χ · v+)L2(M+,λsdvg) + (dsu+, S(∇χ⊗ v+))L2(M+,2µsdvg)

=q+(χu+, v+) + (∇(λs∇χ · u+), v+)L2(M+,dvg) − ⟨λs∇χ · u+, ν · v+⟩L2(Γ,dA)

+ (div(2µsS(∇χ⊗ u+)), v+)L2(M+,dvg) − ⟨ν · (2µsS(∇χ⊗ u+)), v+⟩L2(Γ,dA)

+ (div u+,∇χ · v+)L2(M+,λsdvg) + (dsu+, S(∇χ⊗ v+))L2(M+,2µsdvg).
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Hence we find, using Cauchy-Schwarz

(B.14)
|q±(u±, χv±)−q±(χu±, v±)|

≤ C
(
∥u±∥H1(M±)∥v±∥L2(M±) + ∥τu±∥H1/2(Γ)∥τv

±∥H−1/2(Γ)

)
.

Combining (B.13) with (B.14) and estimating ∥τu±∥H1/2(Γ) by ∥u±∥H1(M±) via the trace theorem,

we obtain the claim.

Now substitute v± = δℓ,−hδℓ,h(χu
±) for ℓ = 1, 2 into (B.12) and use the following estimates:

∥τδℓ,−hδℓ,h(χu
±)∥H−1/2(Γ) = ∥δℓ,−hτδℓ,h(χu

±)∥H−1/2(Γ) ≤ C∥τδℓ,h(χu±)∥H1/2(Γ)

≤ C∥δℓ,h(χu±)∥H1(M±)

and ∥δℓ,−hδℓ,h(χu
±)∥L2(M±) ≤ C∥δℓ,h(χu±)∥H1(M±).

Combining the resulting estimate with (B.7) and Cauchy-Schwarz we obtain

∥δℓ,h(χu+)∥2H1(M+) + ∥ div δℓ,h(χu−)∥2L2(M−)

≤ C
(
∥P+u+∥L2(M+)∥δℓ,h(χu+)∥H1(M+) + ∥P−u−∥L2(M−)∥δℓ,h(χu−)∥H1(M−)

+ ∥u+∥H1(M+)∥δℓ,h(χu+)∥H1(M+) + ∥u−∥H1(M−)∥δℓ,h(χu−)∥H1(M−) + ∥u+∥2H1(M+)

)
.(B.15)

Using the inequality ab ≤ 1
2(εa

2 + 1
εb

2) for sufficiently small ε together with (B.8), (B.15) implies

∥δℓ,h(χu+)∥2H1(M+) + ∥div δℓ,h(χu−)∥2L2(M−)

≤ C
(
∥P+u+∥2L2(M+) + ∥P−u−∥2L2(M−) + ∥u+∥2H1(M+) + ∥u−∥2H1(M−)

)
.

Sending h→ 0 we find that for ℓ = 1, 2

∥∂xℓ
(χu+)∥2H1(M+) + ∥ div ∂xℓ

(χu−)∥2L2(M−)

≤ C
(
∥P+u+∥2L2(M+) + ∥P−u−∥2L2(M−) + ∥u+∥2H1(M+) + ∥u−∥2H1(M−)

)
,

thus

(B.16)
∥∂xℓ

(χu+)∥2H1(M+) + ∥∂xℓ
div(χu−)∥2L2(M−)

≤ C
(
∥P+u+∥2L(M+) + ∥P−u−∥2L(M−) + ∥u+∥2H1(M+) + ∥u−∥2H1(M−)

)
,

using that ∥∂xℓ
div

(
χu−)∥2L2(M−) ≤ C(∥ div ∂xℓ

(χu−)∥L2(M−) + ∥u−∥H1(M−)

)
.

For the derivatives normal to the interface, (u+, u−) ∈ D(P ) implies that P+u+ = f+ ∈
L2(M+;C⊗ TM). Since Γ is non-characteristic for P+, we have that

a+(x)∂2x3
(χu+) = P̃+(χu+) +Q+(u+) + χf+,

where det a± ̸= 0, Q+ is an operator of order 1 and P̃+ is a differential operator of order 2 in which
the order of normal derivatives appearing is no more than 1. Hence

(B.17) ∥∂x3(χu
+)∥2H1(M+) ≤ C

( 2∑
j=1

∥∂xj (χu
+)∥2H1(M+) + ∥P+u+∥2L2(M+) + ∥u+∥2H1(M+)

)
.
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On the other hand,

(B.18)
∥∂x3 div(χu

−)∥2L2(M−) ≤ C
(
∥∂x3λf div u

−∥2L2(M−) + ∥ div u−∥2L2(M−) + ∥u−∥2H1(M−)

)
≤ C

(
∥P−u−∥2L2(M−) + ∥div u−∥2L2(M−) + ∥u+∥2H1(M+)

)
,

where we used (B.4) in the last step. Adding (B.17) and (B.18) and using (B.16) to estimate the
terms appearing in the summation in (B.17), we find that (B.16) also holds for ℓ = 3.

If suppχ ∩ Γ = ∅ the proof of (B.16) for ℓ = 1, 2, 3 can be done in a similar way, though it is
simpler. Using a partition of unity we obtain (3.9), finishing the proof of Proposition 3.3. □

Remark B.1. Even though the proof is written assuming that M ⊂ R3, it would work in exactly
the same way for any dimension ≥ 2.

We finally have:

Proof of Corollary 3.5. The estimate (3.11) is shown for k = 0 in Proposition 3.3. Suppose it is
known for some fixed k ≥ 0. We will show that it also holds for k+1. Recall the notation ũ− from
(B.2). By our inductive hypothesis and (B.4), u+ ∈ Hk+2(M+;C⊗TM), ũ− ∈ Hk+2(M−;C⊗TM).
We also have P±u± ∈ Hk+1(M±;C⊗ TM). If V is a vector field on M tangent to Γ and ∂M and
LV denotes Lie derivative, [div,LV ], [d

s,LV ] are operators of order 1 and [LV , P
±] are operators

of order 2 because the principal symbol of LV is a scalar multiple of the identity. Note that
(LV u

+,LV ũ
−) in general does not satisfy the transmission/boundary conditions in (3.10) but the

fact that those are satisfied for (u+, ũ−) implies that

ν · (LV u
+ − LV ũ

−)
∣∣
Γ
∈ Hk+3/2(Γ;C⊗ TM), N(LV u

+)
∣∣
∂M

∈ Hk+1/2(∂M ;C⊗ TM),

N(LV u
+)− λf div(LV ũ

−)ν
∣∣
Γ
∈ Hk+1/2(Γ;C⊗ TM).

Thus we can construct suitable extension operators off the boundary and interface (see e.g. [McL00,
Lemma 3.36]) to find w+ ∈ Hk+2(M+;C⊗ TM) which satisfies

ν · w+ = −ν · (LV u
+ − LV ũ

−) on Γ,

N(w+) = −N(LV u
+) + λf div(LV ũ

−)ν on Γ,

N(w+) = −N(LV u
+) on ∂M,

and

(B.19) ∥w+∥2Hk+2(M+) ≤ C
(
∥u+∥2Hk+2(M+) + ∥ũ−∥2Hk+2(M−)

)
.

We now wish to use the inductive hypothesis, namely (3.11) for our fixed k ≥ 0. Notice that
(LV u

+ + w+,LV ũ
−) satisfies the transmission and boundary conditions in (3.10) by construction.

Moreover, for all k ≥ 0, the inductive hypothesis and the order of the commutators [LV , P
±] imply

that P+(LV u
++w+) ∈ Hk(M+;C⊗TM), P−(LV ũ

−) ∈ Hk(M+;C⊗TM). Using those facts and
(3.6) it can be checked that (LV u

++w+,LV ũ
−) ∈ D(P ). Now use (3.11) for the second inequality:

∥LV u
+∥2Hk+2(M+) + ∥LV div u−∥2Hk+1(M−)

≤ C
(
∥LV u

+ + w+∥2Hk+2(M+) + ∥ divLV ũ
−∥2Hk+1(M−)

+ ∥[div,LV ]ũ
−∥2Hk+1(M−) + ∥w+∥2Hk+2(M+)

)
≤ C

(
∥P+(LV u

+ + w+)∥2Hk(M+) + ∥P−LV ũ
−∥2Hk(M−)

+ ∥LV u
+ + w+∥2H1(M+) + ∥ divLV ũ

−∥2L2(M−) + ∥ũ−∥2Hk+2(M−) + ∥u+∥2Hk+2(M+)

)



THE SOLID-FLUID TRANSMISSION PROBLEM 43

≤ C
(
∥P+u+∥2Hk+1(M+) + ∥P−ũ−∥2Hk+1(M−)

+ ∥u+∥2Hk+2(M+) + ∥ũ−∥2Hk+2(M−) + ∥w+∥2Hk+2(M+)

)
≤ C

(
∥P+u+∥2Hk+1(M+) + ∥P−u−∥2Hk+1(M−) + ∥u+∥2Hk+2(M+) + ∥ div u−∥2Hk+1(M−)

)
,

using (B.4) and (B.19). Using the inductive hypothesis to replace the last two terms we find

(B.20)
∥LV u

+∥2Hk+2(M+) + ∥LV div u−∥2Hk+1(M−)

≤ C
(
∥P+u+∥2Hk+1(M+) + ∥P−u−∥2Hk+1(M−) + ∥u+∥2H1(M+) + ∥div u−∥2L2(M−)

)
.

For the derivatives normal to the interface and boundary we can use the same method as in the
proof of Proposition 3.3 to show that in local coordinates with respect to which x3 = 0 represents
the interface Γ or ∂M , the expression ∥∂k+3

x3
(χu+)∥2L2(M+) + ∥∂k+2

x3
(χdiv u−)∥2L2(M−), where χ is

supported in a neighborhood where the coordinates are valid, are estimated by the right hand side
of (B.20). With a partition of unity we obtain (3.11) for k + 1.

The statement regarding u ∈ D(Pm) follows for m = 1 by (3.11). If m ≥ 2, we use (3.11) for
k + 2 = 2m. One would like to estimate the resulting term ∥P+u+∥2

Hk(M+)
+ ∥P−u−∥2

Hk(M−)
,

by replacing u± by P±u± in (3.11), and proceed inductively to show the claim. However such
an estimate doesn’t follow immediately from (3.11) since the latter only gives an estimate on
∥P+u+∥2

Hk(M+)
+ ∥divP−u−∥2

Hk−1(M−)
. We can circumvent the issue by means of the following

estimate: for any r ≥ 1 we have, using elliptic regularity estimates for the second inequality below,

∥P−u−∥Hr(M−) = ∥ρ−1
f ∇λf div u−∥Hr(M−) ≤ C∥λf div u−∥Hr+1(M−)

≤C
(
∥(div ρ−1

f ∇)λf div u
−∥Hr−1(M−) + ∥λf div u−∥H1(M−) + ∥ν · ∇(λf div u

−)∥Hr−1/2(Γ)

)
≤C

(
∥divP−u−∥Hr−1(M−) + ∥λf div u−∥H1(M−) + ∥ν · ∇(λf div u

−)∥Hr−1/2(Γ)

)
≤C

(
∥ divP−u−∥Hr−1(M−) + ∥λf div u−∥H1(M−) + ∥ν · τ(P−u−)∥Hr−1/2(Γ)

)
≤C

(
∥divP−u−∥Hr−1(M−) + ∥λf div u−∥H1(M−) + ∥ν · τ(P+u+)∥Hr−1/2(Γ)

)
(B.21)

≤C
(
∥divP−u−∥Hr−1(M−) + ∥λf div u−∥H1(M−) + ∥P+u+∥Hr(M+)

)
,

where in (B.21) we used the fact that if u ∈ D(Pm) for m ≥ 2, then since (P+u+, P−u−) ∈ D(P )
we have ν · τ(P+u+) = ν · τ(P−u−). Hence for k ≥ 1

∥P+u+∥2Hk(M+) + ∥P−u−∥2Hk(M−)

≤ C
(
∥P+u+∥2Hk(M+) + ∥ divP−u−∥2Hk−1(M−) + ∥ div u−∥2H1(M−)

)
,

and (3.11) can be used to push the induction through. This completes the proof of the corollary. □
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