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Abstract 

Stefanov, P.D., Stability of resonances under smooth perturbations of the boundary, Asymptotic Analysis 9 (1994) 291-296. 

We prove that the resonances related to a second order elliptic differential operator with Dirichlet boundary conditions 
are stable in each compact of the complex plane under small C2-perturbations of the boundary and small changes of the 
coefficients. 

1. Introduction 

Let 

3 3 

H = - L aij(X)OxjOXj + L bi(X)Oxj + C(X) 
i,j=1 i=1 

be a symmetric second order elliptic differential operator in a domain n c R3 with compact 
complement R3 \ n. Assume that the coefficients aij, bi, care Lipshitz functions, aij is real 
and positively definite matrix and suppose that H is a compactly supported perturbation of the 
Laplacian, i.e., aij(x) = Oij, bi(X) = 0, c(x) = 0 for Ixi > R, with some R > O. The operator H 
can be defined as a self-adjoint one in L2(n) by imposing the Dirichlet boundary condition on the 
boundary. It is known [8, 9] that if X is a Co cut-off function equal to 1 in a neighborhood of 
BR n n, then the cut-off resolvent 

admits a meromorphic continuation from 1m z < 0, z2 ~ Upoint(H) to the complex plane C. The 
poles of this continuation are called resonances. The situation we study can be considered as a 
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generalization of the classical cases H = -l!.D (the Dirichlet Laplacian in il) or H = -l!.+q(x) in 
R3 with compactly supported q when the resonances are exactly the poles of the scattering matrix 
(see [5]). 

The aim of this work is to prove that in any fixed compact in C the resonances are stable 
under small C 2-perturbations of the boundary and small perturbations of the coefficients of H. Let 
(p, t) E oil x [-8,8] be the normal coordinates in a neighborhood of oil, i.e., for x sufficiently 
close to the boundary It I = dist(x, oil), p E oil is the nearest point on the boundary. The interior 
of il is given locally by t > O. Let n be another domain given by the equation t = g(p), p E oil. 
We assume that 

IlgII02(Cln) ~ c, (1) 

where 0 < c < 8/2. Further, let 

3 3 

II = L Uij(X)OXiOXj + Lbi(X)OXi + c(x) 
i,j=l i=l 

be an operator of the same kind as H in il, such that 

(2) 

Let K C C be a fixed compact set and denote by {Aj}}=1 the resonances of Rx(z) in K (we 
suppose that there are no resonances on oK). Denote by dj and mj respectively the order and 
multiplicity of A j. We have the following. 

Theorem 1. There exist M = M(K) > 0, Co = co(K) > 0, such that if 0 < c < co' then in any 
disk 

there are exactly m j resonances of II counted according to their multiplicities and all the reso­
nances of II in K lie in the union oj these disks. The constants M and co depend only on Hand 
on the Lipshitz constant related to H. 

We note that a result of the similar kind has been obtained by Petras [6] for one-parameter 
perturbations of the Laplace operator in R3 generated by a compactly supported metric. Results 
about one-parameter perturbations of the boundary can be found in [7]. On the other hand we 
would like to mention the more difficult and very interesting case of singularly perturbed domains 
- the so called resonators where the resonances approach the interior eigenvalues of the cavity and 
the resonances of the exterior (see [1-3] and the references herein). 

2. Proof of Theorem 1 

First we will construct a C 2-diffeomorphism h in R3 such that h(oQ) = oil and 

Ilh - 11102 ~ Cc, (3) 



P.D. Stefanov / Stability of the resonances 

with a constant C depending only on il. For this reason for dist(x, oil) < 0 we set 

h(x) = x - <p(t)g(p)n, 
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where (p, t) are the normal coordinates defined above, n is the inner normal to the boundary 
and <p is a smooth cut-off function such that <p(t) = 1 near t = 0, <p(t) = 0 for It I > 30/4. 
For dist(x, oil) > 0 we set h(x) = x. It is not hard to see that if c is sufficiently small, h 
is invertible. Assumption (1) implies that (3) is fulfilled. Moreover, h pr~erves the Dirichlet 
boundary condition. Under the change of coordinates x = h(y) the operator H becomes 

'" - Ohi ohj '" _ 02hi ~ "'-b Ohi -
- L...J akl a a OXiOXj + L...J akl a a UXi + L...J k a OXi + C, 

.. k I Yk Yl . k I Yk Yl . k Yk 1,3, , I, , 1, 

where 

In order to simplify the notations we will keep the same notation H for the operator above. Note 
that D(lI) = D(H) c H2(il). Moreover, fl is self-adjoint in L2(il; J(x) dx), where J(x) is the 
Jacobian J = I det(dy/dx)l. For the difference V := II - H we have 

where Y = h-1(x). It is a straightforward consequence of (2) and (3) that the coefficients otV 
can be estimated by Ce:, where C depends only on H and on the Lipshitz constant related to H. 

Now, let Aj E K be a pole of Rx(z) and consider the circle rj = {z E C; Iz - Ajl = rj}, where 
the radius rj > 0 will be specified latter. We assume that 

(4) 

where cl is chosen so that (4) guarantees that the disks Dj = {z E C; Iz - Ajl ~ rj} lie in K 
and they do not intersect each other. Let us estimate Rx(z) - Rx(z) for Z E rj, where Rx(z) and 
Rx(z) are related to Hand fl, respectively. For z belonging to some neighborhood of Zo we have 

fl - z2 = [1 + V(H - z2)-1] (H _ z2). 

Since IIV(H - z5)-111 ~ Ce:, we find that for e: sufficiently small the resolvent (fl - z2)-1 exists 
and for such z 

From the above equality we get 

- - 2) 1 Rx(Z) - Rx(z) = Rx(z)V(H - z - X· (5) 
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Here we used the fact that xV = V. Hence, 

- 2 1 
Rx(z)[I + V(H - z f x] = Rx(z). (6) 

It can be seen from [8; 10, Section 3] that for any differential operator P of order not greater 
than 2 with compactly supported coefficients P(H - z2)-lX is a meromorphic function of z with 
the same poles with orders not greater than those of Rx(z). Therefore, if Xl is a cut-off function 
equal to 1 on the support of X, then XloO/(H - z2r lx has the same poles as does Rx(z) for 
letl ::::; 2. Thus the same is true for V(H - z2)-lX. The equation (6) is therefore valid for all z. 
Assume in what follows that z E rj. Since the operator V can be written in the form 

V = L Vij(x)Xl(x)OXiOXj + L Vi(x)Xl(x)OXi + V(x)Xl(x) 
ij i 

with IVij(x)1 < Cc, IVi(x)1 < Cc, W(x)1 < Cc, we have 

IIV(H - z2f1xII ::::; Clcrjdj. 

The constant Cl depends only on Hand Cl' Therefore, if 

-dj 1 
Crj < 2el ' 

1+ V(H - z2)-lX is invertible and from (6) we get 

Let us estimate Rx(z) - Rx(z) (recall that z E rj). According to (5) we have 

Since Aj is a pole of Rx(z), the operator 

(7) 

is not trivial. In fact, Pj is a finite rank operator and its rank by definition is the multiplicity of Aj 
(see [8]). If Pj is related to jj by the same way, we get 

(8) 

Since Pj is a finite rank operator (its rank is mj), there exists a mj-dimensional subspace 'Hj such 
that 'Hj generates 1m Pj, i.e., Pj('Hj) = 1m Pj, Pj is an isomorphism between these spaces. Let us 
choose rj, so that (4), (7) hold and 

C3er}-2dj < ~ inf{IIPj/ll; IE 'Hj, 11/11 = I}. (9) 
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It is easy to see that if we put Tj = M e1/(2dj-l), then the second and the third condition will be 
fulfilled for M sufficiently large and 0 < e < eo with eo < 1. Fix such a number M and choose 
eo < 1 such that for 0 < e < eo we have (4). Assume that RankPj < RankPj. Then there exists 
IE ?tj with 11/11 = 1, such that Pjl is orthogonal to ImPj, therefore, 

which contradicts (8), (9). Thus Rank Pj ~ Rank Pj and in Dj there are at least mj resonances 
of H (counted according to their multiplicities). Let uS note that we cannot just exchange the 
roles of Hand H in the proof above in order to prove that in fact we have equality because these 
arguments hold in a neighborhood of H with a size depending on Hand H may not belong to 
that neighborhood. So in order to complete the proof it remains to show that there are exactly 
mj resonances in Dj and there are no other resonances in K \ (Dt U D2 ••• U Dn). In view of 
what we have already shown, this will be proven if we prove that the total multiplicity of all the 
resonances of H in K (the sum of the multiplicities of all the resonances in K) is the same as that 
of H. To this end we will make use of the characterization of the resonances as eigenvalues of a 
certain non-selfadjoint operator obtained by the so-called complex scaling method. Without loss of 
generality we can assume that K does not contain any resonances which are negative eigenvalues 
of H. Indeed, for the eigenvalues of H we have classical perturbation theorems (see [4] and 
the arguments below), that show that for e sufficiently small the total multiplicity of the negative 
eigenvalues in K for both operators is the same. Moreover, since the resonances are symmetric 
with respect to the imaginary axis, we can assume that K is included in {O ~ argz ~ 7t/2+8}, for 
some 8 > 0 sufficiently small. By applying the complex scaling method (we refer to [8] and the 
references herein for more details), we see that there exists a family of operators He, () E [0,7t), 
acting on a Hilbert space ?te, such that Ho = H and if arg >. < () and>' is a resonance, then >.2 is 
an eigenvalue of He with the same multiplicity. So if we set () = 7t/2 + 28, all the resonances in 
K correspond to eigenvalues of the non-selfadjoint operator He in the set 

Kl = {z; z = >.2, >. E K} 

and the same is true for Ho. Moreover, the spectrum of He, He in Kl consists only of squares 
of resonances. Now we are in position to apply a classical theorem about the perturbation of the 
spectrum of a closed operator in a compact set (see [4, Theorem IY.3.18]). Let uS consider the 
pair He, He in the space ?te, related to He. The operato! He will be no more self-adjoint on 
this space, but its spe.Etrum remains the same because ?to, ?te coincide as topological spaces. For 
the difference Ve = He - He we see that it can be naturally identified with V. The fact that the 
coefficients of V can be estimated by Ce makes possible to arrange the estimate 

lIVelli ~ Ce(IIHelli + 11/11)· 
Therefore, try [4, Theorem IV.3.18] for e sufficiently small the total multiplicities of the eigenvalues 
of He and He in K are the same. This proves that the total multiplicities of the resonances of H 
and H in K are the same if e is properly chosen. Since we have already shown that in each Dj 
the multiplicity of the perturbed resonances is at lea~ the same as that of the unperturbed ones, 
this completes the proof of the theorem. 
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