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Abstract
We study the mathematical model of multiwave tomography including thermo
and photoacoustic tomography with a variable speed for a fixed time interval

T[0, ]. We assume that the waves reflect from the boundary of the domain. We
propose an averaged sharp time reversal algorithm. In case of measurements
on the whole boundary, we give an explicit solution in terms of a Neumann
series expansion. When the measurements are taken on a part of the boundary,
we show that the same algorithm produces a parametrix. We present numerical
reconstructions in both the full boundary and the partial boundary data case.

Keywords: multiwave tomography, thermoacoustic tomography, time reversal

1. Introduction

The purpose of this work is to analyze the multiwave tomography mathematical model when
the acoustic waves reflect from the boundary without absorption and therefore the energy in
the domain does not decrease. We model this with the energy preserving Neumann boundary
conditions. This problem has been studied in the recent works [8, 13] motivated by the UCL
photoacoustic imaging group experimental setup, see, e.g., [4]. The papers [8, 13] present
numerical reconstructions and in [8], the problem is analyzed with the eigenfunction
expansions method. That approach requires a good control over the lower bound of the gaps
between the Neuman eigenvalues and the Zaremba eigenvalues (or the Dirichlet ones in case
of full boundary observations) which is not readily available, and cannot hold in certain
geometries. It proposes a gradual asymptotic time reversal as the observation time T diverges
to infinity, which provides weak convergence under those conditions. On the other hand,
uniqueness and stability for this problem are related to Unique Continuation and Control
Theory and sufficient and necessary conditions for them follow from the Bardos–Lebeau–
Rauch work [2]. This was noticed by Acosta and Montalto [1] who consider dissipative
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boundary conditions, including the case of Neumann ones we study. In the latter case, they propose
a conjugate gradient numerical method; and if there is non-zero absorption, they show that a
Neumann series approach similar to that in [18] can still be applied, even with partial data.

Time reversal in its classical form fails for this problem because the waves reflect from the
boundary and there is no good candidate for the Cauchy data at t=T, see section 4 below. In fact,
doing time reversal at time t=T with any choice of Cauchy data would produce a non-compact error
operator of norm at least one, as follows from our analysis; so it cannot be used even as a parametrix,
see figure 2. The reason for that is the lack of absorption at the boundary either as absorbing boundary
conditions or assuming a wave propagating to the whole space, as in the classical model; and this is
the worst case for time reversal. A different problem arises when there is absorption in Ω, see [9].

In [18], see also [14, 20], the first author and Uhlmann proposed a sharp time reversal
method for the traditional thermo- and photo-acoustic model: when the acoustics waves do
not interact with the boundary and propagate to the whole space, see also [5, 10–12, 24]. The
method consists of choosing Cauchy data v v( , )t at t = T that minimize the distance to the
space of all Cauchy data f f( , )1 2 with given trace on Ω× ∂T{ } ; and the latter is known from
the data Λf . This consists of choosing the Cauchy data ϕ( , 0), where ϕ is the harmonic
extension of Λf from Ω× ∂T{ } to Ω×T{ } . Then we showed that the resulting error operator
is a contraction, thus the problem can be solved by an exponentially and uniformly con-
vergent Neumann series. Numerical simulations are presented in [14].

The main idea of this paper is to average the sharp time reversal done for times2 T in an
interval T[0, ]0 with Ω>T T ( ) 20 , where ΩT ( ) is greater than the length of the longest broken
geodesic in Ω̄. This idea comes from the analysis of the error operators, see (14), (26) and
remark 3. The latter propagates forward a wave with Neumann boundary conditions and
sends back a wave reflecting according to the Dirichlet boundary conditions. It is well known
that Neumann boundary conditions reflect the wave with no sign change, while the Dirichlet
ones alter the sign, see section 6 for the microlocal equivalent of this phenomenon. While the
error has norm one, it has a sign depending on the time T. When we average over T, at t = 0

Figure 1. Propagation of singularities in Ω×T[0, ] for the positive speed only with
Neumann boundary conditions (left) and time reversal with Dirichlet ones (right). In
the latter case, the sign changes at each reflection.

2 We rename T to τ below, and replace T0 by T.

Inverse Problems 31 (2015) 065007 P Stefanov and Y Yang

2



we get waves with the original signs and with the opposite ones, depending on the parity of
the number of the reflections from 0 to T, see also figure 1. There is cancellation which makes
the error operator a contraction, at least microlocally. The harmonic extension makes it an
actual one. Those cancellations happen if and only if the stability condition implied by [2]
holds, and then we get an explicit reconstruction in the form of an exponentially convergent
Neumann series, see theorem 3. Also, instead of averaging multiple time reversals, we can do
just one with an averaged boundary data ϕ Λt f t x( ) ( , ), see the first term in (24) and also (22).

The proposed algorithm can be applied to the partial data case as well. We time-reverse
the Dirichlet data on the part Γ of Ω∂ , where we have data; and impose Neumann data on the
rest. The Neumann series convergence then remains an open problem but we show that the
method gives a parametrix away from a measure zero set when the stability condition is met.
We present numerical reconstructions in both cases.

For simplicity, we restrict ourselves to the case when the function we want to recover is
supported in a fixed subdomain Ω Ω⋐0 . Stability and uniqueness is unaffected by that, and
already contained in [2]. The microlocal analysis justifying the time reversal however would
be much more complicated without that assumption, and in applications, this condition is
satisfied anyway.

Our main results are the following. For full boundary measurements over time interval
T[0, ] with a sharp T, we show in theorem 3 that we can solve the problem by an expo-

nentially convergent Neumann series. For partial data on Γ Ω⊂ ∂ , we show in theorem 4 that
if the stability (controllability) condition holds, our construction gives a parametrix away
from the measure zero set of singularities which hit Ω∂ at the boundary of Γ on Ω∂ .
Numerical reconstructions are presented on section 7 for both the full and the partial data
problems.

2. Preliminaries

2.1. The model

Let Ω be a smooth bounded domain in Rn. Let g be a Riemannian metric in Ω̄, and let >c 0
be smooth. Let P be the differential operator

Δ= −P c , (1)g
2

where Δg is the Laplacian in the metric g. In applications, g is Euclidean but the speed c is

variable. For the methods we use, the metric g poses no more difficulties than Δ= −P c2 . We
could treat a more general second order symmetric operator involving a magnetic field and an
electric one, as in [18] but for the simplicity of the exposition, we stay with P as in (1). The
metric determining the geometry is −c g2 .

Fix >T 0. Let u solve the problem

Ω∂ + = ×

∂ =

=
∂ =

ν Ω×∂

=

=

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( )P u T

u

u f

u

0 in (0, ) ,

0,

,

0.

(2)

t

T

t

t t

2

(0, )

0

0

Here ν∂ = ∂ν
j

x j, where ν is the unit, in the metric g, outer normal vector field on Ω∂ . The
function f is the source which we eventually want to recover. The Neumann boundary
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conditions correspond to a ‘hard reflecting’ boundary Ω∂ . Let Γ Ω⊂ ∂ be a relatively open
subset of Ω∂ , where the measurements are made. The observation operator is then modeled by

Λ = Γ×f u . (3)T[0, ]

The inverse problem is to find f given Λf . The methods we use allow us to treat the case of
Dirichlet boundary conditions in (2) and Neumann data in (3).

2.2. Function spaces

The operator P is formally self-adjoint w.r.t. the measure −c d Vol2 , where
=x g xd Vol( ) det d . Define the energy

∫= +
Ω

−( )E t u u c u( , ) d Vol,g t
2 2 2

where ∣ ∣ = ∂ ∂u g u u( )( )g
ij

x x
2

i j , and =x g xd Vol( ) (det ) d1 2 . This is just + ∥ ∥Pu u u( , )L t L
2

2 2

assuming that u satisfies boundary conditions allowing integration by parts without boundary
terms Here and below, Ω Ω= −L L c( ) ( ; d Vol)2 2 2 .

We define the Dirichlet space ΩH ( )D as the completion of Ω∞C ( )0 under the Dirichlet
norm

∫∥ ∥ =
Ω

f u d Vol. (4)H g
2 2

D

Note that we actually integrate ∣ ∣ −u
c g
2

2 w.r.t. the volume measure of −c d Vol2 . By the trace
theorem, the Dirichlet boundary condition u = 0 on Ω∂ is preserved after the completion. It is
easy to see that Ω Ω⊂H H( ) ( )D

1 , and that ΩH ( )D is topologically equivalent to ΩH ( )0
1 . Let

PD be the Friedrichs extension of P as self-adjoint unbounded operator PD on ΩL ( )2 with
domain ∩H HD

2. For f in the domain of PD, we have ∥ ∥ =Ωf P f f( , )H D L( )
2

D
2. Note that the

domain of the latter form is HD, which a larger space than the domain of PD.
To treat the Neumann boundary conditions, recall first that P, with Neumann boundary

conditions, has a natural self-adjoint extension PN on L2. First, one extends the energy form
on ΩH ( )1 (no boundary conditions) and then PN is the self-adjoint operator associated with
that form, see [15]. The domain of PN is the closed subspace of ΩH ( )2 consisting of functions
f with vanishing normal derivatives ∂νf on Ω∂ . In contrast to PD, the operator PN has a non-
trivial null space consisting of the constant functions. Such functions are stationary solutions
of the wave equation and of no interest. Then we define ΩH ( )N as the quotient space

ΩH P( ) Ker N
1 equipped with the Dirichlet norm. In other words, the functions in ΩH ( )N are

defined up to a constant only. Note that on that space, PN is strictly positive. Both PD and PN

are positive, have compact resolvents, and hence point spectra only. They are both invertible.
We can view ΩH ( )D as an equivalence class of functions constant on Ω∂ ; with two such

functions equivalent if they differ by a constant (then they have the same norm). Then ΩH ( )D

can be viewed as subspace of ΩH ( )N .
The energy norm for the Cauchy data f f( , )1 2 , that we denote by ∥ ∥· is then defined by

 ∫∥ ∥ = +
Ω

−⎜ ⎟
⎛
⎝

⎞
⎠( )f f f c f, d Vol.

g1 2
2

1
2 2

2
2

We define two energy spaces

 Ω Ω Ω Ω Ω Ω= ⊕ = ⊕H L H L( ) ( ) ( ), ( ) ( ) ( ),D D N N
2 2

both equipped with the energy norm defined above. We define the energy space  R( )n in Rn

in a similar way; and we will use it only in our microlocal construction, with compactly
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supported functions. We denote pairs of functions below by boldface, like = f ff ( , )1 2 .
Operators with range in vector valued functions will be denoted by boldface symbols, as well.

The wave equation then can be written down as the system

= = ( )I
P

u Pu P, 0
0

, (5)t

where = u uu ( , )t belongs to the energy space D or N . Choosing P to be either PD or PN,
we get a skew-selfadjoint operator PD, respectively PN on D, respectively N , see [6]. Those
two operators generate unitary groups =t tU P( ) exp( )D D and =t tU P( ) exp( )N N , respectively.

Let  be the Poisson operator  ϕ↦h: defined as the solution of

ϕ Ω ϕ= =Ω∂P h0 in , . (6)

Of course, =Pu 0 is equivalent to Δ =u 0g . For Ω∈f H ( )1 , set

Π ≔ − Ω∂( )f f f . (7)

Then Πf vanishes on Ω∂ . By the trace theorem and standard energy estimates,
Π Ω Ω→H H: ( ) ( )D

1 is bounded. Also, Π = −P PD
1 . One can think of Π as an orthogonal

projection operator from ΩH ( )N to ΩH ( )D if we think of HD as an equivalence class as well,
modulo constants as explained above. In any case, Π is invariantly defined on ΩH ( )N as it is
easy to see and we have the following.

Lemma 1. (a) The operator Π Ω Ω→H H: ( ) ( )N D has norm 1.
(b) The operator Π Π↦f f f f: ( , ) ( , )1 2 1 2 from  Ω( )N to  Ω( )D has norm 1.

Proof. For Ω∈f H ( )N , we have

Π ϕ ϕ= + = Ω∂( )f f f, .

This is an orthogonal decomposition w.r.t. the HD norm (which is only a seminorm on the
second term). Therefore,

Π ϕ∥ ∥ = ∥ ∥ + ∥ ∥f f .H H H
2 2 2

D D D

This shows that the norm of Π does not exceed 1. Since we can take =f 0 vanishing on Ω∂ ,
the norm is actually 1.

The proof of (b) follows immediately from (a). □

Similarly, let Ω Ω⊂0 be a subdomain with a smooth boundary. Identify ΩH ( )D 0 with
the subspace of ΩH ( )D of functions supported in Ω̄0. Set Π =f h0 to be the solution of

Ω= ∣ =Ω∂Ph Pf hin , 0. (8)0 0

Lemma 2. Π0 is the orthogonal projection from ΩH ( )D to ΩH ( )D 0 .

Proof. By standard energy estimates, Π0 is bounded. Clearly, Π Π=0
2

0. To compute the
adjoint, choose Ω∈ ∞f C ( )1,2 0 and write
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 ∫

Π Π

Π

Π Π Π Π Π

=

=

= = =

Ω Ω

Ω

Ω Ω Ω

( ) ( )

( ) ( ) ( )

f f f f

f f

f Pf f P f f f

, ,

, ¯ d Vol

, , , .

( )

( ) ( ) ( )

H H

g

L L H

0 1 2 ( ) 0 1 2 ,

0 1 2

0 1 2 0 1 0 2 0 1 0 2

D D

D

0

0

2
0

2
0 0

In the same way, we show that Π Ωf f( , )H1 0 2 ( )D equals the same; therefore, Π0 is self-adjoint on
a dense set, and therefore a self-adjoint (bounded) operator. Clearly Π0 preserves ΩH ( )D 0 .
This completes the proof. □

3. Uniqueness and stability. Relation to unique continuation and boundary
control

We formulate below a sharp uniqueness result following from the uniqueness theorem of
Tataru [22]. Next, we recall that a sharp stability condition (and some of the uniqueness
results) follow from the work [2] by Bardos, Lebeau and Rauch.

Assume in what follows that f is supported in Ω̄0, where Ω Ω⊂0 is some a priori fixed
domain which could be the whole Ω in the uniqueness theorems but we will eventually
require Ω Ω⋐0 (i.e., Ω0 is open and Ω Ω⊂¯ 0 ).

3.1. Uniqueness

The sharp uniqueness condition is of the same form as in [18] but the proof here is more
straightforward. We want to allow a signal from any point to reach Γ×T[0, ] . That poses the
following lower bound T0 on the sharp uniqueness time:

Γ≔
Ω∈

T xmax dist( , ). (9)
x

0
¯ 0

This bound is actually sharp, as the next theorem shows.

Theorem 1. (Uniqueness). Λ =f 0 for some Ω∈f H ( )D 0 implies =f x( ) 0 for
Γ <x Tdist( , ) . In particular, if ⩾T T0, then f = 0.

Clearly, if <T T0, we cannot recover f but we can still recover the reachable part of f.

Proof. The proof follows directly from the unique continuation property of the wave
equation, [22]. As in [19], we have unique continuation from a neighborhood of any point on
Ω∂ where we have Cauchy data. □

3.2. Stability

The stability condition is of microlocal nature, as it can be expected. The propagation of
singularities theory, see section 6, says that the singularities of f starting from every point

ξ Ω∈ ⧹x T( , ) * 0 split in two parts, propagating along the bicharacteristic issued from ξx( , )
and the other one along the bicharacteristic issued from ξ−x( , ). The speed is one in the metric

−c g2 , when the parameter is t. Those two singularities have equal energy, see the first identity
in (31). The latter is due to the zero condition for ut at t = 0. When each branch hits the
boundary transversely, it reflects by the law of the geometric optics and the sign (and the
magnitude) of the amplitude is preserved. The situation is more delicate when we have

Inverse Problems 31 (2015) 065007 P Stefanov and Y Yang

6



singularities with base points on Ω∂ or ones for which the corresponding rays hit Ω∂ tan-
gentially. Then we can have a whole segment on Ω∂ , called a gliding ray. The worst case is
when they hit tangentially concave points making an infinite contact with Ω∂ . Those (non-
smooth at Ω∂ ) curves are called generalized bicharacteristics and their projections to the base
are called generalized geodesics. To avoid the difficulties mentioned above, we assume that
Ω∂ is strictly convex w.r.t. the metric −c g2 and that Ω⊂fsupp . Then all geodesics issued
from fsupp hit Ω∂ transversely (if non-trapping), and each subsequent contact is transversal,
as well. The rays (the projections of the bicharacteristics on the base) then are piecewise
smooth ‘broken’ geodesics. We will formulate the analog of the Bardos–Lebeau–Rauch
condition in this simpler situation. The only modification is to take into account that each
singularity propagates in both directions with equal energy (what is important that neither of
them is zero). Therefore, it is enough to detect only one of the two rays.

Definition 1. Let Ω∂ be strictly convex with respect to −c g2 . Fix Ω Ω⋐0 , an open Γ Ω⊂
and >T 0.

(a) We say that the stability condition is satisfied if every broken unit speed geodesic γ t( )
with γ Ω∈(0) ¯ 0 has at least one common point with Γ for ∣ ∣ <t T , i.e., if γ Γ∈t( ) for some
∣ ∣ <t T .

(b) We call the point ξ Ω∈ ⧹x T( , ) * ¯ 00 a visible singularity if the unit speed geodesic γ
through ξ ξ∣ ∣x( , ) has a common point with Γ for ∣ ∣ <t T . We call the ones for which γ never
reaches Γ̄ for ∣ ∣ ⩽t T invisible ones.

Common points of such geodesics with Ω∂ are the points on Ω∂ where the geodesic
reflects (transversely). Note that visible and invisible are not alternatives; the complement of
their union is a measure zero set since some singularities may hit Γ∂ or ∣ ∣ =t T .

Next theorem follows directly from [2], see theorem 3.8 there.

Theorem 2. Let Ω∂ be strictly convex and fix Ω Ω⋐0 , an open Γ Ω⊂ and >T 0. Then if
the stability condition is satisfied,

Λ∥ ∥ ⩽ ∥ ∥ Γ×f C f .H H T((0, ) )D
1

4. Complete data. Review of the sharp time reversal

4.1. Sharp time reversal

Assume we have complete data, i.e., Γ Ω= ∂ (but < ∞T ). In what follows, we adopt the
notation =u t u t( ) ( , · ). In the time reversal step, to satisfy the compatibility conditions at
t = T, we choose v T( ) to be the harmonic extension ϕ Λ= f T( ( )) of Λf T( ). Since

Δ= −P c g
2 , ϕ solves ϕ =P 0 as well since c2 cancels in the equation Δ ϕ− =c 0g

2 , see (6).
Solve
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Ω∂ + = ×

=
=

∂ =

Ω×∂

=

=

⎧

⎨
⎪⎪

⎩
⎪⎪

( )P v T

v h

v h T

v

0 in (0, ) ,

,

( ),
0,

(10)

t

T

t T

t t T

2

(0, )

where, eventually, we will set Λ=h f , and set

=Ah v: (0). (11)

Then we think of ΛA f as the time reversed data. In the multiwave tomography model in the
whole space, ΛA is often used as an approximation for f at least when ≫T 0. In our case, we
cannot expect that but we still define the ‘error’ operator K by

Λ = −A KId .

To analyze K, let = −w u v be the ‘error’. Then w solves

Ω

Π

∂ + = ×

=
=

∂ = ∂

Ω×∂

=

= =

⎧

⎨
⎪⎪

⎩
⎪⎪

( )P w T

w

w u T

w u

0 in (0, ) ,

0,

( )
.

(12)

t

T

t T

t t T t t T

2

(0, )

Then

=Kf w (0). (13)

This yields the following for the operator →K H H: N D:

Ππ π= −K T TU U( ) ( ) , (14)D N1 1
*

where π ≔f f f( , )1 1 2 1, π ≔f f( , 0)1
* . Obviously,

∥ ∥ ⩽→K 1. (15)H HN D

We cannot expect K to be a contraction anymore (∥ ∥ <K 1) for large T. By constructing high-
frequency solutions propagating along a single broken geodesic (in both directions), one can
actually show that ∥ ∥ =K 1 and finding f from − K f(Id ) cannot be done in a stable way, at
least. This also follows from the analysis in section 6. In figure 2, we present a numerical
example illustrating what happens if we use that form of time reversal.

4.2. A slightly different representation

Set  Λ= −v v f T˜ ( ( )) with v as in (10). Then ṽ solves

Ω

Λ Λ

∂ + = ×

= −

= ∂ =
Ω×∂

⎧
⎨
⎪⎪

⎩
⎪⎪

( )P v T

v f t f T

v T v T

˜ 0 in (0, ) ,

˜ ( ) ( ),

˜( ) ˜( ) 0.

(16)

t

T

t

2

(0, )

Then

Λ Λ= +A f v f T˜(0) ( ( )). (17)

Therefore, to compute ΛA f , we solve (16) and then use (17).
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When f is a priori supported in Ω̄0, we use Π≔A A0 0 as time reversal, see lemma 2.
Then Λ Π Π= −A K0 0 0 , and restricted to ΩH ( )D 0 , we have = +A KId0 0, Π≔K K0 0 . Then
in (14), we apply Π0 to the right to get K0.

5. Averaged time reversal for complete data

The main idea is to average the sharp time reversal above over a time interval. Let ΩT ( ) be
the length of the longest geodesic in Ω̄. We assume that Ω is strictly convex with respect to

−c g2 and non-trapping, i.e., Ω < ∞T ( ) .
Fix >T 0. Eventually, we will require Ω <T T( ) 2 . For τ ⩽ T , let τA ( ) be the time

reversal operator A constructed above with τ=T . In (16), we can prescribe zero Cauchy data
for τ>t and solve the problem on the interval ∈t T[0, ] by extending the boundary con-
dition Λ Λ τ−f t f( ) ( ) as zero for τ>t (which is a continuous extension across τ=t ). In
other words,

τ Λ Λ τ= +τA f v f( ) ˜ (0) ( ( )), (18)

where τṽ solves (we drop the superscript τ below)

Ω

τ Λ Λ τ

∂ + = ×

= − −

= ∂ =
Ω×∂

⎧
⎨
⎪⎪

⎩
⎪⎪

( )P v T

v H t f t f

v T v T

˜ 0 in (0, ) ,

˜ ( )( ( ) ( )),

˜( ) ˜( ) 0,

(19)

t

T

t

2

(0, )

where H is the Heaviside function.

Figure 2. Sharp time reversal (with harmonic extension) with c = 1, =T d0.9 , where d
is the diagonal. The originals are the Shepp-Logan phantom and white and black disks
on a gray background. The purpose of this example is to illustrate the failure of the
standard time reversal (with or without the harmonic extension) to resolve all
singularities, see remark 1. Some singularities are lost (amplitude 0), some are
recovered with the right amplitude 1, and some with amplitude 2. The numerical range
of the reconstructed images is roughly speaking twice that of the originals. The
harmonic extension creates a weak singularity not visible on the plots.
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Let χ< ∈ ∞C R0 ( )0 be positive on T[0, ] and have integral one over that interval. Then
we average τA ( ) over T[0, ] with weight χ. The result is an averaged time reversal operator

 ∫ χ τ τ τ= A: ( ) ( ) d . (20)
T

0

As explained in the Introduction, and will be proven in section 6, the averaged time reversal
restores all singularities with positive but not necessarily equal amplitudes, see also figure 3,
which is the improvement we seek.

To compute , we average both sides of (19). In other words, we do the time reversal in
(19) with boundary condition

∫
∫

χ τ τ Λ Λ τ τ

χ τ Λ Λ τ τ

≔ − −

= −

h t H t f t f

f t f

( ) ( ) ( )( ( ) ( )) d

( )( ( ) ( )) d . (21)

T

t

T

0

Then we solve

Ω∂ + = ×

=
= ∂ =

Ω×∂

⎧
⎨⎪

⎩⎪
( )P v T

v h t

v T v T

0 in (0, ) ,

( ),

( ) ( ) 0,

(22)
t

T

t

2

(0, )

and set

  ∫Λ χ τ Λ τ τ= +f v f(0) ( ) ( ) d . (23)
T

0

Next, we project the result onto ΩH ( )D 0 by taking Π Λf0 to be our time reversed version.
The projection of the last term above vanishes (because it is harmonic), and we get

 Λ Π=f v (0).0 0

Let us also note that h t( ) can be expressed as

∫ ∫χ τ τ Λ χ τ Λ τ τ= −h t f t f( ) ( ) d · ( ) ( ) ( ) d . (24)
t

T

t

T

The next theorem gives an explicit inversion of Λ on functions a priori supported in Ω0.

Theorem 3. Let Ω −c g( , )2 be non-trapping, strictly convex, and let Ω <T T( ) 2 . Let
Ω Ω⋐0 . Then  Λ = −Id0 0 on ΩH ( )D 0 , where 0 is compact in ΩH ( )D 0 , and
 ∥ ∥ <Ω 1H0 ( ( ))D 0 . In particular, −Id 0 is invertible on ΩH ( )D 0 , and the inverse problem

has an explicit solution of the form

 ∑ Λ= ≔
=

∞

f h h f, . (25)
m

m

0
0 0

Proof. We divide the proof in several steps.
(i) We notice first that

 ∥ ∥ ⩽Ω( ) 1.( )H0
D 0
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This follows immediately from the following, see (14)

 ∫ ΠΠ χ τ π τ τ π τ= −U U( ) ( ) ( ) d , (26)
T

D N0 0
0

1 1
*

and lemma 1. Indeed, for Ω∈f H ( )D 0 ,

 ∫
∫
∫

Π

Π

χ τ π τ τ π τ

χ τ τ π τ

χ τ τ π τ

∥ ∥ ⩽ ∥ − ∥

⩽ ∥ ∥

⩽ ∥ ∥ = ∥ ∥

Ω Ω

Ω

Ω Ω

f f

f

f f

U U

U

U

( ) ( ) ( ) d

( ) ( ) d

( ) ( ) d . (27)

( ) ( )

( )

H

T

D N H

T

N H

T

N H H

0
0

1 1
*

0
1
*

( )

0
1
*

( )

D D

D

N D

0 0

0

(ii) By unique continuation,

∥ ∥ < ∥ ∥ =Ω Ωf f f, 0. (28)( ) ( )H H0 D D0 0

Indeed, if we assume equality above, then all inequalities in (27) are equalities. Then

Π τ π τ π τ= ⩽ ⩽f f TU U( ) ( ) , 0 .N N1
*

1
*

By the definition of Π in lemma 1, the first component of the right hand side must vanish on
Ω∂ , i.e., π τ π =fU ( ) 0N1 1

* on Ω× ∂T(0, ) . By the uniqueness theorem, f = 0 since
Ω>T T ( ) 2 implies that the condition on T in theorem 1 is satisfied.

(iii) The essential spectrum of  0
*

0 is included in ϵ−[0, 1 ] with some ϵ > 0. We
prove this below in lemma 5.

Figure 3. Averaged time reversal with χ = 1 in T[0, ] in (20), =T d0.9 , see (48) and
remark 2, where d is the diagonal, c = 1. The originals are as above. In this example we
illustrate the power of the averaging (without the harmonic extension which affects the
lower frequencies only). All singularities are reconstructed now but with different
(positive) amplitudes except for those who hit a corner because the boundary is not
smooth. The lowest amplitudes are at rays close to those hitting a corner at π 4 angles
as in the white disk in the upper left corner.
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(iv) The operator 0 is a contraction, i.e.,

 ∥ ∥ <Ω( ) 1.( )H0
D 0

It is enough to prove that the self-adjoint operator  0
*

0 is a contraction. By (iii) above, the
spectrum of  0

*
0 near 1 consists of eigenvalues only, see [16, VII.3]. One the other hand, 1

cannot be an eigenvalue because then for the corresponding eigenfunction ϕ we would have
  ϕ ϕ=0

*
0 , therefore,  ϕ ϕ∥ ∥ = ∥ ∥0

2 2, which contradicts (28). □

A numerical reconstruction with a variable speed based on the theorem is presented in
figure 4.

6. Geometric optics and proof of the main lemma

We recall here some well-known facts about the reflection of singularities of solutions of the
wave equation for transversal rays; both for the Dirichlet and the Neumann boundary con-
ditions. In what follows, the notation ≅A B for two operators in HD indicates that they differ
by a compact one. Similarly, ≅Af Bf means that ≅ +Af B K f( ) with K compact. All ΨDOs
will be applied to functions supported in Ω̄0 and will be assumed to have a Schwartz kernels
supported in Ω Ω× . Also, ∣ ∣· g is the norm of a vector or a covector, depending on the

context, in the metric g; while ∣ ∣· is the norm in the metric −c g2 .
It is well known that a parametrix for the solution of the wave equation

Δ∂ − =c u( ) 0t g
2 2 with Cauchy data =u u f f( , ) ( , )t 1 2 at t = 0 in the whole space is con-

structed as

Figure 4. Full data Neumann series inversion with 10 terms, T = 5, on the square
−[ 1,1]2, variable π π= + +c x x1 0.3 sin( ) 0.2 cos( )1 2 . The originals are as above. We
average with weight χ = 1 in T[0, ] in (20). The artifacts, best visible when plotting the
difference, are mainly due to the presence of corners. The L2 error on the left is 0.44%;
and on the right: 0.34%. The ∞L error on the left is about 1.2%; and about 3% on the
right.
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∫∑π ξ ξ ξ ξ ξ ξ= +
σ

ϕ ξ
σ σ

−

=±

−σ ( )u t x a x t f a x t f( , ) (2 ) e ( , , ) ˆ ( ) ( , , ) ˆ ( ) d , (29)n t x
g

i ( , , )
1, 1

1
2, 2

modulo terms involving smoothing operators of f1 and f2. The reasons for the two terms is that
the principal symbol τ ξ− + ∣ ∣c g

2 2 2 of the wave operator has two smooth components (away
from the origin) of its characteristic variety: Σ τ ξ≔ ± ∣ ∣ =± c{ 0}g . Based on (29), we can
write = ++ −u u u (modulo smoothing terms), where ±u solves the ‘half wave equation’
− ∂ ± =±P u( i ) 0t . The initial conditions are

Π∂ =± ±
=

±( )( )u u f f, , ,t
t 0 1 2

where

Π Π= − =
−

+
−

−
−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

P
P

P
P

1

2
1 i

i 1
,

1

2
1 i

i 1
. (30)

1 2

1 2

1 2

1 2

In those equations, −P 1 2 can be considered as parametrix but the equations are actually exact
in Rn, see the appendix in [20]. Note that Π± are orthogonal projections in  R( )n and their
sum is identity. The orthogonality is preserved under the dynamics in Rn.

The phase functions above solve the eikonal equations ϕ ϕ∂ ± ∣∂ ∣ =+ +c 0t x g
2 ,

ϕ ξ∣ =± = x ·t 0 . If Δ= −P , then ϕ ξ ξ= ∓ ∣ ∣ +± t x · ; and the zero bicharacteristics are given
by ξ ξ= + ± ∣ ∣t x t s x s( , ) ( , )0 0 , with τ and ξ constant and on Σ±. That equation can be
solved in general for small t only if ξx( , ) are restricted to a compact set. The amplitudes σa j,

are classical, of order 0, solve the corresponding transport equations below and their leading
terms satisfy the initial conditions

= = = − = =+ − + −a a a a
c x

t
1

2
,

i

2 ( )
for 0. (31)1,

(0)
1,
(0)

2,
(0)

2,
(0)

The transport equations for the principle terms have the form

ϕ ϕ∂ ∂ − ∂ ∂ + =± ± ± ±( )( ) c g M a 0, (32)t t
ij

x x j
2

,
(0)

i j

with ±M a smooth multiplication term. This is an ODE along the vector field
ϕ ϕ−∂ ∂±

−
±c g( , )t x

2 1 (the second term is just the covector ϕ∂ ±x identified with a vector by

the metric −c g2 ) , and the integral curves of it coincide with the geodesic curves γ ξ±t t( , ( ))z, ,
with the metric identification of the tangent and the cotangent bundle. Given an initial
condition at t = 0, it has a unique solution along the integral curves as long as ϕ± is well
defined. Here and below, we denote by γ ξ t( )z, the geodesic through ξx( , ).

Assume that the wave front of f f( , )1 2 is contained in a small conic neighborhood of some

ξx( , )0
0 . Let the construction above be valid in some conic neighborhood of the segment of

γ ξt t( , ( ))x ,0
0 until it hits Ω× ∂+R (and a bit beyond). We will work with +u only that we call

just u, and we drop the subscript + for the phase function, etc., below. Let u t( )R be the
reflected u constructed as follows. Define the exit time τ by the condition

τ ξ γ Ω= ± ⩾ ∈ ∂ξ± { }x t t( , ) 0; ( ) . (33)x,

The function τ is positively homogeneous in ξ or order −1. Fix boundary normal coordinates
′x x( , )n on Ω∂ near the reflection point so that =x 0n defines Ω∂ locally and <x 0n in Ω, and

the metric −c g2 takes the form + ′αβ
α βx g x x(d ) d dn 2 , α β⩽ ⩽ −n0 , 1. Restrict u to Ω× ∂+R .

Then u would look like the σ =+ term in (29) with ϕ ϕ= ∣ =x 0n , = ∣ =a aj j x 0n (recall that we
dropped the + subscript). The map ∂ ∣ ↦ ∣ Ω= ×∂+F u u u: ( , )t t R0 (which is the operator Λ in the
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commonly used model in the whole space, microlocally restricted) is an Fourier Integral
Operator (FIO) of order −(0, 1) with a canonical relation associated to the diffeomorphism

+C , where [18]:

ξ τ ξ ξ γ τ ξ ξ γ τ ξ⟼ ± ∓ ′ξ ξ± ± + ±( )( )( )C x x x x: ( , ) ( , ), ( , ) , , ˙ ( , ) ,

(34)

x x, ,

where the prime stands for a projection on Ω∂T* , and we identify vectors and covectors by
the metric −c g2 . The map −C corresponds to −u . The range of ±C is in a compact subset of the

hyperbolic regions ξ τ∣ ′∣ < ∓ of Ω× ∂T R*( ).
Its parametrix is the backprojection: ∣ ↦ ∂ ∣Ω×∂ =+u u u( , )t tR 0 constructed as the restriction

to t = 0 of the incoming solution of the boundary value problem (the one with smooth Cauchy
data for ≫t 0) and boundary data ∣ Ω×∂+u R , see also [21].

We seek a parametrix for the reflected solution uR in the form

∫π ξ ξ ξ ξ ξ ξ= +ϕ ξ− −( )u t x a x t f a x t f( , ) (2 ) e ( , , ) ˆ ( ) ( , , ) ˆ ( ) d . (35)R n t x R
g

Ri ( , , )
1 1

1
2 2

R

In other words, =u RF f f( , )R
1 2 , where R is the reflection operator, defined correctly because

F is microlocally invertible. The phase function solves the eikonal equation

ϕ ϕ ϕ ϕ∂ + = ==c x( ) 0, . (36)t
R

x
R

g
R

x 0n

One such solution is ϕ itself (denoted above by ϕ+) and ϕR is the other one. They can be

distinguished by the sign of their normal derivatives ϕ∂ν , ϕ∂ν
R on Ω× ∂+R which is positive

for ϕ and negative for ϕR. That derivative is as in (37) without the factor i. The amplitudes a R
1

and a R
2 solve the transport equations with initial data on Ω× ∂+R equal to a1 and a2,

respectively. Not that those transport equations are ODEs along the reflected geodesic.
Since ∂νu and ∂νuR have opposite signs of their principal terms, ≔ +u u uN

R satisfies the
Neumann boundary conditions up to lower order terms One can construct the whole reflected
amplitudes this way but for our purposes, we just need the ‘error’ term to be a compact
operator. On the other hand, ≔ −u u uD

R satisfies the Dirichlet boundary condition up to
lower order terms

In particular, we recover the well known fact that Neumann boundary condition reflects
the ‘wave’ without a sign change, while the Dirichlet boundary condition alters the sign.

We can remove the condition now that the geometric optics construction (29) is valid all
the way to the boundary. The map from the Cauchy data f f( , )1 2 to the solution tu( ) at any
given t is an invertible FIO. Fix t0 not exceeding the time it takes for the geodesic γ ξt( , )x ,0

0 to
hit the boundary but close enough to it. Then we repeat the arguments above with u as in (35)
but with Cauchy data ∂ ∣ =u u( , )t t t0 at =t t0. The representation (29) is just a local repre-
sentation of the solution operator for the wave equation, which is a FIO defined globally.

That phenomenon can be understood by studying the corresponding outgoing Dirichlet-
to–Neumann map ∣ ↦ ∂ ∣Ω ν Ω×∂ ×∂N u u: R Rout for u smooth for ≪t 0) and the corresponding
incoming one Nin, defined in the same way but requiring u to be smooth for ≫t 0. As follows
from (35) (and it is well known in scattering theory), they are both ΨDOs on the hyperbolic
conic set ξ τ∣ ′∣ < ∣ ∣c g where the range of ±C belongs, see (34), with opposite same principal
symbols. The representation (35), see [19] for details, implies that those principal symbols are

τ ξ± − ′−ci , (37)g
2 2 2
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where the positive sign is for the incoming one. In the hyperbolic conic set ξ τ∣ ′∣ < ∣ ∣c g , those

symbols are elliptic, therefore ≅ −−N N Idout
1

in and ≅ −−N N Idin
1

out modulo lower order ΨDOs,
with the inverse meaning a parametrix. Then in the construction above, given u on Ω∂ , we
seek uR on the boundary as the solution of + =N u N u 0Rin out which implies ≅u uR on the
boundary; hence the Dirichlet data of the reflected solution is twice that of the incoming one,
modulo lower order terms

We deifine another relevant map. Given boundary data h microlocalized near some
τ ξ′t x( , , , ) in the hyperbolic domain ξ τ∣ ′∣ < − (related to the positive sign in (34)), let u be

the outgoing solution (smooth for ≪t 0) with that boundary data, extended until the cor-
responding geodesic hist Ω∂ again, and slightly beyond. Let = ∣ Ω×∂Gh u R be the trace on the
boundary there. Then G is an elliptic FIO of order zero with a canonical relation given by the
graph of

τ ξ τ ξ ξ γ τ ξ ξ γ τ ξ⟼ + ∓ ′ξ ξ+ + ±( )( )( )C t x t x x x: ( , , , ) ( , ), ( , ) , , ˙ ( , ) . (38)b x x, ,

We are ready to analyze the reflection of singularities now. We can represent the solution
of the forward Neumann problems as

= ⟼ ⟼ ⟼ ⟼( )f f F GF G Ff f f f, 2 2 2 ..., (39)1 2
2

where we start with the Cauchy data at t = 0, the second term is the Dirichlet data at the first
reflection near τ τ ξ≔ x( , )1 ; then the second reflection near τ ξx( , )2 , etc

To understand the backprojection with given Dirichlet data, note first that the back-
projection of the Dirichlet data of ≅u u2N 1 on Ω∂ near the first reflection to t = 0 is just
≅ ≅−F Ff f2 21 , i.e., we get

⟼Ω×∂+
u f2 . (40)N R ,near 1st reflection

Let us backproject the Dirichlet data ∣ Ω×∂+uN R (for t near τ ξ ξ∣x( , )2 ) in (39) under the
assumption that at the first reflection near τ1 the Dirichlet condition is zero. We get

⟼ ⟼ −Ω Ω×∂ ×∂
+ +u f0 2 . (41)N R R,near 2nd reflection ,near 1st reflection

Now, the backprojection of both singularities ∣ Ω×∂+u2 R2 and ∣ Ω×∂+u2 R1 is a sum of the ones
above, and we get 0, modulo lower order terms

We can continue this construction to get the following. Backprojecting even number of
Dirichlet data of a singularity at consecutive reflections returns 0 (therefore, an error operator

=K Id); and backprojecting an odd number returns f2 (therefore, an error operator = −K Id).
This is consistent with the analysis above.

In the proof below, we would need to backproject Dirichlet data multiplied by a ∞C0
function ϕ t( ). Eventually, we chose ϕ to be that anti-derivative of χ− for which ϕ =t( ) 0 for

≫t 0, see (48). Since we require χ > 0 on T[0, ], we would also have that ϕ is strictly
decreasing on that interval but we do not need that property so far.

Given boundary data h microlocally supported near the first reflection point of γ ξx ,0
0, −F 1

is the back-projection (39). Then by Egorovʼs theorem, see, e.g., [23],
ϕ ϕ τ≅ ◦ ∣ ∣−

+
−F h x D D F h( )( , )1 1 . Then (40) takes the form

ϕ ϕ τ⟼ ◦Ω×∂ +
+

( )t u x D D f( ) 2 ( , ) . (42)N R ,near 1st reflection

To generalize (41) in this setting, note that the sequence of maps there is to apply −G 1, then
−Id at the time of the first reflection, then −F 1. All those are FIOs associated to canonical
diffeomorphisms, so we get
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ϕ

ϕ τ

⟼

⟼ − ◦

Ω Ω×∂ ×∂

−

+ +

( )

t u

x D D F f

( ) 0

2 ( , ) , (43)

N R R,near 2nd reflection ,near 1st reflection

2
1

where τ ξx( , )2 is the time of the second reflection of γ ξ t( )x, .
We therefore proved the following.

Lemma 3. Let v solve (22) with h given by

ϕ Λ=h t t t f( ) ( ) ( ) , (44)

(compare with the first term on the rhs of (24)), with some ϕ ∈ ∞C R( )0 . Then the map

↦f v (0),

is a classical ΨDO in Ω of order 0 with principal term ξ ξ∣ ∣p x( , ), with

ϕ τ ϕ τ ϕ τ ϕ τ ϕ τ ϕ τ= ⋯ + ◦ − ◦ + ◦ + ◦ − ◦ + ◦ + ⋯− − −( )p ,3 2 1 1 2 3

where τ τ τ τ< < < < < <− −... 0 ...2 1 1 2 are the reflection times (except for 0) of the unit
speed geodesic issued from ξx( , ), and ϕ is extended as an even function to <t 0.

The even extension of ϕ may lose smoothness at t = 0 but in a neighborhood of that point,
we have Λ =f t( ) 0 by finite speed of propagation since f is supported in Ω.

Let ϕ⩽0 be decreasing, as in our main result, with ϕ =(0) 1. Then ⩾p 0. On the other
hand it is straightforward to see that ⩽p 2; and < <p0 2 if ϕ is strictly increasing and
ϕ τ◦ > 0k for at least one k. Therefore, the error − p1 is in (0, 1) for every fixed ξx( , ).

In what follows, we restrict ξx( , ) to the unit cosphere bunlde ΩS* 0.
We think of ϕ τ ϕ τ≔ ◦ − ◦+lk k k1 , ⩾k 1 as the weighed time between the kth and the

+k( 1)th reflection with weight ϕ− ′ ⩾ 0. Since ϕ =(0) 1, the weighted time between τ−1 and
τ1 should be ϕ τ ϕ τ− ◦ + − ◦ −(1 ) (1 )1 1 . This motivates the following definition:

ϕ τ ϕ τ
ϕ τ ϕ τ

ϕ τ ϕ τ
=

◦ − ◦ =
− ◦ − ◦ =
◦ − ◦ = − −

+

−

− − −

⎧
⎨⎪
⎩⎪

l

k

k

k

, 1, 2 ,...,

2 , 0,
, 1, 2 ,....

(45)k

k k

k k

1

1 1

1

Then

κ
ϕ τ ϕ τ ϕ τ ϕ τ

ϕ τ ϕ τ ϕ τ ϕ τ
ϕ τ ϕ τ ϕ τ ϕ τ ϕ τ ϕ τ

= ⋯ + − + − + + − ⋯
= ⋯ + − ◦ + ◦ − − ◦ + ◦

+ − ◦ − ◦ − ◦ − ◦ + ⋯
= ⋯ − ◦ + ◦ − ◦ + ◦ + ◦ − ◦ + ⋯
= −

− −

− − − −

−

− − − −

( ) ( )
( ) ( )

( )

l l l l l l

p

2 :

2

2 2 2 2 2

2(1 ).

2 1 0 1 2 3

3 2 2 1

1 1 1 2

3 2 1 1 2 3

On the other hand,

⋯ + + + + + + =− −l l l l l l ... 2. (46)2 1 0 1 2 3

Thus we get the following.

Lemma 4. Assume that ϕ⩽ ∈ ∞C0 0 , ϕ =(0) 1, ϕ is even and ϕ′ < 0 on +R . Then on ΩS* ¯ 0,

∑ ∑κ κ= − = −
=−∞

∞

=−∞

∞

p l l1 , where ( 1) . (47)
k

k
k

k

k
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If ϕ τ ξ◦ =x( , ) 0k for at least one k (i.e., for k = 1 or = −k 1), then κ ξ∣ ∣ <x( , ) 1.

The denominator in (47) equals 2 by (46) but the representation (47) makes it easier to
see that κ∣ ∣ ⩽ 1.

To understand better this lemma, we consider a few special cases in the remarks below.

Remark 1. Let ϕ be the characteristic function of −T T[ , ], which is not smooth, of course
but we can always cut it off smoothly near the endpoints which does not change our
conclusions below if neither τk can be±T . Also, ϕ is not decreasing. This corresponds to non-
averaged time reversal, i.e.,  = A T( ) in (20), see also (48) below. Then ϕ τ◦ = 1k for every
τk in the interval −T T[ , ]. Thus lk are either zero if the whole interval is in −T T[ , ] or 1
otherwise. Then p take values 0, 1 of 2 depending on the number of reflections in that
interval; with the exception of the cases when a reflection happens too close to ±T . The error
is then either 0, or 1 or −1.

Remark 2. Consider the special case ϕ = −t T t T( ) ( ) for ⩽ ⩽t T0 and ϕ = 0 otherwise.
This is the function we use in our numerical experiments and in (20) it corresponds to χ being
the characteristic function of T[0, ], i.e., weight 1 there. This is not a smooth function either,
but we can deal with this as above. Then τ τ= ∣ − ∣+l Tk k k1 for =k 0 if the whole interval is
in −T T[ , ], and τ τ= − −l T( )0 1 1 . If τ τ< < +Tk k 1, then τ= −l Tk k , similarly for <k 0. In
other words, lk are just the lengths of the geodesic segments up to time ∣ ∣ ⩽t T with the first
and the last ones having endpoints not on Ω∂ generically. Then lemma 4 holds with those
values, away from the rays for which the broken geodesics hits Ω∂ for = ±t T . The right-
hand side of figure 1 illustrates that if we assume that the plane t = 0 intersects the longest ray
there.

Remark 3. One intuitive way to explain the lemma is to look at the representation (26) of
the error term 0. The integrand admits the following interpretation. Each singularity
propagates without sign change at the time of reflection (represented by the group τU ( )N .
Then ignoring for a moment the projection Π (which is identity up to a smoothing operator in
the interior of Ω) the same singularity travels back but satisfies Dirichlet boundary conditions,
thus the sign of the amplitude changes at each reflection. The result at time t = 0 is −( 1) Idk

modulo lower order terms, where τ=k k ( ) is the number of reflections over the interval
τ∈t [0, ]. The integral (26) averages those values with weight χ, which explains (47). The

difficulty in following this approach is that we have to isolate the times of reflection with
small intervals (then the singularity ends at Ω∂ for that time); and those times depend on

ξx( , ).

The following lemma is what remained to complete the proof of theorem 3.

Lemma 5. Under the conditions of theorem 3, the operator  0
*

0 in ΩH ( )D 0 has an upper
bound of its essential spectrum less than one. More precisely, that bound is the maximum κ0

of κ∣ ∣ on ΩS* ¯ 0.

Proof. Our starting point is the representation (24) for the boundary values of the solution v
of (22). Write h in the form
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∫ ∫ϕ Λ χ τ Λ τ τ ϕ χ τ τ= − =h t t f t f t( ) ( ) ( ) ( ) ( ) d , where ( ) ( ) d . (48)
t

T

t

T

The second term on the right is composition of a multiplication by the smooth function χ and
a particular choice of an anti-derivative w.r.t. t. The operator td d is not elliptic but it is
elliptic in the hyperbolic region. Then so is any of its left inverses; with a principal symbol

τ−i restricted to the hyperbolic region away from the origin τ ξ′ =( , ) (0, 0). Then by
Egorovʼs theorem, backprojecting that term contributes a lower order ΨDO at t = 0. The
principal symbol contribution comes from the first term on the right then. For that, we can
apply lemma 3 to get that ↦f v (0) in (23) is a ΨDOwith the properties described in lemma 3
and lemma 4.

We have  Π= v (0)0 0 and  Π= Q0 0 , where κ≔Q x D( , ) is a properly supported
ΨDO in Ω.

In L2, Q Q* is a ΨDOwith principal symbol κ2, where Q* is the L2 adjoint. To compute
the same in HD, for Ω∈ ∞f C ( )0 0 write

∥ ∥ ⩽ =Ω Ω
Ω

( )f PQf Qf Q PQf f( , ) * , .( )H L
L

0
2

( )
( )D 0

2
2

The principal symbol of Q PQ* is κ σ P( )p
2 ; therefore, there is a ΨDO K1 of order 0 so that

= +
Ω ( )( ) ( )Q PQf f Q Q K P f P f* , * , .

L L( )
1

1 2 1 2
2 2

Since κ κ⩽ < 12
0
2 on ΩS* ¯ 0, for every ε > 0, we have κ ε+ − > >q C( ) 00

2
0
2 in some

neighborhood of ΩS* ¯ 0 in ΩS* . Then Rκ ε+ − = +q B B K( ) Op( ) *0
2

0
2

2 with K2 compact,

where B is of order 0, where R = +L L L( *) 2, see [23, lemma II.6.2]. Therefore,

κ ε= + − +Q Q B B K* ( ) *0
2

3, with K3 compact in L2. In particular,

Ω Ω→Q Q L L* : ( ) ( )2
0

2
0 is a contraction up to a compact operator. Therefore,

 κ ε∥ ∥ ⩽ + ∥ ∥ + ∥ ∥∥ ∥Ωf f K f f( ) , (49)( )H0
2

0
2 2

4
D 0

with K4 a compact operator in ΩH ( )D 0 .
Assume now that the essential spectrum of  0

*
0 contains κ ε+ 20 . Then there is a

orthonormal sequence fn so that   κ ε= + +f f o( 2 ) (1)n n0
*

0 0 , see [16, VII.12]. Since K4 is
compact, →K f 0n4 . Taking the limit → ∞n in (49), we get a contradiction. □

7. Numerical simulations for data on the whole boundary

We used 1001 × 1001 grids and a second order finite difference scheme for figures 2 and 3,
and on a 501 × 501 grid for figure 4. The purpose of those tests was to illustrate the
mathematics. Numerical tests under conditions that would more closely resemble the actual
applications will be presented in a forthcoming work.

The first phantom is the Shepp-Logan one, properly resampled from a higher resolution
to prevent jagged edges. The second phantom are white and black disks on a uniform gray
background. The iterations for figures 4, 5 are done in the following way.


 

Λ

Λ

= ≔

= − + =−( )
f h h f

f f h n

, ,

Id , 2, 3 ,....n n

1 0

0 1 0
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At each step, we evaluate∥ − ∥f fn L2 but we do not use this to decide how many steps to take
(since f is unknown). We use 10 terms in (25) for figures 4, 5.

The boundary here is not smooth, and singularities hitting Ω∂ too close to a corner have
very short paths before the next reflection. This creates some mild instability as the spectral
bound of the error there is too close to 1. The rays hitting a corner close to 45° are the most
unstable. The faint artifacts in the second reconstruction in figure 4 can be explained by that.

We do not compute numerically the lower bound for the time T needed for stability in
figure 4, where c is variable. When c = 1, this lower bound is half of the diagonal, i.e., 2 ;
and then the time T = 5 exceeds it by a comfortable margin to be able to claim that T = 5 is
enough for stability even for that choice of c. Numerical experiments with T = 3 show a very
good reconstruction, as well, even with partial data as in the next section.

8. Partial Data

8.1. Sharp averaged time reversal

Assume that we are given Λf on Γ Ω⊂ . We do time reversal with partial data as follows.
Solve

Ω

ϕ

∂ + = ×

=
∂ =

=
∂ =

Γ

ν Ω Γ

×

× ∂ ⧹

=

=

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

( )

( )

P v T

v h

v

v

v

0 in (0, ) ,

,

0,

,
0,

(50)

t

T

T

t T

t t T

2

(0, )

(0, )

Figure 5. Partial data inversion with data on the indicated part of Ω∂ . Neumann series
inversion with 10 terms, T = 5, on the square −[ 1,1]2. Left: constant speed c = 1, L2

error =0.7%. Right: variable π π= + +c x x1 0.3 sin( ) 0.2 cos( )1 2 , L2 error =2%. We
average with ϕ as in remark 2, i.e., with weight χ = 1 in T[0, ], see (20). Again, the
most visible artifacts can be explained by the presence of corners.
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where, eventually, we will set Λ=h f , and we will choose ϕ below; and set

=Ah v: (0). (51)

The choice of the boundary conditions is dictated by the following: we know u on
Γ×T(0, ) , and we use this information. Next, we do not know u on the rest of Ω∂ but we

know that it satisfies homogeneous Neumann boundary conditions there. To choose ϕ, we use
the same arguments: we solve the following Zaremba problem

Δ ϕ ϕ= = ∂ =Γ ν Ω Γ∂ ⧹h v0, , 0. (52)g

This is a well posed problem if the boundary data is in L2 at least, see, e.g., [7, 17]. The
Laplacian with homogeneous mixed conditions has a natural self-adjoint realization, and by
the Stoneʼs theorem, (50) is well posed and energy preserving, as well.

More precisely, let

Ω Ω= ∈ =Γ{ }H f H f( ) ( ); 0 ,Z
1

equipped with the Dirichlet norm (4), and set  Ω Ω Ω= ⊕H L( ) ( ) ( )Z Z
2 . On ΩH ( )Z , we

define the self-adjoint operator PZ with domain

 Ω= ∈ ∂ =ν Ω Γ∂ ⧹{ }( )P f H f( ); 0 .Z Z

Then we define PZ as in (5) with =P PZ with domain consisting of all ∈f Z so that P fZ

(considered in distribution sense) belongs to Z , see also [3]. Let =t tU P( ) exp( )Z Z be the
corresponding unitary group.

Define the ‘error’ operator K as before by

Λ = −A KId .

To analyze K, let = −w u v be the ‘error’. Then w solves

Ω

ϕ

∂ + = ×

=
∂ =

= −
∂ =

Γ

ν Γ

×

× ⧹

= =

=

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

( )

( )

P w T

w

w

w u

w

0 in (0, ) ,

0,

0,

0.

(53)

t

T

T

t T t T

t t T

R

2

(0, )

(0, ) n

Then

=Kf w (0). (54)

For Ω∈ ∞f C ( ¯ ), let Π ϕ≔ −f f , where ϕ solves (52) with = ∣Γh f . Since Πf vanishes on Γ
and ϕ∂ν vanishes on Ω Γ∂ ⧹ , after integration by parts, we get Π ϕ⊥f in ΩH ( )Z . Therefore,
we have the Pythagorean identity

Π ϕ∥ ∥ + ∥ ∥ = ∥ ∥f f2 2 2

in the HZ norms in particular, Π∥ ∥ ⩽ 1.
This construction yields the following for the operator →K H H: N D, see also (14):

Ππ π= −K T TU U( ) ( ) , (55)Z N1 1
*

where π ≔f f f( , )1 1 2 1, π ≔f f( , 0)1
* . Obviously,

∥ ∥ ⩽→K 1. (56)H HN Z
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We define the averaged time reversal map  as in (20). The latter can be also described as
follows. We solve

Ω∂ + = ×

=
∂ =

=
∂ =

Γ

ν Γ

×

× ⧹

=

=

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

( )

( )

P v T

v h t

v

v

v

0 in (0, ) ,

( ),

0,

0
0.

(57)

t

T

T

t T

t t T

R

2

(0, )

(0, ) n

Here h is as in (21), see also (24). Then we set  = v (0) and  Π=0 0 .
The analysis of K in this case however is more complicated. To prove the equivalent of

lemma 5 in this case, we need to study the propagation of singularities for the Zaremba
problem: those who hit the boundary of Γ. The convergence of the Neumann series in this
case is an open problem. A numerical reconstruction is shown in figure 5. The data used is on
the left and the bottom sides on the squares, and on 20% of the other two sides, as marked
there. When c = 1, as on the left, this is a stable configuration, ignoring the fact that Ω∂ is not
smooth at the corners, and the critical time for stability is the diagonal = ≈T 2 2 2.82. A
critical case would be to use two adjacent sides. We choose T = 5 in both cases. Recon-
structions with T = 3, not shown here, look still very good, with a slightly higher L2 error:
4.25% for the Shepp-Logan phantom (on the right), versus 2% for T = 5 and 1.5% for T = 7.

8.2. Recovery of singularities

Instead of that, we will show that our method gives a parametrix recovering almost all
singularities under the technical assumption that f has no singularities hitting the edge of Γ.

For a fixed >T 0 and Γ, let  Ω⊂ ⧹T* 0 be the open set of visible singularities, see

definition 1. Let  Ω⊂ ⧹T* 0 be the open set of invisible singularities. Recall that

 ∪Σ Ω≔ ⧹T* ¯ ( )0 0 is a conic set of measure zero.
Then the proof of lemma 5 implies the following.

Theorem 4. Let   ∪⋐ be an open conic set. Let f be supported in Ω̄0 and let
∩ Σ = ∅fWF( ) 0 . Then there exist a ΨDOM of order 0 with a homogeneous principal

symbol taking values in κ κ− +[1 , 1 ]0 0 , κ ∈ [0, 1)0 in T* , and essential support in  , so
that

Λ = ∞f Mf mod C .

In particular, if the stability condition holds,  = ∅, and M is elliptic away from Σ0.

Proof. We follow the proof of lemma 5. The unit speed geodesic issued from each
ξ ∈x( , ) hits Ω∂ at a point either on Γ or on Ω Γ∂ ⧹ ¯ , for ∣ ∣ ⩽t T . When backprojecting the

Dirichlet data, the back-propagating geodesics hits Ω∂ at the same points. Let us rename the
reflection times τk by calling τ1 the first time for which the geodesic hits Γ (ignoring those
where it hits Ω Γ∂ ⧹ ¯ ), etc. Then at the reflection times related to Ω Γ∂ ⧹ ¯ , the principal part does
not change sign because we imposed Neumann boundary conditions there. At the remaining
ones, it does. Therefore, all the arguments hold and lemmas 3 and 4 still hold with the so
redefined τk. If ξx( , ) is visible, then there is at least two terms in the sum in (47) which proves
the proposition. □
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The proposition implies that  recovers the visible part of fWF( ) under the a priori
assumption that fWF( ) is disjoint from Σ0. Also, κ0 can be chosen as in lemma 5 with τk as
in the proof above. Next, writing = −M KId , the formal Neumann expansion

+ + + ⋯K KId 2 applied to Λf , considered in Borel senses, recovers f microlocally in  .
The invisible singularities, those in  , cannot be recovered. In practical reconstructions, a
finite expansion with N terms recovers f microlocally there approximately with an exponential
error of the principal symbol.

Finally, we notice that general microlocal arguments like those used in [2], imply that
one can recover all visible singularities in a stable way. Our goal here was to suggest a
constructive way of doing so. When the observations are done on the whole boundary,
stability follows from theorem 2 but in theorem 3, we show how to reconstruct f in a
stable way.
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