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Abstract. We present a survey of the recent results by the authors on multi-wave methods where
the high resolution method is ultrasound. We consider the inverse problem of determining a source
inside a medium from ultrasound measurements made on the boundary of the medium. Some
multi-wave medical imaging methods where this is considered are photoacoustic tomography, ther-
moacoustic tomography, ultrasound modulated tomography, transient elastography and magneto-
acoustic tomography. In case of measurements on the whole boundary, we give an explicit solution
in terms of a Neumann series expansion. We give almost necessary and sufficient conditions for
uniqueness and stability when the measurements are taken on a part of the boundary. We study the
case of a smooth speed and speeds having jump type of singularities. The latter models propagation
of acoustic waves in the brain where the skull has a much larger sound speed than the rest of the
brain. In this paper we emphasize a microlocal viewpoint.

1. Introduction

Multi-wave imaging methods, also called hybrid methods, attempt to combine the high resolution
of one imaging method with the high contrast capabilities of another through a physical princi-
ple. One important medical imaging application is breast cancer detection. Ultrasound provides a
high (sub-millimeter) resolution, while suffers from low contrast. On the other hand, many tumors
absorb much more energy of electromagnetic waves (in some specific energy bands) than healthy
cells. Photoacoustic tomography (PAT) [51] consists of sending relatively harmless optical radia-
tion into tissues that causes heating (with increases of the temperature in the millikelvin range)
which results in the generation of propagating ultrasound waves (the photo-acoustic effect). Such
ultrasonic waves are readily measurable. The inverse problem then consists of reconstructing the
optical properties of the tissue. In Thermoacoustic tomography (TAT), see, e.g., [24], low frequency
microwaves, with wavelengths on the order of 1m, are sent into the medium. The rationale for using
the latter frequencies is that they are less absorbed than optical frequencies. In ultrasound modu-
lated tomography (UMT), radiation is sent through the tissues at the same time as a modulating
acoustic signal, which changes the local properties of the optical parameters (the acousto-optic
effect) in a controlled manner. The objective is then the same as in PAT: to reconstruct the op-
tical properties of the tissues. In both modalities, we seek to combine the large contrast of the
optical parameters between normal and cancerous tissues with the high (sub-millimeter) resolution
of ultrasound imaging. Transient Elastography (TE) [30] images the propagation of shear waves
using ultrasound. Magneto-Acoustic tomography (MAT) [57] the medium is located in a static
magnetic field and a time varying magnetic field. The time dependent magnetic field induces an
eddy current and therefore induce an acoustic wave by the Lorentz force which are measured at
the boundary of the medium. PAT, TAT, UMT, TE and MAT offer potential breakthroughs in
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the clinical application of multi-wave methods to early detection of cancer, functional imaging, and
molecular imaging among others.

We remark that we are only considering the first step in solving the inverse problem, namely
recovering the source term from ultrasound measurements at the boundary. For a review of the
results in recovering optical, elastic, electromagnetic and other properties of tissues see the chapter
of Bal in this volume [2]. This first step has been studied extensively in the mathematical literature,
see, e.g., [1, 10, 11, 18, 19, 25, 32, 42, 43] and the references there.

The purpose of this survey is to present an approach to the problem allowing us to treat variable
and discontinuous sound speeds, and also consider partial data, based on the recent works by the
authors [42, 43]. This approach is based on microlocal, PDE and functional analysis methods,
rather than trying to find explicit closed form formulas for the partial case of a constant speed.
We always assume a variable speed. We will actually formulate the problem in anisotropic media
modeled by a Riemannian metric g in Rn. Let c > 0, q ≥ 0 be functions, all smooth and real
valued. Assume for convenience that g is Euclidean outside a large compact, and c − 1 = q = 0
there.

Let P be the differential operator

(1.1) P = −c2∆g + q, ∆g =
1√

det g

∂

∂xi
gij
√

det g
∂

∂xj
.

Let u solve the problem

(1.2)

 (∂2
t + P )u = 0 in (0, T )×Rn,
u|t=0 = f,

∂tu|t=0 = 0,

where T > 0 is fixed.
Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded domain. The mea-

surements are modeled by the operator

(1.3) Λf := u|[0,T ]×∂Ω.

The problem is to reconstruct the unknown f , knowing c; and if possible, to reconstruct both. The
same problem, but with data on a part of ∂Ω is of great practical interest, as well.

The accepted mathematical model is as described above with g Euclidean, and q = 0, see e.g.,
[56, 52, 10]. Including non-trivial g and q does not complicate the problem further, and one can
even include a magnetic field [42].

If T = ∞, then one can solve a problem with Cauchy data 0 at t = ∞ (as a limit), and
boundary data h = Λf . The zero Cauchy data are justified by local energy decay that holds for
non-trapping geometry, for example (actually, it is always true but much weaker and not uniform in
general). Then solving the resulting problem backwards recovers f . This is known as time reversal
or backprojection. For a fixed T , one can still do the same thing with an error ε(T )→ 0, as T →∞.

In the non-trapping case, n odd, the error is uniform and ε(T ) = O(e−T/C). There is no good
control over C though. Error estimates based on local energy decay can be found in [18], see also
Corollary 4.1. Other reconstruction methods have been used as well, see, e.g., [19] for a discussion,
and they all use measurements for all t in the variable coefficients case, i.e., T = ∞; and they are
only approximate for T <∞ with an error depending on the local energy decay rate. Of course, if
n is odd and P = −∆, any finite T > diam(Ω) suffices by the Huygens’ principle. In the constant
speed case, and for Ω of a specific type, like a ball, a box, there are explicit closed-form inversion
formulas, see [10, 55, 12, 13, 9] and references therein.
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We describe now briefly the content of this survey. We study what happens when T < ∞ is
fixed. When the speed is smooth, the Tataru’s continuation principle Tataru [45, 46] provides a
sharp time T0 so that there is uniqueness for T > T0, and non-uniqueness for T < T0. This time
can be characterized as the least time T so that a signal from any point can reach ∂Ω before that
time. For stable recovery, we need something more: from any point and any direction, we need the
corresponding unit speed geodesic to hit ∂Ω for time t so that |t| < T1/2. The optimal T1 with
that property is the length of the longest geodesic in Ω̄. Then when T > T1/2, there is stability.
In case of data on [0, T ]× ∂Ω, T > T1/2, we present an explicit Neumann series inversion formula.
We also analyze the same questions for observations on a part of the boundary. In Section 3 we
give an almost necessary and sufficient condition for uniqueness, and in Section 5 we give another
almost necessary and sufficient condition for stability. In Proposition 5.1 we characterize Λ as a
sum of two Fourier Integral Operators with canonical relations of graph type. Under the stability
assumption, we do not have an explicit inversion anymore but we show that the problem reduces
to a Fredholm equation with a trivial kernel.

In section 6, we discuss a relation between the problems we consider and boundary control.
In section 7 we give an estimate of the largest time interval for the geodesics to leave the medium

which is important for the stability analysis.
In section 8 we discuss briefly the connection with integral geometry.
In Section 9, we study the case where c is piecewise smooth, with jumps over smooth surfaces.

This case is important for applications since in brain imaging, the acoustic speed jumps by a factor
of two in the skull. Propagation of singularities is more complicated in this case: a single singularity
can reflect and refract when hitting the boundary, then each branch can do the same. etc. Rays
tangent to the boundary behave in an even more complicated manner. We present results similar
to some of the ones above, under more restrictive assumptions which would allow us to avoid the
analysis of the tangent rays. We review thoroughly the construction of geometrical optics solutions
in this case.

In the appendix we review briefly some basic concepts of microlocal analysis used in this survey.
This is based mainly on [44].

We also mention that a numerical method based on the theoretical developments considered here
has been developed in [36].

We assume throughout the paper that the sound speed is known. It has been suggested [?] to use
ultrasound transmission tomography, which measures travel times, to determine the sound speed.
For a numerical algorithm for UTT and also reflection tomography see [6]. This algorithm is based
on the theoretical work [40] of the authors.

2. Preliminaries

2.1. Energy spaces. Let g, q ≥ 0 and c be in C∞ first. The operator P is formally self-adjoint
w.r.t. the measure c−2d Vol, where d Vol(x) =

√
det g dx. Given a domain U , and a function u(t, x),

define the energy

EU (t, u) =

∫
U

(
|Du|2 + c−2q|u|2 + c−2|ut|2

)
d Vol,

where Dj = −i∂/∂xj , D = (D1, . . . , Dn), |Du|2 = gij(Diu)(Dju). In particular, we define the
space HD(U) to be the completion of C∞0 (U) under the Dirichlet norm

(2.1) ‖f‖2HD =

∫
U

(
|Du|2 + c−2q|u|2

)
d Vol .
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It is easy to see that HD(U) ⊂ H1(U), if U is bounded with smooth boundary, therefore, HD(U) is
topologically equivalent to H1

0 (U). Note that if U = R2 and q = 0, HD(R2) contains elements that
are not even distributions, see [27]. By the finite speed of propagation, the solution with compactly
supported Cauchy data always stays in H1 even when n = 2. The energy norm for the Cauchy
data (f, h), that we denote by ‖ · ‖H is then defined by

‖(f, h)‖2H =

∫
U

(
|Df |2 + c−2q|f |2 + c−2|h|2

)
d Vol .

This defines the energy space
H(U) = HD(U)⊕ L2(U).

Here and below, L2(U) = L2(U ; c−2d Vol). Note also that

(2.2) ‖f‖2HD = (Pf, f)L2 .

The wave equation then can be written down as the system

(2.3) ut = Pu, P =

(
0 I
−P 0

)
,

where u = (u, ut) belongs to the energy space H. The operator P then extends naturally to a
skew-selfadjoint operator on H. In this paper, we will deal with either U = Rn or U = Ω. In the
latter case, the definition of HD(U) reflects Dirichlet boundary conditions.

Assume now that c, 1/c and q are in L∞. Then again, P is a skew-selfadjoint operator on H(U),
see [43], and the above statements still hold. The important case for applications is g = {δij} and
q = 0.

By [26, 22], Λ : HD(Ω) → H1
(0)([0, T ] × ∂Ω) is bounded, where the subscript (0) indicates the

subspace of functions vanishing for t = 0.

2.2. Finite speed of propagation and unique continuation for the wave equation. It is
well known, see e.g., [49, Chapter 8], that the wave equation (2.7) has the finite speed of propagation
property: “signals” propagate with speed no greater that 1, in the metric c−2g (or with speed c, in
the metric g). More precisely, if u solves (2.7), and has Cauchy data (f, h) for t = 0, then

(2.4) u(t, x) = 0 for t > dist(x, supp(f, h)),

where “dist” is the distance in the metric c−2g. Another way to say this is that any solution of
(2.7) at (t0, x0) has a domain of dependence given by the characteristic cone

(2.5) {(t, x); dist(x, x0) ≤ |t− t0|} .
The forward part of this cone is given by t > t0, and the backward one by t < t0.

Recall that given two subsets A and B of a metric space, the distance dist(A,B) is defined by

(2.6) dist(A,B) = sup(dist(a,B); a ∈ A).

This function is not symmetric in general, and the Hausdorff distance is defined as

distH(A,B) = max (dist(A,B), dist(B,A)) .

The finite speed propagation property can then be formulated in the following form: if u has Cauchy
data (f, h) at t = 0 supported in the set U , then u(t, x) = 0 when dist(x, U) > |t|.

We recall next a Holmgren’s type of unique continuation theorem for the wave equation (∂2
t +

P )u = 0 due mainly to Tataru [45, 46]. The local version of this theorem states that we have
unique continuation across every surface non-characteristic for ∂2

t + P . One of its global versions,
presented below, follows from its local version by Holmgren’s type of arguments, see also [22].
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Theorem 2.1. Let P be the differential operator in Rn defned in (1.1). Assume that u ∈ H1
loc

satisfies

(2.7) (∂2
t + P )u = 0,

near the set in (2.8) and vanishes in a neighborhood of [−T, T ]×{x0}, with some T > 0, x0 ∈ Rn.
Then

(2.8) u(t, x) = 0 for |t|+ dist(x0, x) < T.

Proof. If P has analytic coefficients, this is Holmgren’s theorem. In the non-analytic coefficients
case, a version of this theorem was proved by Robbiano [37] with ρ replaced by Kρ with an
unspecified constant K > 0. It is derived there from a local unique continuation theorem across
a surface that is “not too close to being characteristic”. In [17], Hörmander showed that one can

choose K =
√

27/23, in both the local theorem [17, Thm 1] and the global theorem [17, Corollary 7].
Moreover, he showed that K in the global one can be chosen to be the same as the K in the local
one. Finally, Tataru [45, 46] proved a unique continuation result that implies unique continuation
across any non-characteristic surface. This shows that actually K = 1 in Hörmander’s work, and
the theorem above then follows from [17, Corollary 7]. �

For the partial data analysis we need a version of that theorem restricted to a bounded (con-
nected) domain Ω. The inconvenience of the theorem above is that it requires u to solve the wave
equation in a cone that may not fit in R×Ω. Next theorem shows unique continuation of Cauchy
data on R× ∂Ω to their domain of influence, see e.g., [22, Theorem 3.16].

Proposition 2.1. Let Ω ⊂ Rn be a domain, and let u ∈ H1 solve the homogeneous wave equation
(∂2
t +P )u = 0 in [−T, T ]×Ω. Assume that u has Cauchy data zero on [−T, T ]× Γ, where Γ ⊂ ∂Ω

is open. Then u = 0 in the domain of influence {(t, x) ∈ [−T, T ]× Ω; dist(x,Γ) < T − |t|}.

One way to derive Proposition 2.1 from the unique continuation theorem is to extend u as zero
in a one sided neighborhood of Γ, in the exterior of Ω (by extending g and c there first), and this
extension will still be a solution. Then we apply unique continuation along a curve connecting
that exterior neighborhood with an arbitrary point x so that dist(x,Γ) < T . To make sure that
we always stay in some neighborhood of that curve in the x space, we need to apply the unique
continuation Theorem 2.1 in small increments. We refer to the proof of [43, Theorem 6.1] for similar
arguments.

3. Uniqueness for a smooth speed

Uniqueness and reconstruction results in the constant coefficients case based on spherical means
have been known for a while, see e.g., the review paper [25]. If P = −c2(x)∆, and Λf is known on
[0, T ]×∂Ω, Finch and Rakesh [11] have proved that Λf recovers f uniquely as long as T > 2T0, see
the definition below. A uniqueness result when Γ is a part of ∂Ω in the constant coefficients case is
given in [10], and we follow the ideas of that proof below. The Holmgren’s uniqueness theorem for
constant coefficients and its analogue for variable ones, see Theorem 2.1, play a central role in the
proofs that suggests possible instability without further assumptions, see also the remark following
Theorem 5.1 below.

Stability of the reconstruction when P = −∆ and T =∞ follows from the known reconstruction
formulas, see e.g., [25]. In the variable coefficients case, stability estimates as T →∞ based on local
energy decay have been established recently in [18]. When T is fixed, there is the general feeling
that if one can recover “stably” all singularities, and if there is uniqueness, there must be stability
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(although this has been viewed from the point of view of integral geometry, see also Section 8). We
prove this to be the case in Theorem 5.1, and we use the analysis in [41], as well.

3.1. Data on the whole boundary. We study first the uniqueness of recovery of f , given Λf .
Since this is a linear problem, we just need to study conditions under which Λ has a trivial kernel.

We would like to use the unique continuation Theorem 2.1 but we only know that the solution
u to (1.2) vanishes for x ∈ ∂Ω and t ∈ [0, T ]. For the application of the uniqueness continuation
theorem, we need to know that the normal derivative of u on ∂Ω vanishes, as well. Then we could
apply Proposition 2.1. Here, we would use the simple fact that u extends as a solution to the wave
equation for t < 0 in an even way, since ut = 0 for t = 0.

It turns out, that knowing Λf , one can recover the Neumann derivative of the solution at [0, T ]×
∂Ω as well. This is done by applying the non-local exterior Dirichlet-to-Neumann map to Λf , see
Lemma 6.1. We will explain now briefly the uniqueness part of this recovery. Suppose that Λf = 0
(on [0, T ]×Ω). The function u also solves the wave equation in the exterior of Ω for 0 < t < T , with
vanishing Dirichlet data on [0, T ]× ∂Ω by assumption. The Cauchy data at t = 0 are zero as well,
because supp f ⊂ Ω̄. Therefore, u = 0 on [0, T ]× (Rn \ Ω). Take a normal derivative ∂/∂ν on ∂Ω
from the exterior, to get ∂u/∂ν = 0 on [0, T ]× ∂Ω. We can extend those equalities for t ∈ [−T, 0],
as well, because u is an even function of t. By Proposition 2.1, f(x) = 0 for dist(x, ∂Ω) < T . Note
that this is a sharp inequality by the finite speed of propagation. To get f = 0 for all x ∈ Ω, we
need to take T greater than the critical “uniqueness time”

(3.1) T0 = dist(Ω, ∂Ω),

see (2.6).
We therefore proved the following.

Theorem 3.1. Let Λf = 0 with f ∈ HD(Ω). Then f(x) = 0 for dist(x, ∂Ω) < T . In particular,
(a) If T < T0, then f(x) can be arbitrary for dist(x, ∂Ω) > T
(b) If T > T0, then f = 0.

If we restrict f to a subspace of functions supported in some compact set K ⊂ Ω̄, then the
theorem above admits an obvious generalization with T0 replaced by T0(K) := dist(K, ∂Ω). Also,
f can be a distribution supported in Ω̄, and the theorem would still hold.

3.2. Data on a part of ∂Ω. The case of partial measurements has been discussed in the litera-
ture as well, see e.g.,[25, 58, 59]. One of the motivations is that in breast imaging, for example,
measurements are possible only on part of the boundary. Remember that P = −∆ outside Ω. All
geodesics below are related to the metric c−2g.

Let Γ ⊂ ∂Ω be a relatively open subset of ∂Ω. We are interested in what information about f
can be obtained when making measurements on sets of the kind

(3.2) G := {(t, x); x ∈ Γ, 0 < t < s(x)} ,

where s is a fixed continuous function on Γ. This corresponds to measurements taken at each x ∈ Γ
for the time interval 0 < t < s(x). The special case studied so far is s(x) ≡ T , for some T > 0;
then G = [0, T ]× Γ, and this is where our main interest is.

We assume now that the observations are made on G only, i.e., we assume we are given

(3.3) Λf |G ,

where, with some abuse of notation, we denote by Λ the operator in (1.3), with T =∞ that actually
can be replaced by any upper bound of the function s.
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We study below functions f with support in some fixed compact K ⊂ Ω̄. By the finite speed of
propagation, to be able to recover all f supported in K, we want for any x ∈ K, at least one signal
from x to reach G, i.e., we want to have a signal that reaches some z ∈ Γ for t ≤ s(z). In other
words, we should at least require that

(3.4) ∀x ∈ K,∃z ∈ Γ so that dist(x, z) < s(z).

We strengthened slightly the condition by replacing the ≤ sign by the < one. In Theorem 2.1
below, we show that this is a sufficient condition, as well.

Another way to formulate this condition is to say that f = 0 in the domain of influence

ΩG := {x ∈ Ω; ∃z ∈ Γ so that dist(x, z) < s(z)} .

We have the following uniqueness result, that in particular generalizes the result in [10] to the
variable coefficients case.

Theorem 3.2. Let P = −∆ outside Ω, and let ∂Ω be strictly convex. Then under the assumption
(3.4), if Λf = 0 on G for f ∈ HD(Ω) with supp f ⊂ K, then f = 0.

As above, we can make this more precise.

Proposition 3.1. Let P = −∆ outside Ω, and let ∂Ω be strictly convex. Assume that Λf = 0 on
G for some f ∈ HD(Ω) with supp f ⊂ Ω that may not satisfy (3.4). Then f = 0 in ΩG. Moreover,
no information about f in Ω \ Ω̄G is contained in Λf |G.

Sketch of the proof. We follow the proof in [10], where c is constant everywhere (and g is Euclidean).
The main difficulty in the partial data case is that we do not have the whole Cauchy data on G,

and unlike the case of the whole boundary, we cannot recover the Neumann data directly. If for a
moment we assume that the Cauchy data on G vanishes, then the unique continuation principle of
Theorem 2.1 would finish the proof.

Note first that it is enough to prove the theorem if Γ = U×∂Ω, where U is a small neighborhood
of some p ∈ ∂Ω, and ΩG given by dist(x, p) ≤ s(p). We fist recover the Neumann data on a (smaller
than we would want) part of R+ × Γ, using a finite domain of dependence result in [10]. In [10,
Proposition 2], it is shown, roughly speaking, that the corresponding solution u to the exterior
problem with Dirichlet data zero on [0, T ] × Γ vanishes in an exterior neighborhood [0, T0] × {p}
(and therefore has zero normal derivative there) only for T0 > 0 so that no signal, traveling in the
exterior of Ω, can reach p for time not exceeding T0. In other words, if we define a distance function
diste(x, y) outside Ω as the infimum of the Euclidean distance of all curves outside Ω, connecting x
and y, then any time T1 with that property would not exceed diste(p, ∂Ω\Γ). A critical observation
is that if we are not restricted to the exterior of Ω, the (geodesic) distance between p and ∂Ω \Γ is
strictly less. Moreover, if are restricted to a set on ∂Ω where either of those distances has a uniform
positive lower bound, then so does the difference. Now, knowing that u = 0 near [0, T0]× {p}, we
apply unique continuation to conclude that f(x) = 0 for dist(x, p) < T0, and to conclude that u
has zero Dirichlet data on a larger part than Γ, by the reason explained above. Then we repeat
the same argument using the fact that at each step, we improve the maximal distance at which we
can get inside by at least a positive constant, independent of the step. �
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4. Reconstruction with data on the whole boundary; the modified backprojection

One method to get an approximate solution of the thermoacoustic problem is the following time
reversal (backprojection) method. Given h, which eventually will be replaced by Λf , let v0 solve

(4.1)


(∂2
t + P )v0 = 0 in (0, T )× Ω,

v0|[0,T ]×∂Ω = h,
v0|t=T = 0,

∂tv0|t=T = 0.

Then we define the following ”backprojection”

A0h := v0(0, ·) in Ω̄.

The function A0Λf is viewed as a candidate for a reconstructed f . Since h does not necessarily
vanish at t = T , the compatibility condition of first order may not be satisfied because there might
be a possible jump at {T} × ∂Ω. That singularity will propagate back to t = 0 and will affect
v0, and then v0 may not be in the energy space. For this reason, h is usually cut off smoothly
near t = T , i.e., h is replaced by χ(t)h(t, x), where χ ∈ C∞(R), χ = 0 for t = T , and χ = 1 in a
neighborhood of (−∞, T (Ω)), see e.g., [18, Section 2.2].

As we mentioned above, the backprojection v0 converges to f , as T → ∞, see [18] for rate of
convergence estimates based on local energy decay results. In our analysis, T is fixed however.

We will modify this approach in a way that would make the problem Fredholm, and will make the
error operator a contraction for certain explicit T � 1. Given h (that eventually will be replaced
by Λf), solve

(4.2)


(∂2
t + P )v = 0 in (0, T )× Ω,

v|[0,T ]×∂Ω = h,
v|t=T = φ,

∂tv|t=T = 0,

where φ solves the elliptic boundary value problem

(4.3) Pφ = 0, φ|∂Ω = h(T, ·).

Since P is a positive operator, 0 is not a Dirichlet eigenvalue of P in Ω, and therefore (4.3) is
uniquely solvable. Now the initial data at t = T satisfy compatibility conditions of first order (no
jump at {T} × ∂Ω). Then we define the following modified backprojection

(4.4) Ah := v(0, ·) in Ω̄.

The operator A maps continuously the closed subspace of H1([0, T ] × ∂Ω) consisting of functions
that vanish at t = T (compatibility condition) to H1(Ω), see [26]. It also sends the range of Λ to
H1

0 (Ω) ∼= HD(Ω), as the proof below indicates.
To explain the idea behind this approach, let us assume for a moment that we knew the Cauchy

data [u, ut] on {T} × Ω. Then one could simply solve the mixed problem in [0, T ] × Ω with that
Cauchy data and boundary data Λf . Then that solution at t = 0 would recover f . We do not
know the Cauchy data [u, ut] on {T} × Ω, of course, but we know the trace of u (a priori in H1

for t fixed) on {T} × ∂Ω. The trace of ut does not make sense because the latter is only in L2 for
t = T . The choice of the Cauchy data in (4.2) can then be explained by the following. Among all
possible Cauchy data that belong to the “shifted linear space” (the linear space H(Ω) translated
by a single element of the set below){

g = [g1, g2] ∈ H1(Ω)⊕ L2(Ω); g1|∂Ω = h(T, ·)
}
,
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we chose the one that minimizes the energy. The “error” will then be minimized. We refer to the
proof of Theorem 4.1 for more details.

In the next theorem and everywhere below, T1 = T1(Ω) is the supremum of the lengths of all
geodesics of the metric c−2g in Ω̄. Also, dist(x, y) denotes the distance function in that metric. We
then call (Ω, c−2g) non-trapping, if T1 <∞. It is easy to see that

(4.5) T0 ≤ T1/2.

Theorem 4.1. Let (Ω, c−2g) be non-trapping, and let T > T1/2. Then AΛ = Id − K, where K
is compact in HD(Ω), and ‖K‖HD(Ω) < 1. In particular, Id −K is invertible on HD(Ω), and the
inverse thermoacoustic problem has an explicit solution of the form

(4.6) f =

∞∑
m=0

KmAh, h := Λf.

Sketch of the proof. Let u solve (1.2) with a given f ∈ HD, and let v be the solution of (4.2) with
h = Λf . Then w := u− v solves

(4.7)


(∂2
t + P )w = 0 in (0, T )× Ω,

w|[0,T ]×∂Ω = 0,
w|t=T = u|t=T − φ,
wt|t=T = ut|t=T ,

Restrict w to t = 0 to get
f = AΛf + w(0, ·).

Therefore, the “error” is given by
Kf = w(0, ·).

First, we show that

(4.8) ‖Kf‖HD(Ω) ≤ ‖f‖HD(Ω), ∀f ∈ HD(Ω),

for any fixed T > 0 (not necessarily greater than T1). Since the Dirichlet boundary condition is
energy preserving, it is enough to estimate th energy of (uT − φ, uT ), where uT := u(T, ·).

In what follows, (·, ·)HD(Ω) is the inner product in HD(Ω), see (2.1), applied to functions that

belong to H1(Ω) but maybe not to HD(Ω) (because they may not vanish on ∂Ω). By (2.2) and the
fact that uT = φ on ∂Ω, we get

(uT − φ, φ)HD(Ω) = 0.

Then
‖uT − φ‖2HD(Ω) = ‖uT ‖2HD(Ω) − ‖φ‖

2
HD(Ω) ≤ ‖u

T ‖2HD(Ω).

Therefore, the energy of the initial conditions in (4.7) satisfies the inequality

(4.9) EΩ(w, T ) = ‖uT − φ‖2HD(Ω) + ‖uTt ‖2L2(Ω) ≤ EΩ(u, T ).

As mentioned above, the Dirichlet boundary condition is energy preserving, therefore

EΩ(w, 0) = EΩ(w, T ) ≤ EΩ(u, T ) ≤ ERn(u, T ) = EΩ(u, 0) = ‖f‖2HD(Ω).

This proves (4.8). Note that no condition on T > 0 was needed. If supp f ⊂ K, and T <
dist(K, ∂Ω), for example, then K = Id, and AΛf = 0. Then the “error” is 100%, and we have no
information about f but (4.8) is still true.

We show next that the inequality above is strict when T > T0(Ω):

(4.10) ‖Kf‖HD(Ω) < ‖f‖HD(Ω), f 6= 0.
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t=T

t=T/2

t=0

t=3T/2

∂Ω

t=-T

Γ

Figure 1

Assuming the opposite, we would get for some f 6= 0 that all inequalities leading to (4.8) are
equalities. In particular,

u(T, x) = ut(T, x) = 0, for x 6∈ Ω.

By the finite domain of dependence then

(4.11) u(t, x) = 0 when dist(x,Ω) > |T − t|.

One the other hand, we also have

(4.12) u(t, x) = 0 when dist(x,Ω) > |t|.

Therefore,

(4.13) u(t, x) = 0 when dist(x, ∂Ω) > T/2, −T/2 ≤ t ≤ 3T/2.

Since u extends to an even function of t that is still a solution of the wave equation, we get that
(4.13) actually holds for |t| < 3T/2.

We will conclude next by the unique continuation Theorem 2.1 that u = 0 on [0, T ]×Ω, therefore,
f = 0, see Figure 1. To this end, notice fist that by John’s theorem (equivalent to Tataru’s unique
continuation result [42, Theorem 2] in the Euclidean setting), we get u = 0 on [−T, T ] ×Rn \ Ω.
Fix x0 ∈ Ω. Then there is a piecewise smooth curve starting at x0 in direction either ξ0 or −ξ0,
where ξ0 is arbitrary and fixed, of length less than T that reaches ∂Ω because T > T0. This means
that dist(x0,R

n \ Ω) < T . Then by Theorem 2.1, u(0, ·) = 0 near x0. Since x0 was arbitrary, we
get f = 0. This completes the proof of (4.10).

Finally, we show that ‖K‖ < 1 if T > T1/2 as claimed in the theorem. Indeed, for such T , and
(x, ξ) ∈ S∗Ω, at least one of the rays originating from (x,±ξ) leaves Ω̄. Then for any ε > 0, K can
be represented as a sum of an operator K1 with norm not exceeding 1/2 + ε, plus a compact one,
K2. The spectrum of K∗K on the interval ((1/2+ε)2, 1] then is discrete and consists of eigenvalues
only; and 1 cannot be among them, by (4.10). Then

(4.14) ‖Kf‖HD(Ω) ≤
√
λ1‖f‖HD(Ω), f 6= 0,

where λ1 < 1 is the maximum of 1/2 and the largest eigenvalue of K∗K greater than 1/2, if any.
It is worth mentioning that for T > T1, K is compact. �
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The proof of Theorem 4.1 provides an estimate of the error in the reconstruction if we use the
first term in (4.6) only that is Ah. It is in the spirit of [18] and relates the error to the local energy
decay, as can be expected.

Corollary 4.1.

‖f −AΛf‖HD(Ω) ≤
(
EΩ(u, T )

EΩ(u, 0)

) 1
2

‖f‖HD(Ω), ∀f ∈ HD(Ω), f 6= 0,

where u is the solution of (1.2).

Note that the f − AΛf = Kf , and the corollary actually provides an upper bound for ‖Kf‖.
The estimate above also can be used to estimate the rate of convergence of the Neumann series
(4.6) when we have a good control over the uniform local energy decay from time t = 0 to time
t = T .

5. Stability and a microlocal characterization of Λ and the back-projection

Note first that in case of observations on [0, T ]×∂Ω with T > T1/2, Theorem 4.1 already implies
a Lipschitz stability estimate of the type below. We consider below the partial boundary data case,
where Λf is known on G, see (3.2).

If we want that recovery to be stable, we need to be able to recover all singularities of f “in a
stable way.” By the zero initial velocity condition, each singularity (x, ξ) splits into two parts, see
Proposition 5.1 below and section A; one that starts propagating in the direction ξ; and another
one propagates in the direction −ξ. Moreover, neither one of those singularities vanishes at t = 0
(and therefore never vanishes), they actually start with equal amplitudes. For a stable recovery, we
need to be able to detect at least one of them, in the spirit of [41], i.e., at least one of them should
reach G.

Define τ±(x, ξ) by the condition

τ±(x, ξ) = max
(
τ ≥ 0; γx,ξ(±τ) ∈ Ω̄

)
.

Based on the arguments above, for a stable recovery we should assume that G satisfies the following
condition

(5.1) ∀(x, ξ) ∈ S∗K, (τσ(x, ξ), γx,ξ(τσ(x, ξ)) ∈ G for either σ = + or σ = − (or both).

Compared to condition (3.4), this means that for each x ∈ K and each unit direction ξ, at least one
of the signals from (x, ξ) and (x,−ξ) reaches G. This condition becomes necessary, if we replace G
by its closure above, see Remark 5.1. In Theorem 5.1 below, we show that it is also sufficient.

We start with a description of the operator Λ that is of independent interest as well. In the next
proposition, we formally choose T = ∞. We restrict the result below to functions supported in Ω
(the support cannot touch ∂Ω) to avoid the analysis at the boundary, where Λ is of more general
class.

Proposition 5.1. Λ = Λ+ + Λ−, where Λ± : C∞0 (Ω) → C∞((0,∞) × ∂Ω) are elliptic Fourier
Integral Operators of zeroth order with canonical relations given by the graphs of the maps

(5.2) (y, ξ) 7→
(
τ±(y, ξ), γy,ξ(±τ±(y, ξ)),∓|ξ|, γ̇′y,ξ(±τ±(y, ξ))

)
,

where |ξ| is the norm in the metric c−2g, and the prime in γ̇′ stands for the tangential projection
of γ̇ on T∂Ω.



12 P. STEFANOV AND G. UHLMANN

Proof. This statement is well known and follows directly from [8], for example. See also the Appen-
dix where microlocal analysis and geometric optics is briefly reviewed. We will give more details
that are needed just for the proof of this proposition in order to be able to compute the principal
symbol in Theorem 5.1.

We start with a standard geometric optics construction. See section A.4 in the Appendix.
Fix x0 ∈ Ω. In a neighborhood of (0, x0), the solution to (4.2) is given by

(5.3) u(t, x) = (2π)−n
∑
σ=±

∫
eiφσ(t,x,ξ)aσ(x, ξ, t)f̂(ξ) dξ,

modulo smooth terms, where the phase functions φ± are positively homogeneous of order 1 in ξ and
solve the eikonal equations (A.16), (A.17), while a± are classical amplitudes of order 0 solving the
corresponding transport equations (A.18). Singularities starting from (x, ξ) ∈ WF(f) propagate
along geodesics in the phase space issued from (x, ξ), i.e., they stay on the curve (γx,ξ(t), γ̇x,ξ(σt))
for σ = ±. This is consistent with the general propagation of singularities theory for the wave
equation because the principal symbol of the wave operator τ2 − c2|ξ|g has two roots τ = ±c|ξ|g.

The construction is valid as long as the eikonal equations are solvable, i.e., along geodesics
issued from (x,±ξ) that do not have conjugate points. Assume that WF(f) is supported in a
small neighborhood of (x0, ξ0) with some ξ0 6= 0. Assume first that the geodesic from (x0, ξ0) with
endpoint on ∂Ω has no conjugate points. We will study the σ = + term in (5.3) first. Let φb, ab

be the restrictions of φ+, a+, respectively, on R× ∂Ω. Then, modulo smooth terms,

(5.4) Λ+f := u+(t, x)|R×∂Ω = (2π)−n
∫
eiφb(t,x,ξ)ab(x, ξ, t)f̂(ξ) dξ,

where u+ is the σ = + term in (5.3). Set t0 = τ+(x0, ξ0), y0 = γx0,ξ0(t0), η0 = γ̇x0,ξ0(t0); in other
words, (y0, η0) is the exit point and direction of the geodesic issued from (x0, ξ0) when it reaches

∂Ω. Let x = (x′, xn) be boundary normal coordinates near y0. Writing f̂ in (5.4) as an integral,
we see that (5.4) is an oscillating integral with phase function Φ = φ+(t, x′, 0, ξ)− y · ξ. Then (see
[50], for example), the set Σ := {Φξ = 0} is given by the equation

y = ∂ξφ+(t, x′, 0, ξ)

It is well known, see e.g., Example 2.1 in [50, VI.2], that this equation implies that (x′, 0) is the
endpoint of the geodesic issued from (y, ξ) until it reaches the boundary, and t = τ+(y, ξ), i.e., t
is the time it takes to reach ∂Ω. In particular, Σ is a manifold of dimension 2n, parametrized by
(y, ξ). Next, the map

(5.5) Σ 3 (y, t, x′, ξ) 7−→
(
y, t, x′,−ξ, ∂tφ+, ∂x′φ+

)
is smooth of rank 2n at any point. This shows that Φ is a non-degenerate phase, see [50, VIII.1],
and that f 7→ Λ+f is an FIO associated with the Lagrangian given by the r.h.s. of (5.5). The
canonical relation is then given by

C :=
(
y, ξ, t, x′, ∂tφ+, ∂x′φ+

)
, (y, t, x′, ξ) ∈ Σ.

Then (5.2) follows from the way φ+ is constructed by the Hamilton-Jacobi theory. The proof in
the σ = − case is the same.

The proof above was done under the assumption that there are no conjugate points on γy0,ξ0(t),
0 ≤ t ≤ τ+(y0, ξ0). To prove the theorem in the general case, let t1 ∈ (0, τ+(y0, ξ0)) be such that
there are no conjugate points on that geodesic for t1 ≤ t ≤ τ+(y0, ξ0). Then each of the terms in
(5.3) extends to a global elliptic FIO mapping initial data at t = 0 to a solution at t = t1, see e.g.,
[8]. Its canonical relation is the graph of the geodesic flow between those two moments of time
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(for σ = +, and with obvious sign changes when σ = −). We can compose this with the local FIO
constructed above, and the result is a well defined elliptic FIO of order 0 with canonical relation
(5.2). �

We now consider the situation where Λf is given on a set G satisfying (5.1). Since K is compact
and G is closed, one can always choose G′ b G that still satisfies (5.1). Fix χ ∈ C∞0 ([0, T ]× ∂Ω) so
that suppχ ⊂ G and χ = 1 on G′. The measurements are then modeled by χΛf , which depends on
Λf on G only.

Choose and fix T > supΓ s, see (3.2). Let A be the “back-projection” operator defined in (4.2)
and (4.4). Note that A is always applied to χΛ below, therefore φ = 0 in this case.

Theorem 5.1. AχΛ is a zero order classical ΨDO in some neighborhood of K with principal symbol

1

2
χ(τ+(x, ξ), γx,ξ(τ+(x, ξ))) +

1

2
χ(τ+(x, ξ), γx,ξ(τ−(x, ξ))).

If G satisfies (5.1), then
(a) AχΛ is elliptic,
(b) AχΛ is a Fredholm operator on HD(K), and
(c) there exists a constant C > 0 so that

(5.6) ‖f‖HD(K) ≤ C‖Λf‖H1(G).

Remark 5.1. By [41, Proposition 3], condition (5.1), with G replaced by its closure, is a necessary
condition for stability in any pair of Sobolev spaces. In particular, c−2g has to be non-trapping
for stability. Indeed, then the proof below shows that AχΛ will be a smoothing operator on some
non-empty open conic subset of T ∗K \ 0.

Remark 5.2. Note that Λ : HD(K) → H1([0, T ] × ∂Ω) is bounded. This follows for example from
Proposition 5.1.

Sketch of the proof. To construct a parametrix for AχΛf , we apply again a geometric optic con-
struction, using the two characteristic roots ±c|ξ|g. It is enough to assume that χΛf has a wave
front set in a conic neighborhood of some point (t0, y0, τ0, ξ

′
0) ∈ [0, T ] × ∂Ω, using the notation

above. For simplicity, assume that the eikonal equation is solvable for t in some neighborhood of
[0, T ]. Let τ0 < 0, for example. Then we look for a parametrix of the solution of the wave equation
(4.2) with zero Cauchy data at t = T and boundary data χΛ+f in the form

v(t, x) = (2π)−n
∫
eiφ+(t,x,ξ)b(x, ξ, t)f̂(ξ) dξ.

Let (x0, ξ0) be the intersection point of the bicharacteristic issued from (t0, y0, τ0, ξ
′
0) with t = 0.

The choice of that parametrix is justified by the fact that all singularities of that solution must
propagate along the geodesics close to γx0,ξ0 in the opposite direction, as t decreases because there
are no singularities for t = T . The critical observation is that the first transport equation for
the principal term b0 of b is a linear ODE along bicharacteristics, and starting from initial data
b0 = χa0, where a0 = 1/2, at time t = 0, we will get that b0(x, ξ)|t=0 is given by the value of χ/2
at the exit point of γx,ξ on ∂Ω.

This proves the first statement of the theorem.
Parts (a), (b) follows immediately from the ellipticity of AχΛ that is guaranteed by (5.1).
To prove part (c), note first that the ellipticity of AχΛ and the mapping property of A, see [26],

imply the estimate

‖f‖HD(K) ≤ C (‖χΛf‖H1 + ‖f‖L2) .
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By Theorem 3.2, and (5.1), χΛ is injective on HD(K). By [48, Proposition V.3.1], one gets estimate
(5.6) with a constant C > 0 possibly different than the one above. �

6. Relations to Boundary Control and Observability

This problem is closely related but not equivalent to the observability problem in boundary
control. The observability problem asks the following. Let u solve

(6.1)


(∂2
t + P )u = 0 in (0, T )× Ω,

u|(0,T )×∂Ω = 0,
u|t=0 = f,

∂tu|t=0 = h,

where Ω is a bounded domain with a smooth boundary as above and T > 0 is fixed. Comparing
this with (1.2), we see that the Cauchy data at t = 0 given by (f, h) with h not necessarily zero
(which is not essential for the discussion here) but the equation is satisfied for x ∈ Ω only and there
is a Dirichlet boundary condition for x ∈ ∂Ω. Then the question is: given ∂u/∂ν on (0, T ) × Γ,
with some Γ ⊂ Ω, can we determine (f, h), and therefore, u? One can have Neumann or Robin
boundary conditions in (6.1) and measure Dirichlet ones on (0, T ) × Γ. The essential assumption
on a possibly different boundary condition is that the latter defines a well posed problem and the
measurement determines the Cauchy data on (0, T )×Γ. Physically, and microlocally, the presence
of a boundary condition leads to waves that reflect off ∂Ω. In the thermoacoustic case, they do not;
actually then there is no boundary for the direct problem. The measurements consist of “half” of
the Cauchy data only — the Dirichlet part.

6.1. Measurements on the whole boundary. If Γ = ∂Ω, then the two problems are actually
equivalent in a stable way. Indeed, we will show here that knowing Λf , one can recover the normal
derivative of the solution of (1.2) on [0, T ]× ∂Ω as well. This is done by applying a non-local ΨDO
to Λf .

We will define first the outgoing DN map. Given h ∈ C∞0 ([0,∞)× ∂Ω), let w solve the exterior
mixed problem related to the Euclidean Laplacian:

(6.2)


(∂2
t −∆)w = 0 in (0, T )×Rn \ Ω̄,
w|[0,T ]×∂Ω = h,

w|t=0 = 0,
∂tw|t=0 = 0.

Then we set

Nh =
∂w

∂ν

∣∣∣
[0,T ]×∂Ω

.

By [26], for h ∈ H1
(0)([0, T ]× ∂Ω), we have [w,wt] ∈ C([0, T ); H); therefore,

N : H1
(0)([0, T ]× ∂Ω)→ C([0, T ]×H

1
2 (∂Ω))

is continuous. Note that the results in [26] require the domain to be bounded but by finite domain
of dependence we can remove that restriction in our case. We also refer to [10, Proposition 2] for
a sharp domain of dependence result for exterior problems.

Lemma 6.1. Let u solve (1.2) with f ∈ HD(Ω) compactly supported in Ω. Assume that P = −∆
outside Ω. Then for any T > 0, Λf determines uniquely u in [0, T ] × Rn \ Ω and the normal
derivative of u on [0, T ]× ∂Ω as follows:

(a) The solution u in [0, T ]×Rn \ Ω coincides with the solution of (6.2) with h = Λf ,
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(b) We have

(6.3)
∂w

∂ν

∣∣∣
[0,T ]×∂Ω

= NΛf.

Proof. Let w be the solution of (6.2) with g = Λf ∈ H1
(0)([0, T ] × ∂Ω). Let u be the solution of

(1.2). Then u− w solves the unit speed wave equation in [0, T ]×Rn \ Ω with zero Dirichlet data
and zero initial data. Therefore, u = w in [0, T ]×Rn \ Ω. �

The operator N is well known in scattering theory as the outgoing DN map, also called the
Neumann operator sometimes. If ∂Ω is strictly convex, it is a classical ΨDO of order 1 restricted
to non-characteristic co-directions (corresponding to either reflecting rays or evanescent waves) and
has a more complicated structure near characteristic vectors (corresponding to glancing rays). The
range of Λ acting in f with supp f ⊂ Ω can have a wave front set in the hyperbolic region only,
corresponding to reflected rays.

Now, knowing Λf , we can recover the whole Cauchy data (f,NΛf) on (0, T )× ∂Ω. In this case,
the observability problem is to recover f from the Cauchy data there as well. One can therefore
use all results known in the literature about the observability problem, see [3] for example, to
obtain results for the thermoacoustic one. On the other hand, this may not be the best way to
do, numerically, at least. Also, the special and in fact the simpler structure of the thermoacoustic
solution of (1.2) (no reflected waves) would be ignored if we did so. An essential part of [3] is
devoted to the analysis of such reflected waves which do not exist in our case.

6.2. Measurements on a part of the boundary. When Λ is known restricted to (0, T ) × Γ,
Γ ⊂ Ω, the relation between the two problems is not so straightforward. First, the solution u
to (1.2) and that to (6.1) are different as we explained already. In the observability problem, we
know u on [0, T ] × ∂Ω (zero), and ∂u/∂ν on the smaller set (0, T ) × Γ. In the thermoacoustic
one, we know that the waves go through ∂Ω, which is equivalent to the hidden boundary condition
∂u/∂ν = Nu on [0, T ] × ∂Ω, and we know u on (0, T ) × Γ. As Theorem 3.2 shows, we can, in a
rather non-trivial way, recover ∂u/∂ν on (0, T ) × Γ. The proof uses unique continuation, which
is unstable. Therefore, trying to reduce the thermoacoustic problem to an observability one this
way (and no other is known to the authors) goes through a unstable step and will not lead to
sharp results because we have showed in Theorem 5.1 that under certain conditions, the recovery
is stable.

7. Estimating the uniqueness time T0 and the stability time T1

One practical question is how to estimate the times T0 and T1 from above, to be certain that
the chosen T is large enough for uniqueness or stability.

The max-min definition (3.1) of T0 makes it easy to get an upper bound. First, to estimate
dist(x, ∂Ω) from above for x fixed, we can take any path [a, b] 3 s 7→ γ(s) from x to ∂Ω and

compute the length of that path as
∫ b
a
|γ̇(s)|ds
c(γ(s)) . Then we take an upper bound w.r.t. x ∈ Ω. Let

R > 0 be such that Ω is contained in the ball B(0, R) and assume that 0 ∈ Ω. Then, for example,

T0 < max
|ω|=1

∫ R

0

dr

c(rω)
.

In particular, if c(x) ≥ c0 = const., we get

T0 <
R

c0
.
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We estimate T1 now, which (divided by 2) is critical for stability. A possible way to do this is to
use a suitable escape function, a method well known and used in scattering theory. Consider the
Hamiltonian

H(x, ξ) =
1

2
c2(x)gij(x)ξiξj

of P on the energy level Σ := {(x, ξ) ∈ T ∗Ω̄; H = 1/2}. Here, gij are the components of g−1. Let
ψ(x, ξ) be a smooth function on Ω×Rn which we regard as T ∗Ω in local coordinates. Assume that
for some constant α,

(7.1) XHψ ≥ α > 0 on Σ,

where XH is the Hamiltonian vector field related to H. Relation (7.1) tells us that ψ is strictly
increasing along the Hamiltonian flow. Let

A = max
Σ
|ψ(x, ξ)|.

Then any Hamiltonian curve on Σ issued from T ∗Ω will leave Ω for time t such that αt > 2A. Thus
T1 ≤ 2A/α.

For example, assume that g is Euclidean. Then H = 1
2c

2|ξ|2 and

XH =
∑(

c2ξj
∂

∂xj
− c ∂c

∂xj
|ξ|2 ∂

∂ξj

)
.

Choose ψ = x · ξ. Then

XHψ = c2|ξ|2 − |ξ|2cx · ∂xc.

On the energy level Σ, we have

XHψ = 1− c−1x · ∂xc.

Condition (7.1) is then satisfied if

(7.2) x · ∂xc(x) < c(x) in Ω̄.

In particular, if c = c(r) is radial, condition (7.2) reduces to r∂c/∂r < c or ∂r(r/c(r)) > 0. This is
the condition imposed by Herglotz [15] and Wiechert and Zoeppritz [53] more than a century ago
in their solution of the inverse kinematic problem for radial speeds arising in seismology.

We therefore proved the following.

Proposition 7.1. Let 0 < c0 ≤ c(x) in Ω̄ ⊂ B̄(0, R). Then

T0 < R/c0.

Assume that

α := min
Ω̄

(1− c−1x · ∂xc) > 0.

Then T1/2 ≤ R/(αc0).

To finish the proof it only remains to notice that |ψ| ≤ |x||ξ| ≤ R/c(x) on the energy level Σ.
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8. Multi-Wave tomography and integral geometry

If P = −∆, and if n is odd, the solution of the wave equation is given by the Kirchhoff’s formula
and can be expressed in terms of integrals over spheres centered at ∂Ω with radius t, and their
t-derivatives. Then the problem can be formulated as an integral geometry problem — recover f
from integrals over spheres centered at ∂Ω, with radii in [0, T ]. This point of view has been exploited
a lot in the literature. Uniqueness theorems can be proved using analytic microlocal calculus, when
the boundary is analytic (a ball, for example). Explicit formulas has been derived when ∂Ω is a
ball. There are also works studying “uniqueness sets” — what configuration of the boundary, not
necessarily smooth, provides unique recovery, see e.g., [25]. One may attempt to apply the same
approach in the variable coefficients case; then one has to integrate over geodesic spheres. This has
two drawbacks. First, those integrals represent the leading order terms of the solution operator
only, not the whole solution. That would still be enough for constructing a parametrix however but
not the Neumann series solution in Theorem 4.1. The second problem is that the geodesic spheres
become degenerate in presence of caustics. The wave equation viewpoint that we use in this paper
is not sensitive to caustics. We still have to require that the metric be non-trapping in some of
our theorems. By the remark following Theorem 5.1 however, this is a necessary condition for
stability. On the other hand, it is not needed for the uniqueness result as long as (3.4) is satisfied.
Also, there is no clear integral geometry approach to uniqueness, except for analytic speeds, that
would replace unique continuation. So in this sense, the integral geometry problem is “the wrong
approach” when the speed is variable.

9. Brain Imaging

In this section, we study the mathematical model of thermoacoustic and photoacoustic tomog-
raphy when the sound speed has a jump across a smooth surface. This models the change of the
sound speed in the skull when trying to image the human brain. This problem was proposed by
Lihong Wang at the meeting in Banff on inverse transport and tomography in May, 2010 and it
arises in brain imaging [60, 61]. We derive again an explicit inversion formula in the form of a
convergent Neumann series under the assumptions that all singularities from the support of the
source reach the boundary.

The main difference between the case of a smooth speed c and a non-continuous one with jump
type of singularities is the propagation of singularities. In the present case, each ray may split into
two parts when it hits the surface Γ where the speed jumps, then each branch may split again, etc.
This is illustrated in Figure 2. Each such branch carries a positive fraction of the high frequency
energy if there are segments tangent to Γ. The stability condition (9.5) then requires that we can
detect at least one of those branches issued from supp f and any direction at time |t| < T . Then we
also have an explicit inversion in the form of a convergent Neumann series as shown in Theorem 4.1.
That reconstruction is based on applying a modified time reversal with a harmonic extension step,
and then iterating it. While for a smooth speed, the classical time reversal already provides a
parametrix but not necessarily an actual inversion, in the case under consideration the harmonic
extension and the iteration are even more important because the first term or the classical time
reversal are not parametrices. This has been also numerically observed in [36].

We describe the mathematical model now. Let Ω ⊂ Rn be a bounded domain with smooth
boundary. Let Γ ⊂ Ω be a smooth closed, orientable, not necessarily connected surface. Let the
sound speed c(x) > 0 be smooth up to Γ with a nonzero jump across it. For x ∈ Γ, and a fixed
orientation of Γ, we introduce the notation

(9.1) cint(x) = c
∣∣
Γint

, cext(x) = c
∣∣
Γext
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for the limits from the “interior” and from the “exterior” of Ω \ Γ. Our assumption then is that
those limits are positive as well, and

(9.2) cint(x) 6= cext(x), ∀x ∈ Γ.

In the case of brain imaging, the brain is represented by some domain Ω0 b Ω. Let Ω1 be another
domain representing the brain and the skull, so that Ω0 b Ω1 b Ω, and Ω̄1 \ Ω0 is the skull, see
Figure 2. The measuring devices are then typically placed on a surface encompassing the skull,
modeled by ∂Ω in our case. Then

c|Ω0 < c|Ω1\Ω0
, c|Ω1\Ω0

> c|Ω\Ω1
,

with the speed jumping by about a factor of two inside the skull Ω̄1 \ Ω0. Another motivation
to study this problem is to model the classical case of a smooth speed in the patient’s body but
account for a possible jump of the speed when the acoustic waves leave the body and enter the
liquid surrounding it.

Let u solve the problem

(9.3)


(∂2
t − c2∆)u = 0 in (0, T )×Rn,

u
∣∣
Γint

= u
∣∣
Γext

,
∂u
∂ν

∣∣
Γint

= ∂u
∂ν

∣∣
Γext

,

u|t=0 = f,
∂tu|t=0 = 0,

where T > 0 is fixed, u|Γint,ext is the limit value (the trace) of u on Γ when taking the limit from
the “exterior” and from the “interior” of Γ, respectively, and f is the source that we want to
recover. We similarly define the interior/exterior normal derivatives, and ν is the exterior unit (in
the Euclidean metric) normal to Γ.

Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded domain. The mea-
surements are modeled by the operator Λf as in (1.3). The problem is to reconstruct the unknown
f .

We study the case where f is supported in some compact K in Ω. In applications, this corresponds
to f , that is not necessarily zero outside K but are known there. By subtracting the known part,
we arrive at the formulation that we described above. We also assume that c = 1 on Rn \ Ω.

The propagation of singularities for the transmission problem is well understood, at least away
from possible gliding rays [14, 47, 33, 34]. When a singularity traveling along a geodesic hits the
interface Γ transversely, there is a reflected ray carrying a singularity, that reflects at Γ according to
the usual reflection laws. If the speed on the other side is smaller, there is a transmitted (refracted)
ray, as well, at an angle satisfying Snell’s law, see (9.41). In the opposite case, such a ray exists
only if the angle with Γ is above some critical one, see (9.42). If that angle is smaller than the
critical one, there is no transmitted singularity on the other side of Γ. This is known as a full
internal reflection. This is what happens in the case of the skull when a ray hits the skull boundary
from inside at a small enough angle, see Figure 2. Therefore, the initial ray splits into two parts,
or does not split; or hits the boundary exactly with an angle equal to the critical one. The latter
case is more delicate, and we refer to section 9.2 for some discussion on that. Next, consider the
propagation of each branch, if more than one. Each branch may split into two, etc. In the skull
example, a ray coming from the interior of the skull hitting the boundary goes to a region with
a smaller speed; and therefore there is always a transmitted ray, together with the reflected one.
Then a single singularity starting at time t = 0 until time t = T in general propagates along a few
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x  0

ξ0

∂Ω

"skull"

Figure 2. Propagation of singularities for the transmission problem in the “skull”
example. The shaded region represents the “skull”, and the speed there is higher
than in the non-shaded part. The dotted curves represent the propagation of the
same singularity but moving with the negative wave speed.

branches that look like a directed graph. This is true at least under the assumption than none of
those branches, including possible transmitted ones, is tangent to the boundary.

Since ut|t=0 = 0, singularities from (x0, ξ
0) start to propagate in the direction ξ0 and in the

negative one −ξ0. If none of the branches reaches ∂Ω at time T or less, a stable recovery is not
possible [38]. In section 9.1, we study the case where the initial data is supported in some compact
K ⊂ Ω \ Γ and for each (x0, ξ

0) ∈ T ∗K \ 0, each ray through it, or through (x0,−ξ0) has a branch
that reaches ∂Ω transversely at time less than T . The main idea of the proof is to estimate the
energy that each branch carries at high energies. If there is branching into non-tangent to the
boundary rays, we show that a positive portion of the energy is transmitted, and a positive one is
reflected, at high energies. As long as one of these branches reaches the boundary transversely, at a
time at which measurements are still done, we can detect that singularity. If we can do that for all
singularities originating from K, we have stability. This explains condition (9.5) below. Uniqueness
follows from unique continuation results.

Similarly to the case of smooth speed studied above, assuming (9.5), we also get an explicit
converging Neumann series formula for reconstructing f , see Theorem 4.1. As in the case of a
smooth speed considered in [42] the “error” operator K in (4.6) is a contraction. An essential
difference in this case is that K is not necessarily compact. Roughly speaking, Kf corresponds
to that part of the high frequency energy that is still held in Ω until time T due to reflected or
transmitted signals that have not reached ∂Ω yet. While the first term only in (4.6) will still recover
all singularities of f , it will not recover their strength, in contrast to the situation in [42], where
the speed is smooth. Thus one can expect somewhat slower convergence in this case.

9.1. Main result. Let u solve the problem (9.3) where T > 0 is fixed. Let Λf := u|[0,T ]×∂Ω as in

(1.3). The trace Λf is well defined in C(0)

(
[0, T ]; H1/2(∂Ω)

)
, where the subscript (0) indicates that

we take the subspace of functions h so that h = 0 for t = 0. For a discussion of other mapping
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properties, we refer to [20], when c has no jumps. By finite speed of propagation, one can reduce
the analysis of the mapping properties of Λ to that case.

As in the case of a smooth speed, one could use the standard back-projection that would serve
as some kind of approximation of the actual solution. We cut off smoothly Λf near t = T to satisfy
the compatibility conditions in the next step; and then we solve a backward mixed problem with
boundary data the so cut Λf ; and Cauchy data [0, 0] at t = T . As in the case of a smooth speed,
see [18, 42], one can show that such a back-projection would converge to f , as T → ∞ at a rate
that depends on f ; and at least at a slow logarithmic one, if one knows a priori that f ∈ H2, see
[4]. If Γ = ∂Ω0, where Ω0 ⊂ Ω is strictly convex, then in the case that the speed outside Ω0 is
faster than the speed inside (then there is full internal reflection), the convergence would be no
faster than logarithmic, as suggested by the result in [35]. In the opposite case, it is exponential if
n is odd, and polynomial when n is even [5]. Our goal in this work is to fix T however.

Consider the modified back-projection described in (4.2)–(4.4). The function Ah with h = Λf can
be thought of as the “first approximation” of f . On the other hand, the proof of Theorem 4.1 below
shows that it is not even a parametrix, in contrast to the case where c is smooth, see Remark 9.1.

The discussion in the Introduction and in section 9.2 indicates that the singularities that we are
certain to detect at ∂Ω lie in the following “non-trapped” set

U =
{

(x, ξ) ∈ S∗(Ω \ Γ); there is a geodesic path issued from either

(x, ξ) or (x,−ξ) at t = 0 never tangent to Γ, that is outside Ω̄ at time t = T
}
.

(9.4)

Actually, U is the maximal open set with the property that a singularity in U “is visible” at
[0, T ]× ∂Ω; and what happens at the boundary of that set, that includes for example rays tangent
to Γ, will not be important for our analysis. We emphasize here that “visible” means that some
positive fraction of the energy and high frequencies can be detected as a singularity of the data;
and of course there is a fraction that is reflected; then some trace of it may appear later on ∂Ω,
etc.

One special case is the following. Take a compact set K ⊂ Ω \ Γ with smooth boundary, and
assume that

(9.5) S∗K ⊂ U .

In other words, we require that for any x ∈ K and any unit ξ ∈ S∗xK, at least one of the multi-
branched “geodesics” starting from (x, ξ), and from (x,−ξ), at t = 0 has a path that hits ∂Ω for
time t < T and satisfies the non-tangency assumption of (9.4). Such a set may not even exist for
some speeds c.

Example 1. Let Ω0 ⊂ Ω be two concentric balls, and let c be piecewise constant; more precisely,
assume

Ω = B(0, R), Ω0 = B(0, R0), 0 < R0 < R,

and let

c = c0 < 1 in Ω0; c = 1 in Rn \ Ω0.

Then such a set K always exist and can be taken to be a ball with the same center and small enough
radius. Indeed, the requirement then is that all rays starting from K hit Γ at an angle greater than
a critical one π/2 − α0, see (9.42). This can be achieved by choosing K = B(0, ρ) with ρ � R0.
An elementary calculation shows that we need to satisfy the inequality ρ/R0 < sinα0 = c0, i.e., it
is enough to choose ρ < c0 < R0. Then there exists T0 that is easy to compute so that for T > T0,
(9.5) holds. On can also add to K any compact included in {R0 < |x| < R}. In other words, K can
be any compact in Ω not intersecting {c0R0 ≤ |x| ≤ R0}, the zone where the trapped rays lie.
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If c = c0 > 1 in Ω0, then any compact K in Ω satisfies (9.5). In that case, there is always a
transmitted ray leaving Ω0.

Example 2. This is a simplified version of the skull model. Let Ω0 ⊂ Ω1 ⊂ Ω be balls so that

Ω = B(0, R), Ω0 = B(0, R0), Ω1 = B(0, R1) 0 < R0 < R1 < R,

Assume that

c|Ω0 = c0, c|Ω1\Ω0
= c1, c|Rn\Ω1

= 1

with some constants c0, c1 so that c0 < c1, c1 > 1. Here, c0 models the acoustic speed in the
brain, c1 is the speed in the skull, and 1 is the acoustic speed in the liquid outside the head. If
for a moment we consider Ω0 and Ω1 only, we have the configuration of the previous example. If
K = B(0, ρ) with ρ < (c0/c1)R0, then K satisfies (9.5) with an appropriate T . Now, since c1 > 1,
rays that hit ∂Ω1 always have a transmitted part outside Ω1, and therefore (9.5) is still satisfied in
Ω. Rays originating outside Ω1 are not trapped, therefore, more generally, K can be any compact
in Ω \ {c0R0/c1 ≤ |x| ≤ R0}.

Let ΠK : HD(Ω) → HD(K) be the orthogonal projection of elements of the former space to the
latter (considered as a subspace of HD(Ω)). It is easy to check that ΠKf = f |K−P∂K(f |∂K), where
P∂K is the Poisson operator of harmonic extension in K.

Our main result about a discontinuous speed is the following.

Theorem 9.1. Let K satisfy (9.5). Then ΠKA1Λ = Id − K in HD(K), with ‖K‖HD(K) < 1. In
particular, Id −K is invertible on HD(K), and Λ restricted to HD(K) has an explicit left inverse
of the form

(9.6) f =
∞∑
m=0

KmΠKAh, h = Λf.

Remark 9.1. As discussed in the Introduction, K is not a compact operator as in the case of smooth
sound speed. It follows from the proof of the theorem that the least upper bound of its essential
spectrum (always less that 1) corresponds to the maximal portion of the high-frequency energy
that is still held in Ω at time t = T .

Remark 9.2. Consider the case now where K does not satisfy (9.5). If there is an open set of
singularities that does not reach ∂Ω, a stable recovery is impossible [38]. In either case how-
ever, a truncated version of the series (9.6) would provide an approximate parametrix that would
recover the visible singularities, i.e., those in U . By an approximate parametrix we mean a pseudo-
differential operator elliptic in U with a principal symbol converging to 1 in any compact in that
set as the number of the terms in (9.6) increases. This shows that roughly speaking, if a recovery
of the singularities is the primary goal, then only those in U can be recovered in a “stable way”,
and (9.6) works in that case as well, without the assumption (9.5).

9.2. Sketch of the proof; Geometric Optics. The proof of Theorem 9.1 is based on a detailed
microlocal analysis of the solution of the forward problem (9.3). As we explained above, propagation
of singularities is well understood, and we avoided the most delicate cases with our assumptions
about K. To prove that the “error operator” K is a contraction however, we show first that it is
a contraction up to a compact operator by studying the parametrix first. Then we use a suitable
adaptation of the unique continuation property to this setting, combined with arguments similar
to those in the smooth case to show that the whole K is a contraction as well. The most essential
part of the proof is to show that the parametrix is a contraction. This requires not only to trace the
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propagation of singularities but to show that each time a ray splits into a reflected and transmitted
one (neither one tangent), both rays carry a positive fraction of the energy.

Analysis at the boundary. We will analyze what happens when the geodesic (x0, ξ
0) issued

from (x0, ξ
0), x0 6∈ Γ, hits Γ for first time, under some assumptions. Let the open sets Ωint, Ωext,

be the “interior” and the “exterior” part of Ω near x0, according to the orientation of Γ. They only
need to be defined near the first contact with Γ. Let us assume that this geodesic hits Γ from Ωint.
We will construct here a microlocal representation of the reflected and the transmitted waves near
the boundary. We refer to section A.4 for the geometric optics construction.

Extend c|Ωint in a smooth way in a small neighborhood on the other side of Γ, and let u+ be
the solution described above, defined in some neighborhood of that geodesic segment. Since we
are only going to use u+ in the microlocal construction described below, and we will need only
the trace of u+ on R+ × Γ near the first contact of the bicharacteristic from (x0, ξ

0) with Γ, the
particular extension of c would not affect the microlocal expansion but may affect the smoothing
part.

Set

(9.7) h := u+|R×Γ.

Let (t1, x1) ∈ R+ × Γ be the point where the geodesic from γx0,ξ0 hits Γ for the first time, see

Figure 3. We assume that such t1 exists. Let ξ1 be the tangent covector to that geodesic at (t1, x1).
Assume that ξ0 is unit covector in the metric c−2dx2, then so is ξ1 (in the metric c−2

intdx2), i.e.,
cint|ξ| = 1, where |ξ| is the Euclidean norm. Assume that ξ1 is transversal to Γ. In view of condition
(9.5), this is the case that we need to study.

Standard microlocal arguments show, see [42, Proposition 3] for details, that the map [f1, f2] 7→ h
is an elliptic Fourier Integral Operator (FIO) with a canonical relation that is locally a canonical
graph described in [42, Proposition 3]. That diffeomorphism maps (x0, ξ

0) into (t1, x1, 1, (ξ
1)′),

where the prime stands for the tangential projection onto T ∗Γ; and that maps extends as a positively
homogeneous one of order one w.r.t. the dual variable. In particular, the dual variable τ to t stays
positive. In fact, WF(u) is in the characteristic set τ2 − c2(x)|ξ|2 = 0, and (x, ξ) belongs to some
small neighborhood of (x1, ξ

1). The wave front set WF(h) is given by (x, ξ′) ∈ T ∗Γ, (x, ξ) ∈WF(u),
where ξ′ is the tangential projection of ξ to the boundary. Then (t, x, τ, ξ′) is the image of some

(x̃, ξ̃) close to (x0, ξ
0) under the canonical map above. Here (x̃, ξ̃) is such that the x-projection x(s)

of the bicharacteristic from it hits Γ for the first time at time for the value of s given by sc(x̃) = t.
Since τ2 − c2

int(x)|ξ|2 = 0, for the projection ξ′ we have τ2 − c2
int(x)|ξ′|2 > 0, where (x, ξ′) ∈ T ∗Γ,

and |ξ′| is the norm of the covector ξ′ in the metric on Γ induced by the Euclidean one.
The microlocal regions of T ∗(R × Γ) 3 (t, x, τ, ξ′) with respect to the sound speed cint, i.e., in

Ω̄int, are defined as follows:

hyperbolic region: cint(x)|ξ′| < τ ,
glancing manifold : cint(x)|ξ′| = τ ,
elliptic region: cint(x)|ξ′| > τ .

One has a similar classification of T ∗Γ with respect to the sound speed cext. A ray that hits Γ
transversely, coming from Ωint, has a tangential projection on T ∗(R× Γ) in the hyperbolic region
relative to cint. If cint < cext, that projection may belong to any of the three microlocal regions
w.r.t. the speed cint. If cint > cext, then that projection is always in the hyperbolic region for cext.
When we have a ray that hits Γ from Ωext, then those two cases are reversed.

The reflected and the transmitted waves. We will analyze the case where (ξ1)′ belongs to
the hyperbolic region with respect to both cint and cext, i.e., we will work with ξ′ in a neighborhood
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of (ξ1)′ satisfying

(9.8) c−2
intτ

2 − |ξ′|2 > 0, c−2
extτ

2 − |ξ′|2 > 0.

The analysis also applies to the case of a ray coming from Ωext, under the same assumption. We will
confirm below in this setting the well known fact that under that condition, such a ray splits into a
reflected ray with the same tangential component of the velocity that returns to the interior Ωint,
and a transmitted one, again with the same tangential component of the velocity, that propagates in
Ωext. We will also compute the amplitudes and the energy at high frequencies of the corresponding
asymptotic solutions.

Choose local coordinates on Γ that we denote by x′, and a normal coordinate xn to Γ so that
xn > 0 in Ωext, and |xn| is the Euclidean distance to Γ; then x = (x′, xn). We will express the
solution u+ in R × Ω̄int that we defined above, as well as a reflected solution uR in the same set;
and a transmitted one uT in R× Ω̄ext, up to smoothing terms in the form

(9.9) uσ = (2π)−n
∫
eiϕσ(t,x,τ,ξ′)bσ(t, x, τ, ξ′)ĥ(τ, ξ′) dτ dξ′, σ = +, R, T,

where ĥ :=
∫
R×Rn−1 e

−i(−tτ+x′·ξ′)h(t, x′)dtdx′. We chose to alter the sign of τ so that if c = 1, then

the phase function in (9.9) would equal ϕ+, i.e., then ϕ+ = −tτ + x · ξ. The three phase functions
ϕ+, ϕR, ϕT solve the eikonal equation

(9.10) ∂tϕσ + c(x)|∇xϕσ| = 0, ϕσ|xn=0 = −tτ + x′ · ξ′.
The right choice of the sign in front of ∂tϕ+, see (A.16), is the positive one because ∂tϕ+ = −τ < 0
for xn = 0, and that derivative must remain negative near the boundary as well. We see below that
ϕR,T have the same boundary values on xn = 0, therefore they satisfy the same eikonal equation,
with the same choice of the sign.

Let now h be a compactly supported distribution on R×Γ with WF(h) in a small conic neighbor-
hood of (t1, x1, 1, (ξ

1)′). We will take h as in (9.7) eventually, with u+ the solution corresponding
to initial data f at t = 0 but in what follows, h is arbitrary as long as WF(h) has that property,
and u+ is determined through h. We now look for a parametrix

(9.11) ũ = u+ + uR + uT

near (t1, x1) with u+, uR, uT of the type (9.9), satisfying the wave equation and (9.7). We use the
notation for u+ now for a parametrix in Ωint having singularities that come from the past and hit
Γ; i.e., for an outgoing solution. The subscript + is there to remind us that this is related to the
positive sound speed c(x)|ξ|. Next, uR is a solution with singularities that are obtained form those
of u+ by reflection; they propagate back to Ωint. It is an outgoing solution in Ωint. And finally, uT
is a solution in Ωext with singularities that go away from Γ as time increases; hence it is outgoing
there. To satisfy the first transmission condition in (9.3), we need to have

(9.12) ϕT = ϕR = ϕ+ = −tτ + x · ξ′ for xn = 0,

that explains the same boundary condition in (9.10), and

(9.13) 1 + bR = bT for xn = 0.

In particular, for the leading terms of the amplitudes we get

(9.14) b
(0)
T − b

(0)
R = 1 for xn = 0.

To satisfy the second transmission condition, we require

(9.15) i
∂ϕ+

∂xn
+
∂b+
∂xn

+ i
∂ϕR
∂xn

bR +
∂bR
∂xn

= i
∂ϕT
∂xn

bT +
∂bT
∂xn

for xn = 0.
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Expanding this in a series of homogeneous in (τ, ξ) terms, we get series of initial conditions for the
transport equations that follow. Comparing the leading order terms only, we get

(9.16)
∂ϕT
∂xn

b
(0)
T −

∂ϕR
∂xn

b
(0)
R =

∂ϕ+

∂xn
for xn = 0.

The linear system (9.14), (9.16) for b
(0)
R |xn=0, b

(0)
T |xn=0 has determinant

(9.17) −
(
∂ϕT
∂xn

− ∂ϕR
∂xn

) ∣∣∣∣
xn=0

.

Provided that this determinant is non-zero near x1, we can solve for b
(0)
R |xn=0, b

(0)
T |xn=0. Moreover,

the determination of each subsequent term b
(−j)
R |xn=0, b

(−j)
T |xn=0 in the asymptotic expansion of

bR|xn=0, bT |xn=0 can be found by (9.15) by solving a linear system with the same (non-zero)
determinant.

Solving the eikonal equations. As it is well known, the eikonal equation (9.10) in any fixed
side of R × Γ, near (t1, x1), has two solutions. They are determined by a choice of the sign of
the normal derivative on R× Γ and the boundary condition. We will make the choice of the signs
according to the desired properties for the singularities of u+, uR, uT . Let ∇x′ denote the tangential
gradient on Γ. By (9.12),

(9.18) ∇x′ϕT = ∇x′ϕR = ∇x′ϕ+ = ξ′, ∂tϕT = ∂tϕR = ∂tϕ+ = −τ for xn = 0.

Using the eikonal equation (9.10) and the boundary condition there, we get

(9.19)
∂ϕ+

∂t
= −τ, ∂ϕ+

∂xn
=
√
c−2

intτ
2 − |ξ′|2 for xn = 0.

We made a sign choice for the square root here based on the required property of u+ described
above. This shows in particular, that the map h 7→ ∂u+/∂t (that is just d/dt), and the interior
incoming Dirichlet to Neumann map

Nint,in : h 7→ ∂u+

∂ν

∣∣∣
R×Γ

are locally ΨDOs of order 1 with principal symbols given by −iτ , and

(9.20) σp(Nint,in) = i
∂ϕ+

∂xn
= i
√
c−2

intτ
2 − |ξ′|2.

The notion “interior incoming” is related to the fact that locally, near (t1, x1), we are solving a
mixed problem in R× Ωint with lateral boundary value h and zero Cauchy data for t� 0.

Consider ϕR next. The reflected phase ϕR solves the same eikonal equation, with the same
boundary condition, as ϕ+. By the eikonal equation (9.10), we must have

(9.21)
∂ϕR
∂xn

= ±∂ϕ+

∂xn
for xn = 0.

The “+” choice will give us the solution ϕ+ for ϕR. We chose the negative sign, that uniquely
determines a solution locally, that we call ϕR, i.e.,

(9.22)
∂ϕR
∂xn

= −∂ϕ+

∂xn
for xn = 0.

Therefore, ∇ϕR on the boundary is obtained from ∇ϕ+ by inverting the sign of the normal deriv-
ative. This corresponds to the usual law of reflection. Therefore,

(9.23)
∂ϕR
∂t

= −τ, ∂ϕR
∂xn

= −
√
c−2

intτ
2 − |ξ′|2 for xn = 0.
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Figure 3. The reflected and the transmitted rays. Left: in the x space. Right: in
the (t, x) space.

In particular, ∂uR/∂x
n|R×Γ can be obtained from uR|R×Γ, that we still need to determine, via the

interior outgoing Dirichlet-to-Neumann map

Nint,out : uR

∣∣∣
R×Γ

7−→ ∂uR
∂xn

∣∣∣
R×Γ

that is locally a first order ΨDO with principal symbol

(9.24) σp(Nint,out) = i
∂ϕR
∂t

= −i
√
c−2

intτ
2 − |ξ′|2.

To construct ϕT , we work in Ω̄ext. We define ϕT as the solution of (9.10) with the following
choice of a normal derivative. This time ϕT and ϕ+ solve the eikonal equation at different sides of
Γ, and c has a jump at Γ. By (9.18),

(9.25) c2
ext

(
|ξ′|2 +

∣∣∣∂ϕT
∂xn

∣∣∣2) = τ2 for xn = 0.

We solve this equation for |∂ϕT /∂xn|2. Under the assumption (9.8), this solution is positive,
therefore we can solve for ∂ϕT /∂x

n to get

(9.26)
∂ϕT
∂xn

=

√
c−2

extτ
2 − |ξ′|2 for xn = 0.

The positive sign of the square root is determined by the requirement the singularity to be outgoing.
In particular, we get that the exterior outgoing Dirichlet-to Neumann map

Next,out : uT

∣∣∣
R×Γ

7−→ ∂uT
∂xn

∣∣∣
R×Γ
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has principal symbol

(9.27) σp(Next,out) = i
∂ϕT
∂xn

= i

√
c−2

extτ
2 − |ξ′|2.

For future reference, we note that the following inequality holds

(9.28) 0 ≤ ∂ϕT
∂xn

≤ γ ∂ϕ+

∂xn
; γ := max

Γ

cint

cext
< 1.

Amplitude and Energy Calculations. By (9.23), (9.26), the determinant (9.17) is negative.
Solving (9.14) and (9.16) then yields

(9.29) b
(0)
T =

2∂ϕ+/∂x
n

∂ϕ+/∂xn + ∂ϕT /∂xn
, b

(0)
R =

∂ϕ+/∂x
n − ∂ϕT /∂xn

∂ϕ+/∂xn + ∂ϕT /∂xn
for xn = 0.

As explained below (9.17), we can get initial conditions for the subsequent transport equations,
and then solve those transport equation. By (9.12), the maps

(9.30) PR : h 7→ uR|R×Γ, PT : h 7→ uT |R×Γ

are ΨDOs of order 0 with principal symbols equal to b
(0)
R , b

(0)
T restricted to R× Γ, see (9.29). We

recall (9.7) as well.
We estimate next the amount of energy that is transmitted in Ωext. We will do it only based

on the principal term in our parametrix. That corresponds to an estimate of the solution operator
corresponding to transmission, up to compact operators, as we show below.

A quick look at (9.29), see also (9.14) shows that b
(0)
T > 1. This may look strange because

we should have only a fraction of the energy transmitted, and the rest is reflected. There is no
contradiction however because the energy is not proportional to the amplitude.

Let u solve (∂2
t − c2∆)u = 0 in the bounded domain U with smooth boundary for t′ ≤ t ≤ t′′

with some t′ < t′′. A direct calculation yields

(9.31) EU (u(t′′)) = EU (u(t′)) + 2<
∫

[t′,t′′]×∂U
ut
∂ū

∂ν
dt dS.

We will use this to estimate the energy of uT in Ωext. Since the wave front set of uT is contained
in some small neighborhood of the transmitted bicharacteristic, we have smooth data for t = 0.
Therefore, if t2 > t1 is fixed closed enough to t1, we can apply (9.31) to a large ball minus Ωint to
get that modulo a compact operator applied to h,

(9.32) EΩext(uT (t2)) ∼= 2<
∫

[0,t2]×Γ

∂uT
∂t

∂ūT
∂ν

dt dS.

Therefore,

(9.33) EΩext(uT (t2)) ∼= 2<(PtuT , Next,outuT ) = <(2P ∗TN
∗
ext,outPtPTh, h),

where (·, ·) is the inner product in R×Rn−1, and Pt = d/dt.
Apply similar arguments to u+ in Ωint. Since the bicharacteristics leave Ωint, we have modulo

smoother terms

(9.34) 0 ∼= EΩint(u+(0)) + 2<
∫

[0,t2]×Γ

∂u+

∂t

∂ū+

∂ν
dtdS.

Similarly we get, see again (9.30),

(9.35) EΩint(u+(0)) ∼= −2<(Pth,Nint,inh) = <(2N∗int,inPth, h).
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For the principal symbols of the operators in (9.33), (9.35) we have

(9.36)
σp(2P

∗
TN
∗
ext,outPtPT )

σp(2N∗int,inPt)
=
∂ϕT /∂ν

∂ϕ+/∂ν

(
b
(0)
T

)2
=

4(∂ϕ+/∂ν)(∂ϕT /∂ν)

(∂ϕ+/∂ν + ∂ϕT /∂ν)2
.

Denote for a moment a := ∂ϕ+/∂ν, b := ∂ϕT /∂ν. Then the quotient above equals 4ab/(a+ b)2 ≤ 1
that confirms that the reflected wave has less energy than the incident one. By (9.28), 0 ≤ b ≤ γa,
0 < γ < 1. This easily implies

(9.37)
4ab

(a+ b)2
≤ 4γ

(1 + γ)2
< 1.

Therefore, the expression in the middle represents an upper bound of the portion of the total energy
that gets transmitted in the asymptotic regime when the frequency tends to infinity. To get a lower
bound, assume in addition that b ≥ b0 > 0 and a ≤ a0 for some a0, b0, i.e.,

(9.38) 0 < b0 <
∂ϕT
∂ν

,
∂ϕ+

∂ν
≤ a0.

Then

(9.39)
4ab

(a+ b)2
≥ 4b20/γ

(1 + γ)2a2
0

> 0.

This is a lower bound of the ratio of the high frequency energy that is transmitted. As we can see,
if the transmitted ray gets very close to a tangent one, that ratio tends to 0.

So far this is still not a proof of such a statement but just a heuristic argument. For the a precise
statement, see [43].

Snell’s Law. Assume now that (ξ1)′ is in the hyperbolic region for cint but not necessarily for
cext. This corresponds to a ray hitting Γ from the “interior” Ωint. There is no change in solving
the eikonal equation for ϕR but a real phase ϕT does not exist if the expression under the square
root in (9.26) is negative. This happens when (ξ1)′ is in the elliptic region for cext. Then there is
no transmitted singularity in the parametrix. We analyze this case below. If cint > cext, then (ξ1)′

that is in the hyperbolic region for cint by assumption, also falls into the hyperbolic region for the
speed cext, i.e., there is always a transmitted ray. If cint < cext, then existence of a transmitted
wave depends on where (ξ1)′ belongs w.r.t. cext.

Let α be the angle that ξ1 = ∂ϕ+/∂x
n makes with the (co)-normal represented by dxn, and let

β be the angle between the latter and ξT := ∂ϕT /∂x
n. We have

(9.40) |ξ′| = |ξ1| sinα = c−1
intτ sinα, |ξ′| = |ξT | sinβ = c−1

extτ sinβ

By (9.40), we recover Snell’s law

(9.41)
sinα

sinβ
=
cint

cext
,

Assume now that cint < cext, which is the case where there might be no transmitted ray. Denote
by

(9.42) α0(x) = arcsin(cint(x)/cext(x))

the critical angle at any x ∈ Γ that places (ξ1)′ in the glancing manifold w.r.t. cext. Then the
transmitted wave does not exist when α > α0; more precisely we do not have a real phase function
ϕT in that case. It exists, when α < α0. In the critical case α = α0, this construction provides an
outgoing ray tangent to Γ that we are not going to analyze.

The full internal reflection case. Assume now that (ξ1)′ is in the elliptic region w.r.t. cext,
then there is no transmitted singularity, but one can still construct a parametrix for the “evanescent”
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wave in Ωext; and there is a reflected ray. This is known as a full internal reflection. We give details
below.

We proceed as above with one essential difference. There is no real valued solution ϕT to the
eikonal equation (9.10) outside Ω0. Similarly to (9.26), we get formally,

(9.43)
∂ϕT
∂ν

= i

√
|ξ′|2 − c−2

extτ
2 for xn = 0.

The choice of the sign of the square root is dictated by the requirement that the parametrix (9.9)
with σ = T be exponentially decreasing away from Γ instead of exponentially increasing.

In general, the eikonal equation may not be solvable but one can still construct solutions modulo
O((xn)∞). The same applies to the transport equations. One can show that the O((xn)∞) error
does not change the properties of uT to be a parametrix. In particular, in (9.33) in this case one
gets

(9.44) EΩext(uT (t2)) ∼= 0,

because the principal term of ∂ūT /∂ν in (9.32) now is pure imaginary instead of being real. More-
over, uT is smooth in Ω̄ext. Therefore, no energy, as far as the principal part only is considered, is
transmitted to Ωext. That does not mean that the solution vanishes there, of course.

Glancing, gliding rays and other cases. We do not analyze the cases where (ξ1)′ is in the
glancing manifold w.r.t. to one of the speeds. We can do that because the analysis of those cases is
not needed because of our assumptions guaranteeing no tangent rays. The analysis there is more
delicate, and we refer to [47, 33, 34] for more details and examples. We do not analyze either the
case where (ξ1)′ is in the elliptic region with respect to either speed.

Justification of the parametrix. Denote by uR = [uR, ∂tuR], uT = [uT , ∂tuT ] the approx-
imate solutions constructed above, defined for t in some neighborhood of t2. Then uR = VRh,
uT = VTh, where VR,T are the FIOs constructed above. Let u+ be the solution of (9.3) defined
above, with initial data Π+f at t = 0 having wave front set in a small neighborhood of (x0, ξ

0).
The map Λ+ : f 7→ u+|R×Γ = h is an FIO described in [42]. Then near (t1, x1),

uR = VRΛf , uT = VTΛf ,

the former supported in R × Ω̄int, and the later in R × Ω̄ext. So far we had two objects that we
denoted by u+: first, the parametrix of the solution of (9.3) corresponding to the positive sound
speed c(x)|ξ|; and the parametrix in R× Ω̄int for the incoming solution corresponding to boundary
value h. When h = Λ+f , those two parametrices coincide up to a smooth term, as it is not hard
to see (the second one is a back-projection and is discussed in [42], in fact). This justifies the same
notation for them that we will keep.

Consider the parametrix vp := u+ + uR + uT . We can always assume that its support is in some
small neighborhood of the geodesic that hits R× Γ at (t1, x1) and is tangent to ξ1 there; and then
reflects, and another branch refracts, see Figure 3. In particular, then h has t-support near t = t1,
let us say that this included in the interval [t1− ε, t1 + ε] with some ε > 0. At t = t2 := t1 + 2ε, let
x2 be the position of the reflected ray, and let ξ2 be its unit co-direction. Then WF(uR(t2, ·)) is in
a small conic neighborhood of (x2, ξ

2).
Let v(t, ·) = etPΠ+f be the exact solution, see (A.22), with some fixed choice of the parametrix

Q−1 in the definition of Π+, properly supported. Consider w = v − vp in [0, t2]×Rn. It satisfies
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(∂2
t − c2∆)w|[0,t2]×Ω̄int

∈ C∞, (∂2
t − c2∆)w|[0,t2]×Ω̄ext

∈ C∞,(9.45)

w|[0,t2]×Γext
− w|[0,t2]×Γint

∈ C∞, ∂w

∂ν

∣∣
[0,t2]×Γext

− ∂w

∂ν

∣∣
[0,t2]×Γint

∈ C∞.(9.46)

On the other hand, for 0 ≤ t � 1, v is smooth. Let χ ∈ C∞(R) be a function that vanishes in
(−∞, δ] and equals 1 on [2δ,∞), 0 < δ � 1. Then w̃ := χ(t)w(t, x) still satisfies (9.45), (9.46) and
also vanishes for t ≤ 0. By [54, Theorem 1.36], w̃ is smooth in [0, t2] × Ω̄int, up to the boundary,
and is also smooth in [0, t2]× Ω̄ext, up to the boundary. Therefore,

(9.47) v(t, ·) = vp(t, ·) + Ktf ,

for any t ∈ [0, t2], where Kt is a compact operator in H, depending smoothly on t. The operator Kt

depends on Q as well. Therefore, the parametrix coincides with the exact solution up to a compact
operator that is also smoothing in the sense described above.

This concludes the description of the microlocal part of the proof. The rest of the proof of
Theorem 9.1 is as indicated above. Write AΛ = Id − K, as in the smooth case. This time K is
not compact any more, regardless of how large T is. Based on our assumptions and on what we
proved, its essential spectrum is supported in a disk |z| < C0 < 1 in the complex plane; and by
unique continuation, we still have (4.10). This situation is similar to the proof of Theorem 4.1,
see (4.14). The difference is that in the smooth case, C0 = 1/2, if T1/2 < T < T1, and C0 = 0, if
T > T1, while in the “skull” case, 0 < C1 < 1 and we can only make C1 as small as we want but
not zero, as T →∞, under our assumptions.

Numerical experiments done in [36] based on this approach show that one gets very good recon-
struction even without restricting the support of f to sets K satisfying (9.5), i.e., if we allow for
invisible singularities. The reconstruction is worse in the trapping region, and trapped conormal
singularities are not recovered.

The partial data case for a discontinuous speed, i.e, when we have data on a part of ∂Ω has
not been studied yet. It seems plausible that the methods in [42] for a smooth speed described
above can be extended but there are new technical difficulties. Even for a smooth speed however,
a convergent series solution is not known. On the other hand, such reconstruction has been tried
numerically in [36] with success. Under the condition that all singularities issued from supp f are
visible, for a smooth speed, the inverse problem reduces to a Fredholm equation with a trivial
kernel. For a discontinuous speed of the type we study in this paper, it follows from our analysis
that we still get a Fredholm equation but the triviality of the kernel is a more delicate question.

Appendix A. Microlocal Analysis and Geometric Optics

One of the fundamental ideas of classical analysis is a thorough study of functions near a point,
i.e., locally. Microlocal analysis, loosely speaking, is analysis near points and directions, i.e., in the
“phase space”.

A.1. Wave front sets. The phase space in Rn is the cotangent bundle T ∗Rn that can be identified
with Rn ×Rn. Given a distribution f ∈ D′(Rn), a fundamental object to study is the wave front
set WF(f) ⊂ T ∗Rn \ 0 that we define below.

The basic idea goes back to the properties of the Fourier transform. If f is an integrable compactly
supported function, one can tell whether f is smooth by looking at the behavior of f̂(ξ) (that is
smooth, even analytic) when |ξ| → ∞. It is known that f is smooth if and only if for any N ,

|f̂(ξ)| ≤ CN |ξ|−N for some CN . If we localize this requirement to a conic neighborhood V of some
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ξ0 6= 0 (V is conic if ξ ∈ V ⇒ tξ ∈ V,∀t > 0), then we can think of this as a smoothness in the
cone V . To localize in the base x variable however, we first have to cut smoothly near a fixed x0.

We say that (x0, ξ0) ∈ Rn × (Rn \ 0) is not in the wave front set WF(f) of f ∈ D′(Rn) if there
exists φ ∈ C∞0 (Rn) with φ(x0) 6= 0 so that for any N , there exists CN so that

|φ̂f(ξ)| ≤ CN |ξ|−N

for ξ in some conic neighborhood of ξ0. This definition is independent of the choice of φ. If f ∈ D′(Ω)
with some open Ω ⊂ Rn, to define WF(f) ⊂ Ω× (Rn \ 0), we need to choose φ ∈ C∞0 (Ω). Clearly,
the wave front set is a closed conic subset of Rn × (Rn \ 0). Next, multiplication by a smooth
function cannot enlarge the wave front set. The transformation law under coordinate changes
is that of covectors making it natural to think of WF(f) as a subset of T ∗Rn \ 0, or T ∗Ω \ 0,
respectively.

The wave front set WF(f) generalizes the notion singsupp(f) — the complement of the largest
open set where f is smooth. The points (x, ξ) in WF(f) are referred too as singularities of f . Its
projection onto the base is singsupp(f), i.e.,

singsupp(f) = {x; ∃ξ, (x, ξ) ∈WF(f)}.

Examples.
(a) WF(δ) = {(0, ξ); ξ 6= 0}. In other words, the Dirac delta function is singular at x = 0, and

all directions.
(b) Let x = (x′, x′′), where x′ = (x1, . . . , xk), x

′′ = (xk+1, . . . , xn) with some k. Then WF(δ(x′)) =
{(0, x′′, ξ′, 0), ξ′ 6= 0}, where δ(x′) is the Dirac delta function on the plane x′ = 0, defined by
〈δ(x′), φ〉 =

∫
φ(0, x′′) dx′′. In other words, WF(δ(x′)) consists of all (co)vectors with a base point

on that plane, perpendicular to it.
(c) Let f be a piecewise smooth function that has a non-zero jump across some smooth surface

S. Then WF(f) consists of all (co)vectors at points of S, normal to it. This follows from (a) and
a change of variables that flatten S locally.

(d) Let f = pv 1
x − πiδ(x) in R. Then WF(f) = {(0, ξ); ξ > 0}.

In example (d) we see a distribution with a wave front set that is not symmetric under the change
ξ 7→ −ξ. In fact, wave front sets do not have a special structure except for the requirement to be
closed conic sets; given any such set, there is a distribution with a wave front set exactly that set.

Two distributions cannot be multiplied in general. However, if their wave front sets do not
intersect, there is a “natural way” to define a product.

A.2. Pseudodifferential Operators.
Definition. We first define the symbol class Sm(Ω), m ∈ R, as the set of all smooth functions

p(x, ξ), (x, ξ) ∈ Ω×Rn, called symbols, satisfying the following symbol estimates: for any compact
K ⊂ Ω, and any multi-indices α, β, there is a constant CK,α,β > 0 so that

(A.1) |∂αξ ∂βxp(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−|α|, ∀(x, ξ) ∈ K ×Rn.

More generally, one can define the class Smρ,δ(Ω) with 0 ≤ ρ, δ ≤ 1 by replacing m − |α| there by

m− ρ|α|+ δ|β|. Then Sm(Ω) = Sm1,0(Ω). Often, we omit Ω and simply write Sm. There are other

classes in the literature, for example Ω = Rn, and (A.1) is required to hold for all x ∈ Rn.
The estimates (A.1) do not provide any control of p when x approaches boundary points of Ω,

or ∞.
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Given p ∈ Sm(Ω), we define the pseudodifferential operator (ΨDO) with symbol p, denoted by
p(x,D), by

(A.2) p(x,D)f = (2π)−n
∫
eix·ξp(x, ξ)f̂(ξ) dξ, f ∈ C∞0 (Ω).

The definition is inspired by the following. If P =
∑
|α|≤m aα(x)Dα is a differential operator, where

D = −i∂, then using the Fourier inversion formula we can write P as in (A.2) with a symbol
p =

∑
|α|≤m aα(x)ξα that is a polynomial in ξ with x-dependent coefficients. The symbol class Sm

allows for more general functions. The class of the pseudo-differential operators with symbols in
Sm is denoted usually by Ψm. The operator P is called a ΨDO if it belongs to Ψm for some m. By
definition, S−∞ = ∩mSm, and Ψ−∞ = ∩mΨm.

An important subclass is the set of the classical symbols that have an asymptotic expansion of
the form

(A.3) p(x, ξ) ∼
∞∑
j=0

pm−j(x, ξ),

where m ∈ R, and pm−j are smooth and positively homogeneous in ξ of order m − j for |ξ| > 1,
i.e., pm−j(x, λξ) = λm−jpm−j(x, ξ) for |ξ| > 1, λ > 1; and the sign ∼ means that

(A.4) p(x, ξ)−
N∑
j=0

pm−j(x, ξ) ∈ Sm−N−1, ∀N ≥ 0.

Any ΨDO p(x,D) is continuous from C∞0 (Ω) to C∞(Ω), and can be extended by duality as a
continuous map from E ′(Ω) to D′(Ω).

Principal symbol. The principal symbol of a ΨDO given by (A.2) is the equivalence class
Sm(Ω)/Sm−1(Ω), and any its representative is called a principal symbol as well. In case of classical
ΨDOs, the convention is to choose the principal symbol to be the first term pm, that in particular
is positively homogeneous in ξ.

Smoothing Operators. Those are operators than map continuously E ′(Ω) into C∞(Ω). They
coincide with operators with smooth Schwartz kernels in Ω × Ω. They can always be written as
ΨDOs with symbols in S−∞, and vice versa — all operators in Ψ−∞ are smoothing. Smoothing
operators are viewed in this calculus as negligible and ΨDOs are typically defined modulo smoothing
operators, i.e., A = B if and only if A−B is smoothing. Smoothing operators are not “small”.

The pseudolocal property. For any ΨDO P and any f ∈ E ′(Ω),

(A.5) singsupp(Pf) ⊂ singsupp f.

In other words, a ΨDO cannot increase the singular support. This property is preserved if we
replace singsupp by WF, see (A.11).

Symbols defined by an asymptotic expansion. In many applications, a symbol is defined
by consecutively constructing symbols pj ∈ Smj , j = 0, 1, . . . , where mj ↘ −∞, and setting

(A.6) p(x, ξ) ∼
∑
j

pj(x, ξ).

The series on the right may not converge but we can make it convergent by using our freedom
to modify each pj for ξ in expanding compact sets without changing the large ξ behavior of each
term. This extends the Borel idea of constructing a smooth function with prescribed derivatives
at a fixed point. The asymptotic (A.6) then is understood in a sense similar to (A.4). This shows
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that there exists a symbol p ∈ Sm0 satisfying (A.6). That symbol is not unique but the difference
of two such symbols is always in S−∞.

Amplitudes. A seemingly larger class of ΨDOs is defined by

(A.7) Af = (2π)−n
∫
ei(x−y)·ξa(x, y, ξ)f(y) dy dξ, f ∈ C∞0 (Ω),

where the amplitude a satisfies

(A.8) |∂αξ ∂βx∂γy a(x, y, ξ)| ≤ CK,α,β,γ(1 + |ξ|)m−|α|, ∀(x, y, ξ) ∈ K ×Rn

for any compact K ⊂ Ω× Ω, and any α, β, γ. In fact, any such ΨDO A is a ΨDO with a symbol
p(x, ξ) (independent of y) with the formal asymptotic expansion

p(x, ξ) ∼
∑
α≥0

Dα
ξ ∂

α
y a(x, x, ξ).

In particular, the principal symbol of that operator can be taken to be a(x, x, ξ).
Transpose and adjoint operators to a ΨDO. The mapping properties of any ΨDO A indicate

that it has a well defined transpose A′, and a complex adjoint A∗ with the same mapping properties.
They satisfy

〈Au, v〉 = 〈u,A′v〉, 〈Au, v̄〉 = 〈u,A∗v〉, ∀u, v ∈ C∞0
where 〈·, ·〉 is the pairing in distribution sense; and in this particular case just an integral of uv. In
particular, A∗u = A′ū, and if A maps L2 to L2 in a bounded way, then A∗ is the adjoint of A in
L2 sense.

The transpose and the adjoint are ΨDOs in the same class with amplitudes a(y, x,−ξ) and
ā(y, x, ξ), respectively; and symbols∑

α≥0

(−1)|α|
1

α!
(∂αξ D

α
xp)(x,−ξ),

∑
α≥0

1

α!
∂αξ D

α
x p̄(x, ξ),

if a(x, y, ξ) and p(x, ξ) are the amplitude and/or the symbol of that ΨDO. In particular, the
principal symbols are p0(x,−ξ) and p̄0(x, ξ), respectively, where p0 is (any representative of) the
principal symbol.

Composition of ΨDOs and ΨDOs with properly supported kernels. Given two ΨDOs
A and B, their composition may not be defined even if they are smoothing ones because each one
maps C∞0 to C∞ but may not preserve the compactness of the support. For example, if A(x, y), and
B(x, y) are their Schwartz kernels, the candidate for the kernel of AB given by

∫
A(x, z)B(z, y) may

be a divergent integral. On other the hand, for any ΨDO A, one can find a smoothing correction
R, so that A+R has properly supported kernel, i.e., the kernel of A+R, has a compact intersection
with K ×Ω and Ω×K for any compact K ⊂ Ω. The proof of this uses the fact that the Schwartz
kernel of a ΨDO is smooth away from the diagonal {x = y} and one can always cut there in a
smooth way to make the kernel properly supported at the price of a smoothing error. ΨDOs with
properly supported kernels preserve C∞0 (Ω), and also E ′(Ω), and therefore can be composed in
either of those spaces. Moreover, they map C∞(Ω) to itself, and can be extended from D′(Ω) to
itself. The property of the kernel to be properly supported is often assumed, and it is justified by
considering each ΨDO as an equivalence class.

If A ∈ Ψm(Ω) and B ∈ Ψk(Ω) are properly supported ΨDOs with symbols a and b, respectively,
then AB is again a ΨDO in Ψm+k(Ω) and its symbol is given by∑

α≥0

(−1)|α|
1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ).
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In particular, the principal symbol can be taken to be ab.
Change of variables and ΨDOs on manifolds. Let Ω′ be another domain, and let φ : Ω→ Ω̃

be a diffeomorphism. For any P ∈ Ψm(Ω), P̃ f := (P (f ◦ φ)) ◦ φ−1 maps C∞0 (Ω̃) into C∞(Ω̃). It is

a ΨDO in Ψm(Ω̃) with principal symbol

(A.9) p(φ−1(y), (dφ)′η)

where p is the symbol of P , dφ is the Jacobi matrix {∂φi/∂xj} evaluated at x = φ−1(y), and (dφ)′

stands for the transpose of that matrix. We can also write (dφ)′ = ((dφ−1)−1)′. An asymptotic
expansion for the whole symbol can be written down as well.

Relation (A.9) shows that the transformation law under coordinate changes is that of a covector.
Therefore, the principal symbol is a correctly defined function on the cotangent bundle T ∗Ω. The
full symbol is not invariantly defined there in general.

Let M be a smooth manifold, and A : C∞0 (M) → C∞(M) be a linear operator. We say that
A ∈ Ψm(M), if its kernel is smooth away from the diagonal in M ×M , and if in any coordinate
chart (A,χ), where χ : U → Ω ⊂ Rn, we have (A(u ◦ χ)) ◦ χ−1 ∈ Ψm(Ω). As before, the principal
symbol of A, defined in any local chart, is an invariantly defined function on T ∗M .

Mapping properties in Sobolev Spaces. In Rn, Sobolev spaces Hs(Rn), s ∈ R, are defined
as the completion of S ′(Rn) in the norm

‖f‖2Hs(Rn) =

∫
(1 + |ξ|2)s|f̂(ξ)|2 dξ.

When s is a non-negative integer, an equivalent norm is the square root of∑
|α|≤s

∫
|∂αf(x)|2 dx. For such s, and a bounded domain Ω, one defines Hs(Ω) as the completion

of C∞(Ω̄) using the latter norm with the integral taken in Ω. Sobolev spaces in Ω for other real
values of s are defined by different means, including duality or complex interpolation.

Sobolev spaces are also Hilbert spaces.
Any P ∈ Ψm(Ω) is a continuous map from Hs

comp(Ω) to Hs−m
loc (Ω). If the symbols estimates

(A.1) are satisfied in the whole Rn ×Rn, then P : Hs(Rn)→ Hs−m(Rn).
Elliptic ΨDOs and their parametrices. The operator P ∈ Ψm(Ω) with symbol p is called

elliptic of order m, if for any compact K ⊂ Ω, there exist constants C > 0 and R > 0 so that

(A.10) C|ξ|m ≤ |p(x, ξ)| for x ∈ K, and |ξ| > R.

Then the symbol p is called also elliptic of order m. It is enough to require the principal symbol
only to be elliptic (of order m). For classical ΨDOs, see (A.3), the requirement can be written as
pm(x, ξ) 6= 0 for ξ 6= 0. A fundamental property of elliptic operators is that they have parametrices.
In other words, given an elliptic ΨDO P of order m, there exists Q ∈ Ψ−m(Ω), so that

QP − Id ∈ Ψ−∞, PQ− Id ∈ Ψ−∞.

The proof of this is to construct a left parametrix first by choosing a symbol q0 = 1/p, cut off near
the possible zeros of p, that form a compact any time when x is restricted to a compact as well.
The corresponding ΨDO Q0 will then satisfy Q0P = Id + R, R ∈ Ψ−1. Then we take a ΨDO E
with asymptotic expansion E ∼ Id−R+R2 −R3 + . . . , that would be the formal Neumann series
expansion of (Id + R)−1, if the latter existed. Then EQ0 is a left parametrix that is also a right
parametrix.

An important consequence is the following elliptic regularity statement. If P is elliptic (and
properly supported), then

singsupp(PF ) = singsupp(f), ∀f ∈ D′(Ω).
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In particular, Pf ∈ C∞ implies f ∈ C∞.
ΨDOs and wave front sets. The microlocal version of the pseudo-local property is given by

the following:

(A.11) WF(Pf) ⊂WF(f)

for any (properly supported) ΨDO P and f ∈ D′(Ω). In other words, a ΨDO cannot increase the
wave front set. If P is elliptic for some m, it follows from the existence of a parametrix that there
is equality above, i.e., WF(Pf) = WF(f).

We say that the ΨDO P is of order −∞ in the open conic set U ⊂ T ∗Ω \ 0, if for any closed
conic set K ⊂ U with a compact projection on the base “x-space”, (A.1) is fulfilled for any m. The
essential support ES(P ), sometimes also called the microsupport of P , is defined as the smallest
closed conic set on the complement of which the symbol p is of order −∞. Then

WF(Pf) ⊂WF(f) ∩ ES(P ).

Let P have a homogeneous principal symbol pm. The characteristic set CharP is defined by

CharP = {(x, ξ) ∈ T ∗Ω \ 0; pm(x, ξ) = 0}.
CharP can be defined also for general ΨDOs that may not have homogeneous principal symbols.
For any ΨDO P , we have

(A.12) WF(f) ⊂WF(Pf) ∪ CharP, ∀f ∈ E ′(Ω).

P is called microlocally elliptic in the open conic set U , if (A.10) is satisfied in all compact subsets,
similarly to the definition of ES(P ) above. If it has a homogeneous principal symbol pm, ellipticity
is equivalent to pm 6= 0 in U . If P is elliptic in U , then Pf and f have the same wave front set
restricted to U , as follows from (A.12) and (A.11).

A.3. The Hamilton flow and propagation of singularities. Let P ∈ Ψm(M) be properly
supported, where M is a smooth manifold, and suppose that P has a real homogeneous principal
symbol pm. The Hamiltonian vector field of pm on T ∗M \ 0 is defined by

Hpm =
n∑
j=1

(
∂pm
∂xj

∂

∂ξj
− ∂pm

∂ξj

∂

∂xj

)
.

The integral curves of Hpm are called bicharacteristics of P . Clearly, Hpmpm = 0, thus pm is
constant along each bicharacteristics. The bicharacteristics along which pm = 0 are called zero
bicharacteristics.

The Hörmander’s theorem about propagation of singularities is one of the fundamental results
in the theory. It states that if P is an operator as above, and Pu = f with u ∈ D′(M), then

WF(u) \WF(f) ⊂ CharP,

and is invariant under the flow of Hpm .
An important special case is the wave operator P = ∂2

t −∆g, where ∆g is the Laplace Beltrami
operator associated with a Riemannian metric g. We may add lower order terms without changing
the bicharacteristics. Let (τ, ξ) be the dual variables to (t, x). The principal symbol is p2 =
−τ2 + |ξ|2g, where |ξ|2g :=

∑
gij(x)ξiξj , and (gij) = (gij)

−1. The bicharacteristics equations then are

τ̇ = 0, ṫ = −2τ , ẋj = 2
∑
gijξi, ξ̇j = −2∂xj

∑
gij(x)ξiξj , and they are null one if τ2 = |ξ|2g. Here,

ẋ = dx/ds, etc. The latter two equations are the Hamiltonian curves of H̃ :=
∑
gij(x)ξiξj and

they are known to coincide with the geodesics (γ, γ̇) on TM when identifying vectors and covectors

by the metric. They lie on the energy surface H̃ = const. The first two equations imply that τ
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is a constant, positive or negative, and up to rescaling, one can choose the parameter along the
geodesics to be t. That rescaling forces the speed along the geodesic to be 1. The null condition
τ2 = |ξ|2g defines two smooth surfaces away from (τ, ξ) = (0, 0): τ = ±|ξ|g. This corresponds to
geodesics starting from x in direction either ξ or −ξ. To summarize, for the homogeneous equation
Pu = 0, we get that each singularity (x, ξ) of the initial conditions at t = 0 starts to propagate
from x in direction either ξ or −ξ or both (depending on the initial conditions) along the unit speed
geodesic. In fact, we get this first for the singularities in T ∗(Rt ×Rn

x) first, but since they lie in
CharP , one can see that they project to T ∗Rn

x as singularities again.

A.4. Geometric Optics. Geometric optics describes asymptotically the solutions of hyperbolic
equations at large frequencies. It also provides a parametrix (a solution up to smooth terms) of
the initial value problem for hyperbolic equations. The resulting operators are not ΨDOs anymore;
they are actually examples of Fourier Integral Operators. Geometric Optics also studies the large
frequency behavior of solutions that reflect from a smooth surface (obstacle scattering) including
diffraction; reflect from an edge or a corner; reflect and refract from a surface where the speed
jumps (transmission problems).

As an example, consider the acoustic equation

(A.13) (∂2
t − c2(x)∆)u = 0, (t, x) ∈ Rn,

with initial conditions u(0, x) = f1(x), ut(0, x) = f2. It is enough to assume first that f1 and f2

are in C∞0 , and extend the resulting solution operator to larger spaces later.
We are looking for a solution of the form

(A.14) u(t, x) = (2π)−n
∑
σ=±

∫
eiφσ(t,x,ξ)

(
a1,σ(x, ξ, t)f̂1(ξ) + |ξ|−1a2,σ(x, ξ, t)f̂2(ξ)

)
dξ,

modulo terms involving smoothing operators of f1 and f2. The reason to expect two terms is already
clear by the propagation of singularities theorem, and is also justified by the eikonal equation
below. Here the phase functions φ± are positively homogeneous of order 1 in ξ. Next, we seek the
amplitudes in the form

(A.15) aj,σ ∼
∞∑
k=0

a
(k)
j,σ , σ = ±, j = 1, 2,

where a
(k)
j,σ is homogeneous in ξ of degree −k for large |ξ|. To construct such a solution, we plug

(A.14) into (A.13) and try to kill all terms in the expansion in homogeneous (in ξ) terms.
Equating the terms of order 2 yields the eikonal equation

(A.16) (∂tφ)2 − c2(x)|∇xφ|2 = 0.

Write fj = (2π)−n
∫
eix·ξ f̂j(ξ) dξ, j = 1, 2, to get the following initial conditions for φ±

(A.17) φ±|t=0 = x · ξ.
The eikonal equation can be solved by the method of characteristics. First, we determine ∂tφ and
∇xφ for t = 0. We get ∂tφ|t=0 = ∓c(x)|ξ|, ∇xφ|t=0 = ξ. This implies existence of two solutions
φ±. If c = 1, we easily get φ± = ∓|ξ|t + x · ξ. Let for any (z, ξ), γz,ξ(s) be unit speed geodesic
through (z, ξ). Then φ+ is constant along the curve (t, γz,ξ(t)) that implies that φ+ = z(x, ξ) · ξ
in any domain in which (t, z) can be chosen to be coordinates. Similarly, φ− is constant along the
curve (t, γz,−ξ(t)). In general, we cannot solve the eikonal equation globally, for all (t, x). Two
geodesics γz,ξ and γw,ξ may intersect, for example, giving a non-unique value for φ±. We always
have a solution however in a neighborhood of t = 0.
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Equate now the order 1 terms in the expansion of (∂2
t − c2∆)u to get that the principal terms of

the amplitudes must solve the transport equation

(A.18)
(
(∂tφ±)∂t − c2∇xφ± · ∇x + C±

)
a

(0)
j,± = 0,

with

2C± = (∂2
t − c2∆)φ±.

This is an ODE along the vector field (∂tφ±, c
2∇xφ), and the integral curves of it coincide with

the curves (t, γz,±ξ). Given an initial condition at t = 0, it has a unique solution along the integral
curves as long as φ is well defined.

Equating terms homogeneous in ξ of lower order we get transport equations for a
(k)
j,σ , j = 1, 2, . . .

with the same left-hand side as in (A.18) with a right-hand side determined by a
(k−1)
k,σ .

Taking into account the initial conditions, we get

a1,+ + a1,− = 1, a2,+ + a2,− = 0 for t = 0.

This is true in particular for the leading terms a
(0)
1,± and a

(0)
2,±. Since ∂tφ± = ∓c(x)|ξ| for t = 0, and

ut = f2 for t = 0, from the leading order term in the expansion of ut we get

a
(0)
1,+ = a

(0)
1,−, ic(x)(a

(0)
2,− − a

(0)
2,+) = 1 for t = 0.

Therefore,

(A.19) a
(0)
1,+ = a

(0)
1,− =

1

2
, a

(0)
2,+ = −a(0)

2,− =
i

2c(x)
for t = 0.

Note that if c = 1, then φ± = x · ξ ∓ t|ξ|, and a1,+ = a1,− = 1/2, a2,+ = −a2,− = i/2. Using those

initial conditions, we solve the transport equations for a
(0)
1,± and a

(0)
2,±. Similarly, we derive initial

conditions for the lower order terms in (A.15) and solve the corresponding transport equations.
Then we define aj,σ by (A.15) as a symbol.

The so constructed u in (A.14) is a solution only up to smoothing operators applied to (f1, f2).
Using standard hyperbolic estimates, we show that adding such terms to u, we get an exact solution
to (A.13). As mentions above, this construction may fail for t too large, depending on the speed.
On the other hand, the solution operator (f1, f2) 7→ u makes sense as a global Fourier Integral
Operator for which this construction is just one if its local representations.

Projections to the positive and the negative wave speeds. The zeros of the principal
symbol of the wave operator, in regions where c is smooth, are given by τ = ±c(x)|ξ|, that we
call wave speeds. We constructed above parametrices u± for the corresponding solutions. We will
present here a functional analysis point of view that allows us to project the initial data f to data
Π±f , so that, up to smoothing operators, u± corresponds to initial data Π±f .

Assume that c(x) is extended from the maximal connected component of Rn \ Γ containing x0

to the whole Rn in a smooth way so that 0 < 1/C ≤ c(x) ≤ C. Let

(A.20) Q = (−c2∆)1/2,

where the operator in the parentheses is the natural self-adjoint extension of−c2∆ to L2(Rn, c−2dx),
and the square root exists by the functional calculus. Moreover, Q is an elliptic ΨDO of order 1 in
any open set; and let Q−1 denote a fixed parametrix.

It is well known that the solution to (A.13) can be written as

(A.21) u = cos(tQ)f1 +
sin(tQ)

Q
f2,
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and the latter operator is defined by the functional calculus as φ(t, Q) with φ(t, ·) = sin(t·)/· ∈ C∞.
Based on that, we can write

(A.22) etP = eitQΠ+ + e−itQΠ−,

where

(A.23) Π+ =
1

2

(
1 −iQ−1

iQ 1

)
, Π− =

1

2

(
1 iQ−1

−iQ 1

)
.

It is straightforward to see that Π± are orthogonal projections in H, up to errors of smoothing
type. Then given f ∈ H supported on Ω, one has u± = etPf±, with f± := Π±f .
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[50] F. Trèves. Introduction to pseudodifferential and Fourier integral operators. Vol. 2. Plenum Press, New York,
1980. Fourier integral operators, The University Series in Mathematics.

[51] L. V. Wang (editor). Photoacoustic imaging and spectroscopy. CRC Press, 2009.
[52] L. V. Wang and H.-I. Wu. Biomedical Optics: Principles and Imaging. Wiley-Interscience, New Jersey, 2007.

[53] E. Wiechert and K. Zoeppritz. Über Erdbebenwellen. Nachr. Koenigl. Geselschaft Wiss. Göttingen, 4:415–549,
1907.

[54] M. Williams. Transmission across a moving interface: necessary and sufficient conditions for (l2) well posedmess.
Indiana Univ. Math. J., 41(2):303–338, 1992.

[55] M. Xu and L.-H. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys.
Rev. E., 71:016706, 2005.

[56] M. Xu and L. V. Wang. Photoacoustic imaging in biomedicine. Review of Scientific Instruments, 77(4):041101,
2006.

[57] Y. Xu and B. He. Phys. Med. Bio, 50:5175-5187, 2005. Magnetic Acoustic tomography with magnetic induction
(MAT-MI).

[58] Y. Xu, P. Kuchment, and G. Ambartsoumian. Reconstructions in limited view thermoacoustic tomography,.
Medical Physics, 31(4):724–733, 2004.

[59] Y. Xu, L. Wang, P. Kuchment, and G. Ambartsoumian. Limited view thermoacoustic tomography. In Photoa-
coustic imaging and spectroscopy, L. H. Wang (Editor), chapter 6, pages 61–73. CRC Press, 2009.

[60] Y. Xu and L. V. Wang. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography.
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 53(3):542–548, 2006.

[61] X. Yang and L. V. Wang. Monkey brain cortex imaging by photoacoustic tomography. J Biomed Opt,
13(4):044009, 2008.

Department of Mathematics, Purdue University, West Lafayette, IN 47907

Department of Mathematics, University of Washington, Seattle, WA 98195 and University of Cal-
ifornia, Irvine, Irvine, CA 92617


