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Abstract We survey some results on travel time tomography. The question is whether we can de-

termine the anisotropic index of refraction of a medium by measuring the travel times of waves going

through the medium. This can be recast as geometry problems, the boundary rigidity problem and

the lens rigidity problem. The boundary rigidity problem is whether we can determine a Riemannian

metric of a compact Riemannian manifold with boundary by measuring the distance function between

boundary points. The lens rigidity problem problem is to determine a Riemannian metric of a Rie-

mannian manifold with boundary by measuring for every point and direction of entrance of a geodesic

the point of exit and direction of exit and its length. The linearization of these two problems is tensor

tomography. The question is whether one can determine a symmetric two-tensor from its integrals

along geodesics. We emphasize recent results on boundary and lens rigidity and in tensor tomography

in the partial data case, with further applications.
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1 Introduction

The question of determining the sound speed or index of refraction of a medium by measuring
the first arrival times of waves arose in geophysics in an attempt to determine the substructure
of the Earth by measuring at the surface of the Earth the travel times of seismic waves. An early
success of this inverse method was the estimate by Herglotz [29] and Wiechert and Zoeppritz [81]
of the diameter of the Earth and the location of the mantle, crust and core. The assumption
used in those papers is that the index of refraction (which is inverse proportional to the speed)
depends only on the radius. A more realistic model is to assume that it depends on position,
the case of an heterogeneous medium. The travel time tomography problem can be formulated
mathematically as determining a Riemannian metric on a bounded domain (the Earth) given
by ds2 = 1

c2(x)dx
2, where c is a positive function, from the length of geodesics (travel times)

joining points in the boundary.

More recently it has been realized, by measuring the travel times of seismic waves, that
the inner core of the Earth exhibits anisotropic behavior, that is the speed of waves depends
also on direction there with the fast direction parallel to the Earth’s spin axis [11]. Given the
complications presented by modeling the Earth as an anisotropic elastic medium we consider
a simpler model of anisotropy, namely that the wave speed is given by a symmetric, positive
definite matrix g = (gij)(x), that is, a Riemannian metric in mathematical terms. The problem
is to determine the metric from the lengths of geodesics joining points in the boundary (the
surface of the Earth in the motivating example). Other applications of travel time tomography
are to imaging the Sun’s interior [33], medical imaging [76] and to ocean acoustics [44] to name
a few.

A general and geometric formulation of the travel time tomography problem is the question
of whether given a compact Riemannian manifold with boundary one can determine the Rie-
mannian metric in the interior knowing the lengths of geodesics joining points on the boundary,
i.e., the boundary distance function. This is a problem that also appears naturally in rigidity
questions in Riemannian geometry and it is known as the boundary rigidity problem. Notice
that the boundary distance function is unchanged under any isometry which fixes the boundary,
thus one can only expect to recover the metric up to this natural obstruction.

The boundary distance function takes into account only length minimizing geodesics, one
can consider the behavior of all geodesics going through the manifold. This induces another type
of rigidity problems: the lens rigidity problem and scattering rigidity problem, which concerns
the determination of a Riemannian metric up to the natural obstruction, from the scattering
relation or lens data. The scattering relation, introduced by Guillemin [27], is a map which
sends the point and direction of entrance of a geodesic to point and direction of exit. The
scattering relation together with information of lengths of geodesics gives the lens data. Again,
lens data is unchanged under an isometry fixing the boundary.

There is another closely related problem, the geodesic X-ray transform, where one integrates
a function or a tensor field along geodesics of a Riemannian metric. The integration of a function
along geodesics is the linearization of the boundary rigidity problem and lens rigidity problem
in a fixed conformal class. The standard X-ray transform [28], where one integrates a function
along straight lines, corresponds to the case of the Euclidean metric and is the basis of medical
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imaging techniques such as CT and PET. The case of integration along a general geodesic
arises in geophysical and ultrasound imaging. The case of integrating tensors of order two
along geodesics, also known as deformation boundary rigidity, is the linearization of the general
boundary rigidity problem and lens rigidity problem. One important inverse problem for the
geodesic X-ray transform is whether one can recover a function or a tensor field from its integrals
over geodesics, this is the tensor tomography problem. We review in this article some recent
results on the boundary and lens rigidity problem as well as tensor tomography when one has
data on part of the boundary, the partial data problem [73–75, 79]. The partial data results
have led to new global results for the lens rigidity problem.

In Section 2 we review results on the boundary rigidity problem with data on the whole
boundary. This is mostly based on [56] and [67]. In Section 3 we review results on tensor
tomography and in Section 4, lens rigidity with full data. In Section 5 we consider partial data
for boundary and lens rigidity and tensor tomography, in particular we give new results on the
lens rigidity problem with full data. In Section 6, we discuss applications of the new method
for the global lens rigidity problem to other geometric inverse problems.

In this survey paper we only consider the case of transmission tomography. For the case of
reflection tomography see for instance [36] and [8].

2 Boundary Rigidity in the Full Data Case

In this section we formulate precisely the boundary rigidity problem and survey some of the
main results.

Let (M, g) be a compact Riemannian manifold with boundary ∂M . Let dg(x, y) denote the
geodesic distance between x and y, two points in the boundary. This is defined as the infimum
of the length of all sufficiently smooth curves joining the two points. The function dg measures
the first arrival time of waves joining points of the boundary. One of the inverse problems we
discuss in this section is whether we can determine the Riemannian metric g knowing dg(x, y)
for any x ∈ ∂M , y ∈ ∂M . This problem also arose in rigidity questions in Riemannian
geometry [12, 23, 39]. The metric g cannot be determined from this information alone. We
have dψ∗g = dg for any diffeomorphism ψ : M → M that leaves the boundary pointwise fixed,
i.e., ψ|∂M = Id, where Id denotes the identity map and ψ∗g is the pull-back of the metric g. The
natural question is whether this is the only obstruction to unique identifiability of the metric.
It is easy to see that this is not the case. Namely one can construct a metric g and find a
point x0 in M so that dg(x0, ∂M) > sup x,y∈∂Mdg(x, y). For such a metric, dg is independent
of a change of g in a neighborhood of x0. The hemisphere of the round sphere is another
example. Therefore it is necessary to impose some a-priori restrictions on the metric. One such
restriction is to assume that the Riemannian manifold (M, g) is simple, i.e., any geodesic has
no conjugate points and ∂M is strictly convex. ∂M is strictly convex if the second fundamental
form of the boundary is positive definite at every boundary point. Michel conjectured in [39]
that simple manifolds are boundary distance rigid, that is dg determines g uniquely up to an
isometry which is the identity on the boundary. This is known for simple subspaces of Euclidean
space (see [23]), simple subspaces of an open hemisphere in two dimensions (see [40]), simple
subspaces of symmetric spaces of constant negative curvature [3], simple two dimensional spaces
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of negative curvature (see [13] or [47]). If one metric is close to the Euclidean metric boundary
rigidity was proven in [37] and later improved in [7]. We remark that simplicity of a compact
manifold with boundary can be determined from the boundary distance function. In the case
that both g1 and g2 are conformal to the Euclidean metric e (i.e., (gk)ij = αkδij , k = 1, 2
with δij the Kronecker symbol), as mentioned earlier, the problem we are considering here is
known in seismology as the inverse kinematic problem. In this case, it has been proven by
Mukhometov in two dimensions [42] that if (M, gi), i = 1, 2 is simple and dg1 = dg2 , then
g1 = g2. More generally the same method of proof shows that if (M, gi), i = 1, 2, are simple
compact Riemannian manifolds with boundary and they are in the same conformal class then
the metrics are determined by the boundary distance function. More precisely we have:

Theorem 2.1 Let (M, gi), i = 1, 2 be simple compact Riemannian manifolds with boundary of
dimension n ≥ 2. Assume g1 = ρg2 for a positive, smooth function ρ, ρ|∂M = 1 and dg1 = dg2
then g1 = g2.

This result and a stability estimate were proven in [42]. We remark that in this case the
diffeomorphism ψ that is present in the general case must be the identity if the metrics are
conformal to each other. For related results and generalizations see [2, 4, 12, 21, 43].

In [56] it was proven Michel’s conjecture in the two dimensional case:

Theorem 2.2 Let (M, gi), i = 1, 2 be two dimensional simple compact Riemannian manifolds
with boundary. Assume

dg1(x, y) = dg2(x, y) ∀(x, y) ∈ ∂M × ∂M.

Then there exists a diffeomorphism ψ : M →M , ψ|∂M = Id, so that

g2 = ψ∗g1.

The proof of Theorem 2.2 involves a connection between the scattering relation defined in
Section 4 and the Dirichlet-to-Neumann map (DN) associated to the Laplace–Beltrami opera-
tor [78]. A sketch of the proof of Theorem 2.2 can be found in [78]. A recent generalization of
the boundary rigidity result to surfaces with non-convex boundary can be found in [25].

3 Boundary Rigidity and Tensor Tomography

We review here the general results obtained in [64] for boundary rigidity and tensor tomography.
It was shown in [57] that the linearization of the boundary rigidity problem is given by

the following integral geometry problem: recover a symmetric tensor of order 2, which in any
coordinate system is given by f = (fij), by the geodesic X-ray transform

Igf(γ) =
∫
fij(γ(t))γ̇i(t)γ̇j(t) dt,

using the Einstein summation convention, known for all geodesics γ in M . In this section we
denote by Ig the geodesic X-ray transform of tensors of order two. It can be easily seen that
Igdv = 0 for any vector field v with v|∂M = 0, where dv denotes the symmetric differential

[dv]ij =
1
2
(∇ivj + ∇jvi), (3.1)

and ∇kv denote the covariant derivatives of the vector field v. This is the linear version of
the fact that dg does not change on (∂M)2 := ∂M × ∂M under an action of a diffeomorphism
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as above. The natural formulation of the linearized problem is therefore that Igf = 0 implies
f = dv with v vanishing on the boundary. We will refer to this property as s-injectivity of Ig.
More precisely, we have.

Definition 3.1 We say that Ig is s-injective in M , if Igf = 0 and f ∈ L2(M) imply f = dv

with some vector field v ∈ H1
0 (M).

Any symmetric tensor f ∈ L2(M) admits an orthogonal decomposition f = fs + dv into a
solenoidal and potential parts with v ∈ H1

0 (M), and fs divergence free, i.e., δfs = 0, where δ
is the adjoint operator to −d given by [δf ]i = gjk∇kfij [57]. Therefore, Ig is s-injective, if it
is injective on the space of solenoidal tensors. The inversion of Ig is a problem of independent
interest in integral geometry, also called tensor tomography. We first survey the recent results
on this problem. S-injectivity, respectively injectivity for 1-tensors (1-forms) and functions is
known, see [57] for references. S-injectivity of Ig was proved in [55] for metrics with negative
curvature, in [57] for metrics with small curvature and in [62] for Riemannian surfaces with no
focal points. A conditional and non-sharp stability estimate for metrics with small curvature is
also established in [57]. In [65], stability estimates for s-injective metrics were shown and sharp
estimates about the recovery of a 1-form f = fjdx

j and a function f from the associated Igf

which is defined by

Igf(γ) =
∫
fi(γ(t))γ̇i(t)dt.

The stability estimates proven in [65] were used to prove local uniqueness for the boundary
rigidity problem near any simple metric g with s-injective Ig. Similarly to [77], we say that f
is analytic in the set K (not necessarily open), if it is real analytic in some neighborhood of
K. The results that follow in this section are based on [67]. The first main result we discuss is
about s-injectivity for simple analytic metrics.

Theorem 3.2 Let g be a simple, real analytic metric in M . Then Ig is s-injective.

By proving a stability estimate in [64] it was shown the following generic result:

Theorem 3.3 There exists k0 such that for each k ≥ k0, the set Gk(M) of simple Ck(M)
metrics in M for which Ig is s-injective is open and dense in the Ck(M) topology.

Of course, Gk(M) includes all real analytic simple metrics in M , according to Theorem 3.2.

Theorem 3.3 allows us to prove the following local generic uniqueness result for the non-
linear boundary rigidity problem.

Theorem 3.4 Let k0 and Gk(M) be as in Theorem 3.3. There exists k ≥ k0, such that for
any g0 ∈ Gk, there is ε > 0, such that for any two metrics g1, g2 with ‖gm − g0‖Ck(M) ≤ ε,
m = 1, 2, we have the following:

dg1 = dg2 on (∂M)2 implies g2 = ψ∗g1 (3.2)

with some Ck+1(M)-diffeomorphism ψ : M →M fixing the boundary.

A Hölder type stability estimate about the boundary rigdity problem is proven in [67] under
similar conditions.
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4 Lens Rigidity

For non-simple manifolds in particular, if we have conjugate points or the boundary is not
strictly convex, we need to look at the behavior of all the geodesics and the scattering relation
encodes this information. We proceed to define in more detail the scattering relation for non-
convex manifolds and the lens rigidity problem and state our results. We note that we will
also consider the case of incomplete data, that is when we don’t have information about all the
geodesics entering the manifold. More details can be found in [69, 70].

Denote by SM = {(x, ξ) ∈ TM ; |ξ| = 1} the unit sphere bundle and set

∂±SM = {(x, ξ) ∈ ∂SM ; ±〈ν, ξ〉 < 0}, (4.1)

where ν is the unit interior normal, 〈·, ·〉 and stands for the inner product. The scattering
relation

Σ : ∂−SM → ∂+SM (4.2)

is defined by Σ(x, ξ) = (y, η) = Φ�(x, ξ), where Φt is the geodesic flow, and � > 0 is the first
moment, at which the unit speed geodesic through (x, ξ) hits ∂M again. If such an � does
not exists, we formally set � = ∞ and we call the corresponding initial condition and the
corresponding geodesic trapping. This defines also �(x, ξ) as a function � : ∂−SM → [0,∞].
Note that Σ and � are not necessarily continuous.

It is convenient to think of Σ and � as defined on the whole ∂SM with Σ = Id and � = 0 on
∂+SM . We parametrize the scattering relation in a way that makes it independent of pulling
it back by diffeomorphisms fixing ∂M pointwise. Let κ± : ∂±SM → B(∂M) be the orthogonal
projection onto the (open) unit ball tangent bundle that extends continuously to the closure of
∂±SM . Then κ± are homeomorphisms, and we set

σ = κ+ ◦ Σ ◦ κ−1
− : B(∂M) −→ B(∂M). (4.3)

According to our convention, σ = Id on ∂(B(∂M)) = S(∂M). We equip B(∂M) with the
relative topology induced by T (∂M), where neighborhoods of boundary points (those in S(∂M))
are given by half-neighborhoods, i.e., by neighborhoods in T (∂M) intersected with B(∂M). It
is possible to define σ in a way that does not require knowledge of g|T (∂M) by thinking of any
boundary vector ξ as characterized by its angle with ∂M and the direction of its tangential
projection. Let D be an open subset of B(∂M). A priori, the latter depends on g|T (∂M). By the
remark above, we can think of it as independent of g|T (∂M) however. The lens rigidity problem
we study is the following:

Given M and D, do σ and �, restricted to D, determine g uniquely, up to a pull back of a
diffeomorphism that is identity on ∂M?

The answer to this question, even when D = B(∂M), is negative, see [16]. The known
counter-examples are trapping manifolds. The boundary rigidity problem and the lens rigidity
one are equivalent for simple metrics.

Vargo [80] proved that real-analytic manifolds satisfying an additional mild condition are
lens rigid. Croke has shown that if a manifold is lens rigid, a finite quotient of it is also lens
rigid [14]. He has also shown that the torus is lens rigid [15]. Of course the torus is trap-
ping. Stefanov and Uhlmann have shown lens rigidity locally near a generic class of non-simple
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manifolds [70]. In a recent very interesting work, Guillarmou [24] proved that in two dimen-
sions, one can determine from the lens relation the conformal class of the metric if the trapped
set is hyperbolic and there are no conjugate points. He also proved deformation lens rigidity
in higher dimensions under the same assumptions. More recently, Guillarmou, Mazzucchelli
and Tzou [25] show lens rigidity for non-trapping, oriented compact Riemannian surfaces with
boundary, without conjugate points. In particular, they do not require the boundary to be
convex.

4.1 Boundary Determination of the Jet of g

The lens rigidity in the real-analytic category was studied by Vargo [80]. A key ingredient of
the proof is a boundary determination result proved by Stefanov and Uhlmann in [70] that we
proceed to state. This result shows that one can determine all derivatives of g on ∂M from
the lens data under some non-conjugacy condition. The theorem is interesting by itself. Notice
that g below does not need to be analytic or generic.

Theorem 4.1 Let (M, g) be a compact Riemannian manifold with boundary. Let (x0, ξ0) ∈
S(∂M) be such that the maximal geodesic γx0,ξ0 through it is of finite length, and assume that
x0 is not conjugate to any point in γx0,ξ0 ∩ ∂M . If σ and � are known on some neighborhood of
(x0, ξ0), then the jet of g at x0 in boundary normal coordinates is determined uniquely.

The boundary determination comes with a Hölder type stability estimate as well, see
e.g. [67].

4.2 The Microlocal Condition

To state the results of [67] and [70] we need some definitions.

Definition 4.2 We say that D is complete for the metric g, if for any (z, ζ) ∈ T ∗M there
exists a maximal in M , finite length unit speed geodesic γ : [0, l] → M through z, normal to ζ,
such that

{(γ(t), γ̇(t)); 0 ≤ t ≤ l} ∩ S(∂M) ⊂ D, (4.4)

there are no conjugate points on γ. (4.5)

We call the Ck metric g regular, if a complete set D exists, i.e., if B(∂M) is complete.

If z ∈ ∂M and ζ is conormal to ∂M , then γ may reduce to one point.

Topological Condition (T): Any path in M connecting two boundary points is homotopic
to a polygon c1 ∪ γ1 ∪ c2 ∪ γ2 ∪ · · · ∪ γk ∪ ck+1 with the properties that for any j, (i) cj is a path
on ∂M ; (ii) γj : [0, lj ] →M is a geodesic lying in M int with the exception of its endpoints and
is transversal to ∂M at both ends; moreover, κ−(γj(0), γ̇j(0)) ∈ D.

Notice that (T) is an open condition w.r.t. g, i.e., it is preserved under small C2 perturba-
tions of g. To define the CK(M) norm below in a unique way, we choose and fix a finite atlas
on M .

4.2.1 Results about Tensor Tomography

We refer to [69] for more details about the results in this section. It turns out that a linearization
of the lens rigidity problem is again the problem of s-injectivity of the ray transform I. Here
and below we sometimes drop the subscript g. Given D as above, we denote by ID (or Ig,D)
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the ray transform I restricted to the maximal geodesics issued from (x, ξ) ∈ κ−1
− (D). The first

result of this section generalizes Theorem 3.2.

Theorem 4.3 Let g be an analytic, regular metric on M . Let D be complete and open. Then
ID is s-injective.

The theorem above allows us to formulate a generic result:

Theorem 4.4 Let G ⊂ Ck(M) be an open set of regular Riemannian metrics on M such that
(T) is satisfied for each one of them. Let the set D′ ⊂ ∂SM be open and complete for each
g ∈ G. Then there exists an open and dense subset Gs of G such that Ig,D′ is s-injective for any
g ∈ Gs.

Of course, the set Gs includes all real analytic metrics in G.

Corollary 4.5 Let R(M) be the set of all regular Ck metrics on M satisfying (T) equipped
with the Ck(M1) topology. Then for k � 1, the subset of metrics for which the X-ray transform
I over all simple geodesics through all points in M is s-injective, is open and dense in R(M).

4.2.2 Results about the Non-linear Lens Rigidity Problem

Using the results above, it was proven in [70] the following about the lens rigidity problem on
manifolds satisfying the assumptions at the beginning of Section 4.2. More details can be found
in [70]. Theorem 4.6 below says, loosely speaking, that for the classes of manifolds and metrics
we study, the uniqueness question for the non-linear lens rigidity problem can be answered
locally by linearization. This is a non-trivial implicit function type of theorem however because
our success heavily depends on the a priori stability estimate that the s-injectivity of ID implies;
and the latter is based on the hypoelliptic properties of ID. We work with two metrics g and
ĝ; and will denote objects related to ĝ by σ̂, �̂, etc.

Theorem 4.6 Let (M, g0) satisfy the topological assumption (T), with g0 ∈ Ck(M) a regular
Riemannian metric with k � 1. Let D be open and complete for g0, and assume that there
exists D′ � D so that Ig0,D′ is s-injective. Then there exists ε > 0, such that for any two
metrics g, ĝ satisfying

‖g − g0‖Ck(M) + ‖ĝ − g0‖Ck(M) ≤ ε, (4.6)

the relations

σ = σ̂, � = �̂ on D

imply that there is a Ck+1 diffeomorphism ψ : M →M fixing the boundary such that

ĝ = ψ∗g.

By Theorem 4.4, the requirement that Ig0,D′ is s-injective is a generic one for g0. Therefore,
Theorems 4.6 and 4.4 combined imply that there is local uniqueness, up to isometry, near a
generic set of regular metrics.

Corollary 4.7 Let D′ � D, G, Gs be as in Theorem 4.4. Then the conclusion of Theorem 4.6
holds for any g0 ∈ Gs.

Bao and Zhang have proved in [1] a stability estimate for the lens rigidity problem under
some microlocal conditions.
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5 Boundary and Lens Rigidity with Partial Data

Now we consider the boundary rigidity problem with partial (local) data, that is, we know
the boundary distance function for points on the boundary near a given point. Partial data
problems arise naturally in applications since in many cases one doesn’t have access to the whole
boundary. We first study the corresponding linearized problem with partial data in Sections
5.1–5.3. In Section 5.4 we consider the partial data boundary and lens rigidity problem through
a pseudolinearization. Section 5.6 is devoted to the applications of the various partial data
results to global problems under a geometric foliation condition.

5.1 The Linearized Problem for Conformal Metrics

It is well-known that the linearization of the boundary rigidity and lens rigidity problem is the
geodesic ray transform of symmetric 2-tensors. In particular, if one restricts the linearization
in a fixed conformal class, it reduces to the geodesic ray transform of smooth functions on the
manifold. In this section, we discuss the local geodesic ray transform of functions in dimension
≥ 3.

Let X be a strictly convex domain in a Riemannian manifold (X̃, g) of dimension ≥ 3 with
boundary defining function ρ (so ρ ∈ C∞(X̃), ρ > 0 in X, < 0 on X̃ \ X, vanishes non-
degenerately at ∂X). We recall that strict convexity means that geodesics which are tangent to
∂X are only simply tangent, curving away from X, or more explicitly in terms of Hamiltonian
dynamics, with G the dual metric function on T ∗X̃, if for some β ∈ T ∗

p X̃, p ∈ ∂X, β �= 0, one
has (HGρ)(β) = 0 where HG is the Hamiltonian vector field associated with G, then necessarily
(H2

Gρ)(β) < 0. For an open set O ⊂ X, we call geodesic segments γ of g which are contained
in O with endpoints at ∂X O-local geodesics; we denote the set of these by MO. Thus, MO is
an open subset of the set of all geodesics, M. We then define the local geodesic transform of a
function f defined on X as the collection (If)(γ) of integrals of f along geodesics γ ∈ MO, i.e.
as the restriction of the X-ray transform to MO.

The main result of this section is an invertibility result by Uhlmann and Vasy [79] for the
local geodesic transform on neighborhoods of p ∈ ∂X in X of the form {x̃ > −c}, c > 0, where
x̃ is a function with x̃(p) = 0, dx̃(p) = −dρ(p), see Figure 5.1 below.

Theorem 5.1 For each p ∈ ∂X, there exists a function x̃ ∈ C∞(X̃) vanishing at p and with
dx̃(p) = −dρ(p) such that for c > 0 sufficiently small, and with Op = {x̃ > −c} ∩X, the local
geodesic transform is injective on Hs(Op), s ≥ 0. Further, let Hs(MOp

) denote the restriction
of elements of Hs(M) to MOp

, and for � > 0 let

Hs
�(Op) = e�/(x̃+c)Hs = {f ∈ Hs

loc(Op) : e−�/(x̃+c)f ∈ Hs(Op)}.
Then for s ≥ 0 there exists C > 0 such that for all f ∈ Hs

�(Op),

‖f‖Hs−1
�

(Op) ≤ C‖If |MOp
‖Hs(MOp ).

Remark 5.2 Here the constant C is uniform in c for small c, and indeed if we consider the
regions {ρ ≥ ρ0} ∩ {x̃ > −c} with |ρ0| and |c| sufficiently small and such that this intersection
is non-empty, the estimate is uniform in both c and ρ0. Further, the estimate is also stable
under sufficiently small perturbations of the metric g, i.e., the constant is uniform (Notice that
the hypotheses of the theorem are satisfied for small perturbations of g).
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We remark that for this result one only needs to assume convexity near the point p. This
local result is new even in the case that the metric is conformal to the Euclidean metric. We also
point out that we also get a reconstruction method in the form of a Neumann series. See [79]
for more details. These results generalize support type theorems to the smooth case for the
geodesic X-ray transform given in [34] for simple real-analytic metrics.

For the rest of this section, we give a sketch of the proof of Theorem 5.1. In order to
motivate the proof, recall that Stefanov and Uhlmann [69] have shown that under a microlocal
condition on the geodesics, one can recover the singularities of functions from their X-ray
transform, and indeed from a partial X-ray transform (where only some geodesics are included
in the X-ray family M′). (In fact, they also showed analogous statements for the transforms
on tensors.) Roughly speaking what one needs is that given a covector ν = (z, ζ), one needs to
have a geodesic in M′ normal to ζ at z such that in a neighborhood of ν a simplicity condition
is satisfied. Indeed, under these assumptions, a microlocal version of the normal operator,
(QI)∗(QI), where Q microlocalizes to M′ roughly speaking, is an elliptic pseudodifferential
operator.

Now, in dimension ≥ 3, if the boundary ∂X is strictly convex, one can use geodesics which
are almost tangent to ∂X to give a family M′ which satisfies the above conditions for ν with z
near ∂X. Concretely, let ρ be a boundary defining function of X, i.e. ρ > 0 in X, ρ = 0 at ∂X,
and dρ �= 0 at ∂X; we assume that in fact ρ is defined on the ambient space X̃ as above. First
we choose an initial neighborhood U of p in X̃ and a function x̃ defined on it with x̃(p) = 0,
dx̃(p) = −dρ(p), dx̃ �= 0 on U with convex level sets from the side of the sublevel sets and such
that Oc = {x̃ > −c} ∩ {ρ ≥ 0} satisfies Oc ⊂ U is compact. One example of such x̃ is

x̃(z) = −ρ(z) − ε|z − p|2,
whose level sets are slightly less convex, see Figure 5.1 below.
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Figure 1 The functions ρ and x̃ when the background is flat space X̃. The intersection of ρ ≥ 0 and

xc > 0 (where xc = x̃ + c, so this is the region x̃ > −c) is the lens shaped region Op. Note that, as

viewed from the superlevel sets, thus from Op, x̃ has concave level sets. At the point z, one only

considers integrals over geodesics in the indicated small angle. As z moves to the artificial boundary

xc = 0, the angle of this cone shrinks like Cxc so that in the limit the geodesics taken into account

become tangent to xc = 0.

We consider geodesics γν : I → X̃ parameterized by ν = (z, ζ) ∈ SX̃ (the sphere bundle of X̃
realized as a subbundle of TX̃, e.g. via a Riemannian metric; we actually use a slightly modified
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identification) with γ′ν(0) = ν, if ν is tangent to a level set of x̃ in Oc, i.e. if d
dt (x̃ ◦ γν)|t=0 = 0,

then α(ν) := d2

dt2 (x̃ ◦ γν)|t=0 ≥ C > 0. The lower bound on the second derivative is a concavity
statement for the level sets of x̃ from the side of the superlevel sets. Let x = xc = x̃ + c as
above. Thus, x is a boundary defining function for {x̃ > −c}; for the time being we regard c

as fixed. A consequence of the uniform concavity statement is that, with λ = d
dt (x ◦ γν)|t=0, if

C1 > 0 is sufficiently small and |λ| < C1
√
x, then γν remains in x ≥ 0. Rather than using this

range of λ, we instead use the stronger bound |λ| < C2x, and define A, which is essentially a
“microlocal normal operator” for the geodesic ray transform, to be an average:

Af(z) = x−2

∫
If(γν)χ(λ/x) dμ(ν),

where μ is a non-degenerate smooth measure on SX̃, and χ ≥ 0 has compact support. Then it
is routine to check that the principal symbol of A at (z, ζ) is a multiple of

|ζ|−1

∫
|Ẑ|=1, Ẑ⊥ζ

χ(z, Ẑ)σ(z, Ẑ) dẐ

for a positive density σ. As observed in [69] this gives a recovery of singularities for the local
problem we are considering, it yields no invertibility or reconstruction. Indeed for the latter we
would like to have an invertible operator on a space of functions on Oc; in particular, as one
approaches x = 0 one would need to only allow integrals over geodesics in a narrow cone, be-
coming tangent to x = 0, which takes one outside the framework of standard pseudodifferential
operators.

To remedy this, we introduce the artificial boundary x = 0, and work with pseudodiffer-
ential operators in x > 0 which degenerate at x = 0. The particular degeneration we end up
with is Melrose’s scattering calculus [38]. This is defined on manifolds with boundary, with
boundary defining function x, and is based on degenerate vector fields x2∂x and x∂yj

, where
the (x, y1, . . . , yn−1) are local coordinates. This has the effect of pushing x = 0 “to infinity”
(these vector fields are complete under the exponential map). In particular, if we consider Rn

the radial compactification of R
n, let Ψsc stand for the scattering calculus of Melrose, Ψm,l

sc (Rn)
corresponds to symbols a ∈ Sm,l satisfying

|(Dα
zD

β
ζ a)(z, ζ)| ≤ Cαβ〈z〉l−|α|〈ζ〉m−|β|.

To describe the Schwartz kernel of a scattering pseudodifferential operator, it is convenient
to introduce the scattering coordinates

x, y, X =
x′ − x

x2
, Y =

y′ − y

x

valid for x > 0. Then the Schwartz kernel of an element of Ψm,l
sc ({x ≥ 0}) is of the form

K = x−lK̃(x, y,X, Y ), where K̃ is smooth in (x, y) down to x = 0 with values in conormal
distributions on R

n
X,Y , conormal to {X = 0, Y = 0}, which are Schwartz at infinity (i.e., decay

rapidly at infinity with all derivatives). Notice that the operator A does not have rapid decay
as (X,Y ) → ∞, to remedy this we introduce exponential weights and consider for � ∈ R,

A� = e−�/xAe�/x.
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It is not difficult to check that under scattering coordinates the Schwartz kernel of AF takes
the form

e−�X/(1+xX)χ

(
X − α|Y |2

|Y | +O(x)
)
|Y |−n+1J, (5.1)

where the density factor J is smooth and positive with J |x=0 ≡ 1. Thus the following result
holds for A�, of which the ellipticity statement is essentially for the same reason as that for
operator A.

Lemma 5.3 For � > 0, A� is in Ψ−1,0
sc ({x ≥ 0}), and is elliptic in the sense that the standard

principal symbol is such near the boundary (up to the boundary, x = 0).

However, even when this holds globally on a compact space, this ellipticity is not sufficient
for Fredholm properties (between Sobolev spaces of order shifted by 1), or the corresponding
estimates, due to the boundary x = 0. In general, scattering pseudodifferential operators also
have a principal symbol at the boundary, which is a (typically non-homogeneous) function on a
cotangent bundle; this needs to be invertible (non-zero) globally to imply Fredholm properties.
Similarly, estimates implying the finite dimensionality of localized (in O) non-trivial nullspace
as well as stability estimates, follow if this principal symbol is also invertible on O. (Note that
here localization does allow the support in {x ≥ 0} to include points at x = 0!)

The main technical result is the following

Lemma 5.4 For � > 0 there exists χ ∈ C∞
c (R), χ ≥ 0, χ(0) = 1, such that for the corre-

sponding operator A� = e−�/xAe�/x the boundary symbol is elliptic; indeed, this holds for all
χ sufficiently close in Schwartz space to a specific Gaussian.

Sketch of the proof : By (5.1) the restriction of the Schwartz kernel at x = 0 is

K̃(y,X, Y ) = e−�X |Y |−n+1χ

(
X − α(0, y, 0, Ŷ )|Y |2

|Y |
)
, (5.2)

where Ŷ = Y/|Y |, the desired almost invertibility (up to compact errors) amounts to the Fourier
transformed kernel, FX,Y K̃(y, ·, ·) being bounded below in absolute value by c〈(ξ, η)〉−1, c > 0
(here (ξ, η) are the Fourier dual variables of (X,Y )).

In order to find a suitable χ, we first make a slightly inadmissible choice for an easier
computation, namely we take χ(s) = e−s

2/(2�
−1α), so χ̂(·) = c

√
�−1αe−�

−1α|·|2/2 for appropri-
ate c > 0. Thus, χ does not have compact support, and an approximation argument will be
necessary at the end.

As mentioned above, α (as the Hessian of x) restricting on the tangent plans of the level
sets of x has a positive lower bound. Moreover, in the case of geodesics α(x, y, 0, Ŷ ) is a positive
definite quadratic form in Ŷ , thus one has α|Y |2 = Q(Y, Y ), a quadratic form in Y . Writing
Q−1(Y, Y ) for the dual quadratic form, we have that the X-Fourier transform of K̃ is a non-zero
multiple of

�
−1/2

√
α|Y |2−ne−�

−1(ξ2+�
2)Q(Y,Y )/2, (5.3)

where the last factor is a real Gaussian, thus is Schwartz in Y for � > 0. Taking into account
the formula of the Fourier transform of Gaussian functions, the Y -Fourier transform of (5.3) is
virtually a positive multiple of

〈ξ〉−1ϕ(η/〈ξ〉) = |η|−1|η′|ϕ(η′) = |η|−1ϕ̃(〈ξ〉/|η|, η′/|η′|), (5.4)
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where 〈ξ〉 = (ξ2 + �
2)1/2, η′ = η/〈ξ〉, with ϕ a positive 0-th order symbol near 0 and ϕ̃ smooth

positive near 0 in the first argument. This assures lower bounds c〈(ξ, η)〉−1, c > 0, i.e., elliptic
lower bounds.

Lemma 5.4 implies that A� is Fredholm on proper function spaces, i.e., A itself is Fredholm
on exponentially weighted spaces, where exponential growth is allowed at x = 0. We now recall
that x = xc depends on c, with all estimates uniform for c remaining in a compact set, and
the argument is finished by showing that for c > 0 sufficiently small one not only has Fredholm
properties but also invertibility, essentially as the Schwartz kernel has small support. This
proves the main theorem.

We remark that Boman has given in [5] counterexamples for local uniqueness for the X-
ray transform on a plane that integrates along lines with a dense family of smooth weights so
that we expect some restrictions on the family of curves for the uniqueness for the local X-ray
transform in dimension two.

5.2 More General Curves

We note that the geodesic nature of the curves was only used in the crucial step of showing
that the principal symbol at the boundary is invertible. The result of the local invertibility of
the geodesic ray transform, Theorem 5.1, was extended by Zhou [79, Appendix] to the X-ray
transform on more general curves.

Given a Riemannian manifold (X̃, g) of dimension ≥ 3, we consider smooth curves γ on X̃,
|γ̇| �= 0, that satisfy the following equation

∇γ̇ γ̇ = G(γ, γ̇), (5.5)

where ∇ is the Levi–Civita connection, G(z, v) ∈ TzX̃ is smooth on TX̃. γ = γz,v depends
smoothly on (z, v) = (γ(0), γ̇(0)). We call the collection of such smooth curves on X̃, denoted
by G, a general family of curves. For the sake of simplicity, we assume γ ∈ G are parameterized
by arclength (one can always reparametrize the curve to make this happen, and we will see
later that our method also works for curves with non-constant speed). Note that if G ≡ 0, G is
the set of usual geodesics; if G is the Lorentz force corresponding to some magnetic field, then
G consists of magnetic geodesics. We consider the X-ray transform of smooth functions along a
general family of curves, i.e. (If)(γ), γ ∈ G. X-ray transforms for general curves were studied
in e.g. [17, 20].

Let X be a domain in X̃ with boundary defining function ρ, and p ∈ ∂X a boundary point.
We say that X (or ∂X) is strictly convex (concave) at p with respect to G if for any γ ∈ G
with γ(0) = p, γ̇(0) = v ∈ Tp(∂X), we have d2

dt2 ρ(γ(t))|t=0 < 0 (> 0). It is easy to see that the
geometric meaning of our definition is similar to the usual convexity with respect to the metric
(geodesics).

Now assume X is strictly convex at p ∈ ∂X with respect to G. Similar to the settings in
Section 5.1, we obtain a smooth function x whose level sets are strictly concave with respect to
G from the super-level sets of x. In particular, if α is defined the same as in Section 5.1 as the
Hessian of x with respect to G, then α(x, y, 0, Ŷ ) > 0, i.e. α is positive on the tangent plane
of the level sets of x. It is known that α(x, y, 0, Ŷ ) defines a positive definite quadratic form
for the usual geodesics, however for a general family of curves, it no longer has such special
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structure.
We consider the operatorA� = e−�/xAe�/x introduced in Section 5.1. Similar to Lemma 5.3

A� is in Ψ−1,0
sc ({x ≥ 0}) for � > 0, with elliptic standard principal symbol. Now to show the

invertibility of A�, it suffices to establish the following lemma, analogous to Lemma 5.4, for a
general family of curves.

Lemma 5.5 For � > 0 there exists χ ∈ C∞
c (R), χ ≥ 0, χ(0) = 1, such that the boundary

principal symbol of corresponding A� is elliptic.

Sketch of the proof : Similar to the strategy in the proof of Lemma 5.4, we first analyze the
boundary principal symbol for the case χ(s) = e−s

2/(2�
−1α), a compact supported one follows

by approximation. It is not difficult to see that the Schwartz kernel of A� and its boundary
restriction K̃ on x = 0 have the same type as (5.1) and (5.2) respectively, except that the values
of α at Ŷ and −Ŷ are not equal in general. So the X-Fourier transform of K̃ is a non-zero
multiple of

|Y |2−n((�−1α+)
1
2 e−�

−1(ξ2+�
2)α+|Y |2/2 + (�−1α−)

1
2 e−�

−1(ξ2+�
2)α−|Y |2/2), (5.6)

where α+ = α(0, y, 0, Ŷ ), α− = α(0, y, 0,−Ŷ ).
As mentioned previously, in general α is not a quadratic form in Ŷ , which means the

exponential term in (5.6) is not Gaussian in Y , thus we use polar coordinates to compute the
Y -Fourier transform of (5.6). We denote �

−1(ξ2+�
2)

2 by b, then the boundary principal symbol
is a constant multiple of∫ +∞

0

∫
Sn−2

e−iη·Ŷ |Y ||Y |2−n(α1/2
+ e−bα+|Y |2 + α

1/2
− e−bα−|Y |2)|Y |n−2 d|Y |dŶ

= c

∫
Sn−2

b−1/2(e−|η·Ŷ |2/4bα+ + e−|η·Ŷ |2/4bα−) dŶ

= c′〈ξ〉−1

∫
Sn−2

e−| η
〈ξ〉 ·Ŷ |2/4cα(0,y,0,Ŷ ) dŶ

= c′|η|−1

∫
Sn−2

|η|
〈ξ〉e

−| η
〈ξ〉 ·Ŷ |2/4cα(0,y,0,Ŷ ) dŶ .

Here ∫
Sn−2

e−| η
〈ξ〉 ·Ŷ |2/4cα(0,y,0,Ŷ ) dŶ and

∫
Sn−2

|η|
〈ξ〉e

−| η
〈ξ〉 ·Ŷ |2/4cα(0,y,0,Ŷ ) dŶ

play the roles of ϕ and ϕ̃ from (5.4). Now taking into account the positivity of α, this gives the
desired lower bound of the boundary symbol.

We denote the set of O-local curves with respect to G by GO, as a consequence of Lemma 5.5,
the following local invertibility result holds for a general family of curves.

Theorem 5.6 Assume X is strictly convex at p ∈ ∂X with respect to a general family of
curves G, with Op = {x > 0} ∩ X, then the local X-ray transform for GOp

is injective on
Hs(Op), s ≥ 0 with the stability estimate

‖f‖Hs−1
�

(Op) ≤ C‖If |GOp
‖Hs(GOp ).

Remark 5.7 If we add a non-vanishing weight w ∈ C∞(TX̃) to the X-ray transform, i.e.,

(Iwf)(γ) =
∫
w(γ(t), γ̇(t))f(γ(t)) dt,
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a slight modification of the proof of Lemma 5.5 allows one to conclude the local invertibility of
Iw for a general family of curves. Notice that given a curve γ with |γ̇| �= 0, a reparametriza-
tion exactly introduces a non-vanishing weight to the integral, thus local invertibility of X-ray
transform also holds for general families of curves with non-constant speed.

5.3 Linearized Problem in General

In this section we discuss the linearized problem in general, i.e. the geodesic ray transform of
symmetric tensor fields. Let (M, g) be a compact Riemannian manifold with boundary. The
problem we study is the invertibility of I. It is well known that potential vector fields, i.e., f
which are a symmetric differential dsv of a symmetric field of order m − 1 vanishing on ∂M

(when m ≥ 1), are in the kernel of I. We prove the local invertibility, up to potential fields, and
stability of the geodesic X-ray transform on tensor fields of order 1 and 2 near a strictly convex
boundary point, on manifolds with boundary of dimension n ≥ 3. We study the m = 1, 2 cases
for simplicity of the exposition but the methods extend to any m ≥ 1.

We set this up in the same way as in Section 5.1 by considering a function x̃ with strictly
concave level sets from the super-level set side for levels c, |c| < c0, and letting

xc = x̃+ c, Ωc = {xc ≥ 0, ρ ≥ 0}.
The main result is the following, see [74] for more details.

Theorem 5.8 With Ω = Ωc as above, there is c0 > 0 such that for c ∈ (0, c0), if f ∈ L2(Ω)
then f = u + dsv, where v ∈ Ḣ1

loc(Ω \ {x = 0}), while u ∈ L2
loc(Ω \ {x = 0}) can be stably

determined from If restricted to Ω-local geodesics in the following sense. There is a continuous
map If �→ u, where for s ≥ 0, f in Hs(Ω), the Hs−1 norm of u restricted to any compact subset
of Ω \ {x = 0} is controlled by the Hs norm of If restricted to the set of Ω-local geodesics.

Replacing Ωc = {x̃ > −c} ∩M by Ωτ,c = {τ > x̃ > −c+ τ} ∩M , c can be taken uniform in
τ for τ in a compact set on which the strict concavity assumption on level sets of x̃ holds.

The uniqueness part of the theorem generalizes Helgason’s type of support theorems for
tensors fields for analytic metrics [6, 34, 35]. In those works however, analyticity plays a crucial
role and the proof is a form of a microlocal analytic continuation. In contrast, no analyticity is
assumed here. We also present an inversion formula.

Idea of the proof : We introduce a Witten-type (in the sense of the Witten Laplacian)
solenoidal gauge on the scattering cotangent bundle, scT ∗X or its second symmetric power,
Sym2scT ∗X. Fixing � > 0, our gauge is

e2�/xδse−2�/xfs = 0,

or the e−2�/x-solenoidal gauge. (Keep in mind here that δs is the adjoint of ds relative to a
scattering metric.) We are actually working with

f� = e−�/xf

throughout; in terms of this the gauge is

δs�f
s
� = 0, δs� = e�/xδse−�/x.

Rephrasing Theorem 5.8 in terms of the solenoidal gauge we get
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Theorem 5.9 There exists �0 > 0 such that for � ≥ �0 the following holds.
For Ω = Ωc, c > 0 small, the geodesic X-ray transform on e2�/x-solenoidal one-forms and

symmetric 2-tensors f ∈ e�/xL2
sc(Ω), i.e., ones satisfying δs(e−2�/xf) = 0, is injective, with a

stability estimate and a reconstruction formula.
In addition, replacing Ωc = {x̃ > −c}∩M by Ωτ,c = {τ > x̃ > −c+ τ}∩M , c can be taken

uniform in τ for τ in a compact set on which the strict concavity assumption on level sets of x̃
holds.

With v a locally defined function on the space of geodesics, for one-forms we consider the
map L

Lv(z) =
∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ ∂x + ω ∂y) dλ dω, (5.7)

while for 2-tensors

Lv(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ ∂x + ω ∂y) ⊗ gsc(λ ∂x + ω ∂y) dλ dω, (5.8)

so in the two cases L maps into one-forms, resp. symmetric 2-cotensors, where gsc is a scattering
metric used to convert vectors into covectors. The proof of Theorem 5.9 relies on the next
proposition on the ellipticity of some scattering pseudodifferential operator analogous to the
operator A� of Section 5.1.

Proposition 5.10 First consider the case of one forms. Let � > 0. Given Ω̃, a neighborhood
of X ∩ M = {x ≥ 0, ρ ≥ 0} in X, for suitable choice of the cutoff χ ∈ C∞

c (R) and of
M ∈ Ψ−3,0

sc (X), the operator

A� = N� + ds�Mδs�, N� = e−�/xLIe�/x, ds� = e−�/xdse�/x,

is elliptic in Ψ−1,0
sc (X; scT ∗X, scT ∗X) in Ω̃.

On the other hand, consider the case of symmetric 2-tensors. Then there exists �0 > 0
such that for � > �0 the following holds. Given Ω̃, a neighborhood of X ∩M = {x ≥ 0, ρ ≥ 0}
in X, for suitable choice of the cutoff χ ∈ C∞

c (R) and of M ∈ Ψ−3,0
sc (X; scT ∗X, scT ∗X), the

operator
A� = N� + ds�Mδs�, N� = e−�/xLIe�/x, ds� = e−�/xdse�/x,

is elliptic in Ψ−1,0
sc (X; Sym2scT ∗X, Sym2scT ∗X) in Ω̃.

5.4 The Non-linear Result for Conformal Metrics

We move to the non-linear problem. In this section, we consider the boundary rigidity problem
in the class of metrics conformal to a given one and with partial (local) data, that is, we know the
boundary distance function dg for points on the boundary near a given point. In [73] Stefanov,
Uhlmann and Vasy show that one can recover uniquely and in a stable way a conformal factor
near a strictly convex point where we have the information. In particular, this implies that we
can determine locally the isotropic sound speed of a medium by measuring the travel times of
waves joining points close to a convex point on the boundary.

We assume that ∂M is strictly convex at p ∈ ∂M w.r.t. g. Then the boundary rigidity and
the lens rigidity problems with partial data are equivalent: knowing d near (p, p) is equivalent
to knowing L in some neighborhood of Sp∂M . The size of that neighborhood however depends
on a priori bounds of the derivatives of the metrics with which we work. This equivalence was
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first noted by Michel [39], since the tangential gradients of d(x, y) on ∂M × ∂M give us the
tangential projections of −v and w, see also [63, Sec. 2]. Note that local knowledge of � is not
needed for the lens rigidity problem1), and in fact, � can be recovered locally from either d or
L.

5.4.1 Pseudolinearization

The starting point is an identity in [64]. We will repeat the proof.
Let V , Ṽ be two vector fields on a manifold M (which will be replaced later with S∗M).

Denote by X(s,X(0)) the solution of Ẋ = V (X), X(0) = X(0), and we use the same notation
for Ṽ with the corresponding solution are denoted by X̃. Then we have the following simple
statement.

Lemma 5.11 For any t > 0 and any initial condition X(0), if X̃(·, X(0)) and X(·, X(0)) exist
on the interval [0, t], then

X̃(t,X(0)) −X(t,X(0))

=
∫ t

0

∂X̃

∂X(0)
(t− s,X(s,X(0)))(Ṽ − V )(X(s,X(0))) ds. (5.9)

Proof Set
F (s) = X̃(t− s,X(s,X(0))).

Then

F ′(s) = − Ṽ(X̃(t− s,X(s,X(0))))

+
∂X̃

∂X(0)
(t− s,X(s,X(0)))V(X(s,X(0))).

The proof of the lemma would be complete by the fundamental theorem of calculus

F (t) − F (0) =
∫ t

0

F ′(s) ds

if we show the following

Ṽ(X̃(t− s,X(s,X(0)))) =
∂X̃

∂X(0)
(t− s,X(s,X(0)))Ṽ(X(s,X(0))). (5.10)

Indeed, (5.10) follows from

0 = .
d

dτ
|τ=0X(T − τ,X(τ, Z)) = −V (X(T, Z)) +

∂X

∂X(0)
(T, Z)V (Z), ∀T,

after setting T = t− s, Z = X(s,X(0)). �
Let c, c̃ be two speeds. Then the corresponding metrics are g = c−2dx2, and g̃ = c̃−2dx2.

The corresponding Hamiltonians and Hamiltonian vector fields are

H =
1
2
c2gij0 ξiξj , V =

(
c2g−1

0 ξ,−1
2
∂x(c2|ξ|2g0)

)
,

and the same ones related to c̃. We used the notation |ξ|2g0 := gij0 ξiξj .
We denote points in the phase space T ∗M , in a fixed coordinate system, by z = (x, ξ). We

denote the bicharacteristic with initial point z by Z(t, z) = (X(t, z),Ξ(t, z)). We can naturally

1) If L is given only, then the problem is called scattering rigidity in some works
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think of the scattering relation L and the travel time � as functions on the cotangent bundle
instead of the tangent one. Then we get the following.

Proposition 5.12 Assume

L(x0, ξ
0) = L̃(x0, ξ

0), �(x0, ξ
0) = �̃(x0, ξ

0) (5.11)

for some z0 = (x0, ξ
0) ∈ ∂−S∗M . Then
∫ �(z0)

0

∂Z̃

∂z
(�(z0) − s, Z(s, z0))

(
V − Ṽ

)
(Z(s, z0)) ds = 0. (5.12)

Introduce the exit times τ (x, ξ) defined as the minimal (and the only) t > 0 so that
X(t, x, ξ) ∈ ∂M . They are well defined near Sp∂M , if ∂M is strictly convex at p. We take the
second n-dimensional component on (5.12) and use the fact that c2|ξ|2g0 = 1 on the bicharac-
teristics related to c to get, with f = c2 − c̃2,

Jif(γ) :=
∫

(Aji (X(t),Ξ(t))(∂xjf)(X(t)) +Bi(X(t),Ξ(t))f(X(t)))dt = 0 (5.13)

for any bicharacteristic γ = (X(t),Ξ(t)) (related to the speed c) in our set, where

Aji (x, ξ) = − 1
2
∂Ξ̃i
∂ξj

(τ (x, ξ), (x, ξ))c−2(x),

Bi(x, ξ) =
∂Ξ̃i
∂xj

(τ (x, ξ), (x, ξ))gik0 (x)ξk

− 1
2
∂Ξ̃i
∂ξj

(τ (x, ξ), (x, ξ))(∂xjg−1
0 (x))ξ · ξ.

(5.14)

The arguments above lead to the following linear problem:

Problem Assume (5.13) holds with some f supported in M , for all geodesics close to the
ones originating from S∗

x0
∂M (i.e., initial point x0 and all unit initial co-directions tangent to

∂M). Assume that ∂M is strictly convex at x0 w.r.t. the speed c. Is it true that f = 0 near
x0?

We show below that the answer is affirmative.

5.4.2 Non-liner Result for Conformal Metrics

We continue by generalizing (5.13) to regard the functions ∂xj
f and f entering into it as

independent unknowns, while restricting the transform to the region of interest Ω = Ωc. So let
J̃i be defined by

J̃i(u0, u1, . . . , un)(β)

:=
∫
γβ

(Aji (X(t),Ξ(t))uj(X(t)) +Bi(X(t),Ξ(t))u0(X(t)))dt,

where γβ is the geodesic with lift to SΩ having starting point β ∈ SΩ. Let J̃ = (J̃1, . . . , J̃n).
This is a vector valued version of the geodesic X-ray transform considered in [79], and described
above, sending functions on Ω with values in C

n+1 to functions with values in C
n.

The following local invertibility result holds, the proof is in the spirit of Section 5.1.

Proposition 5.13 There is c0 > 0 such that for 0 < c < c0, if f ∈ H1(Ωc) and J̃(f, ∂1f, . . . ,

∂nf) = 0, then f = 0.
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In fact, for � > 0, s ≥ 1, there exist c0 > 0, k and ε > 0 such that the following holds. For
δ > 0 there is C > 0 such that if 0 < c < c0, Γ± is ε-close to Γ0

± in Ck, x̃ is ε-close to x̃0 in
Ck, then

‖f‖e(�+δ)/xHs(Ωc) ≤ C‖J̃(f, ∂1f, . . . , ∂nf)‖e�/xHs(Mc).

Moreover, with Ωc,ρ0 = Ω̂c ∩ {ρ ≥ ρ0}, and Mc,ρ0 being defined analogously to Mc with
∂M = {ρ = 0} being replaced by {ρ = ρ0}, we have: for � > 0 and s ≥ 1 there exist c0 > 0,
ρ0 < 0, k and ε > 0 such that the following holds. For δ > 0 there is C > 0 such that if
0 < c < c0, Γ± is ε-close to Γ0

± in Ck, x̃ is ε-close to x̃0 in Ck, then f ∈ Hs+1(Ωc,ρ0) implies
that

‖f‖e(�+δ)/xHs(Ωc,ρ0 ) ≤ C‖J̃(f, ∂1f, . . . , ∂nf)‖e�/xHs(Mc,ρ0 ).

Based on the pseudolinearization process, Proposition 5.13 implies the following results for
the non-linear problem in a fixed conformal class.

Theorem 5.14 Let n = dimM ≥ 3, let c > 0, c̃ > 0 be smooth and let ∂M be strictly convex
with respect to both g = c−2g0 and g̃ = c̃−2g0 near a fixed p ∈ ∂M . Let d(p1, p2) = d̃(p1, p2) for
p1, p2 on ∂M near p. Then c = c̃ in M near p.

This is the only known result for the boundary rigidity problem with partial data except
in the case that the metrics are assumed to be real-analytic [37]. The latter follows from
determination of the jet of the metric at a convex point from the distance function known near
p.

We have an immediate corollary of our main result for the lens rigidity problem. To reduce
this problem to Theorem 5.14 directly, we need to assume first that c = c̃ on ∂M near p to make
the definition of ∂±SM independent of the choice of the speed but in fact, one can redefine the
lens relation in a way to remove that assumption, see [70].

Theorem 5.15 Let M , c, c̃ be as in Theorem 5.14 with c = c̃ on ∂M near p. Let L = L̃ near
Sp∂M . Then c = c̃ in M near p.

We also prove Hölder conditional stability estimates related to the uniqueness theorems
above. In case of data on the whole boundary, such an estimate was proved in [67, Section 7]
for simple manifolds and metrics not necessarily conformal to each other. Below, the Ck norm is
defined in a fixed coordinate system. The next theorem is a local stability result, corresponding
to the local uniqueness result in Theorem 5.14.

Theorem 5.16 There exists k > 0 and 0 < μ < 1 with the following property. For any
0 < c0 ∈ Ck(M), p ∈ ∂M , and A > 0, there exists ε0 > 0 and C > 0 with the property that for
any two positive c, c̃ with

‖c− c0‖C2 + ‖c̃− c0‖C2 ≤ ε0, and ‖c‖Ck + ‖c̃‖Ck ≤ A, (5.15)

and for any neighborhood Γ of p on ∂M , we have the stability estimate

‖c− c̃‖C2(U) ≤ C‖d− d̃‖μC(Γ×Γ) (5.16)

for some neighborhood U of p in M .
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5.5 The Non-linear Result in General

Recently, Stefanov, Uhlmann and Vasy [75] generalize their earlier result for the conformal case
to general Riemannian metrics, and show that the boundary distance function, i.e. dg|∂M×∂M ,
known over suitable open sets of ∂M determines g in suitable corresponding open subsets of
M , up to the natural diffeomorphism invariance of the problem.

Theorem 5.17 Suppose that (M, g) is an n-dimensional Riemannian manifold with boundary,
n ≥ 3, and assume that ∂M is strictly convex (in the second fundamental form sense) with
respect to each of the two metrics g and ĝ at some p ∈ ∂M . If dg|U×U = dĝ|U×U , for some
neighborhood U of p in ∂M , then there is a neighborhood O of p in M and a diffeomorphism
ψ : O → ψ(O) fixing ∂M ∩O pointwise such that g|O = ψ∗ĝ|O.

Furthermore, if the boundary is compact and everywhere strictly convex with respect to each
of the two metrics g and ĝ and dg|∂M×∂M = dĝ|∂M×∂M , then there is a neighborhood O of ∂M
in M and a diffeomorphism ψ : O → ψ(O) fixing ∂M ∩O pointwise such that g|O = ψ∗ĝ|O.

Note that similar to Theorem 5.15, one can derive a local lens rigidity result for general
metrics as a corollary of the above theorem.

The approach to proving the above result is similar to the one for conformal metrics, namely
by applying the integral identity (5.12) to get a set of weighted geodesic X-ray transforms (with
respect to one metric) that have the same expression as (5.13), but with f = g−1 − ĝ−1 and
different weights Aji and Bi. In view of the diffeomorphism invariance of the boundary rigidity
problem, the kernel of the resulted geodesic X-ray transforms, of a 2-tensor and its first order
derivatives, is non-trivial in general.

Recall from Section 5.3, to study the linearized problem, i.e., the (unweighted) geodesic X-
ray tranform of 2-tensors, we introduced the solenoidal gauge. However, this seems troublesome
since the gauge is global (elliptic problems need to be solved globally, which should be thought
of as the typical state of affairs, the atypical behavior is the ability to solve locally to get the
restriction the global solution, as for hyperbolic equations), in particular involves the whole
open set O, i.e., we a priori need to know how far we go into the domain M . Another difficulty
is that a solenoidal tensor, extended as zero outside M may not be solenoidal anymore.

Instead we use the normal gauge in a product-decomposition of the underlying manifold,
which for the linear problem means working with tensors whose normal components vanish (for
2-tensors, this means normal-normal and tangential-normal components; in the 1-form problem
discussed below this means the normal component). Thus, as an example, in normal coordinates
relative to a hypersurface, the metric tensor is in the normal gauge.

5.6 Global Result under the Foliation Condition

Above linear and non-linear partial data results have immediate applications in the global
problems under some global geometric condition. We first give the definition of the geometric
condition necessary for our global theorems.

Definition 5.18 Let (M, g) be a compact Riemannian manifold with boundary. We say that
M satisfies the foliation condition by strictly convex hypersurfaces if M is equipped with a
smooth function ρ : M → [0,∞) which level sets Σt = ρ−1(t), t < T with some T > 0 are
strictly convex viewed from ρ−1((0, t)) for g, dρ is non-zero on these level sets, and Σ0 = ∂M
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and M \ ⋃
t∈[0,T ) Σt has empty interior.

The global geometric condition that we are imposing is a natural analog of the condition

∂

∂r

r

c(r)
> 0, (5.17)

with ∂
∂r = x

|x| · ∂x the radial derivative, proposed by Herglotz [29] and Wiechert and Zoep-
pritz [81] for an isotropic radial sound speed c(r). In this case the geodesic spheres are strictly
convex.

In fact [73, Sec. 6] extends the Herglotz and Wiechert & Zoeppritz results to not necessarily
radial speeds c(x) satisfying (5.17). Let B(0, R), R > 0 be the ball in R

n, n ≥ 3 centered at
the origin with radius R > 0.

Let 0 < c(x) be smooth in B(0, R).

Proposition 5.19 The Herglotz and Wieckert & Zoeppritz condition (5.17) for 0 < r = |x| ≤
R is equivalent to the the condition that the Euclidean spheres Sr = {|x| = r} are strictly convex
in the metric c−2dx2 for 0 < r ≤ R.

A special important case arises when there exists a strictly convex function, which may have
a critical point x0 in M (if so, it is unique). This condition was extensively studied in [52] (see
also the references there). In particular Lemma 2.1 of [52] shows that such a function exists if
any one of the following conditions holds:

(1) The sectional curvature is non-negative.
(2) M is simply connected with no focal points.
(3) M is simply connected and the curvature is non-positive.
Other examples of non-simple metrics that satisfy the foliation condition are the tubular

neighborhood of a closed geodesic in negative curvature. These have trapped geodesics. Also the
rotationally symmetric spaces on the ball with convex spheres can be far from simple. It follows
from Lemma 1 of [18] that a simply connected manifold which has one point such that any
geodesic emanating from that point is free of focal point satisfies the foliation condition. Such
foliation condition also holds on complete noncompact manifolds with positive curvature [22].
It would be interesting to know whether this is also the case for simple manifolds. As it was
mentioned earlier manifolds satisfying the foliation condition are not necessarily simple.

In [30, 71] one can find a microlocal study of the geodesic X-ray transform with fold caus-
tics. A similar condition of foliating by convex hypersurfaces was used in [72] to satisfy the
pseudoconvexity condition needed for Carleman estimates. See [52, 73–75, 79] for more details
about the foliation condition.

5.6.1 Global Linear Results

The global linearized problem, tensor tomography problem, has been extensively studied in the
literature for both simple and non-simple manifolds [1, 42, 46, 49, 50, 54, 55, 58, 60, 61, 65,
69, 71]. See the book [57] and [32, 51] for recent surveys on the tensor tomography, especially
on the energy method. In this section, we consider the global invertibility of the geodesic ray
transform on manifolds satisfying the foliation condition. Assume n = dim M ≥ 3.

Theorem 5.20 For X and ρ as above, if X \ ⋃
t∈[0,T ) Σt has 0 measure, the global geodesic

transform is injective on L2(X), while if it has empty interior, the global geodesic transform is
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injective on Hs(X), s > n/2.

Proof This global result is an immediate consequence of Theorem 5.1. Indeed, if If = 0 and
f ∈ Hs, s > n/2, f �= 0, then supp f has non-empty interior since f is continuous by the
Sobolev embedding, while if f ∈ L2, f �= 0, then supp f has non-zero measure. On the other
hand, let τ = infsupp f ρ; if τ ≥ T we are done, for then supp f ⊂ X \ ⋃

t∈[0,T ) Σt. Thus,
suppose τ < T , so f ≡ 0 on Σt for t < τ , but there exists q ∈ Στ ∩ supp f (since supp f is closed
and X is compact). Now we use Theorem 5.1 on ρ−1(τ,∞) to conclude that a neighborhood
of q is disjoint from supp f to obtain a contradiction. �

In fact, in this global setting we can even take x̃ = −ρ, and the uniformity of the constants
in terms of c and ρ0, as stated in the remark after Theorem 5.1 directly yields that if t < T

then there exists δ = δt > 0 such that if c, ρ0 ∈ (t − δt, t + δt) then a stability estimate holds
(with a reconstruction method!) for the region ρ−1([ρ0, c)). Now in general, for T ′ < T , one
can take a finite open cover of [0, T ′] by such intervals (t′j , t

′′
j ), j = 1, . . . , k (with, possibly

after some reindexing and dropping some intervals, t′1 < 0, t′′k > T ′, t′′j ∈ (t′j+1, t
′′
j+1)), and

proceed inductively to recover f on
⋃
t∈[0,T ′] Σt from its X-ray transform, starting with the out-

ermost region. More precisely, first, using the theorem, one can recover the restriction of f to
ρ−1((−∞, t′′1)). Then one turns to the next interval, (t′2, t′′2), and notes there is a reconstruction
method for the restriction to ρ−1((t′2, t

′′
2)) of functions f2 supported in ρ−1((t′2,+∞)) (no sup-

port condition needed at the other end, t′′2). One applies this to f2 = ϕ2f , where ϕ2 identically
1 near ρ−1([t′′1 ,+∞)), supported in ρ−1((t′2,+∞)); since f = (1 − ϕ2)f + ϕ2f , and one has
already recovered (1−ϕ2)f , one also knows the X-ray transform of ϕ2f , and thus Theorem 5.1
is applicable. One then proceeds inductively, covering ρ−1([0, T ′]) in k steps. This gives a global
stability estimate, and indeed a reconstruction method doing a reconstruction layer by layer;
that is, we have (in principle) developed a layer stripping algorithm for this problem.

We also remark that our approach is a completely new one to uniqueness for the global
problem for the geodesic ray transform. The only method up to now, except in the real-analytic
category [68], has been the use of energy type equalities one introduced by Mukhometov [42]
and developed by several authors which are now called “Pestov identities”.

Similar global result holds for the geodesic ray transform of symmetric tensor fields. To
state this, assume that x̃ is a globally defined function with level sets Σt which are strictly
concave from the super-level set for t ∈ (−T, 0], with x̃ ≤ 0 on the manifold with boundary M .
Then we have the following immediate consequence of Theorem 5.8:

Theorem 5.21 Suppose M is compact. The geodesic X-ray transform is injective and stable
modulo potentials on the restriction of one-forms and symmetric 2-tensors f to x̃−1((−T, 0])
in the following sense. For all τ > −T there is v ∈ Ḣ1

loc(x̃
−1((τ, 0])) such that f − dsv ∈

L2
loc(x̃

−1((τ, 0])) can be stably recovered from If . Here for stability we assume that s ≥ 0, f is
in an Hs-space, the norm on If is an Hs-norm, while the norm for v is an Hs−1-norm.

Remark 5.22 This theorem, combined with Theorem 2 in [70] (with a minor change — the
no-conjugate condition there is only needed to guarantee a stability estimate, and we have it in
our situation), implies a local, in terms of a perturbation of the metric, lens rigidity uniqueness
result near metric satisfying the foliation condition.
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5.6.2 Global Non-linear Results

Now we use the layer stripping type argument to obtain a global result on lens rigidity problem
which is different from Mukhometov’s for simple manifolds.

Theorem 5.23 Let n = dimM ≥ 3, let c > 0, c̃ > 0 be smooth and equal on ∂M , let ∂M be
strictly convex with respect to both g = c−2g0 and g̃ = c̃−2g0. Assume that M can be foliated
by strictly convex hypersurfaces for g. Then if L = L̃ on ∂−SM , we have c = c̃ in M .

Proof of Theorem 5.23 Theorem 5.23 is now an easy consequence of Theorem 5.14 using a
layer stripping argument. Let f = c2 − c̃2. Assume f �= 0, then supp f has non-empty interior.
On the other hand, let τ = infsupp f ρ; if τ = T we are done, for then supp f ⊂M \⋃

t∈[0,T ) Σt.
Thus, suppose τ < T , so f ≡ 0 on Σt for t < τ , but there exists x ∈ Στ ∩ supp f (since supp f
is closed). We will show below how to use Theorem 5.15 on Mτ := ρ−1(τ,∞) to conclude that
a neighborhood of x is disjoint from supp f to obtain a contradiction.

All we need to show is that the scattering relations Lτ and L̃τ on Στ coincide. Note that
Στ = ∂Mτ is strictly convex for g̃ as well because the second fundamental form for g̃ can be
computed by taking derivatives from the exterior ρ < τ , where g = g̃. Fix (xτ , vτ ) ∈ ∂−SMτ , see
Figure 2. The geodesic γxτ ,vτ

(s) cannot hit Στ again for negative “times” s because otherwise,
we would get a contradiction with the strict convexity at Σt, where t corresponds to the smallest
value of ρ on that geodesic between two contacts with Στ . Since c = c̃ outside Mτ , γxτ ,vτ

(s)
and γ̃xτ ,vτ

(s) coincide outside Mτ for s < 0. It is not difficult to see that this negative geodesic
ray must be non-trapping, i.e., γxτ ,vτ

would hit ∂M for a finite negative time s at some point
and direction (x, v) ∈ ∂−SM . In the same way, we show that the same holds for the positive
part, s > 0, of a geodesic issued from Lτ (xτ , yτ ) =: (yτ , wτ ) ∈ ∂+SMτ ; and the corresponding
point on ∂+SM will be denoted by (y, w). Then, since L(x, v) = (y, w), we would also get
Lτ (xτ , vτ ) = (yτ , wτ ) = L̃τ (xτ , vτ ).

M \ Mτ
Mτ

Σ τ

x

v

y

w

xτ

yτ

vτ wτ

Figure 2 One can recover the scattering relation on Στ knowing that on ∂M .

A more general foliation condition under which the theorem would still hold is formulated
in [72]. In particular, Σ0 does not need to be ∂M and one can have several such foliations with
the property that the closure of their union is M .

We have a Hölder conditional stability estimates of global type as well, which can be con-
sidered as a “stable version” of Theorem 5.23. The Ck norm below is defined in a fixed finite
atlas of local coordinate charts. In the same way we define dist(L, L̃) and its C(D) norm: in
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any coordinate system we can just take the supremum of L − L̃ and then the maximum over
all charts. They can be defined in an invariant way, in principle but we do not do that for the
sake of simplicity.

Theorem 5.24 Assume that M0 ⊂ M can be foliated by strictly convex hypersurfaces for
g = c−2g0. Let D ⊂ ∂−SM be a neighborhood of the compact set of all β ∈ ∂−SM ∩ ∂−SM0

consisting of the initial points of all geodesics γβ tangent to the intersections of the strictly
convex hypersurfaces with M0. Then with k, μ, c0, c, c̃, ε0 and A as in Theorem 5.16, we have
the stability estimate

‖c− c̃‖C2(M0) ≤ C‖dist(L, L̃)‖μC(D) (5.18)

for c, c̃ satisfying (5.15).

Now, applying the local non-linear result for general Riemannian metrics, we have the
corresponding global non-linear result [75] too.

Theorem 5.25 Suppose that (M, g) is a compact n-dimensional Riemannian manifold, n ≥ 3,
with strictly convex boundary, and x is a smooth function with non-vanishing differential whose
level sets are strictly concave from the superlevel sets, and {x ≥ 0} ∩M ⊂ ∂M . Suppose also
that ĝ is a Riemannian metric on M and suppose that the lens data of g and ĝ are the same.
Then there exists a diffeomorphism ψ : M →M fixing ∂M such that g = ψ∗ĝ.

6 Further Applications

In the last section, we discuss several applications of the local-to-global approach initiated
in [79] to various inverse problems.

6.1 The Geodesic X-ray Transform with Matrix Weights

We consider some non-linear inverse problems that can be reduced to the question of inverting
certain geodesic X-ray transform with matrix weights.

6.1.1 Non-linear Problem for Connections

Let A be a GL(N,C)-connection, this simply means that A is an N ×N matrix whose entries
are smooth 1-forms with values in C. It is natural to incorporate a potential or Higgs field into
the problem by considering a pair (A,Φ), where A is a GL(N,C)-connection and Φ is a smooth
map M → C

N×N .
Given (x, v) ∈ ∂−SM and smooth geodesic γ = γx,v : [0, τ (x, v)] → M , we can solve a

transport equation along geodesics:⎧⎨
⎩

U̇ + [Aγ(t)(γ̇(t)) + Φ(γ(t))]U = 0,

U(0) = id
(6.1)

and define the scattering data CA,Φ : ∂−SM → GL(N,C) by

CA,Φ(x, v) := U(τ (x, v)).

It encapsulates the parallel transport information along geodesics connecting boundary points.
The inverse problem of recovering the pair (A,Φ) from CA,Φ has a natural gauge equivalence:
if u : M → GL(N,C) is smooth and u|∂M = id then

CA,Φ = Cu−1du+u−1Au,u−1Φu.



Travel Time Tomography 25

Recently, Paternain, Salo, Uhlmann and Zhou [52] prove the following unique determination
result up to gauge transformations.

Theorem 6.1 Let (M, g) be a compact Riemannian manifold of dimension ≥ 3 with strictly
convex boundary, and suppose (M, g) admits a smooth strictly convex function. Let (A,Φ) and
(B,Ψ) be two pairs such that CA,Φ = CB,Ψ. Then there is a smooth map u : M → GL(N,C)
such that u|∂M = id, B = u−1du+ u−1Au and Ψ = u−1Φu.

Similar to the approach for the boundary and lens rigidity problems in Section 5, Theo-
rem 6.1 is proved by introducing a pseudo-linearization that reduces the non-linear problem
to a linear one. A similar scenario arises in polarization tomography [45] and quantum state
tomography [31], see [52, Section 8].

One virtue of Theorem 6.1 is that there is no restriction on the pair (A,Φ). In previous
works [19, 26, 49, 59] it was assumed that the structure group was the unitary group. There
are also recent works dealing with GL(N,C)-connections, but under additional assumptions
[41, 48]. Zhou [83] shows that the rigidity result (up to the natural gauge) holds for generic
simple metrics and generic connections and Higgs fields, including the real-analytic ones.

Theorem 6.2 Let M be a real-analytic simple manifold with real-analytic metric g0. Let
A0, B0 be real-analytic, there exists ε > 0 such that whenever there are another metric g and
pairs A = (A,Φ), B = (B,Ψ) satisfying

‖g − g0‖C4(M) ≤ ε, ‖A −A0‖C3(M) + ‖B − B0‖C3(M) ≤ ε,

(1) if CA = CB w.r.t. the metric g, then there is p : M → GL(N,C) with p|∂M = id, such
that B = p−1dAp;

(2) if ‖A0 − B0‖C2(M) ≤ ε and ι∗A = ι∗B with ι : ∂M → M the canonical inclusion, then
there exists p : M → GL(N,C) with p|∂M = id such that the following stability estimate holds
w.r.t. the metric g

‖B − p−1dAp‖L2(M) ≤ C‖CB − CA‖H1(∂−SM)

for some uniform constant C > 0 which depends only on g0, A0, B0.

6.1.2 The Linear Problem

As mentioned above, the pseudo-linearization of the scattering data CA,Φ gives certain weighted
geodesic X-ray transform.

Given a pair (A,Φ) we are interested in the case when the weight W arises as a solution of
the transport equation on SM :

XW = WA, W |∂−SM = id, (6.2)

where X is the generating vector field of the geodesic flow and A(x, v) := Ax(v) + Φ(x). The
weighted geodesic X-ray transform obtained through the pseudo-linearization is of the form

(IWh)(γ) =
∫
W (γ(t), γ̇(t))h(γ(t), γ̇(t)) dt,

where h(x, v) = f(x) + αx(v) with f ∈ C∞(M,CN ) and α is a smooth C
N -valued 1-form.

We now state the linear result [52] that will imply Theorem 6.1.
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Theorem 6.3 Let (M, g) be a compact manifold with strictly convex boundary and dim(M)
≥ 3, and and suppose (M, g) admits a smooth strictly convex function. If IWh ≡ 0, then

f = Φp and α = dp+Ap

for some p ∈ C∞(M,CN ) with p|∂M = 0.

6.2 Inverse Problems for Other Hamiltonian Flows

It was shown in Section 5.2 that the local invertibility of the geodesic X-ray transform holds
for general smooth curves. In this section, we consider some inverse problems associated with
Hamiltonian flows more general than the geodesic flows.

6.2.1 Magnetic Flows

Recall the equation (5.5) for general smooth curves, let G be the Lorentz force, a 1-1 tensor,
associated with some magnetic field Ω, that is a closed 2-form, through the equality

Ωx(v, w) = 〈Gx(v), w〉g, v, w ∈ TxM.

A solution γ of (5.5) then is called a magnetic geodesic. Then ϕt : t → (γ(t), γ̇(t)) defines a
magnetic flow on TM , which is a Hamiltonian flow. It is easy to check that every magnetic
geodesic has constant speed, here we only consider the unit speed magnetic geodesics.

Let x ∈ ∂M , S∂M be the unit sphere bundle of the boundary ∂M , we say M is strictly
magnetic convex at x if

Λ(x, v) > 〈Yx(v), ν(x)〉g
for all v ∈ Sx∂M , where Λ is the second fundamental form of ∂M , ν(x) is the inward unit
vector normal to ∂M at x. When Y = 0, this is consistent with the ordinary definition of
convexity

Similar to the definition of the lens data of usual geodesics, one can define the lens data of
magnetic geodesics and consider the corresponding lens rigidity problem. In [85], the conformal
case of this non-linear problem was studied.

Theorem 6.4 Let n =dim M ≥ 3, let c, c̃ > 0 be smooth functions, Ω, Ω̃ be smooth closed
2-forms and let ∂M be strictly magnetic convex with respect to both (c2g0,Ω) and (c̃2g0, Ω̃).
Assume that c = c̃ and ι∗Ω = ι∗Ω̃ on ∂M , and M can be foliated by strictly magnetic convex
hypersurfaces for (M, c2g0,Ω). If L = L̃, � = �̃, then c = c̃ and Ω = Ω̃ in M .

The proof of Theorem 6.4 is also a combination of the pseudo-linearization and a layer
stripping process. Earlier results under the simplicity assumption can be found in e.g. [17]. On
the other hand, the linearized problem is considered in [17, 84].

6.2.2 Lens Rigidity for Particles in a Yang–Mills Field

In this section, we consider a nonlinear inverse problem associated with the motion of a classical
colored spinless particle under the influence of an external Yang–Mills potential.

Let G be a compact Lie group of matrices with Lie algebra g. We think of (M, g) as the
configuration space where our classical colored particle travels and we think of the g (or its dual
g∗) as the space of “color charges” or internal degrees of freedom. In this case, a connection A
(the external Yang–Mills potential) is just an element A ∈ C∞(M,T ∗M⊗g) = Λ1(M, g). Since
g is a Lie algebra of matrices, we can think of A as a matrix of 1-forms in that Lie algebra. We
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define F := FA = dA+A∧A ∈ Λ2(M, g) the curvature or field strength of A. Using the metric
g, given ξ ∈ g, we can define a (1, 1)-tensor F

ξ : TM → TM uniquely by

gx(Fξx(v), w) = 〈Fx(v, w), ξ〉
for all x ∈ M and v, w ∈ TxM . The field F will play the role of a generalized Lorentz force.
The connection A induces a covariant derivative in the adjoint bundle which we denote by D.

The system lives in TM×g and the ODEs determining the trajectories t �→ (γ(t), γ̇(t), ξ(t))
∈ TM × g are given by ⎧⎨

⎩
∇γ̇ γ̇ = F

ξ
γ(γ̇),

Dγ̇ξ = 0,
(6.3)

which are called Wong’s equations [82]. The equations reduce to the Lorentz equation of
magnetic geodesics in the abelian case G = U(1). A quick analysis of (6.3) reveals two kinematic
constraints: γ must travel at constant speed and ξ must remain in the adjoint orbit it started
on. For this reason, it makes sense from now on to restrict our motion to the compact phase
space SM ×O.

Definition 6.5 A smooth function f : M → R is said to be strictly YM-convex if

Hessx(f)(v, v) + 〈Fx(v,∇f(x)), ξ〉 > 0

for all (x, v, ξ) ∈ SM ×O. Similarly, we shall say that x ∈ ∂M is strictly YM-convex if

Λx(v, v) + 〈Fx(v, ν(x)), ξ〉 > 0

for any v ∈ Sx∂M and ξ ∈ O, where Λ is the second fundamental form of ∂M . If this holds
for all x ∈ ∂M , then we say that ∂M is strictly YM-convex.

Now under suitable conditions, it is possible to recover the potential A, up to gauge trans-
formations, from the lens data (S, �) of the system (i.e. scattering data plus travel times).

Theorem 6.6 Let (M, g) be a compact Riemannian manifold with boundary and dimension
≥ 3 and let O be an adjoint orbit that contains a basis of g. Let A and Ã be two Yang–Mills
potentials such that

(1) ∂M is strictly YM-convex with respect to both (g,A) and (g, Ã);
(2) i∗A = i∗Ã where i : ∂M →M is the canonical inclusion.
If (g,A) admits a strictly YM-convex function and (SA, �A) = (SÃ, �Ã), then there exists a

smooth function u : M → G such that Ã = u−1du+ u−1Au and u|∂M = e.
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