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Abstract. We prove a conditional Hölder stability estimate for the Cauchy problem on the lateral
boundary for the wave equation under a strictly convex foliation condition. We apply this estimate
for the problem in multiwave tomography with partial data.

1. Introduction

Let Ω ⊂ Rn be a bounded domain with a smooth boundary. The purpose of this note is to
formulate geometric conditions for conditionally stable unique continuation of solutions of wave
type of equations from Cauchy data on a part S of R × ∂Ω into some subset (which we call Qε
below) of R×Ω. We want to emphasize that the stability is of Hölder type, local, and conditional.
Such type of stability holds even for elliptic second order equations; while in classical sense, that
problem is unstable, of course. On the other hand, unique continuation is not conditionally Hölder
stable in general: one has weak logarithmic stability only [2, 3]. The behavior of the geodesic
flow plays a critical role. The subdomain Qε of R × Ω where the conditional estimate holds is
smaller that the domain of influence where we have unique continuation, and in particular has the
property that every zero bicharacteristic (projected to the base) through it hits S. It remains an
open question if that characterizes the optimal Qε. The proof is based on an estimate of Carleman
type established in [10, 7].

We consider the case where a subdomain of Ω can be foliated by strictly convex hypersurfaces
covering in particular a part Γ of ∂Ω, see Figure 1. This is connected to the existence of a strictly
convex function ρ as shown in [13]. Such assumptions have been found to be useful in Control
Theory, see, e.g., [26] but they become more important with the recent progress in the local inversion
of the geodesic X-ray transform in dimensions n ≥ 3 [27, 20] and the boundary and the lens rigidity
problems [18, 19]. We choose a suitable pseudo-convex function in R×Ω related to ρ which would
allow us to apply the results in [10, 7]

We present an application to multiwave tomography proving conditional local Hölder stability
from partial measurements in Section 4.

Acknowledgments. The author thanks Lauri Oksanen for his remarks which helped improve
the exposition.

2. Elliptic equations

We start with a short review of the elliptic case. Let ∆g be the Laplacian associated with a
smooth Riemannian metric g in Ω̄. Let Γ ⊂ ∂Ω be a relatively open subset of the boundary. We
are interested in the stability of the following boundary value problem

(1) ∆gu = f in Ω, u|Γ = h0, ∂νu|Γ = h1,
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where ν is the unit (in the metric) external normal. Note that (12) may not be solvable with any
prescribed f , h0 and h1, even if f = 0. On the other hand, the possible solution is unique in Ω, by
classical unique continuation, which also follows from the theorem below.

Then we have the following conditional stability theorem.

Theorem 2.1 ([10, Theorem 3.3.1]). For every domain Ω0 with Ω̄0 ⊂ Ω∪Γ, there exists κ ∈ (0, 1),
C > 0, so that for any solution u ∈ H1(Ω) of (12) satisfies

(2) ‖u‖H1(Ω0) ≤ C
(
F + ‖u‖1−κ

H1(Ω)
F κ
)

with

(3) F := ‖f‖L2(Ω) + ‖h0‖H1(Γ) + ‖h1‖L2(Γ).

This theorem implies unique continuation in particular: if f , h0 and h1 all vanish, then u = 0.
It also implies conditional stability in the following sense: if u is a priori bounded in H1(Ω), and
when F is uniformly bounded (the real interest in (3) is when F � 1), then

‖u‖H1(Ω0) ≤ CF κ,

where C depend on those a priori bounds. The result holds if we add lower order terms to ∆g with
real coefficients. Note that the geometry of g does not play an apparent role.

The estimate is obtained with Carleman estimates and the existence of a positive constant κ
comes from an optimization of the large parameter in the Carleman estimate and gets small, as Ω0

gets closer to Ω. This means decreased stability.
Such an estimate may look unexpected since the Cauchy problem for elliptic equations is a

classical example of a unstable problem. The reason it holds is the a priori assumption that u is
bounded in the larger Ω where u can grow even more. The following example illustrates this fact.

Example 1. Let Ω = (0, π)× (0, 1) and consider the following family of harmonic functions

u = sin(mx) sinh(my)

with m = 1, 2, . . . . Let Γ be the lower side of the square. Then u vanishes on Γ (and on the lateral
sides of the square) and h1 := uy|y=0 = m sin(mx). Therefore, h0 = 0, ‖h1‖L∞(Γ) = m. It is
straightforward to show that ‖u‖H1(Ω) ≥ Cem, therefore,

m−1em‖h1‖H1(Γ) ≤ C‖u‖H1(Ω),

and there is no stability since m can be arbitrary large. It is also clear that even if we use different
Sobolev norms, the conclusion would be the same.

On the other hand, if Ωε = (0, π) × (0, 1 − ε) with 0 < ε < 1, then it is easy to see that

‖u‖H1(Ωε) ∼ Ce(1−ε)m, as m→∞. Then in (2),

F ∼ Cm, ‖u‖H1(Ωε) ∼ Ce(1−ε)m, ‖u‖H1(Ω) ∼ Cem.

Therefore, (2) holds for Ω0 = Ωε with 0 < κ ≤ ε and C = C(ε).

Similar result holds for analytic continuation as well (analytic functions solve the elliptic ∂̄
equation). Even though analytic continuation is unstable, there is a a conditional stability in
the complex plane, for example by the Hadamard three-circle theorem. In other words, there is
conditional stability from one domain to another, bounded one, if there is an a priori estimate in
a third even larger one but that third has to be complex.
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3. Conditional stability for the wave equation

Let g be a Riemannian metric in Rn. Consider the wave equation

(4) Pu = f in [0, T ]× Ω,

where P = ∂2
t −L, and L = ∆g+a

j∂xj +q is a first order perturbation of ∆g with smooth coefficients,
and T > 0 is fixed. Let Γ ⊂ ∂Ω be a relatively open subset. In time-space, the underlying metric
is the Lorentzian one −dt2 + g.

3.1. Review of Unique Continuation. Let f = 0 for now. Then the Cauchy data of u on
[0, T ]× Γ determine u uniquely in the domain of influence:

(5) QΓ,T = {(t, x) ∈ [0, T ]× Ω; |t|+ dist(x,Γ) < T},

by Tataru’s uniqueness continuation theorem [23, 24], see also [15, 16] for a formulation in this
setting. This argument does not prove Hölder type of stability, even a conditional one but there
are weaker logarithmic estimates [2, 3]. Indeed, if there are unit speed geodesics γ(t) so that
(t, γ(t)) is contained in QΓ,T but does not hit [0, T ]×Γ (and this is possible for some Γ’s), one can
concentrate solutions having singularities that do not reach the observation domain, see, e.g., [14]
and then those singularities of u would be invisible. On the other hand, if that cannot happen,
the singularities of u over Qγ,T (they are on the light cone) would be stably recoverable. That
argument alone however does not imply that u restricted to Qγ,T or any subcompact set is stably
recoverable. If we knew that u were supported in Qγ,T then one could apply the argument that a
priori uniqueness and stable recovery of singularities implies actual Lipschitz stability [14]. On the
other hand if u has such a support it would be zero by unique continuation. Note that for those
arguments, u needs to solve the wave equation in QΓ,T only, up to its lateral boundary [0, T ]× ∂Ω.

3.2. (Strong) pseudo-convexity and convexity. We recall the basic notions pseudo-convexity
related to Carleman estimates and also recall the link between them and geometric convexity w.r.t.
the geodesic flow. For the definitions below, see, e.g., [7]. Let P be a differential operator P with
real principal symbol p(x, ξ). The oriented level hypersurface Σ = {ψ = 0} of a smooth function
ψ with dψ 6= 0 is called pseudo-convex w.r.t. P if H2

pψ > 0 whenever ψ = p = Hpψ = 0, ξ 6= 0,
where Hp is the Hamiltonian vector field of p. This definition is independent of the choice of ψ
defining Σ. In our case, p = −τ2 + |ξ|2, where |ξ| is again the norm of the covector ξ in the metric
g. In geometric terms, those conditions say that Σ is strictly convex w.r.t. the lightlike geodesics
of −dt2 + g.

The smooth function ψ is pseudo-convex w.r.t. P if H2
pψ > 0 on p = 0, ξ 6= 0. The function

ψ is strongly pseudo-convex if it is pseudo-convex and {<pψ,=pψ} > 0 for pψ = 0, ξ 6= 0, τ > 0,
where pψ = p(x, ξ + iτ∇ψ). The level hypersurface Σ = {ψ = 0} of a smooth function ψ with
dψ 6= 0 is called strongly pseudo-convex w.r.t. P if it is pseudo-convex and {<pψ,=pψ} > 0 for
pψ = {pψ, ψ} = 0, ξ 6= 0, τ > 0.

For second order operators P , strong pseudo-convexity of non-characteristic hypersurfaces is
equivalent to pseudo-convexity.

Given such a defining (strongly) pseudo-convex function ψ, the function φ = exp(λψ) − 1 is a
(strongly) pseudo-convex for λ� 1, see, e.g., [25]; and Σ = {φ = 0}, moreover, {φ > 0} = {ψ > 0}.

If g is a Riemannian or a Lorentzian metric, ψ is called strictly convex if the Hessian Hess(ψ) =
∇∇ψ, where ∇ is the covariant derivative, is positive as a quadratic form, i.e.,

2cH |v|2 ≤ Hess(ρ)(v, v) with some cH > 0.
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We recall a conditional stability theorem proven in [10, 7]. The version below is as in [7, Theo-
rem 3.3], see also [17, 6]. Given a smooth domain Q and a smooth function φ, set

(6) Qε = Q ∩ {ε < φ}, ∂Qε = ∂Q ∩ {ε < φ}.
In particular, Q0 = Qε with ε = 0.

In [10, Theorem 3.4.1], a Hölder type conditional stability estimate for the wave, and for more
general hyperbolic problems, see also [7], similar to (2) is proven assuming existence of a suitable
pseudo-convex function. The goal of the next theorem is to connect the foliation condition of a
subdomain of Ω with the existence of a pseudo-convex function and as a result to get conditional
stability.

Theorem 3.1 ([10, 7]). Let Q be a bounded domain with R1+n with C1 boundary ∂Q. Let S ⊂ ∂Q
be relatively open. Assume that φ ∈ C∞ is pseudo-convex w.r.t. P on Q̄ and that φ < 0 on ∂Q \S.
Then there exists κ ∈ (0, 1), so that for any solution u ∈ H1(Q) of Pu = f in Q with

(7) u|S = h0, ∂νu|S = h1

satisfies, for 0 < ε� 1,

(8) ‖u‖H1(Qε) ≤ C(ε)
(
F + ‖u‖1−κ

H1(Q))
F κ
)
,

where

(9) F := ‖f‖L2(Q) + ‖h0‖H1(S) + ‖h1‖L2(S).

The theorem actually holds for second order real principal type of operators with C1 coefficients
in the real part and locally L∞ lower order coefficients.

We say that Ω0 ⊂ Ω is foliated by strictly convex hypersurfaces if there exists c > 0 and a
smooth ρ : M → [−c, 0] so that dρ 6= 0 on M , the level sets of ρ = C are strictly convex and
Ω0 ⊂ ρ−1([−c, 0]) when viewed from ρ ≥ C. The strict convexity property is equivalent to G2ρ > 0
when ρ = c and Gρ = 0, where G is the generator of the geodesic flow. In applications, it is also
required ρ−1(0) ∪ Ω0 = ρ−1(0) ∪ ∂Ω0. It was shown in [13] that the existence of a strictly convex
foliation is equivalent to the existence of a strictly convex function (of the kind φ(ρ) with some φ)
if Ω0 is connected at least.

Set

cd := inf
−c<ρ<0

|dρ|2

4(c+ ρ)
> 0,

see also the definition of κ in [26].

Corollary 3.1. Let ρ ∈ C∞(Rn) be such that ρ ≤ 0 in Ω̄, and |dρ| > 0, Hess(ρ) ≥ 2cH > 0 when
−c ≤ ρ ≤ 0. Let

(10) T > T0 := max
(√

c/cH ,
√
c/cd

)
.

Let φ = c+ρ−αt2 with 0 < α < min(cH , cd). Then for 0 < ε� 1, there exists κ ∈ (0, 1), C(ε) > 0,
so that for any solution u ∈ H1(Q), with Q = (0, T )× Ω, of (4) satisfying (7) we have (8).

Proof. Clearly, φ > 0 implies ρ > αt2 − c ≥ −c. On the other hand, φ ≤ c in R × Ω̄, see also
Figure 1. Therefore, φ takes values in [0, c] in Q0. We show first that the levels φ = C ∈ [0, c] are
timelike when φ > 0, and in particular, non-characteristic. We have

2α|t| = 2
√
α
√
c− C + ρ ≤ 2

√
α
√
c+ ρ < |dρ|.

Since dφ = (−2αt,dρ), this proves the claim.
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We will show that φ is pseudo-convex when φ ∈ [0, c]. It is enough to do this in the tangent
instead of the cotangent bundle, see, e.g., [17]. The generator of the lightlike geodesics of −dt2 + g
is proportional to ∂t ± G. We have (∂t ± G)2φ = −2α + G2ρ. Since G2ρ = Hess(ρ)(v, v) ≥ 2cH ,
we get (∂t ± G)2φ ≥ 2cH − 2α > 0. Note that at this point of the proof we needed G2ρ > 0 not
just along directions tangent to the level sets of ρ. Therefore, φ is pseudo-convex. We can take
ψ = eλφ−1 with λ� 1 to get a strongly pseudo-convex function ψ with {φ > 0} = {ψ > 0}. Then
we apply Theorem 3.1.

Ω

ρ = −1ρ = 0

Γ

Ω0

Figure 1. Left: R× Ω and φ−1(0) in time-space. Right: The foliation in Ω.

To estimate the largest |t| on S ∩ {φ > 0}, we write c+ ρ− αt2 > 0; therefore |t| <
√

(c+ ρ)/α

and since the maximal value of ρ in Ω̄ is 0, we get |t| <
√
c/α. Since α < min(cH , cd), taking α

closer and closer to its upper bound, we get that the supremum of |t| for such α and ε > 0 is T0. �

3.3. Relation to propagation of singularities. The conditional estimate (8) would not hold if
there is a lightlike geodesic in Qε which does not hit S. We can see directly that this does not
happen. Indeed, for every lighlike geodesic γ(t), since 0 < α < cH ,

(11)
d2

dt2
φ ◦ γ(t) = Hess(φ)(γ̇, γ̇) > 0

as long as φ is pseudo-convex. Indeed, for every vector v = (v0, v′) ∈ R×Rn, we have Hess(φ)(v, v) =
−2α|v0|2 + Hess(ρ)(v′, v′), and if v is lightlike, then |v0|2 = |v′|2, therefore, Hess(φ)(v, v) ≥
(2cH − 2α)|v′|2 > 0. Therefore, φ ◦ γ(t) is a strictly convex function and as such, it increases
either strictly for t > 0 or for t < 0 in negative direction. Then γ(t) hits R× ∂Ω in {φ > 0} which
is contained in S where we have “measurements”. The singularities of u are lightlike only; and
regarded as vectors (rather than covectors), they are lightlike as well and occupy entire lightlike
geodesics (γ, γ̇). Therefore, all singularities of u are “measured”.

It is interesting to estimate how optimal the set {φ > 0} ⊂ S is w.r.t. the requirement that each
singular bicharacteristic of u reaches S. Let g be Euclidean and let Ω = B(0, R) with R > 1. One

can take ρ = |x|2 − R2. Then −c < ρ < 0 defines the annuls Ω0 := {
√
R2 − c < |x| < R}, and

we assume c < R2. We have Hess(ρ)(v, v) = 2|v|2 and φ = c + |x|2 − R2 − αt2. Then cH = 1 and
|dρ| = 2|x|; therefore,

|dρ|2

4(c+ ρ)
≥ |x|2

|x|2 −R2 + c
≥ 1.

Thus cd ≥ 1. Then the condition for α reduces to 0 < α < 1 and T0 =
√
c.
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R
√
R2 − c

√
c

0

Figure 2. The Euclidean case

On the timelike geodesics γ(t) = (t0 + t/
√
α, x0 + tθ), |θ| = 1, (11) vanishes. This characterizes

{φ = 0} as the union of all such spacelike geodesics tangent to that hypersurface at some point (for
uniqueness, one can take points on t = 0). For each fixed t, those are the geodesics starting from
some x ∈ Ω̄ with φ(t, x) ≥ 0 maximizing the escape time (with speed

√
α) to the boundary. Taking

α < 1 closer and closer to 1, we see that Q0 is, asymptotically, the smallest domain for which there
would be no lightlike geodesics through it not hitting S ∩ {φ ≥ 0}. Therefore, at least in this case,
Qε is a sharp domain.

Let us say that we are interested in u|t=0 := f as in the next section. Note that to have unique
continuation of f on some subdomain Ω0 in Ω̄ from (−T, T )×Γ with Γ ⊂ ∂Ω, we need T such that
every point x there can be reached from Γ at time T or less, see (5). This is a condition on the
shortest geodesic from x (assuming convexity). In contrast, the conditional stability requires T to
exceed the length of the longest escape time from every such x and every direction; and it is sharp
at least in the special case above. To be more precise, denote by γx,v(τ) the unit speed geodesic
starting from (x, v) ∈ SΩ. Set

Tesc = sup
(x,v)∈SΩ0

min(τ(x, v), τ(x,−v)),

where τ(x, v) is the shortest time τ when γx,v(τ) hits Γ, if it does; if it does not, we set τ(x, v) =∞.
Then we need T > Tesc. In the Euclidean example above, Tesc is maximized when |x|2 = R2 − c
and v is tangent to that ball; then Tesc → T0 as α→ 1−, see Figure 2.

4. Applications to Photo and Acoustic Tomography

Consider the multiwave tomography model in a closed domain modeling waves reflecting from
the boundary, see [11, 9, 22, 12, 4] and the UCL photoacoustic imaging group experimental setup
in [5]. In thermo- and photo-acoustic imaging, one sends a short microwave/optical impulse into
a tissue which triggers heat expansion and generates ultrasound waves by the thermo-acoustic or
the photo-acoustic effect. Those waves are measured on the boundary, very often just a subset of
the whole boundary. The goal is to recover the acoustic source which would tell us more about the
properties of the tissue. The model with reflecting waves is described below, following [22].



CONDITIONALLY STABLE UNIQUE CONTINUATION 7

Let Ω ⊂ Rn be a bounded smooth domain and fix T > 0. The acoustic pressure u solves the
problem

(12)


(∂2
t − c2∆)u = 0 in (0, T )× Ω,

∂νu|(0,T )×∂Ω = 0,
u|t=0 = f,

∂tu|t=0 = 0.

where c(x) > 0 is a smooth wave speed in Ω̄, and ν is the unit outward normal. One can replace ∆
by the Laplace-Beltrami operator related to a fixed Riemannian metric, see [21]. The measurements
operator Λ is given by

(13) Λf = u|(0,T )×∂Ω.

The energy

EΩ(t, u) =

∫
Ω

(
|∇u|2 + c−2|ut|2

)
dx

is preserved. The natural space for f is the Dirichlet one with the norm ‖f‖HD(Ω) = ‖∇f‖L2(Ω),

which is really a norm on functions in H1
0 (Ω) and equivalent to the norm in the latter space by

the Poincaré inequality. We also assume that supp f ∈ K with some smooth compact set K b Ω;
then f ∈ HD(K) and that ∂Ω is convex w.r.t. the metric c−2dx. Then all singularities of f hit ∂Ω
transversely and Λ : H1

0 (K) → H1((0, T ) × ∂Ω) is continuous. Next, the zero initial condition for
ut at t = 0 implies that the even extension of u in the t variable solves the wave equation as well
and we may assume that Λ is given on (−T, T )× ∂Ω.

Assume that we know Λf on (0, T )×Γ, where Γ ⊂ ∂Ω as before. The following sharp uniqueness
theorem follows directly from unique continuation, see [22].

Theorem 4.1 ([22]). Λf |(0,T )×Γ determines uniquely f in the set

ΩT := {x; dist(x,Γ) < T}

and f restricted to Ω \ Ω̄T can be arbitrary.

In [15], we also showed that one can get recover all visible singularities in a stable way (by time
reversal, which is an FIO of order zero associated with a canonical graph). The point (x, ξ) ∈ T ∗Ω\0
is called visible singularity for this problem if either the geodesic issued from (x, ξ/|ξ|) or that issued
from (x,−ξ/|ξ|) reaches ∂Ω for time < T . Here, |ξ| is the norm of the covector ξ at x in the metric,
identified with a vector by the metric. Note that the there might be singularities over ΩT that are
invisible.

Even when T ∗Ω̄0\0 contains visible singularities only (then Ω0 ⊂ ΩT ), one cannot prove stability
of recovery of f in a set Ω0 based on the uniqueness theorem above and combined with the microlocal
stability statement because the latter only applies under the a priori assumption that supp f ⊂ Ω0

as in [15]. Using the methods above, we get the following.

Theorem 4.2. Let ρ and T0 be as in Corollary 3.1 and let Ωε = Ω ∩ ρ−1(−c + ε, 0), ε ≥ 0. Let
Γ = ∂Ω ∩ ρ−1[−c, 0]. Then, if T > T0, for every ε ∈ (0, 1) we have

(14) ‖f‖H1(Ωε) ≤ C‖f‖1−κHs(Ω)‖Λf‖
κ
H1((0,T )×Γ)

with some C > 0, κ ∈ (0, 1) depending on Ωε.

Proof. We apply Corollary 3.1. Set Q = [−T, T ] × Ω with T > 0 large enough so that Q̄ ⊃ Q̄0,
with Qε defined in (6). Even though Q does not have smooth boundary, one can always make
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it smooth if needed by a small modification and this would not affect Corollary 3.1. Note that
Ωε = Qε ∩ {t = 0}. Then

(15) ‖u‖H1(Qε) ≤ C(ε)
(
‖Λf‖H1(S) + ‖u‖1−κ

H1(Q)
‖Λf‖κH1(S)

)
.

To estimate the u-term on the right, write

‖u‖2H1(Q) =

∫ T

−T

∫
Ω

(
|∇xu|2 + c−2|ut|2 + |u|2

)
dx dt

≤ 2T max
t∈[−T,T ]

∫
Ω

(
|∇xu|2 + c−2|ut|2 + |u|2

)
dx

≤ C‖f‖2H1 .

We also have ‖Λf‖H1(S) ≤ C‖f‖H1 . Those arguments show that the r.h.s. of (15) can be estimated
as in (14).

To estimate the l.h.s. of (15) from below, notice first that for 0 < δ � 1, [−δ, δ]×Ω2ε ⊂ Qε, see
also Figure 3.

∂Ωε∂Ω2ε∂Ω3ε

δ

0

t

Qε

x

Figure 3. Illustration for the proof of Theorem 4.2

Therefore,

‖u‖2H1(Qε) ≥ ‖u‖
2
H1([−δ,δ]×Ω2ε) ≥

∫ δ

−δ

∫
Ω2ε

(
|∇xu|2 + c−2|ut|2

)
dx dt.

By standard energy estimates used to prove for domain of influence/domain of influence results,
EΩ2ε(t, u) ≥ EΩ3ε(0, u) when δ � 1, therefore,

‖u‖2H1(Qε) ≥ 2δ

∫
Ω3ε

|∇f |2 dx.

One the other hand,

‖u‖H1(Qε) ≥ ‖f‖H1/2(Ω3ε)
/C1 ≥ ‖f‖L2(Ω3ε)

/C2

by the trace theorem. Those two estimates allow is to estimate the l.h.s. of (15) by ‖f‖H1(Ω3ε).
Therefore, we proved (14) with Ω0 replaced by Ω3ε. We can extend ρ a bit so that it has the

same properties as before on −1 − 3ε ≤ ρ ≤ 0 for 0 < ε � 1 and then apply what we proved
above. �
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If Γ has the property that every geodesic of c−2dx2 through K, reflecting from the boundary
according to the law of geometric optics eventually intersects Γ either for positive and negative
time ±T , then one has even a Lipshitz non-conditional estimate on f in the whole K, as it follows
form control theory, see [1, 22], also [26]. On the other hand, in Theorem 4.2, Γ does not need to
satisfy that condition and even of it does, one needs T to be larger in general that what we require.
Also, on the rest of the boundary one can impose diferent boundary conditions, even absorbing
ones, as long as the boundary value problem is well posed. One can have an infinite ∂Ω with an
infinite Γ as well (with ∂Ω not closed in particular) and by finite speed of propagation, Λf would
be supported on a compact set depending on T .

One can also apply those arguments to the classical model where the waves propagate into the
whole space but measurements are still taken on (0, T )× ∂Ω. For that, one needs to recover, in a
Hölder stable way, the normal derivative ∂ν on (−T, T ) × Γ from the knowledge of u there. This
is a non-trivial step and uniqueness was first proved in [8] when c = 1 and in [15] for a variable
c. First that we can extend the data to t ∈ (−T,−T ) as an even function as noted above. Then
we recover the Neumann data on a part of Λf |(−T,T )×Γ first, then we use unique continuation to
recover f near Γ only; that allows us to recover the Neumann (and therefore, the Cauchy) data on
a large part of Λf |(0,T )×Γ; and in finitely many step, we recover f in ΩT . We will not pursue this
further.
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