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1 Introduction

Consider the Boltzmann equation

∂

∂t
u(t, x, v) = −v · ∇xu(t, x, v)− σa(x, v)u(t, x, v)+

∫

V
k(x, v′, v)u(t, x, v′) dv′ (1.1)

in Rn × V 3 (x, v), V being an open subset of Rn, n ≥ 2. Equation (1.1) describes the
dynamics of a flow of particles in Rn under the assumption that the interaction between
them is neglectable (no non-linear terms). This is the case for example for a low-density flow
of neutrons. The term involving σa describes the loss of particles from (x, v) ∈ Rn × V due
to absorption or scattering into another point (x, v′), while the last term in (1.1) involving k
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represents the production at x ∈ Rn of particles with velocity v form particles with velocity
v′. The total rate of this production at (x, v′) is given by

σp(x, v
′) =

∫

V
k(x, v′, v) dv.

Following [RS] we say that the pair (σa, k) is admissible, if

(i) 0 ≤ σa ∈ L∞(Rn × V ),
(ii) 0 ≤ k(x, v′, ·) ∈ L1(V ) for a.e. (x, v′) ∈ Rn × V and σp ∈ L∞(Rn × V ),
(iii) There is an open bounded set X ⊂ Rn, such that k(x, v′, v) and σa(x, v) vanish if

x 6∈ X̄.

Denote T0 = −v · ∇x with domain D(T0) = {f ∈ L1(Rn × V ); v · ∇xf ∈ L1(Rn × V )}.
It is well-known that T0 is a generator of a strongly continuous group U0(t)f = f(x− tv, v)
of isometries on L1(Rn × V ) preserving the non-negative functions. Following the widely
accepted notations, let us introduce the operators

[A1f ](x, v) = −σa(x, v)f(x, v), T1 = T0 +A1, D(T1) = D(T0),
[A2f ](x, v) =

∫
V k(x, v

′, v)f(x, v′) dv′, T = T0 +A1 +A2 = T1 +A2, D(T ) = D(T0)

and set A = A1 + A2. Operators A1 and A2 are bounded on L1(Rn × V ) and T1, T are
generators of strongly continuous groups U1(t) = etT1, U(t) = etT , respectively [RS]. For
U1(t) we have an explicit formula

[U1(t)f ](x, v) = e−
∫ t

0
σa(x−sv,v)dsf(x− tv, v), (1.2)

while for U(t) we have
‖U(t)‖ ≤ eCt, C = ‖σp‖L∞. (1.3)

We work in the Banach space L1(Rn × V ), so here ‖U(t)‖ is the operator norm of U(t) in
L(L1(Rn × V )). It should be mentioned also that U(t) preserves the cone of non-negative
functions for t ≥ 0.

One can define the wave operators associated with T , T0 by

W− = s-lim
t→∞

U(t)U0(−t), (1.4)

W̃+ = s-lim
t→∞

U0(−t)U(t). (1.5)

If W−, W̃+ exist, then one can define the scattering operator

S = W̃+W−

as a bounded operator in L1(Rn × V ). Scattering theory for (1.1) has been developed in [Hej],
[S], [V1] and we refer to these papers (see aslo [RS]) for sufficient conditions guaranteeing
the existence of S. We would like to mention here also [P1], [U], [E], [St], [V2]. An abstract
approach based on the Limiting Absorption Principle has been proposed in [M]. We will show
in Section 2 however that S can always be defined as an operator S : L1

c(R
n × V \{0}) →

L1
loc(R

n × V \{0}). The first inverse problem we are interested in is the following: Does S
determine uniquely σa, k? We show that the answer is affirmative if σa is independent of v.



Theorem 1.1 Let (σa, k), (σ̂a, k̂) be two admissible pairs such that σa, σ̂a do not depend
on v and denote by S, Ŝ the corresponding scattering operators. Then, if S = Ŝ, we have
σa = σ̂a, k = k̂.

One can relax a little bit the assumption that σa, σ̂a do not depend on v. For example,
assume that σa = σa(x, |v|), σ̂a = σ̂a(x, |v|). Then it is clear from the proof (see also (1.6)
below) that the uniqueness result in Theorem 1.1 still holds. However, it is important to
note that Theorem 1.1 fails to be true for general σa. Consider for example the pairs (σa, 0),
(σ̂a, 0), where σ̂a = σa(x+ p(x, v)v, v), with p some nontrivial continuous function such that
p(x, v)v is bounded on Rn × V . Then, if (σa, 0) is admissible, so is (σ̂a, 0). Since k = 0, we
have

Sf = e
−
∫∞
−∞ σa(x−sv,v)ds

f, (k = 0) (1.6)

and it is easy to see that S = Ŝ although σa 6= σ̂a. Note that if k = 0, and σa does not
depend on v, it follows from (1.6) that S determines uniquely the X-ray transform of σa and
therefore σa.

The proof of Theorem 1.1 is constructive, it implies an explicit procedure for recovering
σa and k from S. It turns out that all the information necessary to recover σa, k is contained
in the behavior of the Schwartz kernel S(x, v, x′, v′) of S near the singularities (x, v) = (x′, v′)
and x = x′, v 6= v′, respectively.

Next object we consider is the so-called albedo operator A. Assume that X is convex and
has C1-smooth boundary ∂X. We propose the following definition of A which generalizes
that given in [AE], [EP], [P2]. Denote Γ± = {(x, v) ∈ ∂X × V ; ±n(x) · v > 0}, where n(x)
is the outer normal to ∂X at x ∈ ∂X. Consider the measure dξ = |n(x) · v|dµ(x)dv on Γ±,
where dµ(x) is the measure on ∂X. Let us solve the problem





(∂t − T )u = 0 in R ×X × V ,
u|R×Γ− = g,
u|t�0 = 0,

(1.7)

for u(t, x, v), where g ∈ L1
c(R; L1(Γ−, dξ)) and T is considered as a differential operator in

X × V . We will see in Section 4 that (1.7) has a unique solution u ∈ C(R;L1(X × V )) and
one can define the albedo operator A by

Ag = u|R×Γ+ ∈ L1
loc(R;L1(Γ+, dξ)). (1.8)

Operator A : L1
c(R; L1(Γ−, dξ)) → L1

loc(R;L1(Γ+, dξ)) maps the incoming flux on ∂X to
the outgoing flux on ∂X. It can be seen that Ag can be defined more generally for g ∈
L1(R × Γ−, dt dξ) with g = 0 for t � 0. It has been shown in [AE], [EP], [P2] that there
is a relationship between S and A. We show below that in fact A determines S uniquely
and conversely, S determines A uniquely by means of explicit formulae. To this end, let us
define the extension operators E± and the restriction (trace) operators R± as follows. Set

Ω = {(x, v) ∈ Rn × V \{0}; ∃t ∈ R, such that x− tv ∈ X}, (1.9)

and define the functions

τ±(x, v) = max{t ∈ R; x± tv ∈ ∂X}, (x, v) ∈ Ω.



Given g ∈ L1(R × Γ±, dt dξ), consider the following operators of extension:

(E±g)(x, v) =

{
g(±τ±(x, v), x± τ±(x, v)v, v), (x, v) ∈ Ω
0, otherwise.

It is easy to check that E± : L1(R× Γ±, dt dξ) → L1(Rn × V ) are isometric. Denote by R±
the operator of restriction

R±f = f |Γ±, f ∈ C(Rn × V ).

Although R± is not a bounded operator on L1(Rn × V ) (see [C1], [C2]), R±U0(t)f ∈ L1(R×
Γ±, dt dξ) is well defined for any f ∈ L1(Rn × V ) (see (4.5)). Denote by χΩ the characteristic
function of Ω. We establish the following relationships between S and A.

Theorem 1.2 Assume that X is convex. Then
(a) Ag = R+U0(t)SE−g, g ∈ L1

c(R × Γ−, dt dξ),
(b) Sf = E+AR−U0(t)f + (1 − χΩ)f , f ∈ L1

c(R
n × V \{0}),

(c) A extends to a bounded operator

A : L1(R× Γ−, dt dξ) → L1(R × Γ+, dt dξ)

if and only if S extends to a bounded operator on L1(Rn × V ).

Remark 1 Let us decompose L1(Rn × V ) = L1(Ω) ⊕ L1((Rn × V ) \ Ω). A similar de-
composition of course holds for L1

c(R
n × V \{0}). Then S leaves invariant both spaces,

moreover S|L1((Rn×V )\Ω) = Id, so S can be decomposed as a direct sum S = S1⊕ Id. Denote
R± = R±U0( · ) : L1(Ω) → L1(R×Γ±, dt dξ). We will see in Section 4 that R± are isometric
and invertible and R−1

± = E± with E± : L1(R×Γ±, dt dξ) → L1(Ω), E±f := E±f |L1(Ω). Then
we can rewrite Theorem 1.2 (a), (b) in the following way

A = R+S1E− on L1
c(R× Γ−, dt dξ)

S = E+AR− ⊕ Id on L1
c(R

n × V \{0}),

or even more simply as
A = R+S1E−, S1 = E+AR−

with S1 = S|L1
c(Ω) as above. Thus A can be obtained from S1 by a conjugation with invertible

isometric operators and vice-versa.

Remark 2 The albedo operator is defined in [AE] in somewhat different manner by (1.8),
provided that u solves (1.7) for t > 0 and u satisfies u|t=0 = 0 instead of u|t�0 = 0 (in
fact, it is assumed that u satisfies a non-zero initial condition, but this can be easily reduced
to the case of zero initial condition). The relationship between A and S established in
[AE] can be written as R+SU0(t) = AR−U0(t), which can be obtained as a consequence of
Theorem 1.2(b) (or (a)).



Remark 3 Some of the notations above are a little bit ambiguous. Namely, the expression
E+AR−U0(t)f in Theorem 1.2(b) seems to depend on t, while the left-hand side of the
equality in which it is involved is independent of t. In fact, here U0(t)f is a function of x, v
and t is a parameter, the same applies to R−U0(t)f . Since the operator A acts on functions
g = g(t, x, v) depending on t as well, we consider now t as a variable and apply A to the
function (t, x, v) 7→ R−U0(t)f . The result is a function of t, x and v. Next we apply E− and
obtain a function of x and v only. Perhaps a more precise notation in Theorem 1.2(b) would
be E+AR−U0( · )f .

An immediate consequence of Theorem 1.2 is that A determines uniquely σa, k for σa

independent of v and X convex. However, we can prove this for not necessarily convex
domains as well independently of Theorem 1.2.

Theorem 1.3 Let (σa, k), (σ̂a, k̂) be two admissible pairs with σa, σ̂a independent of v and
denote by X any open bounded set with C1-smooth boundary with the property that σa, k, σ̂a,
k̂ vanish outside X̄ . Then, if the albedo operators A, Â on ∂X coincide, we have σa = σ̂a,
k = k̂.

It should be mentioned that in the case where k is of the form k = RK + Q with R, Q
known and K = K(x, v), the uniqueness of the inverse problem studied in Theorem 1.3 has
been investigated in [PV] for convex X under some smallness assumptions that guarantee
that the corresponding integral equations can be solved by successful approximations. We
would like to mention here also [D], where the problem of determination of k from the
stationary albedo operator in the one-dimensional case is considered.

The proof of Theorem 1.3 is constructive as well. We study the Schwartz kernel of A and
describe the first two singular terms in it. We show that σa can be recovered from the first
term, while the second one determines k, similarly to the proof of Theorem 1.1.

Finally, we would like to mention that we have found some analogy between the albedo
operator A and the Dirichlet-to-Neumann map Λ related to the boundary value problem
for the Schrödinger operator or for the conductivity operator ∇ · γ∇, γ = γ(x) > 0 [SU1].
More precisely, denote by Λ the operator acting on the boundary of a bounded domain
mapping the Dirichlet data of the solution to (−∆ + q)v = 0 (respectively ∇ · γ∇v = 0) to
its Neumann data. As proven in [SU1], Λ determines uniquely q (respectively γ). We found
that A in our case is in some sense an analogue to Λ or more precisely to the time-dependent
Dirichlet-to-Neumann map associated with the wave equation (∂2

t − ∆x + q)v = 0. It is
well-known that there is a close relation between the scattering operator for the Schrödinger
equation and Λ. Theorem 1.2 we prove can be considered as an analogue of this result in
transport theory. We would like to mention however, that the Schrödinger equation and the
Boltzmann equation have quite different properties.

Some of the results of this paper have been announced in [CS]. It should be mentioned
that the main theorems can be generalized to the case where σa, k depend on t as well.



2 The special solution and the scattering operator

An important role in our analysis is played by the following special solutions. Given (x′, v′) ∈
Rn × V \{0} consider the following problem

{
(∂t − T )u = 0 in R × Rn × V

u|t�0 = δ(x− x′ − tv)δ(v− v′),
(2.1)

δ being the Dirac delta function. We will show that (2.1) has unique solution u#(t, x, v, x′, v′),
with u# depending continuously on t with values in D′(Rn

x ×Vv ×Rn
x′ ×Vv′\{0}). Moreover,

we have the following singular expansion of u#.

Theorem 2.1 Problem (2.1) has unique solution u# = u#
0 + u#

1 + u#
2 , where

u#
0 = e−

∫∞
0

σa(x−sv,v)dsδ(x− x′ − tv)δ(v− v′)

u#
1 =

∫ ∞

0
e−
∫ s

0
σa(x−τv,v)dτe−

∫∞
0

σa(x−sv−τv′ ,v′)dτk(x− sv, v′, v)δ(x− sv − (t− s)v′ − x′) ds,

u#
2 ∈ C

(
R; L∞

loc(R
n

x′ × Vv′ ; L
1(Rn

x × Vv))
)
.

Proof. Pick ϕ ∈ C∞
c (Rn × V \{0}) and consider the problem

{
(∂t − T )w = 0 in R × Rn × V

w|t�0 = ϕ(x− tv, v),
(2.2)

Since min{|v|; (x, v) ∈ suppϕ for some x} > 0, there exists t0 = t0(ϕ), such that ϕ(x −
tv, v) = 0 for (x, v) ∈ X × V , t < −t0. Then

w := U(t+ t0)U0(−t0)ϕ (2.3)

solves (2.2) and it is easy to see that w does not depend on the particular choice of t0.
Applying Duhamel’s principle

U(t− r) = U1(t− r) +
∫ t

r
U(t− s)A2U1(s− r) ds, (2.4)

we get

w = U1(t+ t0)U0(−t0)ϕ+
∫ t

−t0
U(t− s)A2U1(s+ t0)U0(−t0)ϕds.

Applying Duhamel’s formula one more time, we obtain

w = w0 + w1 + w2,

where

w0 = U1(t+ t0)U0(−t0)ϕ

w1 =
∫ t

−t0
U1(t− s)A2U1(s+ t0)U0(−t0)ϕds

w2 =
∫ t

−t0

∫ t

s1

U(t− s2)A2U1(s2 − s1)A2U1(s1 + t0)U0(−t0)ϕds2 ds1.



For the first term w0 we have

w0 = e−
∫ t+t0
0

σa(x−sv,v)dsϕ(x− tv, v) = (u#
0 (t, x, v, · , · ), ϕ), (2.5)

where u#
0 is as stated above and (u#

0 (t, x, v, · , · ), ϕ) is the action of the distribution u#
0 (with

t, x, v considered as parameters) on the test function ϕ, i.e. formally (u#
0 (t, x, v, · , · ), ϕ) =∫ ∫

u#
0 (t, x, v, x′, v′)ϕ(x′, v′) dx′ dv′. For w1 we have

w1 =
∫ t

−t0
U1(t− s)A2w0(s, · , · ) ds

=
∫ t+t0

0
U1(s)A2w0(t− s, · , · ) ds

=
∫ t+t0

0

∫

V
e−
∫ s

0
σa(x−τv,v)dτk(x− sv, v′, v)w0(t− s, x− sv, v′) dv′ ds

=
∫ t+t0

0

∫

V
e−
∫ s

0
σa(x−τv,v)dτe−

∫∞
0

σa(x−sv−τv′ ,v′)dτ

×k(x− sv, v′, v)ϕ(x− (t− s)v′ − sv, v′) dv′ ds

= (u#
1 (t, x, v, · , · ), ϕ), (2.6)

where u#
1 is as stated above.

Finally, for w2 we get by changing the order of integration

w2 =
∫ t

−t0
U(t− s2)A2w1(s2, · , · ) ds2. (2.7)

Substituting the formula for w1, we obtain

(A2w1)(s2, x, v) =
∫

V

∫ ∞

0

∫

V
E(s1, x, v

′′, v′)k(x, v′′, v)k(x− s1v
′′, v′, v′′)

×ϕ(x− (s2 − s1)v
′ − s1v

′′, v′) dv′ ds1 dv
′′, (2.8)

where
E(s, x, v, v′) = e−

∫ s

0
σa(x−τv,v)dτe−

∫∞
0

σa(x−sv−τv′ ,v′)dτ .

The second integral in (2.8) is in fact over a bounded interval. Since the integrals in (2.8)
are absolutely convergent, we can change the order of integration freely. Let us make the
following change x′ = x− (s2 − s1)v

′ − s1v
′′ in the first integral in (2.8). We get

(A2w1)(s2, x, v)

=
∫ ∞

0

∫

V

∫

Rn
s−n
1 E(s1, x,

x− x′ − (s2 − s1)v
′

s1
, v′)k(x,

x− x′ − (s2 − s1)v
′

s1
, v)

×k(x′ + (s2 − s1)v
′, v′,

x− x′ − (s2 − s1)v
′

s1
)ϕ(x′, v′)dx′dv′ds1. (2.9)

Here we suppose that k(x, v′, v) is prolonged as 0 for v or v′ outside V . There is a singularity
above in s1, but the integral (2.9) converge because we obtained it from the convergent



integral (2.8). Denote

M(s1, s2, x, v, x
′, v′) = s−n

1 E(s1, x,
x− x′ − (s2 − s1)v

′

s1
, v′)k(x,

x− x′ − (s2 − s1)v
′

s1
, v)

×k(x′ + (s2 − s1)v
′, v′,

x− x′ − (s2 − s1)v
′

s1
).

Then we can rewrite (2.9) as

(A2w1)(s2, x, v) =
∫ ∞

0

∫

V

∫

Rn
M(s1, s2, x, v, x

′, v′)ϕ(x′, v′)dx′ dv′ ds1.

By performing the change x = x′ + (s2 − s1)v
′ + s1v

′′, we get for s1 > 0

∫

V

∫

Rn
M(s1, s2, x, v, x

′, v′) dx dv

=
∫

V

∫

V
E(s1, x

′ + (s2 − s1)v
′ + s1v

′′, v′′, v′)k(x′ + (s2 − s1)v
′ + s1v

′′, v′′, v)

×k(x′ + (s2 − s1)v
′, v′, v′′) dv′′ dv

≤ ‖σp‖2
L∞,

because 0 < E(s, x, v, v′) ≤ 1 for s ≥ 0. Therefore,

M ∈ L∞((R+)s1 × Rs2 × Rn
x′ × Vv′ ; L

1(Rn
x × Vv)) (2.10)

and moreover, for each compact K ⊂ Rn × V \{0} there exists t0 = t0(K), such that if
(x′, v′) ∈ K, then M vanishes for s1 > s2 + t0 and for s2 < −t0 (provided that s1 > 0).
Therefore, the following integral is well-defined

u#
2 :=

∫ t

−∞

∫ ∞

0
U(t− s2)M(s1, s2, · , · , x′, v′) ds1 ds2,

and we have
u#

2 ∈ C
(
Rt; L

∞
loc(R

n
x′ × Vv′\{0}, L1(Rn

x × Vv))
)
.

On the other hand, by (2.7)

w2(t, x, v) =
∫

Rn×V
u#

2 (t, x, v, x′, v′)ϕ(x′, v′) dx′ dv′. (2.11)

We are ready now to conclude the proof of Theorem 2.1. We found (see (2.5), (2.6), (2.11))
that the unique solution to (2.2) has the form w = (u#(t, x, v, · , · ), ϕ), where u# = u#

0 +
u#

1 + u#
2 is a distribution with properties as stated above. It is clear now that u solves the

transport equation in distributional sense and satisfies the initial condition in (2.1) as well,
therefore u solves (2.1). Moreover, this solution is unique because the solution to (2.2) is
unique. 2

We will prove next that the wave operators W−, W̃+ (see (1.4), (1.5)) always exist as
operators between suitably chosen spaces.



Proposition 2.1 The limits W−, W̃+ exist as operators between the spaces

W− : L1
c(R

n × V \{0}) −→ L1(Rn × V )

W̃+ : L1(Rn × V ) −→ L1
loc(R

n × V \{0})

Proof. Pick f ∈ L1
c(R

n × V \{0}). Since min{|v|; (x, v) ∈ suppf for some x} > 0, for some
t0 = t0(f) we have U0(−t)f = 0 in X for t > t0. Moreover, U(t)U0(−t)f = U(t0)U0(−t0)f
for t ≥ t0 and therefore W−f = U(t0)U0(−t0)f . This proves in particular that the limit
W− : L1

c(R
n × V \{0}) → L1(Rn × V ) (see (1.4)) exists as an operator between these two

spaces. Next, let us fix g ∈ L1(Rn × V ) and a compact set K ⊂ Rn × V \{0} and consider
[U0(−t)U(t)g](x, v) for large t and (x, v) ∈ K. We claim that this is independent of t for t > t1
with some t1 = t1(K). In particular, this would prove that the limit W̃+ (see (1.5)) exists
as an operator W̃+ : L1(Rn × V ) −→ L1

loc(R
n × V \{0}) and W̃+g|K = U0(−t1)U(t1)g|K.

Indeed, the Duhamel’s principle

U(t) = U0(t) +
∫ t

0
U0(t− s)AU(s) ds (2.12)

implies

U0(−t)U(t)g = g +
∫ t

0
U0(−s)AU(s)g ds. (2.13)

Since AU(s)g = 0 for x 6∈ X, we have U0(−s)AU(s)g = (AU(s)g)(x + sv, v) = 0 for
(x, v) ∈ K, s > t1 = t1(K). Therefore, U0(−t)U(t)g|K does not depend on t for t > t1 and
our claim is proved. 2

Now we are in position to define the scattering operator. Set

S = W̃+W− : L1
c(R

n × V \{0}) −→ L1
loc(R

n × V \{0}), (2.14)

where W̃+, W− are as in Proposition 2.1. In fact, as can be seen from the proof of the
proposition above, S is well defined on the wider subset {f ; ∃t0 = t0(f), such that U0(t)f = 0
for x ∈ X, t < −t0} (the incoming space). Now it is clear that W̃+, W−, S exist in classical
sense if and only if these operators given in Proposition 2.1 and (2.14) can be extended as
bounded operators on L1(Rn × V ).

Proposition 2.2 u#(0, x, v, x′, v′) is the Schwartz kernel of W−.

Proof. We will prove something more — that u#(t, x, v, x′, v′) is the Schwartz kernel
of U(t)W−. Pick ϕ ∈ C∞

c (Rn × V \{0}). From the proof of Proposition 2.1 it follows
that W−ϕ = U(t0)U0(−t0)ϕ for some large t0 = t0(ϕ). Therefore, U(t)W−ϕ = U(t +
t0)U0(−t0)ϕ and by (2.3) we deduce that U(t)W−ϕ = w, where w solves (2.2), i.e. w =
(u#(t, x, v, · , · ), ϕ). This completes the proof of the proposition. 2

Denote by S(x, v, x′, v′) ∈ D′(Rn × V \{0} × Rn × V \{0}) the Schwartz kernel of the
scattering operator S.

Proposition 2.3 S(x, v, x′, v′) = limt→∞ u#(t, x+ tv, v, x′, v′).



Proof. Let ϕ ∈ C∞
c (Rn×V\{0}). Then U(t)W−ϕ = (u#(t, x, v, · , · ), ϕ) and U0(−t)U(t)W−ϕ

= (u#(t, x+ tv, v, · , · ), ϕ). Therefore, for any compact K ⊂ Rn × V \{0} we have Sϕ|K =
limt→∞(u#(t, x+tv, v, · , · ), ϕ)|K. According to the final part of the proof of Proposition 2.1,
U0(−t)U(t)W−ϕ|K does not depend on t for large t. Therefore, in the last limit it suffices to
take t > t0(K), so the limit exists trivially. 2

Proposition 2.4

S(x, v, x′, v′) = e
−
∫∞
−∞ σa(x−τv,v)dτ

δ(x− x′)δ(v − v′)

+
∫ ∞

−∞
e−
∫∞

s
σa(x+τv,v)dτ (A2u

#)(s, x+ sv, v, x′, v′) ds.

Proof. It follows from (2.4) that

U(2t) − U1(2t) =
∫ t

−t
U1(t− s)A2U(s + t) ds.

Pick up f ∈ L1
c(R

n × V \{0}) and fix a compact K ⊂ Rn × V \{0}. Then there exists
t0 = t0(f,K), such that

Sf |K = U0(−t0)U(2t0)U0(−t0)f |K

= U0(−t0)U1(2t0)U0(−t0)f |K + U0(−t0)
∫ t0

−t0
U1(t0 − s)A2U(s+ t0)U0(−t0)f |Kds

= e
−
∫∞
−∞ σa(x−τv,v)dτ

f |K +
∫ t0

−t0
U0(−t0)U1(t0 − s)A2w(s, · , · )|Kds

= e
−
∫∞
−∞ σa(x−sv,v)ds

f |K +
∫ t0

−t0
e−
∫ t0

s
σa(x+τv,v)dτ (A2w)(s, x+ sv, v)|Kds,

where w solves (2.2) with ϕ = f . 2

3 Reconstruction of σa, k from S.

Assume that we are given the scattering operator S corresponding to an admissible pair
(σa, k). We will show in this section how one can recover σa, k constructively. In particular,
this will prove Theorem 1.1.

We will show next that the singular expansion of the special solution u#(t, x, v, x′, v′)
established in Theorem 2.1 implies a similar expansion of the scattering kernel S.

Theorem 3.1 We have S = S0 + S1 + S2, where the Schwartz kernels Sj(x, v, x
′, v′) of the

operators Sj, j = 0, 1, 2 satisfy

S0 = e
−
∫∞
−∞ σa(x−τv,v)dτ

δ(x− x′)δ(v− v′)

S1 =
∫ ∞

−∞
e−
∫∞

s
σa(x+τv,v)dτe−

∫∞
0

σa(x+sv−τv′ ,v′)dτk(x+ sv, v′, v)δ(x− x′ + s(v − v′)) ds

S2 ∈ L∞
loc(R

n
x′ × Vv′ \{0}; L1

loc(R
n

x × Vv\{0})).



Proof. The proof follows by substituting u# = u#
0 + u#

1 + u#
2 from Theorem 2.1 into the

limit in Proposition 2.3 or the integral representation of S found in Proposition 2.4. As
already mentioned above, for (x, v, x′, v′) ∈ U ⊂⊂ Rn × V \{0} × Rn × V \{0} the limit in
Proposition 2.3 trivially exists and the integrals in Proposition 2.4 are taken over bounded
intervals. 2

We are ready now to complete the proof of Theorem 1.1. The idea of the proof is the
following. Suppose we are given the scattering operator S corresponding to a unknown
admissible pair (σa, k). Then we know the kernel S = S0 + S1 + S2. It follows from
Theorem 2.1 and Theorem 3.1 that S0 is a singular distribution supported on the hyperplane
x = x′, v = v′ of dimension 2n, S1 is supported on a (3n+1)-dimensional surface (for v 6= v′),
while S2 is a function. Therefore, Sj , j = 0, 1, 2 have different degrees of singularities and
given S = S0 + S1 + S2, one can always recover S0 and S1. From S0 one can recover the
X-ray transform of σa and therefore σa itself, provided that σa is independent of v. Next,
suppose for simplicity that σa, k are continuous. Then for fixed x, v, v′ with v 6= v′, S1 is
a delta-function supported on the line x′ = x + s(v − v′), s ∈ R with density a multiple of
k(x+ sv, v′, v). Therefore, one can recover that density for each s and in particular setting
s = 0 we get k(x, v′, v).

Pick a function ϕ ∈ C∞
c (Rn) with ϕ(0) = 1, ϕ(x) = 0 for |x| > 1 and 0 ≤ ϕ ≤ 1. Fix a

compact set K ⊂ Rn × V \{0} and let χ ∈ C∞
c (Rn × V \{0}) be such that χ = 1 on K and

0 ≤ χ ≤ 1. For ε > 0 sufficiently small set

φε(x, v, x
′, v′) = ϕ

(
x− x′

ε

)
ϕ
(
v − v′

ε

)
χ(x, v). (3.1)

Note that φε = 0 for (x′, v′) outside some other compact subset K ′ of Rn × V \{0} for ε
sufficiently small.

Proposition 3.1 With φε as above we have

lim
ε→0

∫ ∫
S(x, v, x′, v′)φε(x, v, x

′, v′) dx′ dv′ = e−
∫∞
∞ σa(x−τv,v)dτχ(x, v),

in L1(Rn × V ), where the integral is to be considered in distribution sense.

Proof. Note that a priori the formal integral above is a distribution in D′(Rn × V \{0}),
but we will show that by Theorem 3.1 in fact it belongs to L1(Rn × V ) and the limit above
holds in the same space. For S0 we have

∫ ∫
S0(x, v, x

′, v′)φε(x, v, x
′, v′) dx′ dv′ = e−

∫∞
∞ σa(x−τv,v)dτχ(x, v). (3.2)

Next,

0 ≤
∫ ∫ ∫ ∫

S1(x, v, x
′, v′)φε(x, v, x

′, v′) dx′ dv′ dx dv

≤
∫ ∫ ∫ ∫

χ(x, v)ϕ

(
−s(v − v′)

ε

)
ϕ

(
v − v′

ε

)
k(x+ sv, v′, v) ds dv′ dx dv



≤
∫ ∫ ∫ ∫

χ(x, v)ϕ

(
v − v′

ε

)
k(x+ sv, v′, v) ds dv′ dx dv

=
∫ ∫ ∫ ∫

χ(x− sv, v)ϕ

(
v − v′

ε

)
k(x, v′, v) ds dv′ dx dv

≤ 2A
∫

W

∫ ∫
ϕ

(
v − v′

ε

)
k(x, v′, v) dv′ dx dv

≤ 2A
∫

Dε

k(x, v′, v) dx dv′ dv. (3.3)

We have used above the fact that the integral in s is taken over some bounded interval [−A,A]
with A > 0 depending on χ and X, and we denoted W = {v; ∃x, such that (x, v) ∈ suppχ}.
The last integral is taken over the bounded set

Dε = {(x, v′, v); x ∈ X, v ∈ W, |v − v′| < ε}.

Let us estimate the measure meas(Dε). We have

meas(Dε) =
∫

W

∫

X

∫

|v−v′ |<ε
dv′ dx dv = Cεn

∫

W

∫

X
dx dv = C ′εn.

Therefore, in (3.3) we have a locally integrable function (see (ii), (iii) in section 1) and the
integration is performed over a set Dε with meas(Dε) → 0. Since the Lebesgue integral is
absolutely continuous withe respect to the Lebesgue measure, we get that

lim
ε→0

∫ ∫
S1(x, v, x

′, v′)φε(x, v, x
′, v′) dx′ dv′ = 0 in L1(Rn

x × Vv). (3.4)

Finally, we have ∫ ∫ ∣∣∣∣
∫ ∫

S2(x, v, x
′, v′)φε(x, v, x

′, v′) dx′ dv′
∣∣∣∣ dx dv

≤
∫

Eε

|S2(x, v, x
′, v′)| dx dv dx′ dv′ (3.5)

with Eε = {(x, v, x′, v′); (x, v) ∈ suppχ, |x− x′| ≤ ε, |v− v′| ≤ ε}. There exists ε0 > 0 such
that for 0 < ε < ε0 we have Eε ⊂ Eε0 ⊂ Rn × V \{0} ×Rn × V \{0} and S2 is an integrable
function on Eε0 by Theorem 3.1. As before, it is easy to see that meas(Eε) = O(ε2n) → 0 as
ε→ 0. Therefore, (3.5) tends to 0 and we obtain

lim
ε→0

∫ ∫
S2(x, v, x

′, v′)φε(x, v, x
′, v′) dx′ dv′ = 0 in L1(Rn

x × Vv). (3.6)

Now, (3.2), (3.4) and (3.6) together complete the proof of Proposition 3.1. 2

Assume now that σa is independent of v. We deduce from Proposition 3.1 that one can
recover ∫ ∞

−∞
σa(x− τv)dτ (3.7)



for a.e. (x, v) ∈ Rn × V . Since V is an open set, we see that we know (3.7) for a.e. (x, v) ∈
Rn × U , where U is a small neighborhood of some v0 ∈ V \{0}. Thus we can recover the
X-ray transform ∫ ∞

−∞
σa(x− τω)dτ (3.8)

of σa(x) for a.e. (x, ω) ∈ Rn × Ũ , where Ũ is a small neighborhood of v0/|v0| in Sn−1. The
latter is sufficient to recover σa (see e.g. [Hel]). We note that in the particular case where for
any ω ∈ Sn−1, the velocity space V contains some v of the kind v = rω with r = r(ω) > 0,
we can recover the X-ray transform (3.8) for a.e. (x, ω) ∈ Rn × Sn−1 and therefore we can
write an explicit formula [Hel] for σa(x). As mentioned in the Introduction, this argument
works also for σa = σa(x, |v|).

We proceed next with the reconstruction of k(x, v′, v).
Choose two functions ϕ ∈ C∞

c (Rn) with 0 ≤ ϕ ≤ 1, ϕ(0) = 1, ϕ(x) = 0 for |x| > 1 and
ϕ1 ∈ C∞

c (R) with
∫
ϕ1(s)ds = 1, 0 ≤ ϕ1. Set W = {(v′, v) ∈ V × V ; v 6= 0, v′ 6= 0, v 6= v′}.

For ε1 > 0, ε2 > 0 set

ψε1,ε2 =
1

ε 1
ϕ1

(
(x− x′) · (v − v′)

ε1|v − v′|2

)
ϕ

(
1

ε2

(
x− x′ − (x− x′) · (v − v′)

|v − v′|2 (v − v′)

))
. (3.9)

Proposition 3.2 With ψε1,ε2 as above we have

lim
ε1→0

lim
ε2→0

∫
S(x, v, x′, v′)ψε1,ε2(x, v, x

′, v′) dx′ = e−
∫∞
0

σa(x+τv,v)dτe−
∫∞
0

σa(x−τv′,v′)dτk(x, v′, v),

where the integral is to be considered in distribution sense and the limit holds in L1
loc(R

n×W).

Proof. First, note that
∫

S0(x, v, x
′, v′)ψε1,ε2(x, v, x

′, v′) dx′ = 0 in Rn ×W, (3.10)

because S0|v 6=v′ = 0. Next, for S1 we get
∫

S1(x, v, x
′, v′)ψε1,ε2(x, v, x

′, v′) dx′ =
∫
Ẽ(s, x, v′, v)k(x+ sv, v′, v)

1

ε1
ϕ1

(
− s

ε1

)
ds.

Here Ẽ(s, x, v′, v) = e−
∫∞

s
σa(x+τv,v)dτe−

∫∞
0

σa(x+sv−τv′ ,v′)dτ . It is easy to see that the mapping
s→ E(s, x, v′, v)k(x+ sv, v′, v) ∈ L1

loc(R
n × V × V ) is continuous. Therefore,

lim
ε1→0

lim
ε2→0

∫
S1(x, v, x

′, v′)ψε1,ε2(x, v, x
′, v′) dx′

= lim
ε1→0

∫
Ẽ(s, x, v′, v)k(x+ sv, v′, v)

1

ε1
ϕ1

(
− s

ε1

)
ds

= Ẽ(0, x, v′, v)k(x, v′, v) in L1
loc(R

n ×W). (3.11)

Finally, choose a compact set K ⊂ Rn ×W and consider
∫

K

∣∣∣∣
∫

S2(x, v, x
′, v′)ψε1,ε2(x, v, x

′, v′) dx′
∣∣∣∣dx dv

′ dv ≤ ‖ϕ1‖L∞

ε1

∫

K

∫

X ′
|S2(x, v, x

′, v′)|

×ϕ
(

1

ε 2

(
x− x′ − (x− x′) · (v − v′)

|v − v′|2
(v − v′)

))
dx′ dxdv′dv. (3.12)



Note that on suppψε1 ,ε2 we have |x − x′| ≤ Cmax{ε1, ε2}, so for ε1 and ε2 bounded, x′

belongs to some compact set X ′. The integration in (3.12) is taken over the set

(x′, x, v′, v) ∈ Fε2 := (X ′ ×K) ∩
{∣∣∣∣x− x′ − (x− x′) · (v − v′)

|v − v′|2 (v − v′)
∣∣∣∣ < ε2

}
.

For fixed x, v′, v the last set is a cylinder with radius ε2, thus we conclude that meas(Fε2) =
O(εn−1

2 ) and therefore

∫

K

∣∣∣∣
∫

S2(x, v, x
′, v′)ψε1,ε2(x, v, x

′, v′) dx′
∣∣∣∣dx dv

′ dv

≤ ‖ϕ1‖L∞

ε1

∫

Fε2

|S2(x, v, x
′, v′)|dx′dxdv′dv → 0 as ε2 → 0, (3.13)

because the Lebesgue integral is absolutely continuous with respect to the Lebesgue measure.
Combining (3.10), (3.11) and (3.13) we complete the proof of the proposition. 2

Assume now that we are given the scattering operator corresponding to an admissible pair
(σa, k) with σa = σa(x). By Proposition 3.1, one can recover σa(x). Next, by Proposition 3.2
we can explicitly recover

e−
∫∞
0

σa(x+τv)dτe−
∫∞
0

σa(x−τv′)dτk(x, v′, v)

almost everywhere in Rn × V × V . Since σa(x) is already known, we get k(x, v′, v) for a.e.
(x, v′, v).

Finally, we would like to mention that Propositions 3.1, 3.2 can be written in terms of
the operator S itself rather than in terms of its distribution kernel. Let φε be the same as
in (3.1) and consider the function φε(y,w, x, v), where y, w are regarded as parameters (i.e.
in (3.1) we replace (x, v, x′, v′) by (y,w, x, v)). Then Proposition 3.1 is equivalent to

lim
ε→0

Sφε(y,w, · , · )|y=x, w=v = e−
∫∞
∞ σa(x−τv,v)dτχ(x, v)

in L1(Rn × V ). Similarly, Proposition 3.2 can be rewritten as

lim
ε1→0

lim
ε2→0

S[ψε1,ε2(y,w, · , · )ρ( · )]|y=x, w=v

=
∫

V
e−
∫∞
0

σa(x+τv,v)dτe−
∫∞
0

σa(x−τv′,v′)dτk(x, v′, v)ρ(v′) dv′

in L1
loc(R

n × V \ {{0} ∪ supp ρ}) for any ρ = ρ(v′) ∈ C∞
c (V \ {0}).

4 The albedo operator

Assume that X is convex and ∂X is C1-smooth. Consider the functions τ±(x, v) and the
operators E±, R± defined in the Introduction. It should be noted that τ± have the properties
τ±(x+ tv, v) = τ±(x, v)∓ t and (x ± τ±(x, v)v, v) ∈ Γ± for any (x, v). Using this property,



we can show that E± are closely connected to the solution of the following boundary value
problem {

(∂t − T0)v = 0 in R ×X × V ,
v|R×Γ± = g.

(4.1)

Indeed, taking into account that
R±U0(t)E±g = g, (4.2)

we see that the solution to (4.1) is given by v = U0(t)E±g|X×V . We consider in (4.1) T0 as a
differential operator in X ×V . As mentioned in the Introduction, E± : L1(R×Γ±, dt dξ) →
L1(Rn × V ) is isometric, i.e.

‖E±g‖L1(Rn×V ) = ‖g‖L1(R×Γ±, dt dξ). (4.3)

Equality (4.3) follows easily by making a change of variables in the corresponding integral.
Indeed,

‖E±g‖L1(Rn×V ) =
∫

Ω
|g(±τ±(x, v), x± τ±(x, v)v, v)| dx dv.

Let us choose new variables t = ±τ±(x, v), y = x ± τ±(x, v). Then (y, v) ∈ Γ± and dx =
dt|v · n(y)|dµ(y), thus we get

‖E±g‖L1(Rn×V ) =
∫

Γ±

∫
|g(t, y, v)| dt |v · n(y)|dµ(y)dv,

which proves (4.3).
Denote by χΩ the characteristic function of Ω (see (1.9)). Then the following property

holds
E±R±U0(t)f = χΩf. (4.4)

We recall (see also Remark 3 in the Introduction) that E± acts on functions depending both
on t and (x, v) and the result is a function independent of t. Thus in the left-hand side of
(4.4) t is one of the variables, not a parameter. Taking into account (4.3), we conclude that

‖R±U0( · )f‖L1(R×Γ±, dt dξ) = ‖χΩf‖L1(Rn×V ). (4.5)

Note that R± are unbounded as operators from L1(Rn × V ) into L1(Γ±, dξ). We refer to
[C1], [C2] for more precise results and trace theorems. We are not going to make use of these
trace theorems however (except in the proof of Proposition 5.2), because we will always
apply R± to time dependent functions like U0(t)f or U(t)f and will consider the result as a
function of both variables x and t belonging (locally) to L1(R×Γ±, dt dξ). Then R±U0(t)f
is well defined according to (4.5) and for R±U(t)f we have:

Lemma 4.1 R±U( · ) : L1(Rn × V ) −→ L1
loc(R; L1(Γ±, dξ)) is continuous. More precisely,

for each a > 0 we have

∫ a

−a
‖R±U(t)f‖L1(Γ±,dξ)dt ≤ C(a)‖χΩf‖L1(Rn×V ), f ∈ L1(Rn × V ).



Proof. Given f ∈ L1(Rn × V ), set f = f1 + f2 with f1 = χΩf , f2 = (1 − χΩ)f . Using
Duhamel’s principle (2.4), we see that U(t)f2 = U0(t)f2 and thus by (4.5), R±U(t)f2 = 0.
For f1 we have by using (2.12) and (4.5)

∫ a

−a
‖R±U(t)f1‖L1(Γ±,dξ)dt

≤ ‖f1‖L1(Rn×V ) +
∫ a

−a

∥∥∥∥
∫ t

0
R±U0(t− s)AU(s)f1 ds

∥∥∥∥
L1(Γ±,dξ)

dt

≤ ‖f1‖L1(Rn×V ) +
∫ a

−a

∫ a

−a
‖R±U0(t− s)AU(s)f1‖L1(Γ±,dξ)ds dt

= ‖f1‖L1(Rn×V ) +
∫ a

−a

∫ a

−a
‖R±U0(t− s)AU(s)f1‖L1(Γ±,dξ)dt ds

≤ ‖f1‖L1(Rn×V ) +
∫ a

−a
‖U0(−s)AU(s)f1‖L1(Rn×V )ds

≤
(
1 + 2a‖σp‖L∞ea‖σp‖L∞

)
‖f1‖L1(Rn×V ).

2

Lemma 4.2 R−U(t)f |R+×Γ− = R−U0(t)f |R+×Γ− for any f ∈ L1(Rn × V ).

Proof. We have to show that
∫ ∞

0
‖R−U(t)f −R−U0(t)f‖L1(Γ−,dξ)dt = 0.

By inspecting the proof of Lemma 4.1 we see that it suffices to prove that
∫ ∞

s
‖R−U0(t− s)AU(s)f‖L1(Γ−,dξ)dt = 0, s ≥ 0,

which is equivalent to
∫ ∞

0
‖R−U0(t)AU(s)f‖L1(Γ−,dξ)dt = 0, s ≥ 0.

In order to complete the proof, it is enough to observe, that R−U0(t)h|R+×Γ− = 0 for any h
with h(x, v) = 0 for x 6∈ X̄ . 2

Given g ∈ L1
c(R; L1(Γ−, dξ)), consider the problem (1.7).

Proposition 4.1 Problem (1.7) has unique solution in C(R;L1(X × V )) given by u =
U(t)W−E−g|X×V .

Proof. Note first that the uniqueness follows from the fact that the homogeneous problem
(with g = 0) has only a trivial solution, because the transport operator with boundary
conditions u|R×Γ− = 0 generates a continuous semigroup of solution operators. Next, note
that if t0 is such that g = 0 for t < −t0, we have U0(t)E−g = 0 in X × V for t < −t0
and moreover, U(t)U0(−t)E−g = U(t0)U0(−t0)E−g for t > t0, so although E−g does not
necessarily belong to L1

c(R
n × V \{0}) (see (1.4) and Proposition 2.1), the limit W−E−g



trivially exists. Set w = U(t)W−E−g = U(t + t0)U0(−t0)E−g. Then w clearly solves the
Boltzmann equation in R ×X × V . We have that R−w|t<−t0 = 0 and by Lemma 4.2 and
(4.2), R−w|t>−t0 = R−U0(t)E−g|t>−t0 = g|t>−t0 = g. Therefore, w satisfies the boundary
condition as well. Thus setting u = w|X×V , we get a solution to (4.1). 2

We see now that the definition of A, given in (1.8)

Ag = R+u, A : L1
c(R; L1(Γ−, dξ)) −→ L1

loc(R;L1(Γ+, dξ)), (4.6)

u being the solution to (1.7), is correct. Indeed, by Proposition 4.1, Ag = R+U(t) W−E−g
and by Lemma 4.1, Ag ∈ L1

loc(R; L1(Γ+, dξ)). We note that in fact, Ag is well defined also
for g ∈ L1(R × Γ−, dt dξ) with g = 0 for t � 0, and then Ag ∈ L1((a,∞) × Γ+, dt dξ) for
any a ∈ R, but as Theorem 1.2(c) shows (see the proof below), A extends as an operator
A : L1(R× Γ−, dt dξ) → L1(R× Γ+, dt dξ) if and only if the scattering operator exists as a
bounded operator on L1(Rn × V ).

Proof of Theorem 1.2. Consider first (a). Pick g ∈ L1
c(R × Γ−, dt dξ). Then E−g ∈

L1
c(R

n × V \{0}) and SE−g is well defined. By (4.6) and Proposition 4.1 we have Ag =
R+U(t)W−E−g. Denote

Ω+ = {(x, v) ∈ Ω; x+ tv 6∈ X for any t ≥ 0}.

We claim that
U0(t)SE−g|Ω+∩K = U(t)W−E−g|Ω+∩K (4.7)

for any compact K ⊂ Rn × V \{0}. Indeed,

U0(t)SE−g = lim
s→∞

U0(t− s)U(s)W−E−g (4.8)

and the limit exists in L1
c(R

n × V \{0}). We have (see (2.13))

U0(t− s)U(s)W−E−g|Ω+ = U0(t)W−E−g|Ω+ +
∫ s

0
U0(t− τ )AU(τ )W−E−g|Ω+dτ (4.9)

with U0(t−τ )AU(τ )W−E−g = (AU(τ )W−E−g)(x− (t−τ )v, v).For (x, v) ∈ Ω+ this function
vanishes provided that t−τ < 0. So in fact the integral in (4.9) is taken over the the interval
0 ≤ τ ≤ t only and therefore (4.9) is independent of s for s ≥ t. Therefore, we can put s = t
in (4.9) in order to get the limit (4.8) which implies immediately (4.7). Let us now apply
R+ to both sides of (4.7) to get

R+U0(t)SE−g = R+U(t)W−E−g = Ag.

Consider (b). Pick f ∈ L1
c(R

n × V \{0}) and set g = R−U0(t)f . Then we have g ∈
L1

c(R; L1(Γ−, dξ)) and E−g = χΩf (which is true whenever E−g ∈ L1
c(R

n × V \{0})). An
application of (a) yields AR−U0(t)f = R+U0(t)SχΩf by (4.4). Applying E+ to both sides
and using again (4.4), we get

χΩSχΩf = E+AR−U0(t)f. (4.10)



Now, since for the special solution u# we have u# = δ(x−x′−tv)δ(v−v′) in (Rn×V \{0})\Ω,
we get S(1−χΩ)f = (1−χΩ)f for any f . On the other hand, by Proposition 2.4, (1−χΩ)Sf =
(1 − χΩ)f for any f . In other words, S leaves L1

c(Ω), L1
c((R

n × V \{0}) \ Ω) invariant and
χΩSχΩf = Sf − (1 − χΩ)f . Substituting this into (4.10), we complete the proof of (b).

Finally, (c) is an immediate consequence of (a), (b), (4.3) and (4.5). 2

5 Reconstruction of σa, k from A. The non-convex case

In this section we prove Theorem 1.3. In the case where X is convex, the uniqueness result
in Theorem 1.3 is an immediate consequence of Theorem 1.1 and Theorem 1.2. If X is
not convex, then one can still deduce Theorem 1.3 from the previous two theorems using an
argument from [SU2], where the Dirichlet-to-Neumann map is considered (see Proposition 5.2
below). Namely, one can show that A = Â entails u# = û# outside X × V and therefore,
by Proposition 2.3 we could conclude that σa = σ̂a, k = k̂. We will give however another
proof of Theorem 1.3 as well, that implies a constructive procedure for recovering σa, k and
describes the Schwartz kernel of the albedo operator A.

We assume in this section that X is an open bounded set with C1-smooth boundary,
not necessarily convex. First we will show that (1.7) still has unique solution in this more
general situation. In what follows we need the semigroups Ũ0(t), Ũ1(t), Ũ (t) (see e.g. [Vi],
[V2]), related to the solution of the following problem





(∂t − Ti)u = 0 in R ×X × V ,
u|R+×Γ− = 0,

u|t=0 = f,
(5.1)

Ti being T0, T1 and T , respectively (regarded as differential operators). More precisely, T0,
T1 and T , acting on functions vanishing on Γ−, extend to generators of strongly continuous
semigroups Ũ0(t), Ũ1(t), Ũ (t) on L1(X×V ) and the solution to (5.1) is given by u = Ũi(t)f .
It is easy to check that we have the following explicit formulae

Ũ0(t)f = f(x− tv, v)θ(x, x− tv) (5.2)

Ũ1(t)f = e−
∫ t

0
σa(x−sv,v)dsf(x− tv, v)θ(x, x− tv) (5.3)

where

θ(x, y) =

{
1, if px+ (1 − p)y ∈ X for each p ∈ [0, 1],
0, otherwise.

Let us modify a little bit the definition of τ± given in the Introduction. Set

τ±(x, v) = min{t ≥ 0; x± tv ∈ ∂X}, (x, v) ∈ X × V \{0}.

If X is convex, then the definition given above agrees with that proposed in the Introduction.
Using τ−, we can write explicitly the solution of (1.7) in the case where T = T0 or T = T1.
For the case T = T1 we have that the solution of (1.7) reads u = G−(t)g, where

G±(t)g := e±
∫ τ±(x,v)

0
σa(x±sv,v)dsg(t± τ±(x, v), x± τ±(x, v)v, v). (5.4)



For X convex and σa = 0, we have G±(t)g = U0(t)E±g. It is not hard to see that the
following generalization of (4.3) holds

sup
t

‖G−(t)g‖L1(X×V ) ≤ ‖g‖L1(R×Γ±, dt dξ) (5.5)

and moreover, G−(t) : L1(R × Γ−, dt dξ) → L1(X × V ) is strongly continuous in t. Similar
statements hold for G+(t) as well if we restrict our considerations outside a small neighbor-
hood of v = 0, because the exponential in (5.4) may not bounded in this case as v → 0. We
have the following generalization of Proposition 4.1 to the case where X is not necessarily
convex.

Proposition 5.1 Given g ∈ L1
c(R; L1(Γ−, dξ)), problem (1.7) has unique solution u ∈

C(R; L1(X × V )) given by

u = G−(t)g +
∫ t

−∞
Ũ(t− s)A2G−(s)g ds. (5.6)

Proof. First, observe that the integral above is taken over a finite interval [−t0, t], where t0
is such that g = 0 for t < −t0. It is easy to see that u, given by the formula above, satisfies
the Boltzmann equation in X × V in distribution sense and belongs to C(R; L1(X × V )).
For t < −t0 we have that G−(t)g and the integral above vanishes, thus u|t<−t0 = 0. Finally,
u|R×Γ− = G−(t)g|R×Γ− = g, because Ũ (t) satisfies homogeneous boundary conditions on
R × Γ−. Notice that the requirement g ∈ L1

c(R; L1(Γ−, dξ)) can be relaxed to g = 0 for
t� 0. 2

Following the proof of Lemma 4.1 and using (5.2), we can prove that R+Ũ ( · ) : L1(X ×
V ) → L1

loc(R; L1(Γ+, dξ)) is continuous. Thus, using this fact and Proposition 5.1 we can
define the albedo operator in this case as well by (1.8).

Next we prove Theorem 1.3 by showing that A determines uniquely the special solution
u# outside X × V . Although the reconstruction procedure described after this proposition
implies Theorem 1.3 as well, we include Proposition 5.2 because it suggests much shorter
way of demonstrating Theorem 1.3.

Proposition 5.2 A determines uniquely the special solution u# for x outside X.

Proof. Here we follow essentially [SU2], where the Dirichlet-to-Neumann map related to
a second order elliptic equation is considered. Let (σa, k), (σ̂a, k̂) be two admissible pairs
supported (with respect to x) in X and denote by T , T̂ , u#, û#, etc. the operators T , the
special solutions u#, etc., related to (σa, k) and (σ̂a, k̂), respectively. Choose ϕ ∈ C∞

c (Rn ×
V \{0}) and set w := (u#(t, x, v, · , · ), ϕ), ŵ := (û#(t, x, v, · , · ), ϕ), i.e. w, ŵ solve (2.2)
with T = T , T = T̂ , respectively. Since ϕ ∈ D(T ) = D(T̂ ), we have w ∈ D(T ), ŵ ∈ D(T )
for each t (see (2.3)), therefore (see [C1], [C2]) the traces w|Γ± , ŵ|Γ± are well defined as
elements in L1

loc(Γ±, dξ) depending continuously on t. Let v solve




(∂t − T )v = 0 in R ×X × V
v|R×Γ− = ŵ|R×Γ−

v|t�0 = 0.
(5.7)



Set

u =:

{
v, x ∈ X
ŵ, x 6∈ X.

(5.8)

Assume that A = Â. Since ŵ clearly solves the problem





(∂t − T̂ )ŵ = 0 in R ×X × V
ŵ|R×Γ− = ŵ|R×Γ−

ŵ|t�0 = 0.

(5.9)

and A = â, we get from (5.7), (5.9), that v|R×Γ+ = ŵ|R×Γ+ , therefore

v|R×Γ± = ŵ|R×Γ± . (5.10)

Combining (5.8) and (5.10) we deduce that u, which is absolutely continuous function along
the rays s 7→ (x+ sv, v) with possible jumps on Γ− ∪Γ+, in fact has no jumps on these rays.
Since both v and ŵ solve the Boltzmann equation (1.1) in X × V and outside X × V , and
there is no jump at the boundary, we conclude that u satisfies (1.1) everywhere. Therefore,
u = w, because the solution to (2.2) is unique. In particular (see (5.8)) we get w = ŵ for
x 6∈ X. 2

Theorem 1.3 is now an immediate consequence of Proposition 5.2 and Proposition 2.3.
Note that the proof of Theorem 1.3 provided above is not constructive. Below we will give

explicit formulae for the reconstruction of σa, k which in particular provides another proof
of Theorem 1.3. This proof is based on an analysis of the Schwartz kernel of the operator
A. A priori this kernel it is a distribution in D′(R×Γ+ ×R× Γ−). Denote by δ1 the Dirac
delta function on R1 and by δy(x) the Delta function on ∂X defined by (δy, ϕ) = ϕ(y).

Theorem 5.1 The Schwartz kernel of A has the form α(t − t′, x, v, x′, v′), i.e. formally
(Ag)(t, x, v) =

∫
R×Γ− α(t− t′, x, v, x′, v′)g(t′, x′, v′)dt′dµ(x′)dv′ with α = α0 + α1 + α2, where

αj(τ, x, v, x
′, v′) ((x, v) ∈ Γ+, (x′, v′) ∈ Γ−) satisfy

α0 = e−
∫ τ−(x,v)

0
σa(x−sv,v)dsδ{x−τ−(x,v)v}(x

′)δ(v − v′)δ1(τ − τ−(x, v))

α1 =
∫
e−
∫ s

0
σa(x−pv,v)dpe−

∫ τ−(x−sv,v′)
0

σa(x−sv−pv′ ,v′)dpδ1(τ − s− τ−(x− sv, v′))

×k(x− sv, v′, v)δ{x−sv−τ−(x−sv,v′)v′}(x
′)θ(x− sv, x)ds

|n(x′) · v′|−1α2 ∈ L∞
(
Γ−; L1

loc(Rτ ; L
1(Γ+, dξ))

)
.

Proof. The proof is similar to that of Theorem 2.1. Fix g ∈ C∞
c (R × Γ−) and let u solve

(1.7). Combining (5.6) with Duhamel’s formula, we get u = u0 + u1 + u2 with

u0 = G−(t)g,

u1 =
∫ ∞

0
Ũ1(s)A2G−(t− s)g ds

u2 =
∫ t

−∞

∫ ∞

0
Ũ (t− s2)A2Ũ1(s1)A2G−(s2 − s1)g ds1 ds2.



By (5.4),

R+u0 =
∫

R×Γ−
α0(t− t′, x, v, x′, v′)g(t′, x′, v′) dt′ dµ(x′) dv′,

where the integral is to be considered in distribution sense. For u1 we have by (5.3), (5.4),

u1 =
∫

V

∫ ∞

0
e−
∫ s

0
σa(x−pv,v)dpe−

∫ τ−(x−sv,v′)
0

σa(x−sv−pv′ ,v′)dpθ(x− sv, x)k(x− sv, v′, v)

×g(t− s− τ−(x− sv, v′), x− sv − τ−(x− sv, v′)v′, v′) ds dv′, (5.11)

thus
R+u1 =

∫

R×Γ−
α1(t− t′, x, v, x′, v′)g(t′, x′, v′) dt′ dµ(x′) dv′.

Next,

u2 =
∫ t

−∞
Ũ (t− s2)A2u1(s2, · , · ) ds2. (5.12)

Using (5.11), we get

(A2u1)(s2, x, v) =
∫

V

∫ ∞

0

∫

V
E(s1, x, v

′′, v′)k(x, v′′, v)k(x− s1v
′′, v′, v′′)θ(x, x− s1v

′′)

×g(s2 − s1 − τ−(x− s1v
′′, v′), x− s1v

′′ − τ−(x− s1v
′′, v′)v′, v′) dv′ds1dv

′′

with

E(s, x, v, v′) = e−
∫ s

0
σa(x−pv,v)dpe−

∫ τ−(x−sv,v′)
0

σa(x−sv−pv′ ,v′)dp.

Set y′ = x− s1v
′′. Then

(A2u1)(s2, x, v) =
∫ ∞

0

∫

V

∫

X
s−n
1 E(s1, x,

x− y′

s1
, v′)k(x,

x− y′

s1
, v)k(y′, v′,

x− y′

s1
)θ(x, y′)

×g(s2 − s1 − τ−(y′, v′), y′ − τ−(y′, v′)v′, v′) dy′dv′ds1

Let us make the change y′ 7→ (x′, x1), where x′ = y′ − τ−(y′, v′)v′ ∈ ∂X, x1 = τ−(y′, v′).
This change is smooth except on a closed set of measure zero corresponding to y′ such
that the ray {y′ − pv′, p ∈ (0, τ−(y′, v′))} is tangent to ∂X at some point. One can first
integrate outside a neighborhood of the singular set with measure ε > 0, where we have
dy′ = |n(y′) · v′|dµ(x′)dx1, and then let ε→ 0. Thus we get

(A2u1)(s2, x, v)

=
∫ ∞

0

∫ ∫

Γ−
s−n
1 θ(x, x′ + x1v

′)E(s1, x,
x− x′ − x1v

′

s1
, v′)k(x,

x− x′ − x1v
′

s1
, v)

×k(x′ + x1v
′, v′,

x− x′ − x1v
′

s1
)g(s2 − s1 − x1, x

′, v′) dξ′ dx1 ds1. (5.13)

Here dξ′ := |n(x′) · v′|dµ(x′)dv′. Denote

M(s1, s̃2, x, v, x
′, v′) = s−n

1 E(s1, x, v
′′, v′)k(x, v′′, v)k(x′ + s1v

′, v′, v′′)θ(x, x′ + (s̃2 − s1)v
′),



where we have set v′′ = (x− x′ − (s̃2 − s1)v
′)/s1. It is easy to see that

∫

V

∫

Rn
M(s1, s̃2, x, v, x

′, v′)dx dv ≤ ‖σp‖2
L∞. (5.14)

By (5.12) and (5.13) we have

u2 =
∫ t

−∞

∫ ∞

0

∫

Γ−

∫
Ũ (t− s2)M(s1, s2 − t′, · , · , x′, v′)g(t′, x′, v′)dt′ dξ′ ds1 ds2

=
∫

Γ−

∫
α̃2(t− t′, x, v, x′, v′)g(t′, x′, v′)dt′ dµ(x′)dv′

with

α̃2(τ, x, v, x
′, v′) = |n(x′) · v′|

∫ τ

−∞

∫ ∞

0
Ũ (τ − s̃2)M(s1, s̃2, · , · , x′, v′)ds1ds̃2. (5.15)

By (5.14),

|n(x′) · v′|−1α̃2 ∈ C
(
Rτ ; L

∞(Γ−; L1(Xx × Vv))
)
. (5.16)

By (5.16) and the remark after the proof of Proposition 5.1 we obtain

|n(x′) · v′|−1
∫ a

−a
‖R+α̃2(τ, · , · , x′, v′)‖L1(Γ+,dξ)dτ ≤ C(a)

for any a > 0 and all (x′, v′) ∈ Γ−. Setting α(τ, · , · , x′, v′) = R+α̃(τ, · , · , x′, v′) we complete
the proof of the theorem. 2

We proceed with explicit formulae relating the kernel of A and σa, k. Next two proposi-
tions are analogues of Proposition 3.1 and Proposition 3.2. Recall again that for each v the
set of x, for which τ−(x, v) has a jump, is of measure zero. Thus the function τ− is smooth
on Γ+ outside of a closed set of measure zero. Choose 0 ≤ χ ∈ C∞

c (Γ+) supported outside
that singular set. Let ϕ, ϕ1 be as in (3.9) and for ε > 0 sufficiently small set

φε(τ, x, v, x
′, v′) = ϕ

(
x− τ−(x, v)v− x′

ε

)
ϕ

(
v − v′

ε

)
ϕ1(τ − τ−(x, v))χ(x, v).

Proposition 5.3 With φε as above we have

lim
ε→0

∫

Γ+

∫
α(τ, x, v, x′, v′)φε(τ, x, v, x

′, v′) dτ dµ(x′)dv′ = e−
∫ τ−(x,v)

0
σa(x−sv,v)dsχ(x, v) (5.17)

in L1(Γ+, dξ), where the integral is to be considered in distribution sense.

Proof. We have α = α0 + α1 + α2 with αj as in Theorem 5.1. It is clear that α0 satisfies
(5.17). For α1 we have (compare with (3.3))

0 ≤
∫

Γ+

∫

Γ−

∫
α1(τ, x, v, x

′, v′)φε(τ, x, v, x
′, v′) dτ dµ(x′)dv′ dξ



≤
∫

Γ+

∫

V

∫
ϕ

(
sv + τ−(x− sv, v′)v′ − τ−(x, v)v

ε

)
ϕ

(
v − v′

ε

)

×ϕ1(s+ τ−(x− sv, v′) − τ−(x, v))k(x− sv, v′, v)χ(x, v) ds dv′ dξ

≤ C
∫

V

∫

Γ+

∫
χ(x, v)ϕ

(
v − v′

ε

)
k(x− sv, v′, v) ds |n(x) · v|dµ(x)dv dv′

≤ C ′
∫

W

∫

V

∫

X
ϕ

(
v − v′

ε

)
k(x, v′, v) dx dv′ dv

→ 0, as ε→ 0, (5.18)

by the same arguments as in the proof of Proposition 3.1. Finally,
∫

Γ+

∣∣∣∣
∫

Γ−

∫
α2(τ, x, v, x

′, v′)φε(τ, x, v, x
′, v′) dτ dµ(x′)dv′

∣∣∣∣dξ

≤
∫

Γ+

∫

Γ−

∫
|n(x′) · v′|−1|α2(τ, x, v, x

′, v′)|φε(τ, x, v, x
′, v′) dτ dξ′ dξ

≤
∫

Eε

|n(x′) · v′|−1|α2(τ, x, v, x
′, v′)| dτ dξ′ dξ

→ 0, as ε→ 0, (5.19)

where Eε = {(τ, x, v, x′, v′) ∈ R × Γ+ × Γ−; |τ | ≤ A, (x, v) ∈ suppχ, |v − v′| ≤ ε} with
some A = A(χ,ϕ1) > 0. Clearly, meas(Eε) → 0, as ε → 0, where meas(Eε) is associated
with dτ dξ′ dξ. On the other hand, by Theorem 5.1 the integrand in the last integral is a
L1-function. As before, we conclude from this that the limit in (5.19) is zero, as stated.
Combining (5.18), (5.19) we complete the proof. 2

By Proposition 5.3 one can recover the X-ray transform of σa(x), provided that σa is
independent of v and therefore one can recover σa itself.

We proceed with the recovery of k. Next proposition is an analogue of Proposition 3.2.
Let ψε1 ,ε2 and W be the same as in Proposition 3.2.

Proposition 5.4 We have

lim
ε1→0

lim
ε2→0

G+(0)
∫

R

∫

∂X
α(t− t′, x, v, x′, v′)ψε1,ε2(x− tv, v, x′− t′v′, v′) dµ(x′) dt′

= e−
∫ τ−(x,v′)
0

σa(x−pv′,v′)dpk(x, v′, v), (5.20)

where the integral is to be considered in distribution sense and the limit holds in L1
loc(X×W).

Remark. The restriction of ψε1 ,ε2(x− tv, v, x′− t′v′, v′) on Rt × Γ+ × Rt′ × Γ− \ {v = v′}
is not necessary a function of compact support on that variety, but as will be seen from the
proof of Proposition 5.4, the formal integral above is well defined. Operator G+(0) above
(see (5.4)) is applied to the formal integral considered as a function of t, x, v.

Proof. Note first that for v 6= v′ we have α0 = 0. Next, for α1 we get
∫

R

∫

∂X
α1(t− t′, x, v, x′, v′)ψε1 ,ε2(x− tv, v, x′− t′v′, v′) dµ(x′) dt′

=
∫
E(s, x, v′, v)k(x− sv, v′, v)θ(x− sv, x)

1

ε1
ϕ1

(
t− s

ε1

)
ds,



where E(s, x, v′, v) = e−
∫ s

0
σa(x−pv,v)dpe−

∫ τ−(x−sv,v′)
0

σa(x−sv−pv′ ,v′)dp. Function s→ E(s, x, v′, v)
k(x − sv, v′, v)θ(x − sv, x) is integrable with values in L1(Γ+ × Vv′ , dξ dv

′). Therefore, as
ε1 → 0, the limit above exists in L1(Rs × Γ+ × Vv′ , ds dξ dv

′) and we have

lim
ε1→0

lim
ε2→0

∫

R

∫

∂X
α1(t− t′, x, v, x′, v′)ψε1,ε2(x− tv, v, x′ − t′v′, v′) dµ(x′) dt′

= E(t, x, v′, v)k(x− tv, v′, v)θ(x− tv, x). (5.21)

By applying G+(0) to both sides of the equality above we get that (5.20) holds with α = α1.
Finally, let us fix a compact set K ⊂ Γ+ ×Vv′ that does not intersect the varieties v = v′,

v′ = 0. Then for any a > 0 we have

∫ a

−a

∫

K

∣∣∣∣∣

∫

R

∫

∂X
α2(t− t′, x, v, x′, v′)ψε1 ,ε2(x− tv, v, x′− t′v′, v′) dµ(x′) dt′

∣∣∣∣∣dξ dv
′ dt

≤
∫ a

−a

∫

Fε2

|n(x′) · v′|−1|α2(t− t′, x, v, x′, v′)| dt′ dξ dξ′ dt, (5.22)

with Fε2 a set of measure tending to 0, as ε2 → 0 (compare with (3.13)). By performing the
change τ = t− t′ and using Theorem 5.1, we see that (5.22) tends to 0, as ε2 → 0. Therefore,
(5.20) with α = α2 converges to 0 in L1

loc(R+; L1(K)). A straightforward generalization of
(5.5) implies that G+(0) : L1

loc(R× Γ+, dt dξ) → L1
loc(X × V ) is continuous. Thus, applying

G+(0) we get from (5.22)

lim
ε2→0

G+(0)
∫

R

∫

∂X
α(t− t′, x, v, x′, v′)ψε1,ε2(x− tv, v, x′ − t′v′, v′) dµ(x′) dt′ = 0 (5.23)

in L1
loc(X ×W). Combining (5.21) and (5.23), we complete the proof of Proposition 5.4. 2

Now the reconstruction of σa and k goes along the following lines. Given the albedo oper-
ator A, we first recover σa(x) (provided that σa depends on x only) by using Proposition 5.3.
Next, since σa is already known, we know G+(0) and the exponential factor in (5.20), so by
Proposition 5.4 we can recover k(x, v′, v) almost everywhere in X × V × V .

Finally, we note that one can rewrite Propositions 5.3, 5.4 in terms of the operator A
rather than in terms of its distribution kernel in a manner similar to that at the end of
Section 3.
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conditions aux frontières non-transparentes, C. R. Acad. Sci. Paris, Série I 318(1994),
83–86.

[PV] A. I. Prilepko, N. P. Volkov, Inverse problems for determining the parameters
of nonstationary kinetic transport equation from additional information on the traces
of the unknown function, Differentsialnye Uravneniya 24(1988), 136–146.

[RS] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 3, Academic
Press, New York, 1979.

[S] B. Simon, Existence of the scattering matrix for linearized Boltzmann equation, Com-
mun. Math. Physics 41(1975), 99–108.

[St] P. Stefanov, Spectral and scattering theory for the linear Boltzmann equation, Math.
Nachr. 137(1988), 63–77.



[SU1] J. Sylvester and G. Uhlmann, Global uniqueness for an inverse boundary value
problem, Ann. Math. 125(1987), 153–169.

[SU2] J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications,
in: Inverse Problems in Partial Differential Equations, SIAM Proceedings Series List
(1990), 101–139, ed. by D. Colton, R. Ewing and R. Rundell.

[U] T. Umeda, Scattering and spectral theory for the linear Boltzmann operator, J. Math.
Kyoto Univ. 24(1984), 208–218.

[Vi] I. Vidav, Existence and uniqueness of non-negative eigenfunctions of the Boltzmann
operator, J. Math. Anal. Appl. 22(1968), 144-155.

[V1] J. Voigt, On the existence of the scattering operator for the linear Boltzmann equa-
tion, J. Math. Anal. Appl. 58(1977), 541–558.

[V2] J. Voigt, Spectral properties of the neutron transport equation, J. Math. Anal. Appl.
106(1985), 140–153.


