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CHAPTER 1

Preliminaries

This draft represents the current state of a book project by Plamen Stefanov
and Gunther Uhlmann. The book is intended to be accessible to beginning graduate
students. We intend to demonstrate the power of microlocal methods in Integral
Geometry, through the geodesic X-ray transform of functions and tensor fields. At
the beginning we introduce the reader to the Euclidean X-ray and Radon trans-
forms not because we think the world needs another exposition of this type besides
the classical books by Helgason and Natterer but because on microlocal (principal
symbol) level, the analysis starts to look Euclidean; and knowing well the Euclidean
theory helps to understand the general case.

A few words about the notation and the conventions used. When we say prop-
erty A holds “near 2”7 (or “near the set K”), we mean that there exists an open set
U > x, or an open set U D K, respectively, such that property A holds there. It is
equivalent to saying “in a neighborhood of”. The expression

[Afllr < ClI £l

means that there exists a constant C' > 0, independent of f, of course, so that this
inequality holds for all f with finite || - |2 norm, i.e., in the space defined by that
norm. We often prove estimates of this sort for f in some dense subspace, like Cg°
or §; then they can be extended by continuity.






CHAPTER II

Basic properties of the X-ray transform and the
Radon transform in the Euclidean space

1. Definition, the Fourier Slice Theorem

1.1. The X-ray transform.
1.1.1. Definition. We define the X-ray transform of a function f in R", as a
map that associates to f its integral, assuming that it exists,

(1.1) XF(0) = /efds

along any given (undirected) line ¢ in R™. Here ds is the unit length measure on ¢.
Lines in R™ can be parameterized by initial points + € R™ and directions § € S" 7!,
thus we can write, without changing the notation,

(1.2) X f(x,0) = /Rf(x+50)ds, (2,0) € R™ x "L,

That parameterization is not unique because for any =z, 6, t,
(1.3) Xf(.0) = Xf(x+10,0), Xf(z,0)=Xf(z,0).

The latter identity reflects the fact that we consider the lines as undirected ones.
The Fubini Theorem allows us to define X f for any f € L'(R"), see also
Proposition 1.3 below. In Section 1.3, we will extend the definition to distributions
in &'(R™).
We will count the number of variables that we used to parameterize X f. For
any 6, it is enough to restrict = to a hyperplane perpendicular to 6, that takes away
one dimension. One such hyperplane is

(1.4) 0+ = {x|z-0=0}.

Then X f(x,0) is an even (w.r.t. §) function of 2n — 2 variables, while f depends
on n variables. Therefore, if n = 2, X f and f depends on the same number of
variables, 2. We say that the problem of inverting X is then a formally determined
problem. If n > 3, then X f depends on more variables, making the problem
formally overdetermined. On the other hand, in dimensions n > 3, if we know
X f(£) for all lines, we also know X f(¢) for the n-dimensional family of lines that
consists of all £ parallel to a fixed 2-dimensional plane, say the one spanned by
(1,0,...,0) and (0,1,0,...,0). It is then enough to solve the 2-dimensional problem
of inverting R on each such plane. This is one way one can reduce the problem of
inverting X to a formally determined one (that we can solve, as we will see later)
using partial data. For this reason, very often the X-ray transform in analyzed in
two dimensions only.
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1.1.2. Motivation.

X-ray Computed Tomography (CT). A motivating example is X-ray med-
ical imaging. An X-ray source is placed at different positions around patient’s body,
and the intensity I of the rays is measured after the rays go through the body. The
intensity depends on the position x and the direction 6 of the rays. It solves the
transport equation

(1.5) 0V +0(2)) I(z,0) = 0,

where o is the absorption of the body. Equation (1.5) simply says that the direc-
tional derivative of I in the direction 6 equals —ol. A natural initial/boundary
condition is to require that
lim I(z+ s0,0) = I,
S——00

where Ij is the source intensity, that may depend on the line. Since f is of compact
support in this case, the limit above is trivial. Then (1.5) has the explicit solution

I(2,0) = e~ J2oco@tst)ds p
The measurement outside patent’s body is modeled by
lim I(x+ $6,0) =: I,
S§—00

and this limit is trivial as well. Since both I; and Iy are known, we may form the
quantity

oo
(1.6) —log(I1/1y) = / o(x + s6)ds
—o0
That is exactly Xo(x, ). The problem then reduces to recovery of o given Xo.
One may think if 7/Ij as the scattering operator for (1.5). Then finding f from
1/I is an inverse scattering problem.

Relation to the transport equation and Single-Photon Emission Com-
puted Tomography (SPECT). We already saw that X is related to the transport
equation (1.5); then X f is given by (1.6). There is another, more direct connection.
Since in (1.5) we took a logarithm, we can set u = —log I (after the normalization
Ip=1) and plug in I = e~ " in (1.5) to get § - V,u = o with the “initial condition”
u = 0 for z -0 < 0. Replacing o by the more conventional notation f, we get the
following transport equation for u with a source term f

(17) 0 - qu = f, U|x,9<<0 = O7

with f compactly supported. If supp f C B(0, R), then the initial condition above
is equivalent to w = 0 on the plane x - § = —R. Then

(1.8) X[ =ulz050,

which can also be written as X f = u|,.9=r. The reason we can replace the “<”
and the “>” conditions with the ones on the planes - = £R is that the transport
equation is simply the ODE du/dt = f on every line t — = = ¢ + t0; and once
that line leaves the support of f, the function u is just a constant there.

The transport equation (1.7) is the model of SPECT. This is a medical imaging
technique based on delivering radioisotopes to a patient’s body, for example by
injecting them into the blood stream. The radioisotopes emit gamma rays which
are detected outside the body. If the concentration of the radioisotopes is modeled
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by a function f(z), then we have the problem of determining a source from external
measurements, and the transport equation (1.7) is a good model for the radiance
at a given point x and direction #. Then X f models the measurements. One can
include attenuation in the model, see ....

1.2. The Radon Transform. The Radon transform Rf of a function f is
defined as integrals of f over all hyperplanes 7 in R™:

(1.9) Rf(r) = / fds.

Here dS is the Euclidean surface measure on each such hyperplane. The transform
R is well defined on L'(R"), see also Problem 1.5 below. Each such hyperplane
can be written in exactly two different ways in the form

m={z|v w=p}={z]z (~w) = —p}
with p € R, w € S*~!. We then write

(1.10) Rf(p,w) :/ fdS,.
T-w=p
Then Rf is an even function on R x S7~ 1.

If we consider the hyperplanes in R™ as oriented ones, then (p,w) and (—p, —w),
with +w reflecting the choice of the orientation, correspond to different planes.

The problem of finding f given Rf is always a formally determined one since
both f and Rf are functions of n variables.

More generally, one can define a Radon transform of f, sometimes called a gen-
eralized Radon transform, as integrals of f over all k-dimensional linear subspaces
with the natural Euclidean measure on each one of them. Then k& = 1 corresponds
to the X-ray transform; & = n — 1 corresponds to the Radon transform defined in
(1.9).

In R2, the two transforms coincide. Indeed, every hyperplane in R? is a line;
and the induced Euclidean measure is the arc-length one.

1.3. The transpose X’ and extending X to £'(R").

1.3.1. Two ways to parameterize the lines through a domain. Since (z,6) and
(x + s6,0) define the same line, we will will choose a parameterization of X f as
follows. For any 6 € S"~!, we restrict = to #+, see (1.4). Then we set

Y={(z0)]0e85" " z€0"}.

We can think about ¥ as the tangent bundle T'S"~! without the transformation
laws under coordinate changes. In particular, this defines a differentiable structure
on ¥. Locally, 3 is diffeomorphic to R®»~! x R*~!, and local coordinate charts can
be constructed by projecting #+ to 63 for § in some neighborhood of a fixed fy;
and by choosing a local chart on S"~! near §y. We define a measure do on ¥ by
setting

do(z,6) =dS. dé,

where, somewhat incorrectly, df denotes the standard measure on S"~!, and d.S, is
the Euclidean measure on the hyperplane §+. Note that in this parameterization,
each directed line has unique coordinates but each undirected one has two pairs of
coordinates.

ref?
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We introduce now another parameterization of X f that is more convenient
when considering later integrals over geodesics or more general curves. Let us
assume that we will apply X only to functions supported in some bounded domain
Q with a strictly convex smooth boundary. The strict convexity assumption is not
restrictive since we can always enlarge the domain to a strictly convex one, for
example a ball, that contains the domain of interest. Set

(1.11) 9150 = {(2,0) € 00 x S* | £v(z) 6> 0},

where v is the exterior unit normal to 2. On 045¢2, define the measure
(1.12) dp(z,8) = |v(x) - 0] dS, do,

where dS; is the surface measure on 02. There is a natural map

(1.13) 0503 (z,0) — (2,0) € %,

where z is the intersection of the ray {x + s6| s € R} with 61, see Figure II.1. The
map (1.13) is invertible on its range. Given (z,0), x is the intersection of the ray
{z+ s0| s € R} with 9Q having the property that at z, the vector # points into €;
when we have the negative sign in (1.13); and 6 points away from Q otherwise.

Ficurk II.1. Two ways to parameterize a line

PROPOSITION 1.1. The maps (1.13) and their inverses are isometries.

PRrROOF. The proof is immediate. Fix 6, and project locally 99 on 6+, in the
direction of #, near some point = so that (x,6) € 0+5Q. The Jacobian of that
projection is 1/|v(x) - 6. O

COROLLARY 1.2. Let Qyp C R™ be a bounded domain and let Q15 O Qo be
two other domains with strictly convex boundaries. For each line £ through Qq, let
(x1,2,0) € 045 2 be the corresponding coordinates of ¢ defined as above. Then the
map (x1,0) — (x2,0) is an invertible isometry between the subsets of (0450, duq)

and (045, dusg) corresponding to the lines through Qg. The same statement holds
fO’/‘ 84_5912.
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Here, dpui 2 are the measures defined un (1.12) for each Q;, ¢ = 1,2. The
corollary says that it does not matter how we parameterize the lines through g
using the second approach above; each choice of a strictly convex domain larger (or
equal) to g gives as “the same” parameterization. The proof follows directly from
Proposition 1.1 since the map (z1,6) — (22,6) is simply a composition of the map
(1.13) for one of the domains with the inverse for the other one.

1.3.2. Relation to the transport equation, revisited. The relation to the trans-
port equation (1.7) in the new parameterization is the following. Let u solve

(114) @ . qu = f7 U|a_SQ = 0
Then
(1.15) Xf=uls,sa-

This makes X f a function on 015€. And alternative definition is to define 4 as
the solution of

(1.16) 0-Vei=f, wulo,sa=0.
Then
(1.17) Xf=—uls_sa.

Definition (1.14), (1.15) is more intuitive since X f can be interpreted as the ob-
served signal exiting 2 due to the source f. On the othet hand, parameterizing
geodesics with incoming points abd directions might be considered more natural;
then to write X f as an integral, we integrate for postive value of the arc-length
parameter. We will use both.

1.3.3. Eatension of X to larger classes of functions or distributions. We already
indicated that X f can be defined for any f € L'(R"), and the next proposition
show that X is actually a bounded map there.

PROPOSITION 1.3. The operator X : C°(R™) — C§°(X) extends to a bounded
map
X : LYR") — LY(%, do)

with norm |S™~1|.

PROOF.
| X fllzr (s, doy = / /L / f(z+ s0)ds|dS. dd
0
/ / /|fz+59|dsd5’ do
Sn—1 0L
= |S" Y fllor mey
It remains to notice that this is an equality if f > 0. (]

PrOBLEM 1.1. Let 2 C R"™ be as above. Using Proposition 1.3, prove that X
extends to a bounded map

X LYQ) = LY9_5Q, dpu),
and also to a bounded map

(1.18) X : L*(Q) — L*(0-SQ, dp).
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As a first step towards extending X to distributions, let us view now X as the
map

(1.19) X : C°(R") — C5°(D)
or
(1.20) X 1 O5°(Q) — C2°(0.5Q)

in case of functions with support in a fixed domain €.

PROBLEM 1.2. Prove that the maps (1.19), (1.20) are linear and continuous,
see section A.4.

We will compute now the transpose X’ of X in (1.19) with respect to the
measure do. Let ¢ € C°(R"™), ¢ € C*°(X). We have

(1.21) /Z(X¢>)¢doz/E/Rgzﬁ(z—kse)@[)(zﬁ)dsdszd&

Set = z + s6, where z € 0. For a fixed § € S"™!, (2,5) — = is an isomorphism
with a Jacobian equal to 1. The inverse is given by

z=xz—(x-0)8, s=ux-0.

We therefore have

/ (XY do = 6(x) (@ — (z - 0)6,0) dz do.
) sn=1 JRn
Therefore, for ¢ € C*° (%),
(1.22) X = [ (@ (z-0)8,0)do.
S’VL—I

We can interpret this formula in the following way. The function v is a function
on the set (that we made a manifold) of lines. Given z € R, for any 6 € S"~! we
evaluate 1 on the line through = in the direction of 6, and then integrate over 6.
In other words, X'¢(z) is an integral of ¢ = ¥(¢) over all lines ¢ through x

X'p(a) = [ $(0) dla,
>z
where df,, is the unique measure on {¢ > z} that is invariant under orthogonal

transformations, with total measure |S™"~!, i.e., d/, = df in the parameterization
that we use. Compare this to (1.1) which can also be written in the form

(1.23) Xf(t) = /gf(x) ds

The transform X' is often called a backprojection — it takes a function defined on
lines to a function defined on the “z-space” R".
PrROBLEM 1.3. Show that
(1.24) X' CP(2) — C®(R")
is continuous, see Definition A.4.2 but X’t¢) may not be of compact support, if 9

is. In other words, X’ does not satisfy the assumptions of Definition A.4.1.

This makes it impossible to define X on D'(R"), as it could be expected (even
for smooth functions we need a certain decay at infinity), but we can define it on
the space &'(R™) of compactly supported distributions, see section A.4.
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DEFINITION 1.4. Let f € E'(R™). Then we define X f € D'(X) as the linear
functional

(1.25) (Xf.9) = (£, X"Y), VpeC™(D).

By the results in section A.4, X' : &'(R"™) — D'(X) is correctly defined and is
sequentially continuous. In fact, X’ : &'(R"™) — &£'(X), that also follows from the
fact that one can replace C§°(X) in (1.24) by C*°(X%).

It is worth noticing that we computed X’ with respect to the measures do on
¥ on the left in (1.25); and with respect to the standard measure dz in R™ on the
right. Therefore, if X f is locally L', we have

(1.26) (.0) = [((Xfpdo,
D)
and if X'+ is locally L', we have
(f, X"y) = fX'pde.
RTL

This gives us a way to identify locally L!(X) functions with distributions in £'(3).

We can also use (1.25) and the property that X maps continuously C§°(R")
into C§°(X), see Problem 1.2, (and in particular preserves the compactness of the
support), to define X'g € D'(R") for any g € D'(X).

DEFINITION 1.5. Let g € D'(X). Then X'g € D'(R"™) is defined by
(1.27) (X'g,0) = (9, X9), Vo C®R").

By the results in section A.4, X' : D'(X) — D/(R™) is correctly defined and is
sequentially continuous.

Let us assume now that X f, for f supported in €2, is parameterized by points
in 9_5Q, as above, i.e., we view X as the map (1.20). Then we choose the pairing
according to the measure dy, i.e., for X f locally in L',

(1.28) (Xf,0) = /6 _(Xfdn

By Proposition 1.1, the right-hand sides of (1.26) and (1.28) are the same, therefore
(-, ) does not change. Also, this defines X f € £'(0_5Q) for any f € £'(Q2) by (1.25).
Note that the pairing (1.28) yields “essentially the same” transpose X’ as before,
i.e., the transpose under (1.28) composed with the isometry (1.13), equals X’. The
two operators are actually two different parameterizations of X’ defined by duality.
The operator X’X that we consider later, will remain the the same if we consider
X' given by (1.28), by Proposition 1.1.

By (1.18), the adjoint X* is well defined and on L?(9_SQ,du), we have X* =
X'

1.4. The transpose R’ and extending R to £&'(R™). Formula (1.10) defines
R as an operator

(1.29) R:CP(R™) — C(R x S™7h).
We fix the standard measure dsdw on R x S?~1.

PROBLEM 1.4. Show that R in (1.29) is linear and continuous.
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PROBLEM 1.5. Show that R extends to a bounded operator
R:L'R") — L'R x S"1).

We will compute now the transpose R’ of R in (1.10). Let ¢ € C§°(R"),
P € C°(R x S™~1). We have

/ (Rp)y dpdw = / o(x) Y (p,w)dS, dp dw.
RxSn—1 z-w=p

RxSn—1

For a fixed w, [g [,
rem. Therefore,

fdS; dp is just an integral of f over R™, by Fubini’s theo-

‘w=p

/ (Rp)Ypdsdw = d(z)Y(z - w,w) dr dw.
RxSn1 sn=1JRn
So we get for ¢ € C§°(R x S"71),
(1.30) R'4(z) = (7 w,w)dw.
Sn—1

Similarly to what we had before, 1 is a function on the set of oriented hyperplanes
(and on the set of hyperplanes when 1) is even). Then we can think of R’y as an
integral of 1 = () over the set of all hyperplanes m through z. Similarly to X',
R’ is also called sometimes a backprojection.

PROBLEM 1.6. Show that
R :CP(R x 8" — C®(R"™)
is continuous but it does not preserve the compactness of the support in general.

As above, using the procedure described in section A.4, we extend the definition
of R to compactly supported distributions as follows.

DEFINITION 1.6. Let f € &'(R™). Then we define Rf € D'(R x S"71) as the
linear functional

(1.31) (Rf.¥)=(f.R¥), Ve CFRxS").

It is easy to see again that R : &'(R™) — D'(R x S"1) is sequentially contin-
uous, and that actually, R : &'(R") — &'(R x S"1).

When f € L, we choose the form (-, -) on the Lh.s. of (1.31) to be defined as an
integral w.r.t. the measure dsdf. That is the same form that we used to compute
R’ and it justifies calling the new operator R and extension of the original one,
defined on C§°(R™).

1.5. The Fourier Slice Theorem. The transforms X and R are closely re-
lated to the Fourier transform.

THEOREM 1.7. For any f € L*(R"),
() = / X f(2,0)dS., VO LC, 0€ S
9L

We denote by Fp. the Fourier transform in the z variable on 6. With this
notation, the Fourier Slice Theorem reads: for any 60, flor = Fgr X f.
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PrOOF. The integral on the right equals

//e_iz'cf(z—kse)dstz.
L+ JR

Set x = z+ sf and note that z-( = z-( when { L 6. Then we see that the integral
above equals f((). O

Therefore, taking the Fourier transform of X f(z,0) w.r.t. z on the hyperplane
6+ (then the dual variable ¢ will belong to #+ as well) gives us the Fourier transform
£©).
Theorem 1.7 immediately implies injectivity of X on L!(R™), and one can also
see that it implies injectivity of X on £'(R™). The latter also follows from the
reconstruction formulas in section 2, see Problem 2.1.

In fact, for compactly supported functions, it implies a bit more. The decisive
argument in the proof is the analyticity of the Fourier transform of compactly
supported functions.

COROLLARY 1.8. Let f € LY(R™) have compact support and let X f(-,0) = 0
for 6 in an infinite set of (distinct) unit vectors, then f = 0.

ProoF. Note first that f is analytic. If X f(-,0) = 0 for a fixed 0 and f
compactly supported, then f(£) = 0 for £ L 6, therefore f(§) = (0 - &)go(§) with
go analytic, as well. Repeating this with ¢ in the set {6;}32,, where Xf(-,0)
vanishes, we get f(f) = g (&) H§=1(9j - &) with gj analytic, for any k. Therefore,
for any w € S™1, f(tw) = Ok(|f|k), as t — 0. Since t — f(tw) is analytic, we get

f(tw) = 0 for any unit w, thus f = 0. O
Finitely many “roentgenograms” however are not enough to recover f.

PROPOSITION 1.9. Let {0;}5_, be a finite set of unit vectors. Then there exists

an infinite dimensional linear space of functions f with supports in a fixed compact
so that X f(-,6;) =0, j=1,...k.

PrOOF. Motivated by the proof of the preceding theorem, for a fixed 0 # ¢ €
Ce(R™), set f = (H?zlﬂk : Vz) ¢. Then f has the desired property. It is easy
to see that the operator in the parentheses is injective on C§°(R™). This implies
that any finitely dimensional linear space of ¢’s under that operation will produce
a linear space of f’s with the same dimension. Therefore the so constructed space
of f’s is infinite dimensional. U

Theorem 1.7 provides a constructive way to recover f from X f. Another con-
sequence worth mentioning is the following.

COROLLARY 1.10. Let f € L*(R™), and let
Xf(2,60) =0 for a fived 0y and all z € 0.
Then

f(&)=0 forall & L 6.

This corollary has a microlocal generalization that we will formulate later. We
will see in 7?77 that knowing locally an X-ray type of transform over geodesic-
like curves with no conjugate points near a single curve vy recovers the conormal
singularities at that curve.

We proceed with the Fourier Slice Theorem for R .
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THEOREM 1.11. For any f € L*(R"),

flrw) = / e P"Rf(p,w)dp, VreR, Ywe 5"
R

Introduce the notation F,, for the Fourier transform in the p variable. Then
the equality above can be written in the form: for any w, f = F,Rf on the ray
& =rw.

PrOOF. The integral on the right equals

/R /z.w_p e f(x)dS, dp = /R /M_p e e f(2)dS, dp = frw).

Similarly, Theorem 1.11 implies injectivity of R on L'(R"™) and an explicit
inversion. We also have the following.

COROLLARY 1.12. Let f € LY(R"), and let
(1.32) Rf(p,wo) =0 for a fized wy and all p.
Then

(]

f(&) =0 for all & parallel to wy.

Corollary 1.12 can be formulated in a way similar to Corollary 1.10. Under
the condition (1.32), f(£) = 0 on vectors ¢ perpendicular to the planes over which
we integrate. Again, there is a microlocal generalization of this statement for more
general Radon type of transforms localized near a single hypersurface — under
some conditions, we can recover the conormal singularities to that surface.

We conclude this section with a property that states that the action of X or R

on a convolution is again a convolution in the z, and respectively the p variable.

THEOREM 1.13. For f, g in S(R™),

X(f % g)(.0) = / Xf(z — y,6)Xg(y.0)dS,,
(1.33) o
R(f *g)(p.w) = /R Ri(p — ¢.0)Rg(g,w) dg.

The proof follows from the Fourier Slice theorem, or by a direct calculation.

PROBLEM 1.7. Let g € C3°(R™) be fixed. Show that (1.33) extend to any
f € LYR") or any f € &'(R™) with the convolutions on the right considered in
distribution sense.

1.6. Intertwining properties. The following intertwining formulas take place
(1.34) RA=d’R, R'd)=AR,

on C§°(R™) and on C§°(R x S™71), respectively. The proof is straightforward,
either by direct computations or by using the Fourier Slice Theorem.

Let A, denote the Laplacian in the z variable on each 6. Note that A, is
independent on the way we choose a Cartesian coordinate system on each . We
set |D.| = (=A.)"/2. Similarly to the proposition above, we have
(1.35) XA=AX, XA,=AX,

on C§°(R™), and C§° (%), respectively.
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2. Inversion formulas

Theorems 1.7, 1.11 already imply inversion formulas on suitable spaces but we
will provide below more direct formulas.
We start with a useful lemma.

LEMMA 2.1. For any f € S(R"),

/ f(2)dS, dw = 1572 [ L8 gy
sn—1 Jyt re 2]

PROOF. By the Fourier Slice Theorem,

J@as, = R0.0) = 5 [ frwyar

1 A .
= — flrw)dr + f(=rw)dr] .
27T 11+ 1:{+
Therefore,
1 o
/ / f(x)dSIdw:f/ / flrw)drdw
Ssn—1 J L ™ Jsn—-1JR
1 r 1-n
=— [ fOIE " d¢
T
=157 [ fla)al e,
and we used the Parseval’s equality together with (A.2.2) O

2.1. The Schwartz kernel of X’X and inversion formulas for X. We
start with computing the Schwartz kernel of X’X first.

PROPOSITION 2.2. For any f € S(R™),
f(y)

(2.1) X'Xf(z)= 2/Rn Wdy.
ProOF. By (1.2), (1.22),
X'Xf(z)= Xf(x—(z-0)0,0)do
Sn—1
(2.2) = /Snil /Rf(:z: + 50— (z-0)0,0)dsdo

:/Snil/Rf(:erSG)dsde.

We split the s-integral in two parts: over s > 0 and s < 0. Then we make the
change of variables (s, ) — (—s, —6) in the second one. Thus we get

X'X f(z) :2/8%1 /Ooo F(z+ s0)dsdo
Moty IO
R

=2 — gy,
U n |z -yt
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In next theorem, if n = 2, S"~2 reduces to a two point set: {—1,1}; and then
|Sn=2| = 2.

THEOREM 2.3. For any f € S(R"),
(2.3) f=cu|DIX'Xf, c,=(2m|S"7?|)

PROOF. By Proposition 2.2, X'Xf = 2f % h, where h(z) = |z|~"*1. The
function h is locally in L' and positively homogeneous of order —n + 1. Its Fourier
transform is given by

-1

B _ 7T|Sn_2| 7
€l
see (A.2.2). Therefore, X' X f = (1/c,,)|D|~1f. This yields (2.3) immediately. O

The Fourier multiplier |D| is a non-local operator. Therefore, if we want to
recover f only in a neighborhood of some xy by means of formula (2.1), it is not
enough to know X f for all lines ¢ that intersect that neighborhood.

A different inversion formula, with the non-local operator between X’ and X
follows below. Formula (2.4) belongs to the class of the “filtered back-projection”
formulas, with the operator |D,| playing the role of a “filter” before back-projecting
with X’. In applications, D, is often combined with a cut-off for high frequencies
(high values of the dual variable of z) to clean up noise. In the latter case, the
reconstruction is not exact, of course.

THEOREM 2.4. For any f € S(R™),
(2.4) f=eX'|D.|Xf, ¢, = (2r|S"7?|)

PROOF. One might attempt to prove (2.4) by extending the intertwining for-
mulas (1.35) to the non-local operator |D,|. That would require however extending

X to some class of non-compactly supported distributions.
Let f, g be in S(R™). Note first that |D,| X f is well defined in L?(X). Then

(X'|D|X f,9) 2y = (ID=| X f, Xg) L2(x) = 2m)' " (F2|DL| X f, FoXg) 12(),

where F, is the Fourier transform in the z variable. For any fixed 6, let p be the
dual variable to z. Then F,|D.| = |p|F,, and the latter expression is coordinate
independent. Combining this with the Fourier Slice Theorem (Theorem 1.7),

(X'|D|X f. 9)r2mny = (2m) " (|p| F- X f, FXQ)L2< )
(2m)t~ "/ / f(p p)|pldS, de.
Sn—1
By Lemma 2.1,

(2.5) (X'|D:|Xf,9)r2mny = (20) IS 2|(f. 0) L2y = 27|S™2|(f, 9) £2(Rr)-
This completes the proof. O

-1

PROBLEM 2.1. Prove that the inversion formulas of Theorem 2.3 and Theo-
rem 2.4 remain true for any f € &'(R"™), where X and X' are the extensions to
distribution spaces as explained in section 1.1.

In Figure I1.2, we present a reconstruction based on Theorem 2.4. The third
image on the right is X’ X f, and we will see in Chapter IV that X'X f is one degree
smoother than f.
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FI1GURE II.2. Reconstruction of the Shepp-Logan phantom. Left:
original; Center reconstruction with the filtered backprojection for-
mula (2.4); Right: the “unfiltered” backprojection X’ X f.

2.2. The Schwartz kernel of R'R and inversion formulas for R. We
have similar results for the Radon transform R.

PROPOSITION 2.5. For any f € S(R"),

’ - f)
. x)=[S"2 —d
20) RRj) =577 [ AU
PROOF. By (1.10), (1.30),
R'Rf(z) = Rf(z - w,w)dw

gn—1

(2.7) -/ / s,
_ /SH /W:Of(wx) ds. dw.

An application of Lemma 2.1 completes the proof. (]
THEOREM 2.6. For any f € S(R"™),

1
(2.8) f=Cu D" 'RRf, C,= 5(27r)1—”.
PROOF. By Proposition 2.5, R'R is a convolution with [S™~2||z|~!. Its Fourier
transform is given by
2(2m) e,

see (A.2.2). Therefore,
(R'RfY = 2(2m)" e[ f.
Solve for f to complete the proof. O

Note that |[D|*~! = (=A)*=Y/2 If n is odd, then |D|*~! is a local (differen-
tial) operator, and knowledge of Rf for all hyperplanes passing through any fixed
neighborhood of some g is enough to recover f in that neighborhood by formula
(2.8). If n is even, then |D|"~! is a non-local pseudo-differential operator. In par-
ticular, if we use formula (2.8) for reconstruction and n is even, for a compactly
supported f we need to compute R'Rf(x) for all values of z, including those far
from supp f. This does not prove however that integrals of f over all lines through
some open set (region of interest) do not determine uniquely f there — it just shows
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that this cannot be done with that formula. Actually, for n even, local information
about X f is insufficient, indeed, see Section IV .4.
Let H be the Hilbert transform, see ...

(2.9) Hg(p) = = pV/R g(s) ds,

T p—Ss
where “pv [” stands for an integral in a principal value sense.

THEOREM 2.7. For any f € S(R"),

_ [ C,R'd}'Rf, n odd,
(2.10) f= { C;LR’Hd;_lRf, n even,

where d, stands for the derivative of Rf(p,w) w.r.t. p, H is the Hilbert transform
w.r.t. p and

C, =

n

(=1)(»=D/2C,.  n odd,
(-1)(»=2/2¢,, n even,
with C,, = £(2m)1™" is as in Theorem 2.6.

In the even dimensional case, formulas (2.10) have the following advantage to
(2.6). If f is compactly supported, we only need the reconstruction in a compact set.
As mentioned above, with (2.6), we still have to compute R'Rf in the whole R",
because the Hilbert transform H is a non-local operator. On the other hand, when
we use (2.4), and restrict the result to a compact set, then we need to know HRf
in a compact set, as well, as it can be easily seen from (1.30). On the other hand,
Rf is compactly supported because f is compactly supported, too. Therefore, in
the integral (2.9), where g = Rf, both p and s belong to bounded intervals, and no
computations are done in infinite domains.

REMARK 2.1. The appearance of the Hilbert transform H for n even, and the
different constants for n odd/even may look strange at first glance, especially when
compared to the inversion formula (2.6) in Theorem 2.6, that looks the same for
all n > 2. For n even, note first that H = —isgn(D,), D, = —id,, therefore,

(—1)("_2)/2Hd;‘_1 =|D,|" ', n even.
On the other hand,
(—1)n=D2qn=1 = D", noodd.
Therefore, in both cases, (2.10) can be written as
(2.11) f=C.R'|D,|" 'Rf

REMARK 2.2. Comparing (2.11) with the inversion formula (2.6) in Theo-
rem 2.6, we may ask ourselves whether we can prove Theorem 2.7 directly from
Theorem 2.6, using the intertwining property (1.34). When n is odd, this can
be done without problems since |D|*~! = (=A)"~1/2 is an integer power of the
Laplacian then. If we could justify the intertwining property (1.34) for fractional
powers of the Laplacian, then one would have |D|"" 'R’ = R'|D,|"~! on a certain
distribution space, where X f belongs; and that would prove the theorem for n even,
as well. Proving the latter identity by duality, for example, would require extending
R to a class of non-compactly supported distributions, by the means of the Fourier
Slice Theorem, for example. That poses some technical challenges, Instead of doing
this, we will give a more direct proof.
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PROOF OF THEOREM 2.7. Let f, g be in S(R™), and let n be even. Then
(R/HdgilRfa g)L2(R") = (HdzilRfv Rg)LZ(RXSn—l)
= (2m)~ (F,Hd} ' Rf, prg)LQ(Rxsn_l)
= (20) 1 ((p)" " (~D)sen(D) Fp RS, FyRg) ooy

where F,, is the Fourier transform w.r.t. p, and p is the dual variable of p.
By the Fourier Slice Theorem (Theorem 1.11),

FpRy(p,w) = g(pw),  FpRf(p,w) = f(pw),
and they are both even functions of p. Moreover, the factor
(2.12) (ip)" " (~D)sgn(p) = (=1)" =272 |p|" !

is even as well. Therefore,

(R'HA}'Rf,g)

L2(R™)
= 2n) (1)) / F(0)3 (o) o~ dpdw
(2.13) Rocsm™t
—20m )0 [ i) dpde
R+><Sn71

=202m)" (=) "D2(f, 9) 2wy

That proves the theorem for n even.

Even though we proved the theorem for n odd by using (1.34), note that the
proof above carries over to that case, as well. We compute (R’d;“lRf, 9)r2®n) in
the same way, and the only difference is that the factor —isgn(p) will be missing.
Then (2.12) is replaced by (—1)("=1/2|p|»~1 that is still even. A sa result we get

(R'dy"Rf,qg)

L2(R")
=0 ()2 [ el dpde
(2.14) Rocsm
—20m) =) [ i) dpde
Ry xSn—1

=2(2m)" (=) "V (f, g) pa(mny.-
O

PROBLEM 2.2. Prove that the inversion formulas of Theorem 2.6 and Theo-
rem 2.7 remain true for any f € &'(R"), where R and R’ are the extensions to
distribution spaces as explained in section 1.1.

3. Stability estimates

We already established some mapping properties of X and R in L! and L2
spaces, see Problem 1.1, Problem 1.5 without stability estimates in the same norms,
however. In this section, we will prove continuity and stability estimates in Sobolev
norms.
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We define first Sobolev spaces on ¥ and R x S2. For any s € R, set

(31) ”ng{s(E) = ||(1 - Az)S/QgHL2(2)7

Hg”I:IS(RXS”*l) = H(l - dz)S/QgHLz(RXSn—1)7

where A, is the Laplacian on each fiber 6+ of ¥, while d, = 9/9p, as above.
Fractional powers of the operators in the definition are defined through the partial
Fourier transforms Fy. in the z variable, and F, in the p-variable, respectively.
Note that those are not the standard Sobolev spaces on the manifolds ¥ and R x S2,
respectively because the definition we gave includes derivatives w.r.t. some of the
variables only. The next theorem shows that the norms above norms are sharp —
we get estimates form above and below of X f and Rf. This proves not only the
continuity of R and X in those norms but proves as well stability of the inversion.

THEOREM 3.1. For any bounded domain 2 C R™ with smooth boundary, and
any s, we have

(3.2) £l zrsmry/C < NX fllge+rrzsy < Cllf s mnys
(3.3) [ £l zrsmny/C < | Rf |l getn-vrz@mxsn-1) < Cllfll s me)

for all f € H*(R™) supported in .
PRrROOF. Consider Rf. Let us start with the following observation. Set
(3.4) REf = C/?|Dy| "D/ R,
where C,, is as in Theorem 2.6. Then
(3.5) IR fllia s 1) = [ fllagreys VS € CE(R™),

i.e., R is an isometry.! We show later in Theorem 6.1 that Rf is also surjective.
Relation (3.5) follows directly from (2.11). This proves the first inequality in (3.3)
for s = 0. For the second one, we see that we have to deal with the fact that when
we apply Fp, |clp\("_1)/2 transforms into multiplication by |p|(»~1/2 where p is
dual variable p of p, and that factor vanishes for p = 0.

1i.e.7 norm preserving. We do not include the requirement to be surjective to call it isometry.



3. STABILITY ESTIMATES 19

The next step is to prove the first inequality in (3.3) for any s. Using the
Fourier Slice Theorem, we get

Il sy = [I(1 — )S/Qf”L?(R")
o [ ) AP dg

/ (141r?) | f (rew)Pr 1t dr dw
R+><Q

= }(27r)7"/ (1+r2)s\f(rw)\ZM”*ldrdw
2 RxQ

< }(27r)_"/ (1 —i—?"Q)HT%1 |f(rw)|? dr dw
2 RxQ

1 gt
= 7(27r)_"/ (1+1r?) A | FpRf (rw)|? dr dw
2 RxQ

= Cy|(1 = a2+ Ry
= Cu| RS

L2(RxSn—1)

At (R><S" 1’

This proves the first inequality in (33) To prove the second one, write

2 _ 2\s+251 2
IRIR o g = [ AT ERN )P b

Lo [ Qe

where we applied the usual argument again — we spilt the p-integral in two parts,
for +p > 0, and used the fact that the integrand is even in (p,w).

Split the latter integral into two parts: The low frequency one, I;, where we
integrate for || < 1; and the high frequency one, I», where we integrate on [£| > 1.
Clearly,

(3.6) Iy < O\ f |l (roy:

with some C' = C(n). The same inequality for I; is trickier because of the negative
power |¢|1~™ of |¢] appearing in the integral. Since this term is integrable in the
unit ball, we have

(3.7) I, < C(n,s) sup |f(&).
[€1<1

We regards f(€) as the action of f on the test function ¢¢ := e" ¢y (z), where
X € C§°(R™) equals 1 in a neighborhood of Q. Then

PO =1, 0)| < [1F Il | el s

Since ¢¢ () = X(E47), we easily get that ||¢¢||z—- < C(n, s) with some C(n, s) > 0
for each |¢| < 1. That proves (3.6) for I, as well; and this completes the proof of
(3.3).

To prove (3.2), we proceed in the same way starting with (2.5), that implies

IX fllzir2my = en 21 L2 mey-
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This is the first inequality in (3.2) for s = 0. Using the Fourier Slice Theorem, we
extend it for any s as above. The proof of the second inequality in (3.2) is similar to
the proof above. In particular, the low frequency integral in this case is a constant
times

1+ 52 s+3
9) n= [ G e
NN
Then I still satisfies (3.7) because |£|~! is integrable in the unit ball, and we
proceed as above. ([

REMARK 3.1. It follows form the proof that the constant C' on the right of each
of the inequalities (3.2), (3.3) can be chosen dependent on n only. Then f does not

need to be supported in 2. The constant on the right depends on €2, s and n.

Theorem 3.1 shows that we “gain 1/2 derivative” with the operator X, and
(n—1)/2 derivatives with the operator R. Each one of those two operators involves
an integration that has a smoothing effect. The gain is a half of the dimension of
the linear submanifolds over which we integrate.

For future references, it is worth noticing that we established the following fact.
If k < n, then for any s and any f € H® supported in Q, we have

FOP f(&

so [ VO a<condile [ e < ol
<t €] <1 1€l

In particular, the operator with kernel x|¢<1[¢] —*_ where X¢|<1 is the characteristic

function of the ball B(0, 1), is smoothing for k < n.

3.1. Stability estimates for X in a bounded domain. We present here a
different kind of stability estimates. We parameterize the lines through €2 by initial
points on 9 and initial incoming (we can use outgoing as well) directions, i.e., by
elements in 0_S€, see Section 1.3.1.

THEOREM 3.2. Let Q be a convex bounded domain with smooth boundary, and
let K C Q be compact. Then for any s, there exists C = Ck s > 0 so that for any
f € H(R™) supported in K,

£l zrs ) /C < X fllgat1r200_s0) < Clf s (mm)

PROOF. The points on 0_S5€2 corresponding to lines hitting K form a compact
subset, call it Ky C 0_S€. The same subset of lines, parameterized by points in
¥ form another compact subset Ko C . Then the map (1.13) is a diffeomorphism
from K; to Ko. Then the theorem follows from Theorem 3.1. [l

*** Range for s7 ***

3.2. Stability estimates in terms of X’ X and R’'R. We turn our attention
to other types of stability estimates: estimating f in terms of X’'X f and R'Rf
in case of compactly supported f. Assume now that supp f C Q, where Q is a
bounded open domain. The reconstruction formula (2.3) requires knowledge of
X'X f in the whole R™ because |D| is a non-local operator. Similarly, in (2.8), we
need to know R'Rf in the whole R" for n even. On the other hand, it is easy to
see that X'X f|q determines f uniquely — multiply X'X f|q = 0 by f and write
the result as || X f||* = 0. A similar remark applies to Rf. The next theorem says
that knowing X’ X f, R'Rf in some neighborhood of ) recovers f in a stable way.
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THEOREM 3.3. Let Q C R™ be open and bounded, and let Q1 O Q be another

such set. Then for any integer s = 0,1,..., there is a constant C' > 0 so that for
any f € H*(R"™) supported in ), we have

(3.10) [f s re) /C < NX' X fllrat1(00) < Cllf rre )

(3.11) 1oy /C < IR R lzornsan) < Cllfllie )

PRrOOF. The second inequality in (3.10) and in (3.11), respectively follows im-
mediately from the fact that X’X is the Fourier multiplier ¢, ![£| 7!, see (2.3); and
R'R is the Fourier multiplier C,,|¢|"~!, see (2.8). The singularity at £ = 0 can be
dealt with using (3.9).

To prove the first inequality in (3.10), write

(L+ €32 F(€) = en(1 + [E1))?|¢| FX'X f.

This implies
11 ey < el XX FllFrerrmny = eall X' X FllFerray) + el X X fllres@mo,)-

The operator

H§(Q) > f = X'X flrmo, € H¥T'(R™\ Q),
with Hg($2) considered as a subspace of H*(R"), is compact because it has a C*°
kernel, and ) is compact. Indeed, the kernel of X'X is given by (2.1), and for
r € R"\Qand y € Q, it is smooth. On the other hand, X'X : H§(Q2) — H*T1(Qy)
is injective. *** it would be easier to assume s > 0; then the injectivity

follows easily ***. By Lemma 3.4 below, the first estimate in (3.10) follows. The
proof of the first estimate in (3.11) is similar. O

The following lemma was used in the proof above.

LEMMA 3.4. Let X, Y, Z be Banach spaces, let A: X =Y be a bounded linear
operator, and K : X — Z be a compact linear operator. Let

(3.12) Ifllx <CUAflly + 1Kfllz), VfeX.
Assume that A is injective. Then there exists C' > 0 so that
Ifllx < C'IlAflly, VfeX.

PROOF. Assume the opposite. Then there exists a sequence f, in X with
Ifnllx =1 and Af, — 0in Y. Since K : X — Z is compact, there exists a
subsequence, that we will still denote by f,,, such that K f,, converges in Z, therefore
is a Cauchy sequence in Z. Applying (3.12) to f, — fi, we get that || f, — fillx — 0,
as n — 0o, m — 00, i.e., f, is a Cauchy sequence in X. Therefore, there exists
f € X such that f, — f and we must have ||f||x = 1. Then Af,, — Af = 0. This
contradicts the injectivity of A thus proving the lemma. O

4. The Radon transform in polar coordinates

Another view on the Radon transform is its representation in polar coordi-
nates. Let us represent f = f(rw) in the spherical harmonics basis ¥, (w) with
coefficients fj,, (1) depending on the radius r, and let us write Rf(p, ), in the spher-
ical harmonic basis related to the w variable, with coefficients g, (p). It turns out
that R is diagonal in that representation with diagonal entries integral operators of
Abel type which can be inverted explicitly. This was first done by Allan Cormack
in his 1963-64 papers [...]. In 1979, Allan Cormack and Godfrey N. Hounsfield
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were awarded the Nobel prize in Physiology or Medicine “for the development of
computer assisted tomography”.

We will study the n = 2 case only for simplicity. In fact, the analysis can be
generalized to any n, see [25].

A basis for the spherical harmonics on S' is given by e'*¢, where ¢ is the
argument of the polar angle. Given f € C§°, expand f(rf) in Fourier series

1 - 1 I
(4.1) 2— D> fulr)et o),

We also write g(p,w) = Rf, and expand g as well

1 — 1’r(w)
D, w 27 Z k arg )

Note that g is an even function for k even, and an odd function for ¥ odd. We
also introduce the Chebyshev polynomials of the first kind given by

T, () = cos(n arccos(z)) = cosh(n arccosh(z)), n=0,1,....

The first definition makes sense for |z| < 1; the second one for |z| > 1 but in both
cases we get same polynomials of degree n, which easy to see using elementary
trigonometry. The first three of them are given by Ty = 1, Ti(z) = z, Ta(x) =
222 — 1. The polynomials T}, are even when n is even and odd when n is odd.

THEOREM 4.1. For every f € S(R?),

2

9r(p) = 2/|0|0 Tiw, (%) <1 - 52)1/2 fre(r)dr

p

A =1 [ 1 (2) 62 =)

The theorem says that in the spherical harmonics representation, R is diagonal,
indeed, since g depends on f only, with the same k. Moreover, the second equation
provides yet another inversion formula.

Proor. We will prove the first part of the theorem only. For a proof of the
second formula, see [25]. First, for p > 0, we compute

I (py ) = / ek are@) () 45,
T w=p

see (4.1). The line over which we integrate can be parameterized as s — = =
pw + swt and dS, = ds. Then 2 = p? + s%. Split the range s € R into two parts:
s> 0and s < 0. Then 0 := arccos(p/r) is the angle between the vectors z(s) and
pw in both cases. Therefore, for £s > 0, arg(z) = arg(w) £ 6. Then

hi(p,w) :/ eik(arg(w)+9)f( /p2+52)ds+/ eik(arg(w)—a)f( /p? + %) ds

0 0

= 2¢lk are(w) / cos(kO) f(\/p? + s?) ds.
0
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By our definition of 6, we get cos(kf)) = T, (p/r). Make the substitution r =
\/p? + 52 in the integral to get
(pr0) = 26405 [ i o) () —
0 N

The formula holds for p < 0 as well as it can be easily seen by using the fact that
hy is even with respect to (p,w) and Tj; is even/odd when k is even/odd.

We can now take the Radon transform of (4.1) to get the first identity in the
theorem. ]

5. Support Theorems
5.1. Support theorems for R.

THEOREM 5.1. Let f € C(R™) be such that
(i) |x|*f(z) is bounded for any integer k,
(ii) there exists a constant A > 0 so that Rf(p,w) =0 for [p| > A.
Then f(x) =0 for |x| > A.

Proor. If f € S(R™) at least, the theorem follows directly from Theorem 4.1.
We will reproduce the original Helgason’s proof here, which uses only K = 1 part of
Theorem 4.1, which proof is simpler and can easily be justified for rapidly decaying
C(R™) functions as in the theorem.
kokk o it k¥
Let f be non necessarily radial. Note first that it is enough to prove the
theorem for f € C*°(R"). Indeed, let ¢ € C5°(R™) be such that [¢dx = 1. Set
¢(x) = "Pp(x/e). Then f* . € C* satisfies the assumptions with A replaced  we could also refer to the dis-
by A+ ¢, see Theorem 1.13. After we prove the theorem for f * ¢., we can take the tibutions chapter
limit € — 0 to prove it for f as well.
Write in polar coordinates f = f(rw) and set F(r) = [q,_, f(rw)dw. Then
F(Jz|) is a radial function of x for |z| > A and integrals over any plane at distance
greater than A to the origin, vanish. Therefore, F'(r) = 0 for » > A. In other explain
words, integrals of f over any sphere |z| = R > A vanish. Move the origin of the
coordinate system, and apply the same arguments. We then get that integrals of f
over any sphere encompassing the ball |z| < A (in the original coordinates) vanish.
Also, f satisfies (i).
Therefore, if R > A, and |y| < R — A, fect

(5.1) / f(y + Rw) dw = 0.
Sn—1
Multiply by R"~! and integrate in R from a fixed Ry > A to oo to get

/ fly+z)de = f(z) dz = const.
|z|<R Rn

Differentiate w.r.t. 3 to get

/I af(zH—:z:)duz::O.

By the divergence theorem applied to the function F(x) = f(z + y),

/ ' f(y +x)dS, = 0.
|z]=R
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By (5.1),
/I n y' fy+z)dS, = 0.

Those two inequalities imply that
/I | (y' + 2" f(y +x)dS, = 0.
z|=R

Therefore, (5.1) also holds for 2% f(x). Iterating this argument, we get that for
any polynomial P(z), the function P(z)f(x) integrates to zero over any sphere
encompassing B(0, A). In particular, on any such sphere, f is orthogonal to all
spherical harmonics on it. Therefore, f = 0 on any such sphere, and therefore
outside Br(0). Since R > A is arbitrary, this completes the proof. a

In case we a priori know that f is of compact support, Strichartz [39] gave the
following simple proof.

PROPOSITION 5.2. Let f € Co(R™) satisfy condition (i) of Theorem 5.1. Then
f(x)=0 for|x| > R.

PROOF. Again, we can assume that f is smooth. For any A’ > A, and for |¢|
small enough,

/ f(A + 22sing,z% cos ¢, 2°,...,2")dz’ =0,
Rn—l
where z = (x!,2'). Differentiate w.r.t. ¢, at ¢ = 0 to get

of
2 Y9) cqr 1 r_
/Rnilx axl(A,x)dx 0.

The convergence of the integrals and a justification for the differentiation is guar-
anteed by (i). It also allows us to write

0

(5.2) Gy

/ 2 f(xt 2)da’ =0, 2! > A
Rnfl

The integral above is a C! function of z! that tends to 0, as x!

(5.2) w.r.t. #! from z§ > A to infinity to get

— o0. Integrate

/ 22 f(at, 2 )da’ =0, 2!'> A
R‘nfl

Rotating the coordinate system, we see that for any polynomial P; of order 1, the
assumptions of the theorem hold for P;f, as well. Repeat this argument to get
that for any polynomial P (of finite degree), integrals of Pf over any plane as in
(ii) vanish. Since f has compact support, this implies that f = 0 on any such
plane. [

The support theorem generalizes easily in several directions. First, f can be a
distribution, and the ball B(0, A) can be replaced by a convex compact set.

COROLLARY 5.3. Let K C R"™ be a convex compact set. Let f € C(R"™) satisfy
the assumption (i) of Theorem 5.1. Assume also that Rf(m) = 0 for any hyperplane
m not intersecting K. Then f =0 outside K.
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PrOOF. Choose xy ¢ K. Since K is compact and convex, there exists a hy-
perplane 7y so that o and K are on different sides (open half-spaces) of it. Then
one can easily construct a closed ball B with a large enough radius, tangent to mg
so that K C B, xg ¢ B. Choose a Cartesian coordinate system centered at xy and
apply Theorem 5.1 to conclude that f(zg) = 0. O

COROLLARY 5.4. Let K C R™ be a convex compact set. Let f € &'(R™), and
assume that Rf(m) = 0 in the open set of hyperplanes m not intersecting K. Then
f =10 outside K.

The proof follows by smoothing out f by a convolution, as in the proof of
Theorem 5.1. We will leave the details to the reader.

5.2. Support theorems for X. Support theorems of the kind above for X
can be derived directly from those for R by working in various 2-dimensional planes,
where R and X are the same transforms, or by expressing each hyperplane as a
union of lines. This reflects the fact that for n > 3, the problem of inverting X is
overdetermined, i.e., we have “too much information.” On the other hand, one can
formulate stronger results for X due to the fact that lines in R™ are “thinner” and
can fit into smaller “holes.” One possible case is to require K to have the property
that any cross section with a plane of the kind 2™ = const. to be convex without
the need of K to be convex. In ..., we will formulate even stronger results.

6. Range conditions

6.1. Range conditions for the Radon transform R. We start with ana-
lyzing the range of R¥ = C}L/2|Dp|(”_1)/2Rf, see (3.4). Let L2(R x S~ 1) denote
the subspace of L2(R x S™~1) of the even functions in that space. That subspace
is closed, therefore LZ(R x S™1) is a Hilbert space itself.

THEOREM 6.1. R*: L2(R™) — L?(R x S"~1) is unitary.
PROOF. We show first that for any f € L?2(R"), R*f is even.

¢ L —ipr Rt Col [ et ;
R f(=p, ~w) = o | € FpRA f(r, —w)dp = e Prr| 72 f(—rw)dr.
/R 2r Jr
Change r to —r to get
Chl [y gnst 7
R} f(—p, —w) = o P |r|2 f(rw)dr = R f(p,w).
™ JR

We showed already that R? is an isometry. Since it is a map between complex
Hilbert spaces, it preserves the inner product, as well. What remains to be shown
is that it is surjective.
Let g € L2(R x S"~!). We want to solve Rff = g. Taking Fourier transform
in the p variable, we see that this equation is equivalent to the following
n—1 ~

(6.1) ]-'pRﬁf(r,w) = Fpg(r,w) = C}L/2|r| 7 f(rw)

for (almost) all (r,w) € R x S"~1. Based on this, we set

fe)=c g

1—

= Fpy(l€], €/1€))-
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We show first that f is well defined and belongs to L2(R™). Indeed,

1£1I72mny = Ci L M Fpg(rw) P d
+ XS

=22m)"|gllL2@mxsn-1) < 00

Finally, we need to show that (6.1) is indeed satisfied. For r > 0, we let (r,w) to
be polar coordinates for £, and then (6.1) holds in a trivial way. Notice next that
since g is an even function, then so is F,g. Indeed,

Fpg(—r, —w) = / e?"g(p, —w)dp = / e g(—p,w)dp
R R

- /R e_ing((L w) dg = fpg(rv w)?

where we used the fact that g is even, and applied the change of variables ¢ = —p.
For 1 < 0, we write £ = rw again, where w = —¢/|¢|. Then by the definition of f
we have

C}L/2|r|n771f(rw) = Fpg(—r, —w) = Fpg(r,w).
Therefore, (6.1) holds for < 0, as well. The remaining set r = 0 is of measure
zero in R x S™~1, O

We consider now the range of R acting on the Schwartz class S(R™). It turns
out that the range of R is quite restricted unlike what we got above for R on L2.
Given kK =0,1,..., denote by

(6.2) iR (w) = /R P RF(p,w) dp

the k-th moment of Rf in the p variable. It follows immediately that
upRf(w) = / s*Rf(p,w)dp = /Rpk/ f(z)dS,dp = / (z - w)* f(z)da.
TW=p m

R

For a fixed x, the integrand is a homogeneous polynomial of w of degree k restricted
to the sphere S"~!. Integrating in x, we get the same conclusion for u;Rf(w).
Therefore, if g is in the range of R, acting on the Schwartz class, then pgg(w) must
be a homogeneous polynomial restricted to the sphere S™~!. In other words, the
homogeneous extension of pg(w) from the sphere to R™ as a homogeneous function
of order k must be a polynomial. This is a rather restrictive property.

Let S(R x S"1) be the linear space of all g € C*°(R x S"~!) with the property
that for any k > 0, £ > 0, and any differential operator P on S"~!,

dé
(6.3) sup (14 |p|*) 5 Py(p,w)| < oc.
(p,w)ERXS™—1 dp

The expression above defines a countable set of seminorms on S(R x S"~1!). We
know that for f in the Schwartz class, Rf is even and must satisfy the moment
condition discussed above. Let Sy(R x S"~!) be the subspace of S(R x S"~1)
subject to those conditions.

DEFINITION 6.2. Denote by Sy(R x S"~1) the subspace of Sy(R x S"71)
consisting of all functions g € Sg(R x S"~1) satisfying

(i) g(p,w) = g(—p, —w)
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(ii) For any k =0,1,..., urg(w) is a homogeneous polynomial of w of degree
k.

THEOREM 6.3. R:S(R") — Sy(R x S"71) is a linear bijection.

PRrROOF. We start with an informal discussion emphasizing the role of the mo-
ment conditions. To prove the theorem, given g € Sg(R x S"~1), we want to solve
the equation Rf = g, and get a solution f in the Schwartz class. By the Fourier
Slice Theorem,

(6.4) f(rw) = Fpg(r,w).

We can use this as a definition of f, at least when r > 0. Since g is even, nothing
will change if we take r < 0. Clearly then f € S (R™\ 0) but the regularity of f
at 0 is under question because the polar coordinates are singular at the origin. To
check the smoothness of f at 0 let us first see whether f (0) is well defined. We get

F0) = F,(0.0) = [ glp.)dp = pogle).

Now, in order that f (0) be well defined, it must be independent of w, at least.
The 0-th order moment condition however says exactly that, since homogeneous
polynomials of degree 0 are the constant ones.

Next, let us see whether the first derivatives of f at 0 are well defined. Let us
first try to understand what they should be. Since f has to be smooth at 0, it has
a finite Taylor expansion of the form f(f) = f(O) +a-&+0(€)?) near € = 0, where
a = V¢ £(0). Writing this in polar coordinates, we get f(rw) = f(0)+ra-w+O0(r?),
near r = 0. Differentiate with respect to r at »r = 0 to get

O f(rw)|r—o = a- w.
In other words, the left-hand side above must be a homogeneous polynomial of

w of degree 1. We need to check now that our definition (6.4) of f satisfies this
condition, at least. Differentiate (6.4) to get

0.f(rllma =],y [ e alp0)ap = [ (Ciplato.)ap = -ipgle).

The latter is a linear form of w, by the 1-st moment condition, and this is exactly
what we wanted to check.
Continuing in this manner, we see that

O fro)lmo =) aaw®,
|| =k

where a,, is proportional to the partial derivative 9%f(0) of order k at 0. Our
definition (6.4) of f should be consistent with the requirement that the left-hand
side above is a homogeneous polynomial of degree k. Differentiate (6.4) at r =0 k
times to get

08 o =0,y [ P atp)do= [ (- olp.0)dp = (9 ngle)

That is a homogeneous polynomial of degree k, indeed, by the moment conditions.

We proceed with the formal proof now. We will show first that R maps S(R™)
to Sg(R x S™1). Tt is enough to work in a neighborhood U C S™~! of a point
where w’ = (w!,...,w" 1) can be chosen to be local coordinates. We are going to
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A~

use the Fourier Slice Theorem next, so for this reason we verify (6.3) for g = f(sw)
on R x S™~! first. Since f, and therefore, f are in the Schwartz class, it follows
immediately that

d* 2
(6.5) SUPP wycrctr (14 151) 27 (PF)(prw)| < o0.

By the Fourier Slice Theorem,

Rf(p,w) = (277)_1/ e?® f(sw) ds.

R
Then for any differential operator P on S™1!,

dt . az \" .
1+ |p|2)kd—p€PRf(p,w) =(2n)7! /elps <1 — dsQ) (is)* P f(sw) ds.
Estimate (6.5) then implies that the r.h.s. above is bounded on R x U, which proves
that Rf € Sy(R x S*~1).
We prove now that the map R is surjective, i.e., that given g € Sy(R x S"1),
we can solve the equation Rf = g with f € S(R"™).
Set

Y(s,w) = /R g (p,w) dp.

If such an f exists, by the Fourier Slice Theorem, its Fourier transform f will be
given by f(€) = ¢(|€],£/|€]). Note that ¢ is an even function of (s,w) first. Next,
the zero order moment condition implies that ¢(0,w) is a constant. Therefore, the
following function is well defined

(6.6) (&) = (lg] £/18D-

We prove next that F' € S(R™). Assume for a moment that we have proved that.
Then we define f by f = F; then f € S(R™) as well. By the Fourier Slice Theorem,
for s > 0,

/ e P Rf(p,w)dp = f(sw) = F(sw) = / e P g(p,w)ds.
R

R

For s < 0, by (6.6) we have F(sw) = (—s, —w) = (s, w), and the formula above
still holds. Therefore, Rf = g as claimed.
We prove now that F' € S(R™). Write

koo
. —ips)’ .
eiPs = Z ( jp' ) + e (—ips),

=0

ex(—ips) is the remainder in the Taylor expansion of the function s — e~7* about
s = 0. Its integral representation is
—ip)k+1

s _j k+1 X
er(—ips) = /0 ((ki)—)l)!elpt(s —t)Fdt = ((k—i—l)!pk(s’p)’

(6.7) pr(s,p) = /OS e P (s — )k dt.
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Clearly, for s > 0,

J | .
Then

= [ (—ips)

) =Y [ S gy dp+ [ enna(-ips)apw)dp
Sl
= T 1 g(w) + Ry (s, w),
j=0 )
where
i k+1

(6:9) Rus.) = [ s platp.o)ap

Now, by assumption,
Tuig(@) = 3 aalsw)
|| =4

for some constants a,, where a denotes a multiindex. We therefore get

(6.10) F(&) =Y aat™ + Ri(I¢].¢/1€]).

la| <k

It is enough to show that for any k, the remainder term above is in C* (near ¢ = 0).
By (6.7) and (6.8) for k = j = 0, |po| < s; therefore by (6.9), |Ro(s,w)| < Cs. Then
(6.10) implies that F' is continuous at £ = 0, and is therefore a continuous function.

The differentiability of F at the origin follows in a similar way from (6.10) for
k =1, by definition. Indeed,

(6.11) F(&) =F(0)+ Y aa&™ + Ri(I¢],£/I€)),

|a]=1

and (6.8) for k = 1, j = 0 and (6.9) imply Ry(|¢[,£/]¢]) = O(]¢]?). Then F is
differentiable at the origin by definition, and of course, it is differentiable everywhere
else.

We show next that the first derivatives of F' are continuous. Compute first

1
e (€l €/16) = Gk + S5 6y —wawy) - evaluated at s = €] = /]

We regard Ry (s,w) as a (smooth) function defined in R x (R™\ 0) obtained form
the original one by a homogeneous extension of order 0 with respect to w.

*** to be continued *** O

6.2. Range conditions for X; John’s Equations. For f € S(R"), we
extend X f to R™ x (R™\ 0) by keeping (1.2) unchanged but allowing 6, that we
call £ now, to be non-unit:

(6.12) Xf(z,€) = /Rf(x +s8)ds, (x,8) e R" x (R"\0).
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It is straightforward to check that X f(x,&) is a positively homogeneous of order
—1 in & The parameterization by points in ¥, see section 1.3, and the present
extension are related by

(6.13) Xf(w,€) = %

PROPOSITION 6.4 (John’s equations). Let f € S(R™). Then the following
partial differential equations hold for all (z,€) € R™ x (R™\ 0):

0? 0? .

PROOF. In fact, the integrand satisfies those equations:

o2 o2
<axz‘a§j - amg) fl+s8) =0

Xf(z,0), z=xz—(x-0)0, 0=C¢/|¢

because ) )
— ] (X S =S - - (X S
9006 fla+s8) = s5o (@ + s¢)
is symmetric with respect to (i, 7). Integrate in s to get John’s equations. O

It turns out that in dimension n > 3, John’s equations uniquely characterize
the range of X.

THEOREM 6.5. Letn > 3, g € C§°(X), and define its extension to R™ x (R™\0)
as in (6.13), i.e.,

1 € S
(6.15) g(x,&) = Igg(z - (E x)m, |€|) .

Then there exists f € C5°(R™) so that g = X f if an only if g(x, &) = g(z, =&) for
all x, &, and

0? 92
1 - S _ i
(6 6) (83«;L8€] 6.’1?-7851) g(zvé-) Oa VZv J
PROOF. ++++++++++++++ O

PRrROBLEM 6.1. Show that Theorem 6.5 does not hold for n = 2. More precisely,
let g be as in (6.15); then show that (6.16) holds for i = 1, j = 2 (the only interesting
case), regardless of whether g is the Radon transform of some function.
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7. The Euclidean Doppler Transform

Let f(z) = (f1(x), fo(x),..., fu(x)) be a complex-valued vector field in R™.
We define the X-ray transform of f as the following map

(7.1) Xf0) = /ij(x) dat,

if the integral exists, where ¢ runs over the set of all directed lines in R™. If the
lines are parameterized by (z,0) as in section 1.1, then we can write

(7.2) Xf(x,0) = /R fi(z + s0)07 ds,

compare with (1.2). As before, the parameterization is not unique but now X f is
an odd function of 6:

(7.3) Xf(z,0)=Xf(x+10,0), Xf(x,0)=—-Xf(z,—0).

The integral makes sense for any f € L'(R", C").

Unique parameterization of X f on the manifold of the directed line can be
obtained by restricting (x,0) to ¥ as in section 1.1. When f is supported in a
bounded strictly convex domain 2 C R™, one can also think of X f as a map from
0_59 to C™.

1. Motivation. Doppler tomography, also called vector (field) tomography
appeared first in a work by Norton [26]. The motivating example there was acoustic
imaging of a vector field, for example imaging blood flow by ultrasound. If the speed
of sound is ¢ = const., and if that the velocity field f of the fluid is much smaller
than ¢, using approximation, one of the assumptions is that the trajectories through
the fluid can be approximated by straight lines but the speed along the line would
be ¢+ f(x) - 0. Then the travel time between two points a and b on the boundary
of a domain, connected by a line is

/ flz)-0dl.

/abwfl&)-a“/ab(i‘;f” 9)‘”

If we measure the travel time in the opposite direction, we get the same expression
with a sum instead of a difference. We can therefore recover both ¢ and the Doppler
transform of f.

7.1.1. The transpose and solenoidal injectivity. We will see in section 777 that
the transformation law of f under coordinate changes is as a covector field. We
therefore can identify f with the form f = f;(z)da’, see also (7.1). This point of
view is adopted in ..., while here, we fix the coordinate system. We still use lower
indices for the components of f to conform with the notation in the next chapters
but we identify {f;} and {f7}.

The natural pairing of vector fields is given by

(7.4) (foo)= [ fi(2) (z)da,

R”

where v = (vl(x),...,v"(z)) is another vector field. In particular, distribution
valued vector fields f E D'(R™,C™) are defined as continuous linear functionals
on the space C5°(R",C"). When f € L] (R",C"), we identify f and the linear
functional given by (7.4).
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PROBLEM 7.1. Show that the transpose X’ is given by
(7.5) (X)) = / Bp(a— (z-0)6,6)d6, € CF(D),
Sn—l

One can extend X to &'(R"™, C™) in the same way as in (1.3), see Definition 1.4.
Similarly, in a bounded open set €2, one can define X f € £'(0_5Q), and

X : L*(Q,C") — L*(0_SQ, du)

is bounded, where
(7.6) 1lm.cm = [ 16 do
J

Then X* is well defined.

In contrast to the X-ray transform of functions, now X has an obvious infinite
dimensional kernel. By the Fundamental Theorem of Calculus, for any ¢ € S(R"™),
the vector field f = d¢ (i.e., f = {f;} with f; = 0¢/027) belongs to the kernel of
X:

(7.7) X(d¢) =0, for any ¢ € S(R").

It turns out that this is the only obstruction to uniqueness, as we will see below.

The transforms X of vector fields is closely related to the Fourier transform,
as well. The next theorem can be considered as the Fourier Slice Theorem for X
acting on vector fields.

THEOREM 7.1. For any f € L*(R"),

(7.8) f(©O)-0= / e #CX f(2,0)dS., VO L 6e S
ei

The proof follows directly from Theorem 1.7 by applying the latter to each
component f; or by repeating the proof.
We recall that the exterior derivative of the 1-form f is given by

_ % i Jjo_ of; _ Ofi i J
(7.9) df = 2 %da’ Ade _Z<axi o ) 4ot Ada?.

i<j

The exterior differential df can also be considered as an anti-symmetric tensor
field with components (df);; = (1/2)(df;/0x* — dfi/027). We also introduce the
notation

(7.10) (df,v @ w) = (df)ijv'w’ = % <Z£j1 - gg{;) v’

Clearly, that is an anti-symmetric form.

THEOREM 7.2. Let f € C(R"), and let |f(z)] < C(1 4+ |z|)~""¢ with some
C >0, e >0. The following statements are equivalent:

(i) Xf=0,
(ii) f=de¢ for some ¢ € CH(R"™),
(ifi) df = 0.

**% One could try |f(z)] < C(1 + |z|)~!7°. It works, but one has to
extend the Fourier Slice Theorem for that class (f is a distribution then).
Difficulties: one has to explain why f has a trace on 1. ***
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PRrROOF. Note first that the decay condition on f implies that X f is well defined.
The implication (ii) = (i), as explained above, is trivial when f is compactly
supported. Under the assumptions of the theorem, write in polar coordinates,
using (ii),

(7.11) qb(r@)—qb(O):/or 4y ar = / £5(10)09 d,

therefore, |¢(x)] < C(1 + |z|)~"T1~¢. This yields easily X (d¢) = 0.

Next, (ii) and (iii) are equivalent by the Poncaré Lemma in R™. It remains to
prove the implication (i) = (iii).

Assume (i). Since f € L*(R",C"), f is continuous by the Riemann-Lebesgue
Lemma. By the Fourier Slice Theorem, f(ﬁ) -1 = 0 for any n with - £ = 0. On
the other hand, for any v, w,

@€ 0 ww) = 3 (f©&'w - f©g )
= SO (wle- )~ v(-w) =0
because the vector w¢ - v — v€ - w is orthogonal to . Therefore, df = 0. O

It may seem unexpected that we did not require ¢(z) — 0, as |z| — oo in (ii).
In fact, up to adding a constant to ¢, the latter is always true, by (7.11). On the
other hand, that constant would be annihilated by the differential. Therefore, each
of the conditions in the theorem is also equivalent to the following

(ii") f =d¢ for some ¢ € CL(R"), ¢(x) — 0, as |x| — oco.
We refer to the implication (i) = (ii’) as solenoidal injectivity of X.

COROLLARY 7.3. Assume that f € Co(R™). If Xf = 0, than f = d¢ with
some ¢ € CH(R™), and ¢ = 0 in the largest unbounded connected open set where
f=0. In particular, supp f is contained in the convezr hull of supp ¢.

PROOF. For any x; and x5 belonging to the same connected component of
R™ \ supp f, integrate f = d¢ from x1 to x5 along a smooth curve that connects
them to get ¢(x1) = ¢(x3). Therefore, ¢ is constant in any such component. In
the unbounded one it has to vanish because ¢(z) — 0, as |x| — oo by the proof of
Theorem 7.2. (]

7.2. Support Theorems. The following proposition allows us to use the sup-
port theorems for functions to formulate support theorems for vector fields.

PROPOSITION 7.4. Let n =2, and let f € C1(R?,C?) be such that |f| and
|0f;/0x7| are bounded by C(1 + |z|)~1=¢ with some C > 0, ¢ > 0. Then for any =,

0,
9 e oh _Of
X f(z,0) =10 /ZM < 5 x1>ds.

PROOF. Let n > 2 be arbitrary first. Fix # € S, and let v € R™. Then

(v-Vy)Xf(z,0) = /R(’U -Va)f(xz+t0) - 6dt.
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On the other hand,
/(G-Vx)f(m—i—w) Lvdt = 0
R

in a trivial way, by the Fundamental Theorem of Calculus. Subtracting those two
identities, we get

(7.12) (v-Vw)Xf(:cﬂ)z/R((wVI)f(x—i—tH)~9—(9-V$)f(x+t9)-v)dt.

Using the notation (7.10), we can write this as

(7.13) (v- V)X f(z,0) = / (df,v®0)ds

La,0
where ¢, ¢ is the line determined by (z, ). Since the form (7.10) is anti-symmetric,
we can replace 6 by 64 Cv for any scalar C' in the integrand above without changing
it. Assume now that v and w are unit and orthogonal to each other, and 6 belongs
to their span. Then (w - 0)w = 0 — (v - §)v. Therefore, we then get

(7.14) (0 V)X f(2,0) = (- ) / (df, v © w) ds.
Z{L‘,Q
The assumptions on f guarantee that f and the first derivatives of f are absolutely
integrable over any line, and justify the differentiation under the integral sign.
Let now n = 2, and take now w = e1, v = ey to finish the proof. ([

REMARK 7.1. An alternative way to prove the proposition is to apply the
divergence theorem to half-discs and allow their radii to converge to infinity. Note
also that applying the same formula for the 2! derivative, and combining them
both, we get the more symmetric expression

ofi  0f2
(7.15) —0+ -0, X f(x,0) = /Z g <ag{2 — a:fl) ds, 0% :=(62,-6").

Let now X f(¢) = 0 for all lines £ not intersecting some set X C R™. Then we
can work in any plane 7 parallel to the coordinate plane x'z? first, and consider
X f(0) restricted to lines £ in . Then X f(¢) = 0 for £ not interesting K implies
that the X-ray transform of the function df;/0x? — dfs/0z* vanishes over all lines
in 7 not intersecting 7N K. Then one can apply the support theorem for functions,
provided that the regularity and the decay assumptions are met, and that 7 N K
is compact and convex. Now, one can repeat this argument for all planes parallel
to any other 2-dimensional coordinate plane of the type z*z? to get df = 0 outside
K.

Those arguments allow us to formulate the following analogue to Corollary 5.3
for the the X-ray transform of vector fields.

THEOREM 7.5. Let K C R™ be a convex compact set. Let the vector field
f € CYR™) be such that f and its first partial derivatives satisfy the assumption
(i) of Theorem 5.1. Assume also that X f(£) = 0 for any line £ not intersecting K.
Then df = 0 outside K, and there exists a function ¢ € C*(R"\ K) so that f = d¢
in R"\ K with ¢ satisfying the rapid decay condition (i) of Theorem 5.1.

PrOOF. We already showed how Theorem 5.1 implies df = 0 outside K. The
conclusion that the form f must be exact then seems unjustified at first glance
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because when n = 2, R?\ K is not simply connected. The reason that we can still
claim that f is exact are the decay conditions at infinity.
We can always assume that the origin is in K. Using polar coordinates, set

(7.16) ow =~ [ peopa

see also (7.11). The integral converges absolutely and can be differentiated once
under the integral sign by the assumption of the theorem. We claim that f = d¢
outside K. One way to check this is to differentiate (7.16) directly. Another way is
to do the following. Fix 2o € R™\ K. For any y in some ball B(z,¢), with € > 0
so that the later ball is outside K, we can deform the contour of integration in
(7.16) from the radial line segment [y, coy) to the path p, r := [y, Ry]U[Ry, Rxo]U
[Rxp, 00x0). When R is large enough, that path is outside K. The integral

or(y) == — fda
Py,R
of fdx over that path converges to the integral (7.16), equal to ¢(y), as R — oo as
a consequence of the rapid decay of f. We also have d¢rp — d¢ because the first
derivatives of f decay rapidly as well.

On the other hand, in a small enough simply connected neighborhood of the
ray [y,00y), f = d¢ for some C? function . Then ¢r(y) = ¥(y) — ¥(Rxo).
Differentiate to get dér(y) = f(y). Take the limit R — oo to conclude that
f=de. O

7.3. Decomposition into solenoidal and potential parts. As we showed
above, we can only recover f up to a differential d¢, with ¢ decaying in a certain way
at infinity. Theorem 7.2 says that within the class of f’s studied there, X f; = X f5 if
and only if there exists ¢ decaying at co (and this property determines ¢ uniquely),
so that f; = fo 4+ d¢. The latter condition is an equivalence relation, and another
way to formulate the theorem is to say that X f recovers uniquely the equivalence
class.

The non-uniqueness of recovery of f raises the following question. Is there
some “natural” representative of f in each class, that we can recover easily and
explicitly? The answer depends on what we think is “natural” and what recovery
looks “easy”, and here we present one way of doing that.

Since X vanishes on all d¢ with certain decay at infinity, we can try to find
the orthogonal complement of that space with respect to some Hilbert structure.
One such choice is L?(R") defined in (7.6). We do not have a definition of X f on
that space, however. We can still use that orthogonality structure but restricted
to a subspace. When we work with fields supported in a fixed compact, then L?
functions are L', as well, therefore X is well defined on such functions.

Let f € S(R™) be orthogonal to d¢ for all ¢ € S(R™). Integrating by parts,

we get
B B _ ¢ L ofi -
0= - f-dodx = /Rn fli@xi dx = /n % (%ﬂgf)dx

for any such ¢. Therefore, the divergence of f must vanish:

5f =0, where df =) gﬁ.
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This is the basis for the following.

DEFINITION 7.6. The vector field f is called solenoidal in R™, if f = 0. It is
called potential in R™, if f = d¢ with some ¢(z) — 0, as |z| — oo.

We intentionally did not specify the space of where f and ¢ belong because
that can vary with the applications. Of course, we must requite at least X f and
Xd¢ to be well defined. That can include spaces of distributions as well.

THEOREM 7.7. For any f € L?*(R™) of compact support, there exists a uniquely
determined vector field f§. € L*(R™) and a function ¢rn € H] (R™), smooth
away from supp f, so that

f=fa» +dérn, Offn =0, ¢rn(z) =0, as|z|— o0
Moreover, the following estimates are satisfied for |x| large enough

(7.17) [fen (@)] + [dome ()] < CA+ 27", [dre(2)] < C(1+ [2])'

PRrROOF. Assume first that the decomposition can be done. Then § f = ddprn =
Agrn¢. Therefore, ¢rn» has to solve the equation

(7.18) Adrn = 0f.

To prove the uniqueness it is enough to show that if f = 0, then ¢r» = 0. That
follows from the fact that the only harmonic function decaying at infinity is the
Zero one.

To prove the existence, we set ¢rn = 0G, * f, where G, is the standard
fundamental solution of the Laplacian in R™
1 1
G f=—0 g2 >3, G =—1 .
nf (2—7’L)|Sn71||x‘ ’ n =9, Q(Z‘) 271_ Og|l‘|
In both cases, we get
1 2

7.19 () = ——— . % —— .

To see that this is well defined, choose x € C§°(R) with x = 1 near the origin.
Then write

@20 15 ome(o) = fix (x5 )+ 4 (=) )

The first term on the right is in L?(R"™) by Young’s inequality. To prove that
it belongs to H', one can use the theory of operators with singular kernels but
we will use elliptic regularity below instead. This also follows from the Fourier
transform arguments follwoing the proof. The second term is a convolution of the
compactly supported f € L? with a smooth function, and this convolution is a
smooth function.

We have A¢rn = ASG,, * f = AG, * (6f) =4f.

Since Agrn = 0f € H~'(R"), then ¢r~» € H. . by elliptic regularity. Formula
(7.19) implies immediately the estimates on ¢r» and d¢gr~. Indeed, let supp f C
B(0, R) with some R > 0. Then for ¢ B(0,2R),

n—1
z|" " ogre (2)| < C Md < C’/ d
(7.21) lz[" 7 e ()| < O Py y < B(OvR)\f(y)l y

< C"(B)|fllz2@ny-
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Similarly, we prove estimate (7.17) for dgr~ by differentiating (7.19) for x & supp f,
and using the same arguments as above. Set fg. = f — d¢r». Then {ffn =
0f — A¢r» =0, and fgn satisfies the decay estimate because so does d¢grn. O

An equivalent way to define ¢r~ is to Fourier transform (7.18) and to write

(7.22) IR (€) =~ fi):

By the assumptions of the theorem, f € L? and f is of compact support; there-
fore the right-hand side above is locally in L', and it is also in S’. The inverse
Fourier transform then exists and defines ¢g~ correctly. We would like to note that
by dividing by [£|? to obtain (7.22), we actually made a choice among the many
solutions of (7.18).

The equivalence of (7.19) and (7.22) will be established, if we can show that

-1 3 _ i z'

(7.23) € = S

When n # 2, we can use Lemma A.2.1 with 4 = 2 — n to compute F~}|¢|72;
and then F~1¢¢|¢|=2 by applying the operator —id/dx% to the result. A direct
calculation then proves (7.23). When n = 2 we can not do this because u = 2
is then a pole in the formula in Lemma A.2.1. On the other hand, we can first
differentiate the left-hand side of (A.2.1) with respect to x* for those p that are not
poles to get

(7.24) —ipT (=) Fallalr—? = anugn/r <”;”) gile[rn

for —u, —m —p & 2Z,. Let n = 2 now. Then the Gamma function on the left
has a simple pole at ;x = 0 that is cancelled by the factor . On the other hand,
Fa'|lz|*~? is an analytic function of 4 with values in S’ in a neighborhood of y = 0;
and so is the right-hand side. Taking analytic extension at u = 0, we prove (7.23)
in the case n = 2, as well.

To show that ¢grr, defined by (7.22) belongs to H™, notice first that (1+|¢|)drn,
restricted to |£] > 1, clearly belongs to L?. In the unit ball |¢] < 1, we apply (3.9)
with k£ =1 to conclude the same.

The problem of inverting X can now be formulated in the following way. Given
Xf, find fgn. Alternatively, given g in the range of X, find f with J f = 0 so that
Xf=g.

Note that we actually got

(7.25) (fren)i = (6] — &&7 /1€ f-

We therefore get that ¢rm, f5. are in L2(R"), but the compactness of the support
is not preserved, in general. Indeed, for f € C§°, f§~ is smooth but not in S(R™)
in general. Indeed, for many f, fﬁn cannot be smooth because of the singularity
in (7.25) at £ = 0. Also, when f is compactly supported, f&. and dgrn in general
are not because if fg. € C§° we would then get f&. € S, that is not always true.

It is worth noting that the equivalence of (i) and (ii) in Theorem 7.2, that can
now be formulated as X f = 0 & f = d¢ admits the following simple proof using
the solenoidal/potential decomposition. If X f = 0, then we also have X f* = 0.
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Then fﬁn (&)-0=0for 6 L&, by the Fourier Slice Theorem, and since 4 f* = 0, we
also have &'(fg.)i(€§) = 0. Now, clearly

(7.26) f2n(€)-€=0, and fg.(¢)-0=0,¥9 L& = f. =0,

In particular, we get solenoidal injectivity of X for f with compactly supported L?
components, as in Theorem 7.7.

When f is supported in a bounded set €, the decomposition above is inconve-
nient because it forces us to work in the whole R™. On the other hand, one can use
the Fourier transform. We present now another solenoidal-potential decomposition,
this time in the domain €.

THEOREM 7.8. Any f € L*(Q) admits an unique orthogonal decomposition
f=f+do, where f*€L?*(Q),5f=01inQ, andpc Hi(Q).

Moreover, f* =Sf, dp = Pf, where P and S are orthogonal projections in L?(Q)
with P + S = 1d, and the map L*(Q) > f — ¢ € HE(Q) is bounded.

PROOF. Assuming that such a decomposition exists, we get A¢p = §f in .
Based on that and on the condition ¢ = 0 on 02, we define ¢ as the solution of the
elliptic boundary value problem

(727) A(b = (Sf in Q, (b‘(')Q =0.

Since §f € H~1(2), this problem has a unique solution ¢ € H}(Q), that we denote
by ¢ = ABlé f, where Ap stands for the Dirichlet Laplacian in €. Moreover,
the map L2(Q) > f — ¢ € H}(Q) is bounded. With that definition of ¢, set
[P=[—do,ie,

P=dAp's, S=1d-dAp'.
It is easy to check that P, S are orthogonal projections and that S = 0. (]

As pointed out above, this decomposition is different from the decomposition
of f, extended in the whole R"™, even when f € Cy(2). For vector fields supported
in €2, then we can pose the question of invertibility of X as follows. Given X f, find
f%. The latter is defined in €2 only, by definition, but its extension as zero outside
Q will have the same X-ray transform.

Next theorem is a version of Theorem 7.2 for f € L?(f2) that we consider as a
subspace of L?(R).

THEOREM 7.9. Let Q be a bounded domain with a connected exterior. Then
Xf=0 for feL*) if and only if f* =0.

PRrROOF. To prove the “if” part, we need to show first that Xd¢ = 0 for any
¢ € HE(2). Since f is not necessarily in C*, instead of applying the Fundamental
Theorem of Calculus, we will apply the Fourier Slice Theorem. Let f = d¢ and
denote by fe, ¢ the extensions of f, ¢ as zero outside Q. Then f. = d¢e in
the whole R"™ because ¢ = 0 on 9f2. We drop the subscript e in the rest of the
proof. Take Fourier transform to get f;(€) = i&$(¢). By the Fourier Slice Theorem
(Theorem 7.1), Fpo X f(+,0) = i@ifiq@(f) for any & L 6. Therefore, Fy. X f(-,0) =0,
that implies X f = 0.

Now, let X f = 0. Note that we cannot apply the argument (7.26) because f*,
extended as zero outside €2, may fail to be solenoidal in R™ due to possible jumps
at the boundary. Instead, we write f = fg» +d¢r~, by Theorem 7.7, and we have
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f =d¢rn by (7.26). In R*\ Q, ¢r~ is smooth. As in the proof of Corollary 7.3, we
then get ¢r~» = 0 in R™ \ Q. Therefore, supp ¢r» C ; and since ¢r~ is locally in
H', we then get ¢r» € HJ (). Therefore, ¢r» equals ¢ in Theorem 7.8, therefore,
f% = 0. In particular, when X f = 0, we do get ¢r» = ¢ and f* = f&. in Q (the
latter is actually 0) but that is not in general true for f not in the kernel of X. O

7.4. Inversion formulas. We start with analyzing the Schwartz kernel of
X’X. The analog of Proposition 2.2 in this case is the following.

PROPOSITION 7.10. For any f € C§°(R"),

xtx?

(X'Xf) = QW * fj.

PROOF. The proof is similar to that of Proposition 2.2. By Problem 7.1,

(X’Xf)i(x):/ X f(x — (x-6)0,0)do

Sn—1

(7.28) :/Sn_l/RGifj(wstﬁf(x~9)0,0)9j dsdé

= / / 0" f;(x + s60)67 dsd.
sn-1JR

We split again the s-integral in two parts: over s > 0 and s < 0. Then we make
the change of variables (s,0) — (—s, —0) in the second one. Thus we get

(X' X[ (z) = 2/ /OO 0'f;(x + s0)67 dsdo
Sn=1J0
o [ FEAEEA Gy [ W) gy

2|+ |z -yt

COROLLARY 7.11. For any f € C*(R™),

Gy = &&i /1€ ¢  op(ni/2

ProOF. By Proposition 7.10, X’X is a Fourier multiplier with the Fourier
transform of 2z¢x7|x|~"~!. By Lemma A.2.1,
) 7.[.(n+1)/2

Flz|™" Y =C,l¢], C ::2_177"/21—‘(_% =- :—1|S"|.
el Cn T T T

Therefore,
_op dii T G&/1€17
13
This completes the proof. O

(7.29) F (2% 2|77 = —2C,,0¢, 0, €] =

THEOREM 7.12. For any f € C§°(R"™), we have
(7.30) fir = CDIX'X S,
where Cy, is the constant in Corollary 7.11.

ProoF. Follows immediately from (7.25) and Corollary 7.11. O
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Comparing Theorem 2.6 and Theorem 7.12, we see that the inversion operator
is the same, up to a constant factor.

The analog of Theorem 2.4 holds as well. Before that, we need the following
generalization of Lemma 2.1.

LEMMA 7.13. For any matriz valued F € S(R™),

- |57 Fij(z) x'al
F Ry = - .
/5an /WL i ()w'w? dS, dw 5 i FE dz

™ R" |x‘

PROOF. By the proof of Lemma 2.1,

1 ~
/ FZJ(!E) dSa; = 7/ Fij(rw) dr.
wt R4

™

Therefore,

/ / Fij(r)w'w dS, dw:l/ /Fij(rw)wiwj dr dw
gn—1 J,L ™ Jsn-1 JR
1 . P
2 [ Beeega
™ Jrn

1 n - |S™] - il .
= —(2m) /nFZ (m)2(2ﬂ_)n (5” FE ) |x| " d,

™

and we used the Plancherel equality together with (7.29). O

THEOREM 7.14. For any f € S(R™),
(7.31) fir = CIX'|DLIX .
where C, is the constant in Corollary 7.11.
PRrROOF. Let f, g be in S(R™), and let f§. be as in Theorem 7.7. Then
(X'|D.|X fan, 92wy = (ID2]X fns X9)L2(x)
= (2m)' " F DL X fien, FoX9) L2(x)-

As before, for any fixed 6, let p be the dual variable to z. Then F,|D.| = |p|F-..
Combining this with the Fourier Slice Theorem for vector fields (Theorem 7.1), we
get

(X'|D2|X fns 9) 2@y = 2m)' " (Ip|Fo X fan, F-X9) L2(x)

== [ [ Gaelo)- 00 - 0)lplas, 0.

We apply Lemma 7.13 with F;; = (fﬁ,,)lﬁj and z in the lemma replaced by p. Note
that p - ff{n (p) = 0 because f§. is divergence free. Therefore,
s —n s £s ~
(XD ) romey = 20 [ o) al)ap
= |Sn|(frst'"ag)L2(R")-

This completes the proof. (I

(7.32)

Formulas (7.30) and (7.31) reconstruct a vector field fg. with the same X-
ray transform as f but they are inconvenient when we know a priori that f is
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supported in a bounded domain 2. In that case, we would like to recover the
solenoidal projection f* of Theorem 7.8. This can be done as follows. We have

ff=f—do inQ, where Ap=4f, ¢ € HY ().
On the other hand, we have a reconstruction formula for
(7.33)

fan =f—de¢r~ inR", where A¢grr =0f inR", | l‘im ¢rn(x) = 0.
x| — 00

We can therefore obtain f¢ in Q from fg. by adding a suitable correction term:
(7.34) Fo=fin+dy inQ, with ¥ = ¢re — ¢, Ath = 0.
Since 1 is harmonic in €2, it is uniquely determined by its boundary value. The
latter is well defined because 1 € H'(Q). Since ¢ = 0 on 0, we get 1) = ¢r» on
0. We will recover the boundary value of ¢g~ from (7.33). We have

(7.35) dérn

To recover ¢grn on Jf), and therefore f*, is to integrate (7.35) from any x € 92
along any curve outside 2 starting from x and going to infinity. That however
requires computations in an unbounded domain. On the other hand, one can fix
y & Q and integrate from = € 92 to y, staying outside 2. This will recover ¢r» on
OQ up to the constant ¢rn»(y). Then ¢ in (7.34) will be known up to a constant.
That constant however will be annihilated by the differential in (7.34).

_ — fS _
R"M\Q — fR'n. R7\Q-

7.5. Stability estimates. We will study stability estimates for f supported
in Q, where Q is a smooth bounded domain in R®. We are looking for sharp
stability estimates of the type (III.1.3). Since f*® does not necessarily have a smooth
extension as 0 outside 2, even when f € C§°(2), we cannot expect the analog of
the estimate (3.2) in Theorem 3.1 to hold for all s without some modifications, at
least. The same remarks applies to estimate (3.10) in Theorem 3.3.

THEOREM 7.15. Let Q C R™ be a bounded domain with smooth boundary and
connected exterior. Then
(7.36) 1 £z /C < N1 X fllgzsy < Cllflizze
for any f € L*(9).

PROOF. It is enough to prove the estimates for f € C§°(f2). Let f§. be the

solenoidal projection in R™ of f, extended as 0 to R™\ Q. By (7.25), f&. € L2(R"),
and then by (7.32), with g = f&., we get

(7.37) | fn 172y = Cx I X fen

that in particular proves the first inequality in (7.36) with f* there replaced by
f&n- The second one follows from the fact that X f(z,0) = 0" Xo fi(z,0), where X,
is the X-ray transform of functions, and from Theorem 3.1. Therefore

| for lL2@ny/C < 1 X fll sy < Cllfin
By (7.25), f&. is obtained by applying a bounded operator in L*(R™), an orthog-
onal projection actually, to f. Therefore,
(7.38) [fnl2@n)/C < X fllazes) < Cllfllrze)-

In particular, this is an analog of estimate (3.2) of Theorem 3.1 for s = 0. The
proof is then completed by the lemma below. [

2
L2 (E) )

L2(R")-
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LEMMA 7.16. Under the assumptions of Theorem 7.15, there exists a constant
C = C(Q), so that for any f € L*(R"),

(7.39) If5 2o, r) < Cllfanllzz@m

Proor. We follow the arguments of the reconstruction of f® once we have
reconstructed fg., described above. By (7.34), we need control of di) in Q. To
determine the harmonic function v in €, we need its boundary values on 92 that
coincide with d¢rn on 9. This is done by (7.35).

Let ©; € R” be a bounded open set so that Q C Q. It is convenient but not
essential to assume that 9 is given by dist(z, Q) = & with € > 0 small enough so
that 9 is smooth. Let f3 be the solenoidal projection of f, extended as 0 outside
Q (that we always assume), to Q1; and let d¢gq, be its potential one. Comparing
fa, and fR., we get

(7.40) fo, = far +dpr inQi, @1 :=¢rn —da,, Ap; =0 in Q.
We claim that
(7.41) C°(Q) 2 fr>dpy € C(£)

extends as a compact operator from L?(Q2) to € L?(€;). Indeed, as a harmonic
function, ¢ is determined by ¢1|sq,. The latter equals ¢rn|oq,, see (7.19). Since
supp f C €, and the kernel of the convolution operator in (7.19) is smooth away
from the diagonal, we get that f — ¢rn|oq, extends to a bounded map from L?(2)
to H°(0€;) for any s. Next, ¢rn|oq, = ¢1laq, — dei|a is a bounded map from
H3/2(09) to H' () by standard elliptic estimates. Therefore, the map (7.41) is
bounded from L?(Q) to H'(£;), thus compact as a map from L?(Q) to L?(Qy).

To summarize, we showed so far in (7.40) that f3 and fg. coincide in € up
to a compact operator applied to f, i.e,

(7.42) o, = fae + K1if in Qq,

where K; : L2(2) — L?(Q;) is compact. Next, we will compare f* (the solenoidal
projection of f in Q, that could also be denoted by f&), extended as 0 outside €2,
and f3 .

In Q, we have f* = f —d¢, ¢ € H}(Q2). Extend ¢ and f* as 0 outside Q2. Then
we still have f® = f — d¢ in the whole R™ because there is no jump of ¢ at 9.
Comparing f* and f§ , we get

(7.43) [P=f4, +dp2 in Qi 2= ¢, —¢.
Since f* = ¢ = 0 outside 2, we have

(744) d¢91 = dQDQ = 7f5§217 in Ql \Qa
therefore,

(7.45) lde2lz2 @0 = 116, |22 \0)-

We claim that we actually have

(7.46) ||SD2||H1(521\Q) < C||f51||L2(Ql\Q)‘

Estimate (7.46), requires a Poincaré type of inequality that would estimate ||zl £2 (0, \q)
as well, through [|dpsa|| 1 (0, \q)- Those types of inequalities require knowledge of
2 on a part of the boundary, at least, or some average value of 5 in an open
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set because adding a constant to s does not change ¢3. We know however that
2 = 0 on 9€2;; and that was the reason actually to do the step fg. — f3,-

With this in mind, let for x € Q4 \ Q, y"(x) be the distance from z to 9.
Then ©; \ Q is given by 0 < y™ < ¢. For £ > 0 small enough, the map [0, ] x 9Q >
(y™,y') — = € Qy, where y/(z) is the closest point to z on 912, is a diffeomorphism.

Notice next that if we regard f as the components of the form f = f;dz7, then
under coordinate changes, f behaves as a covector field. In other words, if y = y(z)
is a local diffeomorphism, then f;dz® = fidyi with

Biv) = 5o 35

This is the point of view that we adopt in the next chapters. Then (7.44) is
preserved under the coordinate change, as it can be easily seen. More precisely, let
y' = (y',...,y" 1) € U be local coordinates on 9 near a fixed xg € 9Q. Set

0, (y) = o, (x(y)); then we have
(7.47) dyda, = f5,
in the subset of [0,¢] x U, where (y’,y") are defined.

Integrating in normal directions, and using the fact that 4591 =0 for y™ = ¢,
we get

For (y) = — / By G (1)

for 0 < y™ < e. By the Cauchy inequality,

(148 190, < e =3") [ Do 0P << [ 100, 0 d

Y

for 0 < y" < e. Integrate in [0,e] X U to get

1>
~ 2 ~ ~
||¢91||L2([0,5]xu) < 52/0 |0y P, () * dy < || dda, |12 (0,6 x0)-

This immediately implies the same estimate for ¢q, through dyqo, = f§, in the
domain of validity of the coordinates y. We can do this near any point zy € 9.
Using the compactness of 92, we can choose a finite subset to get
90, z2n0) < CIfE, z200\0)-
Combining this with (7.45), we thus complete the proof of the claim (7.46).
By the trace theorem,
o2l 1200y < ClIfG, L2 @i\
In Q, Aps = A(dq, — @) =df —df = 0. Then by standard elliptic estimates,

(7.49) lp2llz @) < CfS, L2 @0\)-
This and (7.43) imply
(7.50) If¥ 2 ) < CllfS, 2200

We are ready to complete the proof now, using (7.42) and (7.50).

1% 2 < Cllifanllzzn) + 1K fllLzy)
< C||f§w,||L2(Rn) + HKIfHL?(Ql)-
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Let us first assume that f is solenoidal, i.e., f = f* or, equivalently, f = 0 in
Q). We now apply Lemma 3.4 with f belonging to the closed subspace SL?(Q) of
solenoidal vector fields in L?({2). As it follows from the proof of Theorem 7.9, the
bounded map SL*(Q) > f — fg. € L?>(R") is injective. The estimate above then
implies that (7.39) holds with a different constant. O

*** One can prove the lemma with a certain version of the Poincaré
inequality, including an average value in an open set.
sk ok

We now turn our attention to estimating f® through X’'X f.

THEOREM 7.17. Let Q C R™ be open and bounded, and let Q4 O Q be another
such set. Then there is a constant C > 0 so that for any f € H*(R™) supported in

Q, we have
(7.51) 12 /C < IX X fllmr .y < Cllfllzzmn
PRrOOF. The second inequality in (7.51) follows as in the proof of Theorem 3.3.
To prove the first inequality, use Corollary 7.11 and (7.25) to get
Fn(§) = C Nl FX'X S,
Therefore,

Cull Fr 22wy S NIX' X fllEn @y = IX' X 0 + 1X' X f 0 @ea)-
By Lemma 7.16,
Call 217 2mmy < IX' X Iy + 1X X F I3 o)
Similarly to the proof of Theorem 3.3, the operator
L*(Q) 3 f = X' X flrma, € H'(R™\ Q),

is compact because it has a C> kernel, and (2 is compact. Indeed, the kernel of
X'X is given by (2.1), and for z € R" \ Q and y € €, it is smooth. On the other
hand, X'X : SL?(R") — H'({) is injective. Indeed, if X'Xf = 0 with some
f € SL? then 0 = (X'Xf, f)r20) = [ Xfl|72(q) hence f = 0 by Theorem 7.9.
Then an application of Lemma 3.4 completes the proof. (]

8. The Euclidean X-ray transform of tensor fields of order two

Let f(x) = {fij(x)}}'j=; be a complex matrix valued function on R". We
define the X-ray transform of f as

(8.1) Xf(x,0) = /R fij(z + 50)0'¢7 ds,

where, as before, we use (z,0) € R"™ x S"~! to parameterize all directed lines in
R™. As before, the parameterization is not unique and X f is an even function of
0:

(8.2) Xf(z,0)=Xf(x+10,0), Xf(z,0)=Xf(z,—0),

as in the case of functions. The integral makes sense for any f with L!(R") entries.

Unique parameterization of X f on the manifold of the directed lines can be
obtained by restricting (x,0) to ¥ as in section 1.1. When f is supported in a
bounded strictly convex domain 2 C R™, one can also think of X f as a map from
0_5Q to C™, as before.
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The integrand of (8.1) is a symmetric quadratic form of , and will not change
if we replace f by its symmetric part %( fij + fji). For that reason, we will assume
that f is symmetric itself, i.e., f;; = fj; for any 1, j.

8.0.1. Motivation. The basic motivation to study this transform is that it is
a linearized version of the non-linear boundary rigidity problem, see section 777.
In the Euclidean case that we study here, it is a linearization near the Euclidean
metric.

We will see in section 777 that we f behaves as a covariant tensor field of order
2, i.e., as a tensor of type (0,2), under a change of variables. The integrand in (8.1)
can be viewed as such a tensor f applied to § ® 6. We can therefore identify f with
the quadratic form f = f;;(x)da’da?, see also (7.1). This explains our choice to
use lower indices for f;;.

We will use the notation ST (C™) to denote the space of symmetric tensors of
type (0,2) over the vector space C", T9(C") being all tensors of that type. When
it is clear from the context that we mean tensor spaces, we will often omit the
notation STY(C"). For example, L?(R") below is actually : L?(R"; STY(C")),
etc.

The natural way to define pairing of symmetric tensor fields in R™ is given by

(3.3) (f.h) = /R i) @) da,

where h = {h%/} is another symmetric tensor field; and in this chapter, we identify
hij and h* for any such filed. The distribution space D'(R") of symmetric 2-
tensor fields (i.e., D'(R", STY(C"))) is defined as the space of all continuous linear
functionals on C§°(R™). The elements of L{ (R™) are naturally identified with
distributions by (8.3).

PROBLEM 8.1. Show that the transpose X’ is given by
B (@)= [ 00— 00,01, e FE)
S'n.fl

One can extend X to &'(R™) in the same way as in (1.3), see Definition 1.4.
The L?(R") space is defined by the norm

(5.5) 11 = | 1o da.
ij

and the inner product in it is given by (8.3), with h replaced by h.
As in the previous sections, if 2 is a strictly convex bounded domain with
smooth boundary, one can define X f € £'(9_59Q), and

X : L*(Q) — L*(0_59,dp)

is bounded. Then X* is well defined.

The X-ray transform on symmetric 2-tensor fields has an obvious infinitely
dimensional kernel as well. Given a vector field v = {v;}, let d*v be the symmetric
differential of v:

1
(86) (ds’l))ij = 5 (&-vj + 8jvi) .

The latter is a symmetric 2-tensor field. Then is is easy to see that
(8.7) X(d°v) =0, YveSR").
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This follows from the identity

(8.8) (z+ 50)0" = (d°v);j(z + 50)0°07,

d
s
and the Fundamental Theorem of Calculus. We show below that this is the only
obstruction to uniqueness.

The Fourier Slice Theorem takes the following form in this case.

THEOREM 8.1. For any f € L*(R"),
(8.9) fi:(0)067 = / e X f(2,0)dS,, VO L, 0e S
QL

We omit the proof.

8.1. Solenoidal — potential decomposition. We will construct a solenoidal
— potential decomposition in R™ first, and then in a bounded domain, similarly to
section 7.3. In R"™, we describe first the space of symmetric 2-tensor fields f in the
Schwartz class, orthogonal in L*(R™) sense to all d*v, with v in the Schwartz class,
again. For any such f,

(8.10) 0= /R g (x)% (055, + 0;5,) dar = — / (0,7 ()5 () da.

Therefore, f must be divergence free, i.e.,

5f =0, where (6f)" = 0;f4.
We recall that we freely raise and lower indices in this chapter. Then the divergence
is a differential operator that sends symmetric 2-tensor fields into vector fields. As

the calculation above shows, —¢ is the formal adjoint to d®, the latter acting on
vector fields. This motivates the following.

DEFINITION 8.2. The symmetric 2-tensor field f is called solenoidal, if 6 f = 0.
It is called potential, if f = d*v with v(z) — 0, as |z| — oco.

THEOREM 8.3. For any f € L>(R™) of compact support, there exist a uniquely
determined f&. € L*(R") and a vector field vg» € H} _(R™), smooth outside
supp f, so that

f=fi» +d°vrn, Ofgn =0, wvmrn(z) =0, as|z|— oo.
Moreover, the following estimates are satisfied for |x| large enough
811)  [fan (@) + [d*vrn (2)] S CL+ 2", Jorn(2)] < O+ [2])' 7

PRrROOF. As in the proof of Theorem 7.7, assume first that the decomposition
can be done. Then §f = §d*vr~. The conditions on v guarantee that the latter is
in L?(R™). Therefore, trn exists.

The operator dd® requires more attention. It is a second order differential
operator that maps vector fields into vector fields. We have

1 .
((5(?131})1‘ = 5 (Avl + 81-8]»11]) .
Take Fourier transform to get

F(6d%0)!(€) = f% (1€[20% 4 €'¢7) 05 (€) =: AV (€);(6).
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Therefore, 6d® is Fourier multiplier with the matrix A(£). The latter is homogeneous
of order 2, and negative definite for £ # 0 because for any a € R",

A (€ = 3 (Pl + (- )?) > Lielal

The matrix A can be easily inverted. Indeed, if w = Av, take a dot product with
€ to get w- &= —|¢%0 - € Then

—2w = [¢*0 + €0 - € = [¢]*0 — || - &,

and we can solve for © now. This implies that the equation Féd*vgn = FJf has a
possible solution

(8.12) (br)i(€) = 16172 (=287 + g1 26:¢7 ) € Fiu(©).

The singularity at & = 0 is locally integrable in all dimensions. Therefore tgn
belongs to S'(R™), and so does vg~. Note that the equation Fdd*vr. = Fdf has
many other solutions, and they all differ by distributions supported at 0. The one
that we chose will give us the desired behavior of vg~ at infinity however. Now,
we take (8.12) as a definition of vg~; and then we set f&. = f — d°vgrn. Clearly,
dfgn = 0.

To prove the estimates on vrn~, notice first that g~ is a linear combination
of the terms fk\§|*2f;k and &€& f\*‘ifik. We already found the inverse Fourier
transform of ¢¥|¢|72 in (7.23) and showed that it decays in the required way. To
find the inverse Fourier transform of &¢&;&|¢|~* , we apply Lemma A.2.2 to find
F~1¢]7*, and then differentiate three times. That would not work in dimensions
n = 2 and n = 4 due to restriction on g in Lemma A.2.2. Assume first that
n > 5. Then we get vgn = P x f, where P(x) is a matrix with entries that
are homogeneous functions of x of order —n + 1; and they in fact equal |z|~"T!
multiplied by polynomials of z/|x|. When n = 2 or n = 4, we argue as in (7.24).
Then estimates (8.11) follow as in the proof of Theorem 7.7, where ¢rn» plays the
role of v~ here, see (7.19).

To prove uniqueness of the decomposition, let f = 0. Then we need to show
that the corresponding vgr~ vanishes. The equation dd°vr» = 0 can be written as
A(&)orn (§) = 0, therefore, suppor» C {0}. The only function that satisfies the
conditions of the theorem with that property is the zero one. O

Using (8.12), we get

A ok ¢l
(8.13) ﬁmm=W@W@,%&=@—%>@‘%>

We are ready now to prove the following analog of Theorem 7.2.
THEOREM 8.4. Let f € L?*(R™) be of compact support. Then Xf = 0 if

and only if f = d%v with some v(z) € H'(R") that vanishes in the unbounded
connencted component of R™ \ supp f.

ProoOF. We already know that the “if” part holds for smooth f. For f as in
the theorem, we can use the Fourier Slice Theorem to prove it. We prove the “only
if” part next. Let X f = 0. Let f = fi» +d°vr~ be the decomposition of f. Then

£ (f&)ii(€) =0



48 II. BASIC PROPERTIES OF X AND R

because 0 f§. = 0. By the Fourier Slice Theorem (Theorem 8.1),
0'67 (fn)i;(§) = 0
for any 6 L . Then for any constants a; 2 and by 2, and any 6 L &,
(a10 + b16)"(a20 + b2€) (fn)ij (€) = 0.
Fix £ # 0. Then any vector can be expressed in the Aform af + b¢ with some
constants a, b, and some 6 L &. We therefore get n°C7(f§n)i;(€) for any n € R™,
¢ € R". Therefore, ff{n (§) =0 for £ # 0, and since fﬁ cannot be supported at 0,
we get fin = 0. Then f = d°vgr~.
To prove the statement about supp v, we start with
d®vrs =0 inR"\Q, Q:=suppf.
We also know that vgrs is smooth in the indicated domain. Moreover, estimates
(8.11) hold for large |x|. We will prove that this implies vg: = 0 in R"™ \ Q.
Integrate (8.8) along any line segment [zq, 2o + t0p] in R™ \  to get
(814) VR (xo) . 90 = VURn (SL'O + teo) . 00.
Assume that the ray xo +t6p, t > 0 is contained in R™\ Q. Taking the limit ¢ — oo
and using (8.11), we get

vrn(2) - 0 = 0.

Since R™ \ € is open, this is true for § in a small enough neighborhood in S™~!
of 0y. Any fixed vector is uniquely determined by its dot product with n linearly
independent unit vectors; and in any open set on the sphere, such vectors exist.
Therefore, vgn (1) = 0. Since R™\ Q is open, we can perturb z a bit, and we still
get vgn(z) = 0.

To summarize, under the assumption that the ray zg + t6y, t > 0 is contained
in R™ \ Q, we showed that v = 0 in some open set Uy > z9. Now, let z; € R" \ €,
be such that the line segment [x1, x¢] is in R™ \ €. Then we get as before

URn(l‘l) . 91 = ’URn(.’L‘l —|—t91) . 61 = 0, To — T1 = t(gl, t= |JJO — J)ll.

For 6 unit, set £g = zg + t. Then Ty € Uy if 0 is close enough to 01, and we get
again vgn (1) - @ = 0. Therefore, vgn (1) = 0. The assumption on z; is an open
one, therefore we get vg» = 0 in an open set Uy 3 .

Iterate this argument to get the following. Let y € R™\ €, so that there exists
a polygon [y, rn]U[zN, cn_1]U[z1, o] U- - - U[zg, 000p] (with an obvious definition
of the latter) in R™ \ Q that connects y to “infinity”, we get vg~(y) = 0. This is
what we had to prove. (I

The uniqueness result of the theorem, up to potential fields, can be formulated
as before in any of the following ways. For f as in the Theorem,
o If Xf =0, then f§. =0,
o If Xf =0, then f =d®v with v =0 for large |z|,
o If Xf=0anddf =0, then f =0.
We call this property solenoidal injectivity of X.
In Theorem 7.2, the condition df = 0 was shown to be equivalent there to
Xf =0and f = d¢. Similar condition exists in the case of symmetric 2-tensor
fields. The role of the differential d is played by the Saint-Venant operator

(W )ijir = 030; fr + Ok0O1fij — Ok0j fir — 050 fij-
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PROBLEM 8.2. Under the assumptions of Theorem 8.4, prove that each of the
conditions X f =0 and f = d®v is equivalent to W f = 0.

We turn our attention now to tensor fields supported in a fixed bounded domain
Q with smooth boundary. If v is smooth and v = 0 on 912, then its zero extension
outside €2 is in the kernel of X again. In fact, the symmetric differential d® commutes
with the extension as zero outside the domain, let us call it E, for v vanishing on
JN. In other words, Ed®v = d°Ewv for such v. Then XEd*v = Xd*FEv = 0, by
(8.7). Of course, X Ed®v = 0 can be checked directly for v smooth enough by using
(8.8). We will not use the notation E below.

By Theorem 8.4, Xd*v = 0 for any v € H}(Q). The symmetric 2-tensor fields
orthogonal to all d*v with v € Hg(2) must satisfy the first equality on (8.10) with
the integral taken in €. Since v = 0, the integration by parts is justified, at least
for f smooth, to give us 6f = 0 in Q. When f is only in L2, the this is still true
but § f should be considered as an tensor field in H~!.

DEFINITION 8.5. Let @ C R™ be an open set. Then f € L%*(Q) is called
solenoidal in Q, if 6f = 0 in Q. It is called potential, if f = d%v with some
v e HHQ).

THEOREM 8.6. Any f € L2(R™) admits an unique orthogonal decomposition
f=f+d%, where f* € L*(), of5=0inQ, andve HH ().

Moreover, f* = Sf, d®v = Pf, where P and S are orthogonal projections in the
space L?(Q) with P+ S = 1d, and the map L*() > f — v € HZ(Q) is bounded.

PrOOF. Arguing as in the proof of Theorem 7.8, we define v as the unique
solution of the elliptic boundary value problem with Dirichlet boundary conditions

(8.15) 0d®v=46f inQ, wv|gq=0.

The matrix-valued operator dd® is an elliptic one, and the Dirichlet boundary con-
ditions are regular ones for it. Since f € H~1(f2), we get that there exists unique
solution v € H}(Q). We will use the notation

v =(6d°),'0f,

where ((SdS)E,1 is the solution of the non-homogeneous boundary value problem for
6d® with Dirichlet boundary conditions. Then we set f* = f — d®v. Then

P =d(5d")p's, S=1d-P.

The properties of P and S are mow easy to check. Indeed, P is bounded by standard
elliptic estimates. Next, P is symmetric operator on smooth vector fields, and since
it is a bounded operator, it is also self-adjoint. It is straightforward to check that
P2="P. U

The decomposition of the theorem is different than the decomposition of f,
extended as 0 outside € provided by Theorem 8.3. Similarly to the analysis in
section 7, we see from (8.12) and (8.13) that for f € Cg°(R™), Fd*vr» and f* have
singularities at the origin for generic f; and therefore they are not in the Schwartz
class in those cases, thus d°v and f even though smooth, do not belong to C§°.

In next theorem, L?(2) is regarded as a subspace of L?(R™).

reference?
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COROLLARY 8.7. Let Q be as in Theorem 8.6 and let f € L*(Q2).
(a) If Xf =0, then f = d*v with some v € H}(Q),

(b) If Xf =0, then f* =0,

(¢) If Xf=0and §f =0, then f =0.

PRrOOF. Follows directly from Theorem 8.4. a

We call each of the properties (i), (ii), (ii) above solenoidal injectivity of X in .
They show that X is injective on the closed subspace SL?(€2) of L?(f2) consisting
of solenoidal tensors.

8.2. Inversion Formulas. We start with analyzing the Schwartz kernel of
X'X.
PROPOSITION 8.8. For any f € C§*(R"),

: xiajjxkxl
(8.16) (XX )" = 2w

The proof is similar to that of Proposition 7.10 and is left to the reader as an
exercise.

COROLLARY 8.9.

(8:17) FX'X[)ig(€) = o (X" X)(©igua 1 (€)
where
(8.18) o (X' X)()ijur = Cp,0¢,0¢, 06,05 €, C), = 3;(%3)

We also have

819)  o(XX)Ouu =90l s | (55 - 552 ) (- 7).
where symm(h;jx1) is the symmetrization of h, i.e., the average of hiji over all 24
permutations of the indices.

PROOF. By Proposition 8.8, X’ X is a convolution type of operator. Therefore,
it is a Fourier multiplier with the Fourier transform of 2x'z/z*2!|z|~"=3, and the
latter is in S§’. Then

o(X'X)(&)ijrr = F (Qxig;jxkxlm—n_g) .

Let |#|~"=3 be the distribution defined by analytic extension in Lemma II.2.1.
Formally,

(8'20) F (Qxixjxkx”x‘_n_?’) = 285ia$ja€ka€z]:|x|_n_3 = Cr/zafiaﬁjafkaﬁz|§|3a

by Lemma I1.2.2; as claimed. To justify this computation, we use the fact that the
distribution z’x’/2*2!|2|~# depends analytically on jx in the half-plane Ry > —n—4,
while |z|™# is analytic for Ry > —n, and has a meromorphic extension with poles
at p = —-n,—n—2,—n —4,.... For Ry > —n, the former distribution is obtained
from the latter by multiplication by the smooth function z’z’/2*2!. That relation
is preserved under analytic continuation from Ru > —n to some neighborhood of
= —n — 3. This justifies (8.20).

Equality (8.19) can be verified by direct differentiation in (8.18). O
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The symmetrization in (8.19) has only 3 distinct terms, therefore

p«vxxamm=3cﬂﬂ”[<&f‘i%)<%“_%g>

o) (o 58

&& fk§j>:|
Gy — SSLY (5, — SkSI) |
*(lw><“ €2

The operators f +— fg. and f — d®vr» in Theorem 8.3 are Fourier multipliers
on the space STY(C") with S(&) and P(¢) defined as

[S© i = MO fia, P(€) =1d = S(¢),
see (8.13). The operators ¢ and d°® are Fourier multipliers, too, with ¢(J)(£) and
o(d®)(§) defined as
1 : 1 1
Tlo@)fli =& iy Slo(d*)v]iy = 5 (& + &vi)

1

It is straightforward to see that o(£), viewed as a linear operator in STY (C™) given
by fij = [0 (X' X)(§)]ijuef*, satisfies
o(X'X)o(d®) =0(8)o(X'X) =0, So(d®)=0c(§)S=0.
The first two equalities also follow from (8.7), while the last two — from the defi-
nition of the solenoidal/potential decomposition in R™. Therefore,
So(X'X)=0(X'X)S=0(X'X), Po(X'X)=0(X'X)P=0.
The first two equalities follow also from X f = X fg». Therefore, if we write

S(6) = S(E)(STY(CM), P(§) = P(&)(STF(C™)),
then STY(C") = S(¢) @ P(€) is an orthogonal decomposition for any ¢ # 0;
So(X'X)(€) leaves those two subspaces invariant, and vanishes on P(£). We will

show now that it is an isomorphism on S(§) and will invert it there.
Set w = ¢/|¢|. Let f € S(€), then £ f;; = 0. We solve the equation

(8.22) (X' X)(€)f = h
below. Let f be a solution. By (8.21),
(8.23) hi = 30,/1‘§|_1 ((tr f) (01 — wrwr) + 2fr1) ,

where tr f = fi = >_; fii- Take trace of both sides to get

trh =3CL1E7  (n— 1) tr f 4+ 2tr f) = 3C0 1€ H(n + 1) tr £.
Solve this for tr f and substitute in (8.23) to get

-1 1 1
(8.24) fis =7l (Ghos = g0 = wisp) ).
It follows immediately that f € S (i.e., &fi; = 0, if h € S, as well. What we
showed so far is that if (8.22) is solvable, the solution must be given by that formula.
Assume f € S. Then by (8.23),
(@(X'X)f, f) =3C1el (Itr fI* + 21 f])

where (f, h) = f;;h% is the inner product in STY(C™), and | f|? = (f, f). Therefore,
o(X'X)(€) > C|¢|7! in operator sense on the finitely dimensional space S, and is
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therefore an isomorphism there. Therefore, (8.22) is always solvable on S with a
solution given by (8.24).
We therefore proved the following.

THEOREM 8.10. For any f € C§°(R"),

_ 1
[finlis = CL D] (65ik5ﬂ - (635 — 6xiamjA1)5kl> (X'X fw,

n+1
where A=Y denotes the Fourier multiplier by —|€|72, 2 and C!, is as in (8.18).

8.3. Stability Estimates. We will prove here analogs of the results in Sec-
tion 7.5. The following lemma plays the role of Lemma 7.16 in the present case.

LEMMA 8.11. Let Q C R"™ be a bounded domain with smooth boundary and

connected exterior. Then there exists a constant C = C(Q2) > 0, so that for any
[ € L2R"),

(8.25) 1£° 2 @) < CllfRnllz2 @)

Proor. We follow the proof of Lemma 7.16 but we will see that the 2-tensor
case involves additional difficulties.

Let as before, Q; € R™ be a bounded open set so that Q C ©;. Assume that
09y is given by dist(x,0Q) = ¢ with € > 0 small enough so that 9€Q; is smooth.
Let f§, be the solenoidal projection of f, extended as 0 outside {2, that we always
assume, to {21; and let d°vg, be its solenoidal one. Comparing f3 and fg., we get

(8.26) [, = fae +d®wr in Qy,  wp:=vRe —vg,, 0d*w; =0 in Q.

We claim that

(8.27) C(Q) 3 f = dwy € C=(Qy)

extends as a compact operator from L?(Q) to € L?(£2;). Indeed, d*w; solves the
elliptic system dd®w; = 0 in ©; and hence is determined by wi|sq,. The latter
equals vrn|oq,. The field vg~ is obtained from f by a convolution with a tensor
field P(x)homogeneous of order —n + 1 as we saw in the proof of Theorem 8.3.

Then we conclude as in the proof of Lemma 7.16 that (8.27) is a compact map,
indeed. Therefore,

(8.28) o, = far + K1f in Qq,
where K; : L2(Q) — L?(€2;) is compact. Next, we will compare f* extended as 0
outside , and f§ .

We have f* = f —d*v in in Q, with v € H}(Q). Extend v and f as 0 outside
Q. Then we still have f* = f — d®v in the whole R™ because there is no jump of v
at 0€). Comparing f° and fg , we get

(8.29) [P=f5, +d®ws in Qy, wy:=wq, —v.
Since f* = v = 0 outside {2, we have

(8.30) d*vg, = d*wp = f§,, in Q1 \Q,
therefore,

(8.31) [d*w2 |l L2 @\0) = 115, 22 @i\

2more precisely, 9,i0,; A™! is the Fourier multiplier by &;&;/|¢|?
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As before, we claim that we actually have

(8.32) lwa [ @) < ClfE, L2 @ine)-

So far, we followed closely the proof of Lemma 7.16. At this point however we
see an essential difference. To prove (8.32), we still need to prove some version of
the Poincaré inequality to estimate the L? norm of wy through the L? norm of its
first order derivatives. We first need however to estimate those derivatives through
the L? norm of d%ws!

In the case of vector fields, d¢ determines trivially all first order derivatives
of ¢. However, if v is a vector field, Jv;/Ox; cannot be obtained from (d*v);; by
algebraic operations. Indeed, at any fixed point, there are n? independent possible
values for 0v;/dz;, and only n(n + 1)/2 ones for (d*v);;. Therefore, if we view
(8.6) as an algebraic system for dv;/0z, we only have n(n + 1)/2 equations for n?
unknowns, so this system is under-determined. Some derivatives however can be
obtained easily: 9;v; = vy;.

On the other hand, the operator d* : C§°(R"™) — C{°(R™) is elliptic in the
sense that it has a left inverse of order —1 (mapping H* to H**! locally) given
by (6d®)~1d, where, somewhat incorrectly, the later denotes the map (8.12). Then
Ov;/dx; can be recovered by taking derivatives of (6d*)~'§(d%v). That operator
however is a Fourier multiplier by a non-polynomial, and therefore is a non-local
operator. One could try to use the pseudo-differential calculus, see Chapter..., but
the problem here is that we need to estimate the H! norm of wq in 5 \ €, all the
way to 0. The standard pseudo-differential calculus would only give us estimates
in open sets in Q7 \ Q.

To resolve this problem we use Korn’s inequality, see ,... Applied to £ \ €, it
says that

[Vl @0 < Clld*v|L2@@ne) + Cllvliz @)
for all smooth vector fields on the closure of Q; \ 2. We therefore get from (8.31),

lwell mr0\0) < CIfS, z2@ne) + CllwallL2\0)-
It remains now to estimate the L? norm of wy in Q; \ 2

(8.33) w2l L2(@\0) < CIfS, 2 @i\0)-

The starting point for this is the second inequality in (8.30), that we will integrate
along various lines, compare (8.14) that follows from (8.8) by integration. We
see another important difference between the X-ray transform of 2-tensors and 1-
tensors (1-forms). While an integral of d¢ over some path, where ¢ is a function,
depends only on the end-points but not on the path itself; an integral of d’v may
not equal (8.14) if not taken over a straight line segment.

It is enough to prove (8.33) with the L? norm on the left restricted to a neigh-
borhood of any point in the closure of € \ €, and then use a partition of unity.
Choose g € 02 and let U D z¢ be open. At least one of the coordinate vectors e;
at xq is transversal to 02, we can always assume that it is e,,. We can also assume
that zop = 0 and that e,, points away from 0€). Then near xg, 912 is locally given
by ™ = F('), while Q4 is defined by 2" = G(z'), G > F, if € is small enough.

Let # € S*~! be close enough to e, so that 6, > 0 and 6 is still transversal
to both 96 at o = 0, and to 00, at the point of intersection of it with the ray s@,
s > 0. Let § > 0 be such that those properties are preserved with z( replaced by
(2',0), |2'| < 8, more precisely, we require that the ray (z’,0) + s hits both 9
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and 90 transversely. Choose U 3 0 so that all those rays sweep U; and that this
is also true for @ replaced by 6 with |§"| < 6, (because we would need to perturb
2 later). Then as in (7.48), we get that |ws - 6| restricted to the intersection of the
ray (z,0) + sf with Q4 \ Q, is pointwise bounded by

*(x,0)
/ 1F5,((«,0) + t6)[2 dt,
7 (z,0)

where 7 (z, 0) correspond to the values of ¢, where the ray over which we integrate
hits 991 nd 99, respectively. Integrate with respect to s first, and then with respect
to 2’ in || < ¢ to get

lwa - 0] L1y < CONfS, 122 @0\0)-

We repeat that with n linear independent vectors w without increasing the absolute
value of the n-th component. In other words, all those vectors are close enough to
en, and form a basis in R™. This proves (8.33) with the norm on the left taken in
UnN(Q'\ Q). Take a finite cover of 9 of such Uy, and moving 9§ closer to 99,
if needed, we complete the proof of (8.33).

Therefore, (8.32) holds. By the trace theorem,

w2l g2 00) < ClIfS, L2 @09
In Q, dd*ws = 0. Then by standard elliptic estimates,
(8.34) w2l ) < CNfS, 2 @i\0)-
This and (8.29) imply
(8.35) If¥ 2 ) < Cllfa, L2
Therefore, by (8.28) and (8.35),

1£5 22 @) < Cllfanllzzon) + 1K1 fllL2 o)
< Cllfrellz@ny + 1K fllL2(0,)-

Assume first that f is solenoidal, i.e., f = f* or, equivalently, f = 0 in Q). Apply
Lemma 3.4 with f belonging to the closed subspace SL?(Q) of solenoidal vector
fields in L?(©2). We proved in Theorem 8.4 that the bounded map

SL*(Q) > f — f&. € L*(R™)

is injective. The estimate above then implies that (8.25) holds with a different
constant. ]

THEOREM 8.12. Let Q C R"™ be a bounded domain with smooth boundary and
connected exterior. Then

(8.36) 12y /C < IX fllaresy < Clifllieae
for any f € L*(9).

*** to be continued ***
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9. The attenuated X-ray transform
10. The Light Ray transform

In the theory of time-dependent wave-like type PDEs (like the wave equation
with a time dependent potential ¢(t,x)), one arrives naturally at the following
transform

(10.1) Lf(t,xﬁ):/f(t—&—sm—i—s@)ds, teR, z€R", Hc S .

We assume n > 2 in what follows. Here, Lf is just an integral of f over the lines in
R 5 (t,x) parallel to (1,0), |§| = 1. Those are actually the characteristic lines
of the wave operator with speed one. The transform L is an example of a restricted
X-ray transform (in R™*!), where the lines over which we integrate belong to a
submanifold instead of belonging to an open subset. In relativity, those are called
light rays and represent (trajectories) of photons. They coincide with the zero
geodesics in the Minkowski metric —dt? + d(x!)? 4 - - + d(z')" (parameterized by
time); i.e., lines with tangent vectors having zero length in that metric.

The parameterization of the light rays by (t,x,0) is overdetermined, of course.
The freedom we have to change parameterization is given by

(10.2) Lf(t,z,0)=Lf(t+T,x+1T76,0).

Notice that L is the forward light ray transform because the time ¢ increases along
the light rays involved in it. One can define also the backward transform by chang-
ing t+s by t—s in (10.1) but the latter is directly related to L and does not provide
extra information.

One way to fix a parameterization on the (forward pointing) light rays is to fix
the initial condition on a fixed space-like surface, see the definitions below. The
simplest one is perhaps ¢ = 0. Then each forward pointing light ray has unique
parameterization by (z,60) € R™ x S"~! (the unit sphere bundle SR™ in invariant
terms) given by

s — (s, + s0).

We chose the natural measure dz df on R™ x S"~!. In particular, we see that the
complex of light rays has the natural structure of a manifold of dimension 2n — 1;
which is 1 less (because of the characteristic restriction on the directions) than the
dimension 2(n + 1) — 2 = 2n of all lines in R"™!. From now on, we will write

(10.3) Lf(x,0) = /f(s,ac +s0)ds, (x,0) € R" x S"L.

10.1. Motivation. Consider the wave equation with a time-dependent poten-
tial ¢(t, z) such that ¢ = 0 for |z| > R for some R > 0:

(10.4) gy — Au+q(t,2)u =0 (t,z) € R"™

The inverse scattering problem for this equation consists of determining ¢ given
measurements of the solution u outside the ball B(0, R) where the potential ¢(-,t)
is supported, or at infinity. One simple choice of waves we can send are plane waves
of the type 6(t — s — x - 0), |#] = 1 which solve the wave equation with ¢ = 0. They
are supported on the plane = - 0 = t + s and propagate in the direction . The
parameter s measures the time-delay. If ¢ < 0, the plane wave does not intersect
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the ball B(0, R) and is moving towards it. Let u(t,z;s,6) be the solution of (10.4)
with initial data
Utc—s—r=0(t—s—2x-0).
We can differentiate with respect to t there, therefore we have Cauchy data for any
fixed t < —s— R which leads to a well posed Cauchy problem. The fact that we have
distributions is not a problem. Indeed, set h;(s) = s//j! for s > 0 and h;(s) =0
for s < 0. Then we can replace § by hy, and then differentiate the solution twice
with respect to s.
To find an ansatz for the solution u, we seek u as a formal expansion

u(t,x;8,0) =06t —s—a-0)+ Ag(t,z,0)ho(t —s—xz-0)+ Athi(t—s—xz-0)+....

The initial condition for u implies A; = 0 for t < —s — R. Apply 97 — A + ¢ to
u and rearrange the terms in order of their singularity. To kill the most singular
term involving § after that rearrangement, we need Ag to solve

1
(O +0-V,)Ap(t,z,0) = fiq(t,x), Apli<—s—r = 0.

Therefore,
0

1
Ap(t,z,0) = —5/ q(t+ 0,2+ 00)do.

—o0
We make observation after the most singular part of the wave (and therefore, all
singularities) has left the ball B(0, R), i.e., for t = s + x - § (where the hg term is
singular) and « - @ > R. Therefore, we measure

Ao(s—kx-ﬁ,x,ﬁ)z—%/ q(s+z-0+0,2+00)do

:—%/ q(r,(x — (- 0)0 — s0) + 70) do
for -6 > R. This is just L(—q/2)(z,0) with z =z — (x - 6)§ — s0. Tt is easy to see
that this way, we get L(—¢q/2)(z,0) for all (z,0). Therefore, to find ¢, we need to
invert L.

The ansatz above does not prove yet that there is a solution u with that prop-
erties — this can be done using standard PDE techniques. We refer to [35] for
details.

We actually got L(—q/2) by measuring the jump (a singularity) of the second
term in the singular expansion of u. This is a strong suggestion that there is no loss
if stability in this step, see also Chapter III. The proof of this statement however
is beyond the scope of this work.

10.2. Fourier Slice Theorem and corollaries. The Fourier Slice Theorem
in this case is a direct consequence of its version for X. Notice that even for
f(t,2) = fo(z) € C3°(R™), we have f(r,€) = 216(7) fo(€), therefore f is in general
a distribution and restricting (7, ) to the plane 7+ 6 - £ = 0, needs to be justified.
We study f in the Schwartz class first.

THEOREM 10.1 (Fourier Slice Theorem). For any f € S(R™™1),
f(©) :/ e @ELf(x,0)dx, when (1,0) L, e ST,

where ¢ = (1,&).
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PrOOF. The integral on the right equals

/n/R@*Mf«O,w)+s(1,0))dsdm.

Set w = (0,x) + s(1,0) and note that w-¢ =z - & when ¢ L (1,6). Performing the
change of variables (s, ) — w, we see that the integral above equals f((). O

REMARK 10.1. Let
(10.5) mg = {(1,€); T+0-£=0}

be the light-like hyperplane normal to (1,8). One can also write

(10.6) Fleg = f(—=0-£,6) :/ e wELf(x,0)dz, VO e SmTh

In the terminology of relativity theory, vectors v = (v°, ') satisfying |vg| < [v/]
are called spacelike. The simplest example are vectors (0,v'), v' # 0. Vectors
with |vg| > |v/| are timelike; an example is (1,0) which points along the time axis.
For covectors, it is the opposite: ¢ = (7,&) is spacelike if |7| > |£]; timelike if
|7| < |&| and lighlike if we have equality. Surfaces with spacelike normals (which
are covectors) are spacelike, etc.

As a consequence of the theorem, Lf(-,6) known for some unit 6 determines f
for all ¢ = (7,&) on the lightlike plane 7 4+ ¢ - # = 0. In particular, those ¢ must
satisfy |7] < |¢], i.e., they are timelike or lightlike. It easy to see however that the

former condition describes all such vectors.

COROLLARY 10.2. If f € S(R™) and Lf = 0, then f(¢) = 0 in the cone
7| <[]

Note that we get more than formulated in the corollary — by (10.6), given
Lf, we can compute f directly by the Fourier Slice Theorem by choosing, for any
timelike ¢, a unit 6 so that (1,0) - ( = 0. Clearly, this can be done, in infinitely
many ways. We can also formulate a stability estimate in any compact subset of
the time like cone.

COROLLARY 10.3. L is injective on C§°(R™T1).

PROOF. For any f € C3°(R™1), f is real analytic. By Corollary 10.2, f =0
in an opens set; therefore, f = 0. ([

The same proof works for f € L}, (R™*1), for example.

Notice that we used analytic continuation in the proof. This, and the fact that
we could not constructively (and therefore, stably) reconstruct f in the spacelike
cone (of covectors || > [€|) is a strong indication, but not a proof yet, that there is
no stability in the sense of Chapter III. We will see later that this is true, in fact.

COROLLARY 10.4. L is not injective on S(R™1).

PROOF. Let ¢ € Cg°(R™1) supported in the cone |7| > ¢ and set f =) € S.
Then f(—60-&,&) = 0 for any unit § and any & because |7| = |0-&| < |£|. By (10.6),
Lf=0. O

doit
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This uniqueness result was easy to get but the compact support assumption
with respect to the ¢ variable is too restrictive for applications, since it excludes even
time-independent functions f(x). A stronger result can be obtained by assuming a
uniformly compact support in the z variable only and exploit the partial analyticity
of f in the £ variable.

THEOREM 10.5. Let f € S(R™) and let f(t,x) = 0 for |x| > R for some R > 0.
Then Lf(-,0) =0 for 0 in some open set implies f = 0.

PROOF. The idea of the proof is to use the analyticity of the partial Fourier
transform of f with respect to x. For any fixed 7 (and we can fix 7 because
f € S(R™1) as well),

(10.7) f(r,€) = / e T8 £(¢ p) dt da = / e (7, ) da,

where

f(r,z) = / e T f(t,2) dt
is the partial Fourier transform of f with respect to the ¢t variable. It is clear from
(10.7) that f extends to an analytic function of ¢ for any fixed 7. Assume first
that Lf = 0 for all (z,6); then f(r,&) = 0 for |¢| > |r| by Corollary 10.2. By the
analyticity, f = 0 for that fixed 7 and all £&. We have the same conclusion for any
T, therefore f = 0.

Now, let Lf = 0 for § € U, where U is an open subset of S"~!. Then

(10.8) fr9=0 inV:= ] m,

ocU
see (10.5). Tt follows from the lemma below (and it is intuitively clear) that for any
70, the set W :=V N {r =7} N {|7| < ||} has a non-empty interior in {r = 79}.
Then by Corollary 10.2 and analytic continuation, f =0 for 7 = 7°, and since 7°
is arbitrary, f = 0. (I

LEMMA 10.6. For every open subset U C S™1, the set

VALl = €]}
is open in R™TL,
In particular, for every 8y € U, the set

s \ {(_)‘7)‘90” AE R}
belongs to the interior of V.

PrOOF. Note first that V' does not intersect the space-like cone |7| > |¢]. Take
(79,€%) with |79 < |€°] so that (79, £°) € my, with some 6y € U. We want to solve
F:=7+60-£ =0 for § close to fy, and we want the solution to be close to (79, £P).
Take local coordinates § = (p',...,p" 1) on the unit sphere and compute the
differential of F' with respect to p. If that differential at the point py corresponding
to 6y is not zero, a solution (not necessarily unique) exists because we can apply the
implicit function theorem when only one of the p; varies (the one that contributes
a non-zero derivative), and the rest fixed. Since d,0(p) spans all vectors tangent to
6, we get that d,F(py) # 0 if and only if €Y is not collinear with 6o, i.e., ¥ = Ay
for some A € R does not hold. If it does, then 70 = —\. We therefore get that
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as along as 790y + £° # 0, a solution exists. Since |79| < |€°] by assumption, that
condition is satisfied. (]

10.3. Extending L to a larger class of functions or distributions. To
compute the dual L’ of L in this parameterization, write

<Lf,¢>=Ln_1/nAf(s,x+se)¢(x,e) dsdz df

=/ / /f(579€)¢($—59,6)dsdxd0.
Sn—1 n JR
Therefore,

(10.9) L'é(t,z) = /Si Gz —10,0)ds, ¢ € C°(R™ x S"1).

The operator L’ does not preserve compactness of the support, therefore we cannot
define L on D'(R™) by duality, but this is to be expected. On the other hand, L
can be defined by duality on compactly supported distributions & (R"*1) but even
that is too restrictive for some applications because it excludes time-independent
distributions or even time-independent C§° functions of x.

If f is continuous, Lf is well defined at least when any light ray has a compact
intersection with supp f. We will extend this requirement a bit. We call y €
C>(R™Y) properly supported, if for each compact set K; C R™ x S"~ ! (i.e., for
any compact set Kj of light rays), there exists a compact set K3 C R so that
s — x(s,x + s0) is supported in Ko when (z,0) € K;. One such example is
an s-independent C§° function of x. Viewing x as an operator of multiplication,
then (Lx)" = xL’ does preserve compactness of the supports, and we can therefore
define Ly on D'(R™), see Section A.4. Also, xL' : § — § continuously, see (10.9);
therefore, Ly extends to a continuous operator Ly : S’'(R"*!) — S'(R™ x S"~1)
as well. This allows us to define L on &'(R"™"!) distributions vanishing for |z| > R
for some R > 0.

We will show next that for any f as above, WF(f) C {(t,z,7,0)}. Indeed, let
¢ € C§° be such that ¢(7°,£%) # 0 for some (7°,£0). Then f’l(qbf) =dxf (we
can use F ! instead of F to test for wave front, as well) decays rapidly in any
direction different from (+1,0). This proves the claim. By ...., the trace of f on
any hyperplane 7 + 6 - £ = 0 is well defined then. Moreover, the trace depends
smoothly on 6.

If we parameterize L as in (10.1), we can check directly that L commutes with
the convolution with respect to the (¢,x) variable, i.e., Lo * f = ¢ x Lf for any
¢ € Cy°.

Next theorem presents a more general uniqueness result; it does not require
compact support with respect to t.

THEOREM 10.7. Let Lf(-,0) =0 for f € S'(R™*) vanishing for some |z| > R
and all unit @ in some open set. Then f = 0.

PROOF. Take ¢ € C§° supported in |z| + |t| < 1. Then Lo f = 0 as well with
¢ * f smooth and supported in B(0, R + 1). Therefore, without loss of generality,
we can assume that f is smooth as well. Note that f might still be singular.

The idea of the proof is to generalize the argument we used for the proof of
Theorem 10.5. Since f (1,€) is a distribution now, we cannot fix 7 now and exploit
the analyticity with respect to &.

ref?
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For any f € § and any ¢ € S, by the Fourier Slice Theorem,
(10.10) / /f —0-£,8)¢ £9d§d0—/ /foace (x,0)dxzdeé,
Sn— 1

where y € C'*° is as above and xf = f. Above, qu is the partial Fourier transform
with respect to the x variable.

Let (1,p) € RxR"™2 be a local parameterization of S"~! near some  so that
—6-£& =7 and p is independent of £. Then the left-hand side of (10.10) becomes

(10.11) ][ it emaremaragan

where J # 0 is the corresponding Jacobian, where c;NS(T,g,p) is equal to ¢(&,0) in
the new variables.

Let U be a neighborhood of some 6. By Lemma 10.6, for any 7, we can find
€9 so that (79, £0) belongs to the interior of V' defined in (10.8), i.e., there are open
set W1 2 79 W5 2 €0 so that Wy x Wy C V. Let supp¢ C U x Ws. By shrinking
U and Wy if necessary, we can guarantee that 7 € Wy on supp qg Since (10.11)
equals the right-hand side of (10.10) for every f € S, we can extend this equality by
continuity to every f € §’. Let now f be as in the theorem: so that Lf(6,-) = 0 for
0 € U. Then the integral in (10.11) vanishes for every ¢ with support close enough

0 (79,9, py), where py corresponds to 6. This means that f = 0 near (79, &).

On the other hand, the function & — (f(-,€),¢) is analytic for every ¢ €
C§°(R). Choose ¢ supported in Wa. Then (f(, £),¢) = 0, which proves that f=0
on Wy x R™. Since 7y can ne arbitrary, and the only requirement for W5 3 7 is to
be small enough, we get f = 0. (I

10.4. The Schwartz kernel of L'L. By (10.3) and (?7),

L’Lf(t,x):/STHI/Rf(s,x—tG—&—sH)dsdH

:/SM (/S<t+/s>t) F(s,z — 10 + s60) ds do.

For the first integral, we get

0
/ f(s,x —th + s0)dsdf = / ft+o,24+00)dodb
sn=1 Js<t —oo

Sn—1

:/ / ft—o,24+06)dodl
(10.12) S
= [ gl )l ds
RTL

_ f(t—|x—m’\,x') da’

Rn | — 2|1

For the second one, we have

/ fsa:—t@—l—s@)dsd@—/ / ft+o,2+4+00)dodb
Sn-1Js>t Sn-1.J0

t _ ! /
[ et
Rr | — a’|71

We therefore get the following.
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THEOREM 10.8.
(a) We have

flt =z —a'l,a') + f(E+ [z — 2], 2

)
Rn | — 2|71 dz

L'Lf(t,z) =

(b) For the Schwartz kernel N(t,z;t',z') we have

ot—t — |z —da'|, ")+ ot —t' + |z —2|,2")
‘Cﬂ 7l.l|n71

N(t,x;t', ") =

(¢) L'L is a convolution:

O(t — |z]) +6(t + |x])
.

L'Lf=Nxf, N(tz)=

REMARK 10.2. Since t=|z| is not a smooth function of (¢, z), the expression for
N requires some clarification. We define §(¢ F |z|) / |z|*~! as the linear functionals

O(£lz], z)

tac — Iw\"l

which are clearly distributions in D'(R'*"). Then for ¢ € C§°((R x R™)?), by
definition,

N« fih) = (N f,pt', 2"yt +t,2" + x)),
where p € C§°(R x R™) equals 1 near supp f. The last two identities prove (b) and
(c).

Another way to justify d(¢tF|z|) is to notice that it is a well defined distribution
away from the origin because the functions ¢ F|z| are smooth near ¢ |z| = 0. Then
we define §(t F |z|) on the whole R!™" as the unique homogeneous extension of
the same distribution from R\ 0 to R*", see section A.2.2. We define N in a
similar way. We used essentially the fact that their orders of homogeneity, —1 and
—n respectively, was greater than —n — 1.

This reveals an interesting relationship with the wave operator: for n = 3, if
we replace |z|"~! by || (i.e., if you apply the ¥DO |D| to N), we get a sum of the
classical incoming and outgoing fundamental solutions of the wave operator.

Since L'L is a convolution, it must be a Fourier multiplier with the Fourier
transform of A/ that we compute below. This leads to the following.

THEOREM 10.9.

2 _ 2 TLT_S
A i P |£n72)+ Ff, VfeS®R.

This confirms what we noticed earlier: the Fourier transform f can be con-
structed stably in the timelike cone; and the estimate deteriorates at its boundary:
the lightlike cone. No stable inversion can be done in the space-like cone.

L'Lf = 2n|S" 2| F~

PRrROOF. Notice first that A/ is a (tempered) distribution homogeneous of or-
der —n. Therefore, it has a Fourier transform N, homogeneous of order —1, see
section A.2.2.

ref Friedlander-Joshi
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To compute the Fourier transform of N, we write formally
- - ot — ot
N(7,€) = /e’l(”“'@ (t=f2D) + 0+ [2)) 4y g,

|$‘"_1

1T|1:\ + el‘r\z|

|x|n T pln—1

— / / —1r€ 3 ( —irr ei'rr) dr do
1 / / —170 5 —17'7' 17'7) dr de
2 Sn—1

7r/sn71(5(7+9'§)+5(779~§))d0
:27r/sn715(7+0~§)d0

The integrals above are in distribution sense and can be justified by computing the
action of A/ on a test function as we do below. We used also the fact that the
Fourier transform of 1 is 27wd. To complete the computation, we can apply formally
Lemma 10.10 to ¢ = 6.

The formal computation above can be justified in the following way. For ¢ €
CP (R x R™), we write ¢o(7) := (H(7,&) + ¢(—7,£))/2. The kernel N is an even

function of ¢ (and z); therefore, N is an even distribution as well. To compute the

T

latter, it is enough to compute first x A for every even function y(t) € C°(R).
The reason for choosing such a function is to make sure that all integrals below are
absolutely convergent. Fix such a function and write

(N, 6) = (N, 6)
-/ (o Peh) ol @)
R

n ‘x|n71

_ /R LX) (0r,76) + b(—r,r6) ) drag
(10.13) :/Rxsn 1x(r)¢3(r,re) dr df

/ / e T+ g €) dr dE dr db
RxSn—1 R1+"

- ~/9H—1 ~/Rl+" X(T + 5 : 9)¢(77 f) dr df dé

- / U LT+ €-0)d0| 6(r,€) dr de.
Rl+n gn—1
To obtain the fourth line, we performed the change (r,6) — (—r, —6). In particular,
W= [ drreoa eto

This is an even function of 7 because x is even and we can change 8 to —8 in the
integral. By Lemma 10.10, for every even y € C§°(R),
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where

(10.15) F(r,€) = |S"2|(€]2 = r2)}7 €2, € £0.

When n = 2, we have to exclude || = |7| above, as well. Note that the left-hand
side of (10.14) is smooth, in fact real analytic functions of (7,&) but F' is singular.

Since F' is homogeneous of order —1 and locally integrable, it defines a distri-
bution in R'*™. It has the unique homogeneous of order —1 extension of F as a
distribution, see section A.2.2. That extension is given by the same formula, with

the exclusion of the singular set £ =0, |¢] = |7|.
We need to show that N = 27F. Take x = ¢.(z) = ¢(ex), 0 < € — 0, where
P € C§°(R) is even with 2m(0) = 1. Then t.(7) = e "(7/e) is a Friedrichs

mollifier and
<1/15N o) = /RIM/ 1/15 T —1YF(r,&)p(r,€) dr’ dr d€

As e — 0, the right-hand side converges to (F, ¢) because the convolution of ¢(-, &)
with the molllifier 1. converges to ¢(-,§) uniformly in £. The left-hand side equals
(N, 1b-¢) which is easily seen to converge to (2m) LN, ¢) = (27) 1N, ¢). O

We used the following lemma in the proof.

LEMMA 10.10. For every v € S(R'™),
(10.16) B0~ €)dh = |52 ||¢[ / P()(EP — )T ds, €40,
Sn—l R

where x4 = x if ¥ > 0 and x4 = 0 if x < 0, and |S"?| is the area of S"72 if
n > 3; equal to 2 when n = 2.

PROOF. The result depends on || only, so we can take £ = [£](0,...,0,1); and
then 0 - £ = |£|6,,. Note that the result is a smooth function of £, so it is enough to
compute it for £ # 0 and then we can take the limit £ — 0.

Let n > 2 first. We have, with 1, being the even part of v,

wo- a0 = [ wlelo.)a0

=2 <(1£10™) do
S ueliEe)
(10.17) :2/Bn (|§|\/1*\ 0| ) W
r 2drd9
—2/R+XS” belllVI—
olan—2 — r"T 2d7"
=257 [ w1V >\ﬁ

where B"~! is the unit ball in R”~!. To pass from the 6 to the §'-integral above,

we parameterized the upper hemisphere, and the lower one, by their projections

0 on the ball B"~! which is given by the intersection if 7 = 0 with S"~!. Then
1 —|¢’|2 and we pass to polar coordinates in B"~!.

Sn—1
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We now make the change of coordinates |[£|v/1 — 72 = s in (10.17) to get

€l .
B0 €)do = 2|57 / Ge() €€ — 52) 7 ds

Sn—1
& 3
(10.18) - |Sn—2| ¢(S)|§‘2—n(|§|2 _ 82)% ds
—l¢l

n—3

— |52 g2 / P(s)(€ - )T ds,
R

This completes the proof of the lemma.
For n = 2, we write § = (cos «, sin ). Then

- €l 1
, 0-€)dg = = 1€1/I = s2/[E)
(1019) | %(6-)d 2/0 W(|¢]cos ) da 2/E aviamer

which proves the lemma for n = 2, as well.
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11. Remarks

Besides the classical Helgason book [17], the Euclidean X-ray and Radon trans-
forms are analyzed also in [25] and [32]. Our goal in this chapter was not so much
to present a full account of the Euclidean theory but to present it in a way that
would make the microlocal analysis of non-Euclidean geometries more clear. We
follow mainly [17] but we included stability estimates (some of them also found in
[25]) and the analysis of the X-ray transform on tensor fields, some of which can
be found in [32]. The book [32] has further details on the tensor transform but we
include some theorems not present there.

We restricted ourselves to proving many properties of X and R on C§° func-
tions. Since this space is dense in our spaces of interest, this is not a restriction.

Writing f = C,|D|*R/|D,y|""'"*Rf, one can “interpolate” between Theo-
rem 2.6 and Theorem 2.7, and a similar remark applies to the X-ray transform,
see Theorem 2.3 and Theorem 2.4. We refer to [25] for details.

Doppler and tensor transform: [13, 28, 30, 31, 45|

The X-ray transform of functions, differential fields or forms, and tensor fields
of order 2 can be combined into one case as X-ray transform of tensor fields of
any order. Some of the explicit formulas generalize in an obvious way, like (8.16),
(8.18), (8.19). For more details, we refer to [32]

Support Theorem: [39]

Light Ray transform: [35], also Rammé&Sjéstrand.

Stability for incomplete data (maybe those remarks should be in next chapter):
(11, 2].






CHAPTER III

Stability of Linear Inverse Problems

1. Sharp stability

Consider the following abstract linear “inverse problem”. Let
(1.1) A Bl — Bg

be a bounded linear map between two Banach spaces, B; and Bs. The inverse
problem consists of finding f given the “measurement” Af. Examples are find f
given X f or Rf with the spaces as in Theorem I1.3.1; or A = X X,,,, where X,, is
the weighted X-ray transform, see Chapter IV, and By = L?(Q2) and By = H* ()
with Q1 © Q.

The first question is about uniqueness. Does Af determine f uniquely? Since
A is a linear operator, uniqueness is equivalent to injectivity.

In practical terms, if f is the object we want to recover, then Af is the “data”
or the “measurement(s)”. Assume that we have already answered the uniqueness
question. In practice, we can never measure Af perfectly, or at all infinitely many
points (typically, Af is a function of several continuous variables). So we always
have some errors (noise) in the data. A fundamental question to ask is the stability
question: do “small” errors in the data lead to “small ”errors in f? To make this
question more precise we need to clarify how to measure the errors; what we mean
by “small”, and even what we mean by the recovered f with perturbed data. The
latter is related to knowing the range of A; since the equation Af. = d + ¢, where
d is the data, and ¢ is the perturbation may not be solvable even when d is an
actual measurement, i.e., when d = Af with some f. In practice, even when d + ¢
is not in the range of A, often a certain “solution” is still possible to compute by
minimizing the error Af. — (d + €) in one way or another. We are not discussing
reconstructions or approximate reconstructions now; we want to understand if the
problem itself is stable or not. Assume that we are lucky enough to have perturbed
data in the range of A; then we know that Af. = d + € is uniquely solvable. Is f.
close to f? This is equivalent to asking if f — f. is small if A(f — f.) is small; i.e.,
if h is small if Ah is small for an arbitrary h.

If it is (in a certain sense), we call the problem stable. If not, we call it unstable.
If it is unstable, no stable recovery is possible regardless of how clever we are since
even if the perturbed data is in the range of A, there is no stability. If it is stable,
we can hope for stable recovery. One abstract way is to project the data onto the
range of A (thus introducing a small error) and then solve a well posed problem.
How do we actually do the latter, is another question.

There are several ways we can measure “smallness”. Since A : By — Bs, we
can use the B; norm to measure the errors in the reconstruction of the object we
want to recover; and the the By norm to measure the errors in the data. A natural
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way to define sharp stability then is to require
(1.2) Iflls, < CllAfllB,, VS € B

for some constant C' > 0. A priori, we could have asked for an expression of the
kind ¢(||Af||s,) on the right with some ¢(t) — 0 as ¢ N\, 0 but since A is linear,
the natural choice is a linear function. We call the estimate (1.2) a sharp stability
estimate. Together with the assumed continuity of (1.1), it implies trivially

(1.3) £l /C < |[AfllB, < Cll S5

with a possibly different constant C' > 0.
The “natural” Banach spaces in (1.1) are not always obvious. For any two
other Banach spaces B} C By, B5 D Ba,

(1.4) [Afls, < Cliflis;

but then (1.3) will fail in general. Therefore, the notion of stability depends on the
choice of the spaces.
In the examples above, “stable” means that there is sharp stability.

EXAMPLE 1.1.

(a) The Fourier transform F : L?(R™) — L?(R™) is trivially stable because it
is unitary after rescaling.

(b) Let P = (—A +1)~!, which can be defined through the Fourier transform
on the Schwartz class distributions. Clearly, P : L?(R") — L?(R") is bounded and
injective. It is not stable however in those spaces! Note that the range Ran P of P
is dense but not closed. On the other hand, we can redefine P as P : L(R") —
H?(R™). Then it is bounded and stable.

(¢) The X-ray transform

X : H3(Q) — HT/2(%)

is stable for any s = 0,1,..., see Theorem I1.3.1, where 2 is a fixed bounded
domain. If we view X as the operator X : L?(Q) — L?(X), for example, then X is
bounded but there is no (sharp) stability. The only reason for that would be the
unnatural choice of the norms. On the other hand, in applications, measuring X f
in H'/? may mean applying a half derivative to the actual measurements X f, that
may naturally belong to L?(X) of even L>°(3). Then the problem of inverting X
is unstable with a loss of 1/2 derivative in the former case.
(d) For any bounded domain Q; 3 2, the normal operator

X'X : H3(Q) — HTV2(Q)

is stable for any s = 0,1,..., see Theorem I1.3.3.
(e) A classical example of a unstable transform is the convolution with a smooth
function. Let ¢ € S(R™). Then the operator

Of=¢xf
is unstable in L2(R") (and in any “reasonable” space). Assume for simplicity that
¢ has no zeros. Then ® has a left inverse (a deconvolution operator)

> g =F 1o Fyg

which is unbounded, with domain {g| ¢~'Fg € L?}. Since ¢ decreases rapidly at
infinity, the domain consists of g with rapidly decaying Fourier transform, as well.
Clearly, ® ! is unbounded, and it will remain so in any pair of Sobolev spaces. Then
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® is injective but the estimate || f||gs: < C||¢ * f||g== fails (for all f) regardless of
the choice of s1, s3.

In the literature, it is the deconvolution operator ®~! which is called unstable,
not the convolution one.

If A is injective, as we assumed, then there is a well-defined left inverse B :
Ran A — B; so that BA = Id. Note that Ran A is a Banach space itself if and
only if it is closed, which is not a priori guaranteed, see Example 1.1(b). Also, B
does not need to be a right inverse since Ran A might be smaller than By even if
we close the former space.

THEOREM 1.1. The following statements are equivalent:
(a) (1.2) holds;

(b) A is injective and Ran A is closed in Ba;

(c) A has a bounded left inverse B : Ran A — By.

PROOF. Clearly, (c¢) implies (a) by writing f = BAf for any f.

Assume (b). Then there is a well-defined left inverse B : Ran A — By. Since
Ran A is a Banach space itself, by the closedness of Ran A; the operator B is
actually a bijection between two Banach spaces. By the open mapping theorem, B
is bounded, which proves (c).

It remains to show that (a) implies (b). Injectivity follows trivially. For the
closedness of Ran A, choose f, so that Af, — g. Then Af, is a Cauchy sequence,
and so is f,, by (1.2). Therefore, f,, — f for some f; and then Af, — Af; so
g=Af € Ran A. O

We may think of B above as the reconstruction operator. Then sharp stability
means existence of a bounded reconstruction operator.
A classical example of operators which do not have closed ranges is given below.

EXAMPLE 1.2 (Smoothing operators are unstable). Let £ be a bounded domain
in R™ with a smooth boundary (or a compact manifold). Let A : H51(Q) — H*2(Q)
be bounded and injective. Let Ran A € H*®2(Q) with s, > so, i.e., A is smoothing
(of degree s’ — s2). For the purpose of this example, it is enough to assume that
all Sobolev exponents are non-negative integers. Then A is unstable. To prove the
latter, notice first that A is compact by the Rellich compactness criterion. Assume
that A is stable. Then BA = Id on H*'(2) with some bounded B : H*2(Q2) —
H®'(Q). So we get that identity is a compact operator which is not true. The
convolution example above belongs to this class.

In particular, operators with range included in C'* are unstable regardless
of the choice of the Sobolev exponents s; and ss. In Section 5 we formulate a
microlocal analog of this.

2. Fredholm properties

Injectivity can be tricky to prove and fails sometimes. On the other hand,
microlocal methods provide powerful tools for proving that certain class of operators
have left “pseudo-inverses”, i.e., bounded operators B so that BA = Id + K, where
K is compact. We may think of this as stability even when injectivity may fail. In
that case, Ker A is finitely dimensional only; and on its orthogonal complement, we
have actual (sharp) stability.
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We start with the following lemma, which we will use frequently, see also [41,
Proposition V.3.1].

LEMMA 2.1. Let By, By, By be Banach spaces, let A : By — By be a closed
linear operator with domain D(A), and K : By — Bs be a compact linear operator.
Let

(2.1) 1flls, < C([Aflls, + 1K fll5;), VS € D(A).
Assume that A is injective. Then
(2.2) £, < C'IlAflls,, VI € D(A).

with a possibly different constant C'.

PROOF. We show first that one can assume that A is bounded. Indeed, let
| - lpa) denote the graph norm. Then (3.12) implies

[fllpeay < C(IAflls, + 1K fllss) . Vf € D(A).

Assuming the lemma for bounded operators, we get | f||pa)y < C||Af]|5, and this
implies the estimate we want to prove.

For bounded A, assume the opposite. Then there exists a sequence f, in B
with || fnlls, = 1 and Af, — 0 in Bs. Since K : By — Bs is compact, there
exists a subsequence, that we will still denote by f,, such that K f,, converges in
Bs, therefore is a Cauchy sequence in Bs. Applying (3.12) to f, — fim, we get
that ||fn — fmllz, — 0, as n — oo, m — oo, i.e., f is a Cauchy sequence in B;.
Therefore, there exists f € By such that f, — f and we must have || f||g, = 1. Then
Af, — Af = 0. This contradicts the injectivity of A thus proving the lemma. [

This is a very helpful result for proving stability, but we want to point out a
weakness. While the constant in estimates of the kind (2.1) can be controlled in
principle because a typical proof is a microlocal parametrix construction; we have
no control over the constant C in (2.2) — how it depends on the constant in (2.1).

DEFINITION 2.2. The bounded operator A : By — Bs is called upper semi-
Fredholm, if Ker A is finite dimensional and Ran A is closed. It is called lower
semi-Fredholm, if Coker A is finite dimensional and Ran A is closed. It is called
Fredholm if it is both upper and lower semi-Fredholm.

THEOREM 2.3. Let A : H1 — Ho be a bounded operator between two Hilbert
spaces. Then the following statements are equivalent:

(a) A is upper semi-Fredholm;

(b) Ker A is finitely dimensional and there exists a bounded operator B : Ran A
— Hi so that BA=1d on (Ker A)*.

(c¢) There exists a bounded operator B : Ran A — H; so that BA=1d+ K on
H1 with K compact.

(d) There is C > 0 so that

(2.3) 1fll2, < CllAS 3, + CIE fllae,, VS €M
with K compact.

PROOF. (a) <>(b): Apply Theorem 1.1 to the operator A : (Ker A)* — Ran A.
(a) =(d): By the same argument,

1117, < ClAfll3,  VF € (Ker A)*.
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Let II be the orthogonal projection on the finitely dimensional Ker A. Then AIl = 0
and IT is compact. Write f = IIf + (Id — IT) f and apply the estimate above to
(Id—-T1I)f.

(b)=(c): With B as in (b), we have BA(Id — II) = Id — II, therefore, BA =
Id — II.

(¢)=(d): obvious.

(d)=(a): Any f € Ker A satisfies

[fll#, < CUE Fli3 -

Choose an infinite orthonormal sequence f, in Ker A. Then f,, — 0 weakly; there-
fore Kf, — 0. On the other hand, 1 < C| K f,||#,, which is a contradiction.
Therefore, Ker A is finitely dimensional.

We prove now that Ran A is closed. Let f,, be such that Af,, — g. Let f] be the
projection of f,, onto (Ker A)*. Then Af, = Af! — g. Since A : (Ker A)t — H;
is injective, by Lemma 2.1, || f;, — fil| < C||Af, — Af.|; therefore, f; is a Cauchy
sequence. Then f! — f’ for some f’; therefore, Af — Af’; hence g = Af] €
Ran A. ([l

3. Non-sharp stability estimates

Let A : By — Bs, be as above and let Bf D By, B, C By with at least one of
those inclusions strict. If (1.2) fails (or if we cannot prove it) but we can prove the
weaker estimate

1flls; < ClIAf sy,

we say that we have a non-sharp stability estimate.

EXAMPLE 3.1. Let A = d/dz", By = C}(Q), Bo = C(R™), n > 2, where Q is a
bounded domain. Then A is bounded and the spaces above are “natural”, i.e., we
cannot improve one of them by keeping the other one if we want to stay in the C*
class of spaces. The the equation Af = g can be solved by integration along lines
parallel to the x™-axis with initial condition 0 either for 2™ < 0 or for z™ > 0.
We see here that the left inverse is not unique — we can even change the direction
of the integration from line to line. Clearly, A is injective but the sharp stability
estimate

[fller < Cliferlle

fails because the right-hand side cannot control the other partial derivatives. On
the other hand, the weaker estimate

Iflle < Cllfarlle

holds (we used C' above to denote both a constant and the space of continuous func-
tions), which is actually the Poincaré inequality. There is a “loss of one derivative”
in that estimate.

Notice that this non-sharp estimate cannot be made sharp only if we insist on
working in C* spaces. If we replace the B; norm by the graph one, we get sharp
stability. On the other hand, the graph norm depends on the operator A which in
many applications is not very explicit.

EXAMPLE 3.2. Let ®f(z) = ¢  f, where ¢(z) = e~1*I"/2. Then ® is unstable
in any pair of Sobolev spaces, as we saw before. Since ¢(£) = Co(£), we may define
the space H* through the norm || f|| + = ||e|5|2/2f(§)||. Then ® : H* — L2 is stable;
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in fact, it is unitary, up to rescaling. On the other hand, functions in H* must be
analytic, which makes that space “too small” and unsuitable for applications.

Other examples of non-sharp stability estimates can be constructed by choosing
A to be a hypoelliptic but not elliptic ¥DO.

4. Conditional Stability

In some cases, we can only show that f is small if Af is small and f is a priori
bounded in a smaller space (and has to belong there, of course). Let A : By — Bs as
before, and let B C B;. Then conditional stability would mean that || f||z, — 0 as
|Aflls, — 0 and || f||s; < M with some fixed constant M. The rate of convergence
of ||Af]|5, is an important element of the stability. The extra boundedness condition
restricts f to a non-linear subset (a ball), and we cannot have a linear rate of
convergence anymore. A fractional law is considered still “stable”; i.e., one way to
formulate conditional stability is to require the inequality

(4.1) 1£lls, < CllAf,,  when [|flls < M

for some M > 0 and p € (0,1). A quick look at the estimates above shows that they
do not scale well, which is unnatural for a linear problem. To write the estimates in
a different way, given f € B, set g = M f/|f||5;. Then the boundedness condition
of (4.1) is satisfied for g and after some trivial simplification we get

(4.2) 115, < C'IIAFI,If s, " VF € By

Conversely, from (4.2) we can easily get (4.1) with some C and M (actually, for
every M there is C = C(M)).

We call estimates of the kind (4.2) Hélder conditional stability estimates. They
can also be non-sharp conditional stability estimates if || - ||, is replaced there by
a weaker norm; and/or || - |5, is replaced by a stronger one. An example of such
estimate is the estimate obtained by Sharafutdinov in tensor tomography using the
energy method [32].

5. Microlocal Stability. Visible and Invisible singularities

In many cases, stability is lost. A typical example is the X-ray transform with
a limited angle. On the other hand, using regularization techniques, one can still
construct an “aproximate” image, showing some of the “features” of the original
— like some of the jumps across somooth boundaries, for example. To understand
this, we need to start thinking in microlocal terms.

Consider the following example. Let P be a ¥YDO of order m elliptic in some
open conic set I'; and smoothing (i.e., of order —c0) in another open conic set I'y,
with I';y N Ty = (). What can we construct by knowing Pf = g? For any x € ¥°
with essential support in 'y, we can apply a parametrix @ in I'; to get

(5.1) x(z, D) f = Qg+ Rf,

where @ is a YDO of order —m and R is smoothing. This recovers WF(f) in any
compact subset there in a direct way. On the other hand, WF(f) N Ty does not
affect WF(Pf) at all. We can call the essential support of P the set of visible
singularities; and the set where P is of order —oco invisible ones. This definition
is open to some interpretation — we may want to include in the set of the visible
singularities sets, where P drops its order, for example belongs to ™% k > 0, and
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is elliptic as such operator there. We call this stability with a loss of k derivatives.
Or, we may declare those singularities as the invisible ones.
Relation (5.1) implies the following estimate

(5.2) Ix(z, D) fllas < CsllPfllgs—m + Coslfllm
for any s and [. Assume now that P is not necessarily a YDO but we know that
(5.3) P:H°— H°™™ is bounded

for some s and m. One possible definition of visible singularities then is to declare
them to be the largest open conic set I'y with the property that (5.1) holds with
Q: H® — H*T™ for any x € WY with essential support. In that case, we also say
that the singularities in I'; are stably recoverable. Note that we do not really mean
only that if f had singularities there, we would be able to recover them stably —
we mean the estimate (5.2) which makes sense for smooth f as well, for example for
sequencies of f with oscillations of increasing frequencies. The set of the invisible
singularities then is the largest open I'; with the property that WF(f) C 'y implies
Pf e C*. Then (5.2) is not possible with the essential support of x in I'; regardless
of m, s and [. Notice that I'y UT's does not need to cover the whole cotangent bundle
(minus the zero section), even after closure. For example, we may have an open set
with a loss of finitely many derivatives.

In particular, if P € U™ is an elliptic, then we can choose x = 1 in (5.2).

As a consequence of Theorem 2.3 and the ellipticity of P, we get the following.

THEOREM 5.1. -
(a) Let P € U™(R™), with P elliptic in Q). Then for any s, | < s we have

(5.4) [fllze < CsllPfllgs=m + Cusll fll
for any f € H5(). B

(b) The kernel of P on the space of the distributions with support in Q is finitely
dimensional and consists of C§° functions.

(c) Assume in addition that A is injective on some closed subspace L of H®.
Then

(5.5) Ifllas < CsllPfllgem, Vfe€L.
with a possibly different constant Cs > 0.

PROOF. Estimate (5.4) follows from (5.1). T prove (b), notice first that any
f with Pf = 0 and support in Q satisfies f = QPf + Rf = Rf by (5.1) since
wa can choose Y to be dependent on z only and to be equal to one near €, and
zero outside a larger domain. The finiteness of teh kernel and part (c) follow from

Lemma 2.1. O

The X-ray and the Radon transforms we study are actually FIOs, not YDOs.
Fortunately, the normal operators X’X and R'R happen to be ¥DOs (but L'L is
not!). We can apply this theory to the normal operators. The normal operators are
of interest as well because A’ A is injective if and only if A is, see Proposition IV.5.5,
and X'X f, and R'Rf map f back to the z-space.

EXAMPLE 5.1. Let 0 < p € C™, p(§) = 1 for [¢] > 1. Then p(D) € ¥°
is elliptic. It may not have a left inverse because p may have zeros in the unit
ball — it actually can be zero in an open set. Let E : L?(Q) — L?(R") be the
extension as zero, and let R = E' : L2(R") — L?(f2) be the restriction to . Then
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Af := Rp(D)Ef is injective. Indeed, Af = 0 implies (p(D)Ef, Ef)r2®rn) = 0;
and passing to the Fourier transform we get Ff(£) = 0 for |{| > 1. Since Ef is
analytic, this implies f = 0. By Theorem 5.1, A is stable, i.e.,

I£ll < Clp(D)EF], Vf e L*(Q).

This is actually true if p = 0 in the unit ball, and p = 1 outside of it but then p
is not a symbol anymore. Then A = Id + K, where K is compact, and we need
to show that —1 is not an eigenvalue of K. We leave the details to the reader. In
particular, this shows that recovery of f in a compact set, if known outside of it, is
a stable operation; for f a priori supported in a fixed bounded set.

6. Concluding Remarks

As pointed out above, those methods can be very powerful but have a few
shortcomings.

First, we do not have control over the constant in the estimates obtained with
the use of Lemma 2.1.

Second, if we rely on microlocal arguments and ellipticity, we formally need
smooth coeflicients. For example, to apply the theory to X X,,, where X,, is the
weighted X-ray transform, we need w € C*°. In fact, symbols of finite smoothness
are sufficient because in the ellipticity argument, we only need QP = Id+ K, where
K is of order —1, hence compact when restricted to compact sets. This can be
done with symbols of finite smoothness, hence w in X,, need to be C* only with
k > 1. The required k& would be too large for what we would expect it to be
however; for example, just to prove that p(x, D) is bounded in L?, we need n + 1
derivatives, see [19, Theorem 18.1.11']; for a(x,y, D), we need 2n + 1 [36]. On the
the hand, sometimes a reduction of the smoothness requirements is possible, see
Corollary IV.5.8.

Third (related to our first point), the constants in the estimates can make a big
difference. Even though convolution is unstable, if we convolute with a very well
concentrated ¢ € S, the deconvolution can be done and it is practically done all the
time with a small error because the instability manifests itself for functions f with f
decaying extremely slow at infinity (looking almost as Dirac 4, or highly oscillating,
for example), and in practical applications, the functions of interest have some limit
of how high frequency content they can have. Similarly, a stable operator with a
very large sharp constant C' in (1.2) may behave as unstable for practical purposes.
Indeed, (1.2) is a bound on the asymptotic behavior of || f|| as ||[Af|| — 0 and if
Af is “small”, for a large C, ||f|| would not be “so small”. In Example 5.1, the
constant C' would grow with R if we want to recover f for |¢] < R; and for large R,
the problem will be unstable for practical purposes because C' > 1.



CHAPTER IV

The Weighted Euclidean X-ray transform

1. Introduction

The object of study in this chapter is the weighted X-ray transform

(1.1) Xuf(x,0)= / w(x +10,0)f(x +t0)dt, (v,0) € R" x S 1,
R

compare with (IT.1.1). Here w = w(x, ) is a smooth weight depending in general
not only on the point x but also on the direction §. We can parametrize X,, by
(2,0) € ¥ as in Section II.1.3. In general, X, f is not an even function of 6 any
more. One can think of w as a function of points = and lines ¢ restricted to the
sumbanifold x € /.

There are several reasons to study this transform. First, the attenuated X-ray
transform, see section I1.9, is a transform of this kind with a weight function

(1.2) w(z,0) = exp (— /0oo alz + 1) dt) :

where a(z) is the attenuation at any given z. This is a weight of a special type
with the property that 0 - V, logw = —a(z) is independent of §. In particular,

dg6 -V, logw =0,

where dy is the differential on the unit sphere; and at least locally, this characterizes
such weights uniquely. Even though there are explicit inversion formulas [...] for
X, certain properties like stability and recovery of singularities are independent
of the special nature of the weight and are better understood if we think about
the attenuated X-ray transform as a weighted transform with a positive weight. In
media with non-isotropic attenuation, i.e., when a depends on z and 6, formula
(1.2) still holds with a = a(x+16, 0) in the integral but w does not have any special
structure, at least locally.

Another important reason motivating the study of X,, is the microlocal inver-
sion of the localized X-ray transform even when w = 1. One way to model the fact
that we know X f only for an open subset of lines is to multiply X f by a smooth
cutoff function on the set of lines, i.e., a function ¢ € C5°(X). Then X f is a
weighted X-ray transform of f with a weight v constant along each line.

A third reason is to explain the main ideas used in the more general case
of geodesics or geodesic-like curves in this relatively simple case. This allows for a
simplified exposition, avoiding the Riemannian geometry terminology and notation,
which still demonstrates the power of the microlocal analysis to derive non-obvious
results.

Finally, we have more complete results for X,, than we have for the geodesic
X-ray transform.

75
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An essential difference between X (where w = 1) and X, is not just the
introduction of a non-trivial weight but that the transform loses its analyticity.
Indeed, X is related to the Euclidean metric (and so is X,,) which is analytic;
while X,, has a non-analytic weight, in general. We will see in Theorem 5.6 that
analyticity makes possible to prove support theorems while C*° regularity only does
not in general, see Theorem 5.1.

The structure of this chapter is the following. In Section 2, we derive formulas
for the Schwartz kernel of X X,, and show that the later is a ¥YDO. While we
do not have inversion formulas (and no uniqueness in general), we show that the
problem is Fredholm for non-vanishing weights with the standard consequences of
that. We also show how one can reduce the regularity requirements on the weight
using the Calderén-Zygmund theory. In Section 3, we microlocalize the problem,
i.e., we study which singularities can be recovered with partial data observations.
The answer is pretty straightforward — we just need to find out where the localized
normal operator is elliptic, and it then turns out that we can recover singularities
conormal to the lines in our (open) set, if w does not vanish there. This allows for
a microlocal treatment of the limited angle problem (for which there is uniqueness
but no stability), and of the Region of Interest (ROI) Problem in Section 4, for
which there is no uniqueness but (microlocally) there is stability.

Section 5 goes beyond the standard consequences of the microlocal ellipticity
and it is perhaps the most interesting part of this chapter. First, we recall Bo-
man’s examples of lack of support theorems or injectivity for n = 2. Next, we show
how one can use the analytic microlocal calculus in Theorem 5.10 to prove support
theorems and injectivity for analytic non-vanishing weights. This presents another
point of view about the support theorem for constant weights. To the author’s
knowledge, this point of view appeared for the first time in [8]. Based on Boman’s
2D examples, it is a bit surprising to see that in dimensions n > 3, support the-
orems and injectivity hold (for non-vanishing weights). This was proven for the
more delicate geodesic case by Uhlmann and Vasy in [44] and later generalized to
more general transforms and weights by ... Both results appeared after we started
working on this book project. The proof we present here however is much more
elementary, the stability is stronger; and we are able to do this because of the sim-
pler Euclidean geometry, of course. Note that there are no analyticity assumptions
here. Uhlmann and Vasy’s results and the related Theorem 5.11 can be consid-
ered as unique continuation (for smooth coeflicients), while support theorems for
analytic coefficients are a kind of (microlocal analytic) continuation, in some sense
similar to Holmgren’s type of theorems.

2. Basic Properties

2.1. The transpose X/. We follow II.1.3. In the same way, we define X/,
with respect to the measure do.

PROPOSITION 2.1. For any ¥ € C*® (%),
Xble) = [l 0)0(a — (- 0)0,0)do
Sn—l
PrROOF. Let ¢ € C§°(R™), ¢ € C°°(X). We have

(2.1) /Z(Xw(;ﬁ)z/}do:/E/Rw(z+80,9)¢(z—|—39)z/J(z,Q)dstZdG.
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Set x = z + s6, where z € 6. For a fixed § € S"~1, (2,5) > = is an isomorphism
with a Jacobian equal to 1. The inverse is given by

z=x—(x-0)8, s=ux-0.

We therefore have
[opdo= [ [ w@6)o(@) il - (a-6)9.6) deas.
= Snfl n
This completes the proof. O

2.2. Properties of the normal operator X X,,. We study X X,, instead
of X!, X, to allow for complex valued weights. Then X} X,, is injective if and only
X is, see Proposition 5.5 below.

2.2.1. The Schwartz kernel of the normal operator. We compute next X X,,.
Clearly, X = Xj.

PROPOSITION 2.2. For any two L weights a, b,

W(a,y, 2
Xy Xof(z) = / iymnll)f(y) dy,
where
(2.2) W(z,y,0) = b(z,0)a(y,0) + bz, —0)a(y, —0)

Proor. By Proposition 2.1,

XiXof(a) = [

b(z, 0)/a(z —(x-0)04+10,0)f(x — (z-0)0 + t0) dt dO
gn—1

:/ b(x,@)/a(z+t9,9)f(x+t0) dtdo.
Sn—l

Split the t-integral in two parts: for ¢ > 0 and for ¢t < 0, and replace t by —t in the
second one to get

XiXos@) = |

b(x,@)/ a(z +10,0)f(x + t0) dt 49
sn=1 0

(2.3) ’
* /57 b(z,9) /0 a(z —t0,0) f(x — t0) dt db.

Replace —6 by 6 in the second integral to get

X Xof(z) = /Sn_1 /Ooo[b(x,e)a(x +t0,0)
+ b(z, —0)a(z + 0, —0)] f(x + t0) dt d6.

(2.4)

Pass to polar coordinates y = x + t6, centered at x to finish the proof. ([

2.2.2. The normal operator is a WDO of order —1. To write X]X, as a YDO,
recall that if the Schwartz kernel of a linear operator is given by K(z,y,z — y),
then it is a formal ¥YDO with an amplitude given by the Fourier transform of K
w.r.t. the third variable, see Theorem 5.3. We will repeat the proof of that theorem
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in this context. Therefore, X;X, is a formal DO with amplitude that can be
computed formally as
/ eiZ'EW(%'yT:_Zl”Z') dz = / e W (2,1, 0) dr do
n z ne
(2.5) Ryxgn=t
=7 W(z,y,0)0(0-&)d6.
S'n.fl
We used here the fact that W is an even function of # and that the inverse Fourier
transform of 1 is §. We refer to Theorem B.5.3 for details. If n = 2, we get

/R e W<|y/l> dz = % (W, y, &/ 1€]) + W, y, —€-/1€]))

_ 2 L
|§|W(x,y7£ /1€D;

where ¢4 1= (—&;,&;). Since this is a homogeneous function of ¢, with an integrable
singularity that can be cut-off resulting in a smoothing operator. Therefore, we
proved the following.

(2.6)

THEOREM 2.3. Let a, b be smooth. Then X[ X, is a classical WDO of order —1
with amplitude given by (2.5), (2.6) and principal symbol

o) (X} Xa) = 27 [SH bz, 0)a(z, 0)5(0 - €) 0,

PROOF. We use (2.6) to get

op(Xp Xo) =1 W(x,y,0)5(0-&)do.
Sn—l
Use (2.2) to split the integral into two parts and make make the change of variable
0 — —0 in the second one. O

The theorem implies, in particular, that

X Xt Hpp(R") — HZPH(R™)

comp loc

is continuous for w smooth. In Corollary 2.6 below we estimate its norm in terms
of w for s = 0.

If n = 2, the integral is understood in the sense (2.6).

Theorem 2.3 implies a necessary and sufficient condition for ellipticity: X{X,
is an elliptic ¥DO of order —1 at (x,&) if and only if the average of (ab)(z, 8) over
the (n — 2)-dimensional sphere |§| = 1, 8 L £ is not zero. If n = 2, there are only
two such 6's, namely £+ /|€].

COROLLARY 2.4. Let w € C®°(R"™ x S"~1). Then X} X, is an elliptic VDO
of order —1 at (x,€) if and only if there exists a unit 0 L & so that w(x,0) # 0.
In particular, let & C R™ be open and bounded. Then XX, is an elliptic

UDO of order —1 in a neighborhood of Q if and only if
(2.7)  for every (x,€) € Q x R™\ 0 there ewists a unit § 1 & so that w(x,0) # 0.

In invariant terms, (z,€) is a covector, while (x,8) is a vector.
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EXAMPLE 2.1. Consider the X-ray transform in R? with weight w = 1. Assume
that we know X f(z,0) for 6 restricted to an open set U C S! given by 0 < a <
argf < 8 < 27, and all corresponding z € 6, knowing a priori that f is continuous
and of compact support. Is that enough to recover f7 By the Fourier Slice Theorem,
we can uniquely determine f (&) for all € so that £ -0 = 0 for some 6 as above. In
particular, if 5 —a > 7 (we have more than “half” of the angles), we can recover
f (&) for all €. Of course, then we have all the lines as well, and we have stability.

What if we knew X f(z,6) for a < argf < 8 with §—a < 77 Then we can still
recover easily f (€) for all ¢ € U™ but the latter does not cover the whole R". If @ =
0, 8 = 7/2, for example, then we only get f(¢) for arg€ in [r/2, 7] U [37/2,27]. On
the other hand, f (€) is a real analytic function, and then by analytic continuation,
we can recover f (&) even for £ in the missing sector. Therefore, the so restricted
X f recovers f uniquely. Note that we could have used the support theorem to get
the same conclusion.

The use of analytic continuation is a strong suggestion (but not a proof!) of
possible instability. As we see in the next section, in the second case, § — a < ,
stability is lost, indeed.

2.2.3. Mapping properties of the normal operator. Next proposition is part of
the the Calderén-Zygmund theory of singular operators.

PROPOSITION 2.5. Let A be the operator

28) An@ = [ vl ) )y

|z —y|nt

with a(x,y,r,0) compactly supported in x,y. Then

(a) If a € C?, then A : L?> — H' is continuous with a norm not exceeding
Cllalic2-

(b) Let a(z,y,r,0) =o' (x,y,r,0)(0). Then

[AllL2smr < Clld |2 [[¥] o esn-1y-

PRrROOF. We recall some facts about the Calderén-Zygmund theory of singular
operators, see [22]. First, if K is an integral operator with singular kernel k(z,y) =
d(x,0)r—", where 0 = (x —y)/|z — y|, r = |z — y|, and if the “characteristic” ¢ has
a mean value 0 as a function of 0, for any =z, i.e.,

/ $(2,6)d6 =0,
Sn—l

then K is a well defined operator on test functions, where the integral has to be
understood in the principle value sense. Moreover, K extends to a bounded operator
to L? with a norm not exceeding C'sup,, [|¢(z, -)|| r2(sn-1), see [22, Theorem XI1.3.1].

Also, see [22, Theorem XI.11.1], if B is an operator with a weakly singu-
lar kernel B(x,0)r~"*! then 0,B is an integral operator with singular kernel
O2[B(x,0)r~™*1] plus the operator of multiplication by — [q. . 03(2,0)df. The
former, up to a weakly singular operator, has a singular kernel of the type ¢r—",
and the integration is again understood in the principle value sense, see the next
paragraph. In particular, the zero mean value condition is automatically satisfied.

In our case, § = a depends on y and r as well. Assume first that it does not,
i.e., B is as above. The multiplication operator is easy to analyze, so we focus our

should this example be here?

We may not need (b).

not included

Proof
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attention on the kernel 9, [8(z,0)r~""1]. Extend 3 as a homogeneous function of
6 of order 0 near S”~!. Then
B(x,0) 0; 0B/00; 00; By, (x,0)
8931 rn—1 ( n) rnﬂ + ; rn—1 Ox; + rn—l

0; 08/00;
—-m g S O 5 gy +
J

Tn—l

(1 —n)0;8+ 0B/00; n Bz, (z,0)

rn rn—1
We used the fact that °;0;08/06; = 0 because /3 is homogeneous of order 0 in 6.
It is not hard to show that the “characteristic”

oz, 0) = (1 —n)b; + 0B/06;

has zero mean over 5371’ see [22, p. 243]. In this particular case (a(x,y,0) =
B(x,0), independent of y, r), statement (a) can be proven as follows. Choose a
finite atlas of charts for S™~! so that for each chart, n — 1 of the 6 coordinates
(that we keep fixed in R™) can be chosen as local coordinates. By rearranging
the z, and respectively, the 6 coordinates, in each fixed chart, we can assume that
they are 6 = (1,...,60,_1). Then 93/90, = —S.7— 3/86;. Then in (2.9), we
have derivatives of 8 w.r.t. 8’ (and x) with smooth coefficients. The contribution
of the first term then can be estimated by the Calderén-Zygmund theorem. The
second term is a kernel of a weakly singular operator. The following criterion can
be applied to it: If K has an integral kernel k(z,y) with the property

(2.9) -

(2.10) swﬂW@WSMswﬂmwméM
x Yy

then K is bounded in L? with a norm not exceeding M [41, Prop. A.5.1].
This proves (a) for « = a(x, 8). For general a(z,y,r, ), write

a(z,y,r0) = a(z,z,0,0) + ry(z,y,r,0).

The second term on the right can expressed in terms of the first derivatives of «
and contributes a weakly singular integral operator G with kernel v(z,y,r, 0)/r" 2.
Then 9,G is still a weakly singular operator with a kernel 9, (y(x,y,r,6)/r"=2),
recall that r and 6 depend on z as well. It is bounded in L? under the assumptions
of the theorem. O

In the remainder of the chapter, 2 denotes a bounded domain, and €2; denotes
another one with €; 3 Q. To apply Proposition 2.5 to X X,,, we can cut off w
smoothly to make it zero near 0€);.

COROLLARY 2.6. If w € C2, then for every f € L*(Q) we have
1 X fll 1 (20) < Cllwl|Ee || fllz2 o)

The constant C' depends on § and ©; only, and the C? norm of w above is
taken in some fixed neighborhood of the unit sphere bundle SQ. Actually, one can
take the C2 norm of w there on SQ since one can always take an extension from
SQ to SR™ which could only change the C? norm at most by a multiplication by
a fixed constant.
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2.2.4. Mapping properties of X,.
THEOREM 2.7. Let w € C*°. Then for every s > 0,

X, HV2(R™) — H ()

comp
X5 O TVA(S) — Hj (R)
are continuous.

PROOF. It is enough to prove the theorem for w supported in a small neigh-
borhood of a fixed line £yp; then we can use a partition of unity. Fix a plane S
transversal to £y and parametrize X f by initial points on S, and a corresponding
direction. Let y = (y!, ...y 1) be the coordinates on S and let (¢1,...¢" 1) be the
projection of # onto S; in other words, (y,() are local of coordinates on ¥ x S7~1.
Write X, f(y,¢) in the new coordinates. Then for any k =0,1,...,

(2.11) IXuwfl3e = > 105 Xufl? = Y (X502 X0k, frecs)l-

|| <k la| <k

Our goal next is to analyze the operator X;@Z%Xw. We will show that it is a YDO
of order 2|a| — 1. B
Assume below that supp f € Q2. We have

8ijwf:/ wyi (v +10,0) f(y + t0) dt
R

+/ w(z +16,0)) f,: (y + t0) dt.
R

This is a sum of the weighted X-ray transforms with weight w,; acting on f and
X, acting on 9f, i.e.,
8yj wa = ijf + Xw8yj f
Therefore,
X:Uaijw = X;;ij + X;Xwayj
is a ¥DO of order 0 by Theorem 2.6.
Similarly,

Ocs Xunf = / (00" /0CT Yw i (z + 16, 0) f (y + 10) dt
R
+ / (06" /¢ ywar ( + 6, 0) f (y + 16) dt
R

+ / w(z + 10, 0))t(90% /07 for (y + t6) dt.
R

The terms ¢ there is a weight factor, i.e., it can be written as a smooth function
of z := x4+ t0 and 0. Indeed, t can be uniquely determined by the condition
z —10 € S with z and 6 given, because we assumed that S is transversal to £y, and
therefore this property would be preserved if supp w is concentrated close enough
to the direction 6y corresponding to 6. Therefore, d¢; Xy, has the same structure
as Oy Xop.

We can take higher order derivatives to conclude that X{;@;%Xw is a WDO of
order 2|a| — 1, as claimed.
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Let A = (Id — A)Y/2. Write f = A~lel+1/2Ale1=1/2 f in (2.11). Then

* 02a _ —|a|+1/2 v* 92« al—1/2 2
(Xway7Cwaa f)LQ(E) - <A lad+1/ Xway@waaAl =1/ f>L2(Z) < C”fHHIOt\*l/T
Then (2.11) yields

1 Xwflle < Cllfllgga-ire,  VF € Hy 2(9).

This proves the first statement for s > —1/2 half-integer. We can prove it for every
s > —1/2 by interpolation.

To prove the second part, notice that ¢ X} is a sum of operators of the kind
X, with weights obtained from w by differentiation, composed with derivatives 857 ¢
of order |3] < |a|. Then

(fO2X50)| <C Y |(f,X5,00 ) =C > |(Xu, £.0) )|

1BI<|a 1BI<]|ex
< Cl\ X 210y ¢ Bllrr-172 < CllF N2l 12

This proves the second statement for s > 0 integer. The general statement follows
by interpolation. (I

2.2.5. Finiteness of the kernel and stability under the ellipticity condition.

THEOREM 2.8. Assume that w € C*° satisfies the ellipticity condition (2.7).
Then

(a) Ker X, N L*(Q) is a finite dimensional space consisting of CS°(R™) func-
tions.

(b) For any s > 0, there exists constants C > 0 (independent of s) and Cs so
that

(2.12) 1£llz20) < CIXo Xuwfllar @ + Csll fla-s@ny,  VF € L*(Q).

(c) If X, is injective on L*(Q), then estimate (2.12) holds without the last term
(and a possibly different C), i.e.,

(2.13) 1£llz2c) < CIUXGXwfllmny, Ve L Q).
PRrROOF. Follows directly from Theorem III.1.1. O

3. Visible and Invisible singularities. The limited angle problem

3.1. Visible and invisible singularities. Let us consider X, restricted to
a small neighborhood of the single directed line ¢y = x¢+t0y. We would like to find
out what singularities (elements of WF(f)) can be recovered from knowing X,, f
near £y. To be more precise, we want to know what part of WF(f) can be recovered
in a stable way in the sense of Section IIL.5.

As an example, consider a function f a priori supported in the unit ball in R2.
If X f(¢) =0 for all lines ¢ away from the ball B;_.(0), 0 < ¢ < 1, by the support
theorem, f = 0 outside B1_.(0). In particular, if X f = Xg for such lines, then
f = g outside B;_.(0). Therefore, we have unique “recovery” (only a uniqueness
statement, actually) there. Then any element (z,£) € WF(f) with || > 1 — ¢ is
uniquely determined by the data simply because the whole f is determined outside
Bi1_:(0). That determination is however done by the use of the support theorem
which is a kind of unique/analytic continuation. We will see below that if n = 2,
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FIGURE IV.1. Singularities that can be recovered by X,, f, w > 0,
restricted to a small neighborhood of the dotted line

only a small part of WF(f) over 1 —e¢ < |z| < 1 can be stably recovered; which
consists of (z, &) with £ (co)normal to some line of our set. Roughly speaking, those
are (z,§) with 1 —e < |z| < 1 and £ close to a radial (co)direction Az, A # 0. If
n > 3 however, the f|;~1 can be stably recovered; more precisely, f can be stably
recovered in any compact set in |z| > 1.

To get an idea of what we can expect, notice first that X,, has a Schwartz kernel
Xu(x,0) = w(x,1)de(x), where J; is the delta function in the z variable on the line
I. The kernel X, is a smooth function of £ with values in S'(R™) having wave front
set N*¢. One would intuitively expect that WF(X,, f) could be only affected by
WF(f) lying on the union of N*¢ for all line ¢ over which we integrate. Indeed, by
Theorem ..., WF(X,, f) C WF'(X,,) o WF(f). Here WF'(X,,) is the twisted wave
front set of X, as a function of (z, ). One can see that the projection of WF’(X,,)
onto T*R” \ 0, for any fixed ¢, is indeed N*¢ which confirms our expectation.

Therefore, we can only hope to recover (in a stable way) WF(f) on N*¢ for all
lines ¢ over which we integrate. Below we show that we can actually do that, if the
weight does not vanish.

By Theorem 2.3, the operator X X, is a YDO of order —1 with principal
symbol

(3.1) (XX &) =2 [ Jula,6)5(0-¢)do,
S’n*l
and a full symbol
(3.2) (X% X)) (2,9, €) = 2 / @ (z, 0)w(y, 0)5(6 - £) 0.
STL*I

If n = 2, the first formula above takes the form
o gl- 2 gl- 2
(3.3) op(Xp X ):(‘w(x,)’ —i—‘w(m,——)’ ,
] €41 €41
with &4 := (—¢£2,¢Y); and similarly for the second one.

This shows that the visible singularities, in the sense of Section III.5, are given
by

(3.4) V={(z,&) e T"R"\ 0] 30 L ¢ so that w(z,0) # 0}.
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Here, 6 is a vector, while £ is a covector, so 6 L £ actually means that £(6) = 0, i.e.,
£;67 = 0 in coordinate notation. Since this observation is based on the principal
symbol only, we need to analyze the full symbol for possible non-sharp microlocal
stability. One can compute the latter by (3.2) and (B.3.9) to see that away from

V, X’ X, is smoothing. In particular, the invisible singularities are
(3.5) U=TR"\V,

where V is considered as a conic set, and the closure is taken in that sense.

The geometric interpretation of this is simple: to be able to recover a singularity
(x,&), we need to have a line trough z in a direction # normal to £ (there are two
such directed lines if n = 2 and infinitely many if n > 3), so that w(zx, ) # 0.

We then have the following corollary, see Section III.5.

THEOREM 3.1. Fiz a bounded domain Q@ C R™. Let x € S° have essential
support in V.
(a) Then for every s and | < s, we have

Ix (e, D) fllrs < Cs[|[ Xy Xuwllmoer + Cit

Flla

for every f € H3(Q).
(b) The estimate on (a) does not hold when ES(x) NV = 0, regardless of the
choice of s and l < s.

Since we restricted supp f above to {2, we can replace R™ in (3.4) by Q.

This theorem does not directly answer the question what singularities we can
recover from knowledge of X,, f, not X X,, f. In terms of uniqueness, it is a trivial
observation that X, is injective if and only if X, is, see Proposition 5.5. We show
below that there is a microlocal equivalent to this.

*** stability thm in terms of X f here ***

*** We can use X*X,, *¥**

3.2. The limited angle and the partial data X-ray transform. Assume
that X f(¢) (weight w = 1 for simplicity) is known for lines £ in an open set £. What
can we recover from that information? The requirement that £ open is essential. If
we restrict to a submanifold of positive codimension, the microlocal nature of the
problem changes dramatically, see [15, 16].

We can model such a case by choosing weights w constant along all lines, i.e.,
0 - Vyw = 0, compactly supported in £. In the ¥ parameterization for the lines
we adopted in Section II.1.3, this means w(z,8) = wo(d,x — (6 - x)0) with some
wo € C§°. Then we get that the singularities that can be stably recovered are the
ones in

N*L:={(z,§) e N L e L},
where N* stands for the conormal bundle. In other words, those are all (z, ) with

the property that (z,&) is conormal to some line in £. All singularities outside the
closure of N*L are not stably recoverable.
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FIGURE 1V.2. Limited angle tomography: Left: original; Center:
reconstruction with the angles in [—30°,30°] missing; Right: the
“un-filtered X*X,, f

4. Recovery in a Region of Interest (ROI)

In practical applications, the following problem is of great interest. Assume
that we only want to recover f, given X f or Rf, in a subdomain called a Region
of Interest (ROI). For example, we want to create the image of the hart only. Is
it enough to illuminate that region only? In other words, if we know X f(¢) for all
lines through the ROI; or Rf for all planes through the ROI, does this determine
f restricted to the ROI uniquely?

In odd dimensions, for the Radon transform R, this follows immediately from
the reconstruction formula in Theorem I1.2.6. In even dimensions for R. and in all
dimensions for X f, the reconstruction contains a fractional power of —A, see also
Theorem I1.2.3; and the same argument does not work.

4.1. Non-uniqueness. We will show that there is no unique solution to that
problem for the Radon transform R (and therefore, for X) in two dimensions, based
on the representation of R in Theorem I1.4.1.

Given a > 0, take any even function g € C§°(R) so that g(p) = 0 for |p| < a.
Then ¢(p), considered as a function of (p,w) independent of w, satisfies the range
conditions in Definition IL.6.2 (i), (ii) in a trivial way. Indeed, [ g(p)p* dp vanishes
for k£ odd, and is constant for k even. In the later case, it is the homogeneous
polynomial C|w|* restricted to the unit sphere. Therefore, there exists f € S
with ¢ = Rf. By the support theorem, f € C§°. Then Rf = 0 for |p| < a by
construction. Theorem I1.4.1 allows us to express f explicitly:

1 oo
f0) =1 [ 0= e
™ T
It remains to see that we can choose ¢ so that f # 0 in B(0,a). This can be done
in several ways. For 0 < r < a, integrate by parts above to get

fr) = %/ p(p* —1*)"ig(p)dp, r<a.
When g > 0 but g # 0 (recall that g = 0 in [—a, a]), we get f(r) >0 for 0 <r <a.
We can extend this construction to the higher order harmonics. Given an
integer k > 0, let 0 # gx € C3° be even when k is even and odd otherwise. Let
gr =0 in [—a,a]. Set g(p,w) := gr(p)e*™. We want to solve Rf = g for f. Let us
check the range conditions of Definition I1.6.2. The first one, requiring g to be an
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Ol 9

FiGUure IV.3. Examples of non-uniqueness for the ROI problem:
harmonics of order 0, 1 and 2. The functions are non-zero (but
“small”) in the inner disks. Medium gray corresponds to 0.

FiGure 1V.4. Computed Radon transforms of the functions in
Figure IV.3. The horizontal axis represents the angle ranging in
[0,180°]; the vertical one corresponds to p. Medium gray corre-
sponds to 0. The functions are even/odd/even, from left to right,
as functions of p. The third function has zero integrals in the p
variable.

even function, is guaranteed by construction. For the second one, consider

(4.1) /pmgk(p)eikargw dp _ 6ik: arg w /pmgk(p) dp.

Condition (ii) is satisfied if the expression above is a homogeneous polynomial of
w of degree m, restricted to the unit sphere, for every m. Notice first that every
such polynomial P, (w), is also the restriction of a homogeneous of order m + 27,
j=0,1,... polynomial on the unit sphere because P,,(w) = |w|?*/ P,,(w) there. Let
k be even first. Then g is even and (4.1) vanishes for m odd. For m even, it is
enough to have condition (ii) for m < k, However, if m < k, (4.1) shows that we
get a homogeneous polynomial of order k which cannot be reduced. Therefore, we
need

/ngk(p)dPZO, m=0,1,...,k—1.

Let now k£ be odd. Then by the same arguments, we get the same condition.
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For k = 1, there is no restriction, since [ g1 (p) dp = 0 because g1 is odd. Choose
any odd function g; € C§° vanishing near the origin. Then

iargw

9(p,w) = €% g1(p)

is in the range of R, and there exists f € S so that ¢ = Rf. By the support
theorem, f € C§°. By Theorem I1.2.6, fi # 0 and all other fj vanish. Then

f=e™ fi(la]) = (&' +i2*) fa(|])

with f; related to g; as in Theorem I1.2.6. If we need real functions, we can take
the real parts. It remains to show that for generic g;, f cannot be identically
zero in a neighborhood of 0, which can be done as above. The middle plot of
Figure IV.3 represents such a function and the middle plot in Figure IV.4 represents
the corresponding g.

For k = 2, we pick an even function go € C§° vanishing near 0 so that

J g2(p)dp = 0. Then
9(p,w) = ¥ ga(p)

satisfies the range conditions. Then, in the same way as before, we get g = Rf
with some f € C§°, with f; related to g2 as in Theorem II.4.1, and all other fj
zero. One can also take the real parts of f and g. One such function g is plotted in
Figure IV.4 on the right, where the vertical axis is the p one; and the corresponding
f is plotted in Figure IV.4 on the right.

The functions plotted in Figure IV.4 are non-zero in the ROI (the inner disk)
but they are still “small”. A discussion of that phenomenon and how it depends

on the radii of the inner and on the outer circles can be found in [25]. We will see
below that they must be smooth in the ROI.

4.2. Parametrix reconstruction. Even though we cannot reconstruct f in
the ROI uniquely, we can reconstruct it up to a smooth error. This allows us to
recover the singularities. Indeed, let x(¢) be a smooth function on the line manifold
equal to one on all lines through the ROI, and zero outside a larger neighborhood.
Then X*xX f (or R*xRf) is a YDO of order —1, elliptic in the ROI. Indeed, by
Theorem 2.3, with a = 1 and b = x, the principal symbol of X*x X, and actually
the whole symbol or amplitude, equals 1 in a neighborhood of the ROI. Therefore,
for ¢ € C§° with x = 1 near the ROI and supp ¢ close enough to the ROI, we have
Yf = QX*xXf+ Rf, where R is smoothing. Therefore, we can recover f in the
ROI up to a smooth term; more precisely, up to a smoothing operator applied to
f-

In Figure IV.5, we show one such reconstruction. The error, plotted on the
right, is smooth in the ROI, consisting of the small disk in the center. The figure
in the middle is just a parametrix and the low frequency part is not optimized. In
fact, we subtracted a small constant to make the zero values black; and this clipped
some negative values outside the ROI which appear black again. Since constant
functions are smooth, the reconstruction shown has the same singularities in the
ROI, of course.

5. Support Theorems and Injectivity
5.1. Lack of injectivity in the 2D case. Generic Injectivity.
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FiGURE IV.5. ROI: Left: the original; Center: ROI recovered;
Right: Absolute value of the difference

5.1.1. Boman’s example. Jan Boman constructed in [6] a weight w for which
the support theorem for X, fails in the plane; and he showed in [7] that the set of
weights for which it fails is dense. We will present those results here without the
proofs.

THEOREM 5.1 (the support theorem fails). There exists a smooth w(z,6) > 0
defined on R? x S and a smooth function f(x) on R? supported in |rv'| < 22 with
0 € supp f so that X f(¢) = 0 for all lines £ of the kind 2* = az* +b, |a] < 1, b < 1.

THEOREM 5.2 (uniqueness fails). There exists a smooth w(x,0) > 0 defined on
R? x St and a smooth function f(x) on R? not identically zero so that X f(£) =0
for all lines £ in the plane.

THEOREM 5.3 (density of the weights). The set of smooth positive weights w
for which Theorem 5.1 holds (with f = f,) is dense in C*(R? x S1) for every
k=0,1,....

In dimensions n > 3 however, the support theorem holds as we show below.
Note that in this case, X, is formally overdetermined.

5.1.2. Injectivity on small domains. Here and below, if U C R, we consider
L?(U) as a subspace of L2(R™). Let £ (K) the space all all distributions supported
in the compact set K. We formulate many injectivity theorems below in terms
of L?(Q) for simplicity. When w does not vanish in Q, X* X, is elliptic, and its
kernel consist of smooth functions. Therefore, injectivity on L?(f) is equivalent to
injectivity on &'(K).

On small domains, X, is injective and stable. Next theorem is valid for all
dimensions n > 2 but for n > 3, we prove a stronger theorem below.

THEOREM 5.4 (injectivity on small domains). Let w € C®(Q x S"~1) and
assume that w(z,0) # 0, V(z,0) € Q x S"~1. Then there exists ¢ > 0 so that
for any compact set K C Q with measure |K| < ¢, the weighted transform X,, is
injective on L*(K) and

(5.1) Ifllze < CIXEXwfllmin),  Vf € LA(K).

PROOF. Any smooth extension of w outside  will not vanish for = close enough
to 9. Take one such extension and choose x € C5°(£21) equal to one in a neigh-
borhood of the closure of the set where w # 0. The operator x X, X,,x then is a
properly supported DO in g, elliptic of order —1. Applying the “small domain”
Theorem B.3.1, we get (5.1). O
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REMARK 5.1. Another way to think about small domains is through a scaling
argument. If we scale a small ball B(0,£) > = to the ball B(0,1) > y by the
transformation = ey, then the weight becomes w(ey, ) (in fact, vectors scale
by e as well but if in the new coordinates we keep the direction unit, €6 becomes
6 again, at the expense of rescaling the parameter ¢ in (1.1)). Now, in any C*,
w(ey, 9) is close to w(0,¢) for 0 < € < 1, and by the perturbation argument below,
it is enough to have injectivity for weights independent of x. Such weights however
are trivial because they are constant along each line, and injectivity then reduces
to that for w = 1, which is known.

REMARK 5.2. We could have formulated the theorem without the need of €2
and 27 by assuming that w has uniformly bounded derivatives in R" of some fixed
order k > 1, see the remarks following Theorem B.3.1.

We show next that injectivity of X,, is equivalent to injectivity of X X,,, either
in Q or Q.

PROPOSITION 5.5. Let 1 © Q. The following statements are equivalent.
(a) X} X, : L*(Q) — L%(1) is injective.

(b) X* X, : L2(2) — L?(Q) is injective.

(c) Xy is injective on L*(Q).

ProoF. Clearly,
1 Xwfl2m) = (Xo Xuf, 2@ = (XoXufs i, V€ LA(Q).
This shows that both (a) and (b) are equivalent to (c). O
Therefore, for small domains, X,, is injective as well.

REMARK 5.3. The domain €; in (5.1) can be replaced with any U > K,
once we fix K for which the theorem holds. For that, we use Proposition 5.5 and
Section II1.5. Then we lose control over the constant C' however.

5.1.3. Injectivity for analytic and for generic weights.

THEOREM 5.6. Let w be analytic and non-vanishing in a neighborhood of £ x
S"=1. Then X, is injective on L?(€2).

PrOOF. We will use the analytic ¥DO calculus here, see Section B.7. It is
enough to prove the theorem for n = 2 only. Indeed, any function in the kernel of
X, is smooth. If we can prove that f, restricted to any 2-plane vanishes, then f = 0.
On any 2-plane, on the other hand, we have to invert just the two-dimensional X,,.

By (2.6), the operator X X,, is a ¥DO with amplitude

%W@,y,&/mn

a(z,y,§) =

where
W(z,y,0) = w(z,)w(y, ) + w(z, —0)w(y, —0).

This is the “full amplitude”, i.e., X X, is given by the oscillatory integral (B.3.7)
with that amplitude and there is no smoothing operator error. Take ¢ € C§°(R")
with ¢ = 1 near 0 and ¢(§) = 0 for |{] > 1. Then ¢(&)a(z,y,£) is an analytically
regularizing amplitude, see (7.5) (note that the lack of analyticity of ¢ is not a
problem for this argument). On the other hand, (1—¢(§)a(x, y, ) is pseudoanalytic.
Indeed, since a is a homogeneous function of ¢ for €| > 1, it is enough to verify
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(7.5) for £ in any compact outside the support of ¢, i.e, for 1 < || < 2. Then the
estimate follows from the assumed analyticity of w(z, 6). O

THEOREM 5.7 (perturbing the weight). Let X, be injective on L2(Q) with
some nowhere vanishing w € C>(§2; x S"=1). Then there exists ¢ > 0 so that for
any v € C?%(Qy x S"1) with

(5:2) [w —vllc2 <e,

X, is injective as well. Moreover, there is a constant C > 0 (depending on w but
not on v) so that

(5.3) [ fllz2() < CIXy Xy fllzr@y)
for any such v.

PRrROOF. By Proposition 2.2, the operator X X,, — XX, is of the form (2.8)
with

a(z,y,0) = w(z, 0)w(y,0) + w(z, —0)w(y, —0) — v(x, 0)v(y, ) + v(z, —0)v(y, —0)
(independent of ). Then
lollczia, xa, xsn-1) < Cllw = vl o2, xgn-1)
with C' = C(w). Therefore,
(X o Xow = X0X0) fllg o,y < Cellflle2@
when (5.2) holds. Then, by Theorem 2.8,
[fllz20) < ClIXoXwfllm 01 < N1X5Xo fllgr 0,y + Cell fllr2)-

We can therefore absorb the last term by the left-hand side one for ¢ < 1. O

COROLLARY 5.8 (generic uniqueness). The transform X, is injective on L*(€)
for an open dense set of nowhere vanishing weights w € C?(Qy x S™71).

Of course, for such weights, we have the locally uniform estimate (5.3).

REMARK 5.4. We did not prove that the set of non-vanishing C? weights for
which X, is injective, is open (but we did prove that it is dense). If we replace
C? by C*, k > 1 (regularity sufficient to apply the DO arguments) then this
statement follows from our proofs because then injectivity implies stability, that
we can perturb. If w € C? only, and X, is injective, we do not have an argument
showing that it is stable at the same time (unless w is smoother).

5.2. Support theorem and uniqueness for n > 3. The “exterior prob-
lem”. The exterior problem asks whether we can reconstruct f outside a compact
convex set K if X, f is known for all lines not intersecting K. Support theorems
allow us to claim uniqueness of the exterior problem if the function satisfies some
conditions at infinity. We want to analyze the stability, as well.
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5.2.1. First things first, microlocal considerations. We start with microlocal
considerations. Let us say that we want to reconstruct WF(f) outside a K not the
whole f. Can we do this? Why this would not solve the support theorem question,
it would at least tell us if the reconstruction could be stable.

The analysis so far tells us that X, f restricted to an open set of lines, recovers
conormal singularities to those line, assuming w nowhere vanishing along the lines.
Therefore, the visible singularities are the ones described below, for n = 2 and
n > 3, respectively:

Uy = {(m,g) € T*R"\ 0| |z| > R, the line trough  normal to &

does not intersect K },
Uy = {(z,§) e T*R*\ 0|z ¢ K} .

Moreover, the invisible ones are those in the complement of the closures of those
sets. Note that if n > 3, the visible singularities include all covectors with a base
point outside K, while this is not true when n = 2. Since the visible set outside
K for n > 3 includes all of the exterior of K, and it is not limited to certain
codirections, the exterior problem then would be well a posed one for such n, and
an ill posed one for n = 2. We make this more precise below.

5.2.2. Support theorem for analytic weights, n = 2. Here, we present a mi-
crolocal proof of the support theorems for X and R, and also for X,, for analytic
weights w. We restrict ourselves to the case where f is a priori compactly sup-
ported. In fact, one can use analytic microlocal techniques even when f is only
rapidly decreasing, as in Theorem I1.5.1, as shown by Boman [5].

To author’s knowledge, the fist application of the analytic micorolocal calculus
to proving support theorems is due to by Boman and Quinto [8] for the weighted
Radon transform in n dimensions

Rufpw) = [ nlow)f(@)ds,
T-w=p

with an analytic positive weight. The theorem says, that if p is analytic, f €
E'(R™), and Rf = 0 for all planes z - w = p with w close to a fixed wg, and p > po,
then f = 0 on the half-plane = - wy > pg. Of course, this theorem applies to X,
in two dimensions with w(z,6) = u(x,6); and support theorems for X,, in two
dimensions imply similar ones on all dimensions n > 2.

We will formulate and prove a bit more general theorem, in terms of the trans-
from X,, which assumes local analyticity only and proves a local result.

The proof is based on the following theorem, which say that we can resolve the
conormal analytic singularities to some line if we know X, f near that line. We
already established this in the C'*® category but in the analytic one, the proof is
more delicate. We formulate the theorem for the line ' = 0 but by a linear change
of coordinates, we can apply it to every line, of course.

THEOREM 5.9. Fix (z9,0p) € QxS"~L and let £y be the directed line determined

by it. Let w(x,0) a weight function defined and analytic for x in some neighborhood
L of 6o N Q and for 6 in some neighborhood V of 8y. For f € £'(Q), let X f(£) be
an analytic function of £ in a neighborhood of £y. If w(xg,by) # 0, then

WFA(f) N Nzufo = 0.
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PRrROOF. By assumption, X, f(¢;) is analytic for z € U and 6 € V, where
U 3 zq is open, where we shrink V' if needed to make sure that all lines issued from
points in U x V stay in some compact subset of L. If we can extend w analytically
for all  and 6, then X X, would be an analytic ¥DO elliptic near (xg,£) for all
¢ L By, with an amplitude a(z, y, £) given by (2.5) and (2.6), respectively, depending
on the dimension, with W as in (2.2). Such an extension may not exist however.
Instead, we consider

NRf () = (2m) " / SV Ea(z y €)g"(€) uly) dyde,

see (B.7.11) with a suitable g equal to 1 in a small conic neighborhood of all
codirections conormal to 6y. This is an analytic DO in a conic neighborhood of
N*{y; elliptic at (xo,€) for all £ L 6y under the assumptions of the theorem. If we
can show that N f is analytic at conormal directions to £y at xo, we are done.

Let Vp € V be another open set containing 6y. Let ¢(6) be a smooth function
so that suppty C V and ¢ = 1 near Vy. Then XX, is a (non-analytic) ¥DO
with “full amplitude”

™
a = [ Wu0006)56- /1€ ao
with the integral reducing to a sum of two terms when n = 2, see (2.6) and (2.3)
again. By Proposition 2.1, and by the assumptions of the theorem,

Xo X flo = Oplay) flu € AU).

Note that the non-analyticity of ¢ is not a problem for this argument.
Let I" € I'* be two open cones in R™\ 0 so that I'* is included in the dual cone

Vit := {€] € L 6 for some 6 € Vp}.

Let ¢® = 1 in I' and be supported in I'*. Then a(x,y, &) is analytic for € U,
y € L and & € suppg® \ 0.
Now, the operator N — Op(a,) has an amplitude

a(x, Y, g)gR(g) - aw(l‘, Y, 6)

vanishing for £ € ', z € Q and y € L. That amplitude is analytic in the x variable,
and moreover satisfies the assumptions of Lemma B.7.3. Therefore, WFA (NEf)
and WF 4 (Op(ay)f) coincide on U x I'. On the other hand, restricted to U x T,
the latter is empty, therefore, WF5 (N % f) is microlocally analytic there. O

THEOREM 5.10 (support theorem for X, with w analytic). Let f € &'(R?).
Let X, f(€) be analytic for all lines ¢ in some neighborhood of Ly, g, with some
(w0,00) € R? x S1. Let w(z,0) be analytic for x near £y, 9, Nsupp f and for 6
near 0g. If there is € > 0 so that [ is supported on one side of the line segment
Lo N B(zg,€), then f =0 near x.

PrOOF. By Theorem 5.9, f is microlocally analytic at conormal directions at
xg. By the Sato-Kawai-Kashiwara Theorem B.7.1, f = 0 near z. (]
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FIGURE IV.6. Tlustration to the proof of Theorem 5.11. We apply
the “small domain” theorem on planes close to ones tangent to the

ball B(0, R).

5.2.3. Support theorem for smooth weights, n > 3.

THEOREM 5.11. Letn > 3 and let w € C*°(R"™ x S™~1) be a nowhere vanishing
weight. Let f € E'(R™) and assume that X, f(€) = 0 for all lines £ not intersecting
the ball B(0, R). Then f(z) =0 for |z| > R.

In particular, if X, f =0, then f =0.

PROOF. Since all singularities outside B(0,R) are stably recoverable, f is
smooth there.

The idea is to apply the “small domain” result in Theorem 5.4 on a family of
hyperplanes parallel to each other, cutting small disks from the ball B(0, p), p > R,
starting from a tangent hyperplane, see Figure IV.6.

Let p > 0 be the least number p so that supp f C B(0, p), i.e., p = maxgupp 5 |Z].
If p = R, then the assertion of the theorem holds. Assume p > R. For a fixed
0 € S"1 and s < p, restrict X,, to the hyperplanes 759 = {z| z-0 = s}. Then for
fs := flx., we have X,, fs = 0, where w; is w restricted to T'ms. We can always
assume that § = (0,...,0,1). Then wy(2’,0") = w((z',s),(#',0)) for ¢ € S"~2,
2 € R" ! and we can think of all of X,,_ as acting on the same hyperplane,
2" = 0, that we identify with R"~!. Then s + w, € C? is a continuous family
of weights; and therefore, the family X7 X, , restricted to the same domain on
R"~! is continuous as well. Set Q; = B(0,1), Q2 = B(0,4), with some 0 < § < 1
where the balls are in R"~!. Then X X, : L?(B(0,6)) — L*(B(0,2)) is injective
for s = p and § < 1, by Theorem 5.4. By Theorem 5.7, this property is preserved
for s such that 0 < p — s < 1. Therefore, X,,, is injective on L?(B(0,6)) for such
s as well.

Therefore, f = 0 on each disk

(5.4) Ts,0 N B(0,p), Vp?>—902<s<p,

with § = §(#). In particular, for any § € S"~!, we get f = 0 in a neighborhood of
x = pf. Take a finite cover of the unit sphere with those neighborhoods to get that
f =0 in a neighborhood of || = p. This contradicts the choice of p however. [

COROLLARY 5.12 (injectivity for n > 3). Let w € C*°(Q x S~ 1) be nowhere
vanishing and let n > 3. Then X,, is injective (and therefore, stable) on L*(%).



94 IV. THE WEIGHTED EUCLIDEAN X-RAY TRANSFORM
5.2.4. Stability and instability in the support theorems. ...

*** An inaccurately formulated theorem, fix it ***

THEOREM 5.13.

(a) Let n = 2 and assume that w is nowhere vanishing on points and directions
determining lines not crossing B(0, R). Then for any symbol x € S*(R™) supported
in Uy there exists v € C™(X) supported away from the lines intersecting B(0, R)
so that for any l < s, we have

Ix(@, D) fllae < Csll Xoo X fllaerr + Crsl fllm, V€ Hg ().

Moreover, this estimate fails for any symbol supported outside of Us.
(b) Let n > 3. Then for every x € C(R™) supported away form the ball
B(0, R), there exists 1 as above so that

I fllas < Csl| XX fllaer,  Vf € H5 ().

*** Stability estimate in terms of X,,? Range for s? ***

PRrOOF. The proof of (a) follows from the micorlocal ellipticity of X¥ X, in
Us.
To prove (b), take y as in (a) independent of £&. Then ... O

It is worth noticing that the final step of the proof of Theorem 5.11 implies the
following.

PROPOSITION 5.14. Letn > 3. Let f be a smooth function supported in B(0, R),
and let lw| > 0 for |x| = R. Let Ry > R. Then there exists 6 > 0 and C > 0 so
that for R — 6 < s < R and every unit w,

vzl sox.cou]
1£1lz2r, 011, 01 COXCO B rsom)

with 7s = {x| z-w = s}. Moreover, C' can be chosen the same under small
variations of R.

This a stability estimate for the exterior problem locally, near the boundary of
B(0, R). Note that the smoothness of f is a stronger assumption that needed and
the regularity of f can be deduced form that of X, f.

6. Concluding Remarks

small domains: [21]
Weighted Radon [14].
Section 3.2: smooth cutoff.



CHAPTER V

The Geodesic X-ray transform

1. Introduction

1.1. Definition. Let (M, g) be a compact manifold with boundary M. The
geodesic X-ray transform of functions on M is given by

(L1) th%=/fﬁ@»®

defined for all maximal finite geodesics in the interior of M. If M is not strictly
convex, the structure of those geodesics can be quite complex with geodesic hitting
OM tangentially, possibly having contact of infinite order or a sequence of tangent
points having a point of accumulation. In that case, we extend g to some neighbor-
hood M7 of M and it is more convenient to study X f on geodesics with endpoints
in M1\M, see [37].

If M is strictly convex, we can parameterize all such geodesics by initial points
on OM and initial unit directions pointing into M, i.e., by elements in 0;SM,
where

0+SM = {(z,v)| x € OM, v € T, M, +{v,v) > 0},

compare with (II.1.11), where v is the unit exterior normal at x. Then we write
X f(z,v) for (z,v) € 0_SM. The domain of X consists of those (z,v) for which
Va,v 18 of finite length. If all of then are finite, then (M, g) is called non-trapping.
So, if M is strictly convex and if M is non-trapping,

X:C(M)> f— XfeCO_SM)

is a well defined continuous map.

The question we study is if X f determines f uniquely; and stably, if uniqueness
holds.

One can naturally define the X-ray transform of tensor fields of any order. For
covector fields f (identified with vector ones by the metric), we have

Xﬂw;/ﬁwdw:/ﬁMmW®M

The second integral is a written in a bit incorrect form — it uses a coordinate
representation assuming that a global chart exists (which is not always true but
near a fixed geodesic, we can always choose a single chart). For contravariant
tensors of any order m, we integrate (f,4™). The most important examples are
m = 0 (functions), m = 1 (1-forms) and m = 2 (2-tensors). The case m = 4
appears in linearization of problems arising in elasticity. We will see later that if
m > 1, there is a natural obstruction to uniqueness of recovery of f that can be
explained by the Fundamental Theorem of Calculus. We want to recover f then
modulo that obstruction.
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1.2. Motivation. The main motivation for studying the m = 0 and the m = 2
cases is that X appears as a linearization of the boundary rigidity and the lens
rigidity problems. Actually, this is the reason the authors started working on the
geodesic X-ray transform.

Let dg(z,y) be the distance function on M. The boundary rigidity problem is
the following. Can we recover (M, g) from the boundary distance function known
on OM xOM? Every diffeomorphism v on M acting as the identity on the boundary
would not change the data; and there is no other obvious obstruction for all metrics
(but there is for metrics not so close to flat ones, for example, see below). Therefore,
we should expect to recover the manifold up to action of such a diffeomorphism.
Let us fix the manifold M (its topology) but vary the metric. Then we have the
following.

DEFINITION 1.1. The metric g is called boundary rigid, if for any other metric
g with dg = dz on OM x OM , there exists a diffeomorphism 1) on M with |on = Id
and Y*g = g.

There are obvious counter examples to boundary rigidity. If we have a metric
in a bounded domain, which is very “slow” somewhere in the interior (g;; small),
then all minimizing curves will avoid that region and a small change of g there will
not affect the boundary distance function. To exclude such examples, one usually
requires that the metric be simple: every two points can be connected by a unique
minimizing geodesics, smoothly depending on those points, and that the boundary
is strictly convex.

Lens rigidity is defined similarly but the data now is the lens relation L and
the travel time ¢ defined below. For every (z,v) in the interior _SM™ of O_SM
(i.e., v not tangent to OM), let L(z,v) = (y, w) be point where the geodesic v, ,
hits OM for the first (positive) time, if it is non-trapping, and let w be the (unit)
direction at that point. Let ¢(x,v) be the length of that geodesic (the travel time).
Then

L:0_SM™ —9,SM, (:0_SM™ —[0,00)
is called the lens data, possibly defined on a subset of 9_SM™ if (M, g) is trapping.
One may include the boundary of 0_SM consisting of tangent directions in the
domain of definition of L and ¢, see also [38]. Then we define lens rigid metrics as
above but using L and ¢ as the data.

Assume that (M, g) is simple. Fix z, Y in M and let v = exp;'y. We will
linearize dg(x,y) with respect to the metric. Let ¢° = g + ¢ f be family of metrics
(we work in a fixed coordinate system near the geodesic y(t) = exp,(tv), 0 <t < 1).
Here, f is a symmetric 2-tensor contravariant field. Then g is simple for |¢] < 1
and z and y are connected by a unique minimizing geodesic v.(t), 0 < ¢t < 1. Then

dge (z,y) = /01 \/ gngé(th(t) dt

because the integrand is independent on t and equal to the left-hand side. Compute
d/de at € = 0:

1

d L b4 .
- e = — A ) _ L ¥ 27
3| do(@y) =5 /O fid @)y (t) dt + 5 /0 9ij dngo [FE(t)A2(t)] dt

3| FOP @@= 3X10)
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The reason for the second integral to vanish is the fact that the geodesics for g
are locally minimizing. In X f() above the parameter ¢ along v is not unit speed.
To reparameterize, we can set s = tdist(z,y). Therefore, the linearization of d,
is X f(z,v)/ dist(z,y), where v = exp, ' y/|exp; ' y|. This motivates the m = 2
transform.

If we want to recover a “sound speed”, i.e., then the metric is ¢~2dz?. More
generally, let us assume that there is a know background metric ¢° and we consider
a class of conformal metric ¢ = ¢ 2¢°. Let us linearize as above about a fixed
co, by writing ¢=2 = ¢y (1 + h). Then the integrand becomes thQg?j‘yi;yj =h
because c; 9i; ¥’ = 1 for unit speed geodesics. Then we get X acting on functions
(m =0).

The m = 1 can be motivated by ultrasonic imaging of moving fluids of variable
speed ¢, as we did in Section I1.7.1. Then the metric would be ¢~2dz?. Another
application is recovery of a magnetic potential o (an one form) from boundary data
related to propagation of charged particles in an inhomogeneous medium described
by a metric g. This is the equivalent of the boundary and the lens rigidity problems
for charged particles, and we refer to [12] for more details. If the metric is unknown
as well, in linearization, we get a difference Xsf — Xja of X acting on a two
tensor f;; and X acting on an the form o;. We can separate the two terms if we
let the particles travel in the opposite direction; then we get the sum, compare
with Norton’s arguments in Section II.7.1. The m = 1 transform also appears
in hyperbolic inverse problems of recovery all coefficients of a general self-adjoint
second order differential operator

I 1a+a- Wy/det Ei—ka- +
- Jdetg \ioxt " g I\100s T Y ¢

From the hyperbolic Dirichlet-to-Neumann map we can extract in a stable way the
lens relation for g, the X-ray transform of a;dz’ and that of ¢. Linearizing the
lens relation, we get the X-ray transform of a two tensor fi;dz’da’, which is the
perturbation of the metric. So we have the m = 2, m = 1 and the m = 0 cases
together, and inverting these transforms (up their natural kernels when m > 1)
allowed Montalto in [23] to show that one can recover in a stable way g, a; and ¢
up to a gauge transformation, under simplicity conditions for g and some generic
assumptions for the recovery of g.

1.3. Microlocal considerations. Let us see first what we could expect not
by actually proving anything at this point but by trying to develop a reasonable
intuition. We have the integral geometry analog of variable coefficients PDEs. We
can hardly expect easy uniqueness proofs and explicit inversion as in the Euclidean
case. Fourier transform will not be so useful anymore but microlocal analysis should
be since the latter is the natural extension of Fourier transform methods to vari-
able coefficients problems. We already saw the power of microlocal methods for
the weighted Euclidean X-ray transform. How will the new geometry change the
analysis? Let us consider the m = 0 case only.

Can we expect the normal operator N = X*X to be a ¥DO (elliptic) again?
For “small” time ¢, every geodesic v, . (t) looks like a line because of the Taylor
expansion v, , = = + tv + O(t?). This makes it plausible that the Schwartz kernel
of N has a singularity of the kind ~ |z — y|'~™ which is not enough of course,
but a strong suggestion that N might be a DO (of order —1). If the metric
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and the weight, assuming that there is a non-trivial weight, are analytic, we can
expect the analytic microlocal arguments to work as well. We can expect to recover
singularities conormal to the geodesics in our open family of geodesics over which
we integrate. On the other hand, the arguments we used to prove support theorems
for the weighted X, for non-analytic weights, see Theorem IV.5.11, may not work
since we do not, in general, have totally geodesic surfaces.

Those arguments can lead to wrong expectations if we fail to realize that they
are local. They are fine near a fixed point, i.e., to get an idea how the Schwartz
kernel NV (x,y) would look like when vy is close to . But in order to claim that the
latter is a kernel of a DO we need to know, see Section B.5, aside from a detailed
analysis near the diagonal = = y, that there are no other singularities on M x M!
Recall that in the derivation of the formula for the kernel of X’X in the Euclidean
case, see Proposition I1.2.2, we made the change of variables (s,0) — z = z+ s, for
x fixed, i.e., we passed from polar to Cartesian coordinates. In the geodesic case,
the equivalent to that would be z = exp, (t6). On T, M, (t,0) are polar coordinates
for v := tf. The map v — exp, v however is a local diffeomorphism near some
v if and only if x and y := exp, v are conjugate along the geodesic ¢t — exp,(0).
This shows that A (z,y) would have singularities at pairs of conjugate points (along
some geodesic). Therefore, it cannot be a ¥DO anymore.

This underlines an essential difference between the geodesic case and the Eu-
clidean one. Geometry matters and conjugate points create a new phenomenon.
That is why most but not all works so far assume that there are no conjugate
points.

The next logical question is the following. We know that if there are conjugate
points, N = X*X is not a VDO anymore. Does it mean that we cannot resolve
the singularities? The answer to this question is not straightforward: sometimes
we can, sometimes we cannot but we do not have a full understanding yet.

One case where we can give an immediate answer is the following. Let n = 2
and let v be a geodesic with a pair of conjugate points like on the sphere — all
rays issued from a single point x and some open cone focus at some other point
y, see Figure B.D.1. Assume that this is a flattened piece of the sphere (wit the
sphere metric, of course). Assume we want to recover the singularity at z normal
to the “vertical geodesic” . The only geodesic that can possibly be used for that
is the same vertical one and a small neighborhood of it, by ... . On the other
hand, every such geodesic, by the symmetry, carries the same information about
the point y as well. If we place a distribution with a small support near z, and its
antipodal image with the opposite sign at y, all integrals along geodesics close to
~o will be zero! In particular, those distributions can have the singularities we want
to recover; conormal to vy at  and y. So those would be invisible singularities. We
will see later that in higher dimensions, the picture changes.

2. The Energy Method

The energy method started with a work by Mukhometov [24]. He proved that
for a general family of geodesic-like curves, with a unit Euclidean speed and no
conjugate points, the corresponding X-ray transform is invertible. After that, the
method was extended and generalized to other cases which we review below.
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Let us consider a well known example. Assume that we want to prove unique-
ness for the elliptic boundary value problem

(2.1) Au=0inQ; ulso = f,

where Q is a bouded open domain, and f is regular enough. Multiply the PDE by
u and integrate by parts to get

ou -
(2.2) (/ Vulde = | —fdS,
Q [Vl aq OV
where v is the exterior unit normal. This yields, for every s, the following estimate
(23) [ 19 e < <o oy

We get uniqueness (assuming existence of a solution, regular enough up to the
boundary) right away: f = 0 implies u = const. By the boundary condition, that
constant must be zero. Estimate (2.3) is a conditional one, see ... because u appears
on the right as well. The sharp well known estimate

[ull @) < Cllfla12(00)

does not follow from (2.3) without much more detailed analysis, at least.

2.1. The energy method for the Euclidean X-ray transform X. To
demonstrate the energy method, we will prove again that the Euclidean X-ray
transform X is injective in a smooth bounded strictly convex domain €2, with a
non-sharp stability estimate.

Set

v(0) = (cosf,sinb).
As we saw in Chapter II, X can be defined through the solution « of the transport
equation (11.1.14) and (I1.1.15). If u solves

(2.4) v(0) - Veu= f(z), wulo_sq =0,
then
(2.5) X[ =ula, sa.

In analogy to the Dirichlet problem for the Laplacian, we would like to have a
homogeneous PDE, and then to prove that X f = 0 implies u = 0; therefore, f = 0.
So far, we have two unknowns, v and f. Differentiate with respect to 6 to annihilate
f(@):

(2.6) 0pv(0) - Vyu = 0.

Unfortunately, the operator on the left is not non-negative or non-positive. The
non-negativity of the quadratic form (2.2) was crucial for the uniqueness argument
above. So the analogy with the Laplace equation ends here. Multiplying by « and
integrating by parts would not help much.

Set G := v(#) - V,. This is the generator of the line flow in the phase space
Q1 x S'. The PDE we have so far is 99Gu = 0. The main idea of the energy method
is to multiply (2.6) not by w but by Pu with some cleverly chosen operator P so
that an integration by parts (the divergence theorem) would produce a quadratic
form with a fixed sign. One such successful choice turns out to be the operator
G, = vt () - V.. Note that v, (0) = 9yv(0); therefore, we can think of G as
being 9yG.
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Multiply (2.6) by G u to get
(2.7) (GLu)(0pGu) = 0.

To integrate by parts, we need to put this PDE into a form close to a divergent
one.

LEMMA 2.1.
(2.8)  2(GLu)(0pGu) = |Voul? + 01 (ug2tig) — g2 (ugrug) + Op[(GLu)(Gu)].
PROOF. Notice first that for any two smooth functions v and v,
Ug2 Vgl — Uyl Vg2 = Uy2 Vgl — Uy1 Vg2

for any other coordinate system (y!,4?) obtained from the original one by a rotation.
Therefore,

(2.9) Oy (ug2up) — Op2 (Ugitg) = Ug2Uggr — UgiUgyz = (Gu)G L up — (G Lu)Guy.
For the last term in (2.8), we get
(2.10) [(G Lu)(Gu)] = —|Gul? + (G Lug)Gu + (G L u)9pGu.

Therefore, for the difference of the most left term in (2.8) and the most right one,
we get

2(G 1 u)(0sGu)—0y[(GLu)(Gu)]
(2.11) = |GU|2 — (GLup)Gu+ (GLu)dsGu
= |Gu|2 - (GJ_UO)GU + |GJ_U|2 + (GJ_’LL)GU@

Notice now that |Gu|? + |G u|* = |V, u|? because the length of the gradient at any
point does not change if computed in a rotated coordinate system.

Therefore,
2(G 1 u)(09Gu) — Fp[(GLu)(Gu)] = |Vul? — (G Lug)Gu + (G Lu)Gug.
This, combined with (2.9) completes the proof. O

Let u solve (2.4), and therefore, (2.7). Use the lemma and apply the divergence
theorem in S' x Q. The boundary of the latter consists of S* x 02, and we get

27 27
/ / |Vmu\2 dzdf = / / (vougr — v1ug2) up dsdd,
0o Ja o Joo

where v is the unit exterior normal to €2, and ds is the arc-length measure on 9f).
The expression in the parentheses on the right is actually the derivative of u (as a
function of ) in the direction of —v*, i.e., (—1) times the derivative with respect
to arclength parameter s, positively oriented (clockwise).

Therefore,

27 27 pS
(2.12) / |V ul? do df = —/ / usug dsdo,
o Jo o Jo

with S being the length of 2. We can declare cucess now because the form on the
left is non-negative.

This equality already proves injectivity, as it is easy to check. Indeed, X f =0
implies us = ug = 0 in the integral on the right (taken on the boundary!), and then
u must be independent of . Then f =0 by (2.4).
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To obtain a stability estimate, let us extend the domain of X f from 9,5 to
the whole 95Q by taking a zero extension to 0_S{Q. This makes sense — lines
exiting at points in 9_SQ (which have incoming directions only) are just points,
and integrals over them are zero. Recall that here, we parameterize lines by their
exit points. We could also parameterize them by their entrance points, see (I1.1.14)
and (II.1.15) on one hand, vs. (I.1.16) and (II.1.17) on the other. In the later
case, we choose a zero extension to 0;5Q. By (2.4), |f(x)| < |Vu| pointwise.
We assume at this point that f € C5°(£2) to avoid technical difficulties. Indeed,
the boundaries of 015 consist of points on 9 and unit tangent vectors at them,
i.e., it coincides with SOQ. For f € C§°(Q)), X f vanishes near SOf, therefore, the
extension is smooth.

Then (2.12) implies the following.

PROPOSITION 2.2. Let the Euclidean X-ray transform X be parameterized by
00 x S as explained above. Then we have the following stability estimate

1
(2.13) 1 fllL2) < ﬁ”XfHHl(anSl)y Ve ().

The estimate can be extended to functions f for which the norm on the right
is finte but we will not pursue this. A quick comparison with Theorem I1.3.2 shows
that the estimate above is not sharp; there is a loss of an 1/2 derivative.

2.2. Mukhometov’s result for a general family in two dimensions. To
describe Mukhometov’s result, we want to define a general family of geodesic-like
curves first. We work in a bounded smooth domain € in the Euclidean plane R2.
We want from every point x and unit direction v to have a unique curve 7y, ,(t)
with 7;.,(0) = « and 4, ,(0) = v. A major assumption is that ¥, , remains unit
along the curve. We also want the curve issued from (vz,,(t), ¥z(t)), which must
exist by assumption, to be the same curve (the group property) Finally, we want a
smooth dependence of (z,v) and ¢. Then 4, ,(¢) will be a smooth function as well.
Together with the group property, this actually implies that v, ,(¢) can be defined
as the solution of the Newton’s type of ODE

¥=B4): (1 e=0 = (z,v) € 2 x S,

with 8 :Q x St — R? is given. The requirement that |§(¢)| remains unit implies
d,, . N
0=—1l*/2=4-9=801%)-7

Introduce the notation v; = (—v? v') for the rotation by +m/2. We get that
B(z,v) must be collinear with v=; therefore,

Bz,v) = a(z,v)v,.

On the other hand, any such ODE preserves the length along the curves. Therefore,
our family is actually described by the ODE

¥ =alv,¥)7L-

One can interpret this as a Newton type of equation with a force always perpen-
dicular to the trajectory. If « is independent of 7, an example of such a dynamical
system is a charged particle in the plane propagating in a magnetic field perpen-
dicular to the plane. Then the right hand side of the ODE is the Lorentz force.
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Writing this as a system & = v, © = a(z,v)v, in TQ, we get that this dynamical
system consists of the integral curves of the following vector field
-0 0 0
H .= 03@ + a(z,v) (vl(w - 1)281]1) .

As we established that already, those curves stay on the surface |v|> = 1 (the unit
sphere tangent bundle). Indeed, H is tangent to it because H|v|?> = 0. We denote
such curves below (projections of integral curves of H on the base Q) by 7. We
impose additional assumptions below.

Note that the unit speed requirement is not a restrictive assumption since we
can always re-parameterize the curves with their arc-length. There is an important
“hidden” detail in that argument however. A re-parameterization would introduce
a non-trivial weight in the definition of X. For the proof of the result below, it is
very important that the weight is constant, when the ¢ parameter is the Euclidean
arc-length. We saw already in Chapter IV, Section 5 that a constant weight is not
a requirement for injectivity even if the curves are lines; but that there are weights
for which injectivity fails (Boman’s counter examples).

We parameterize the boundary 0f2 by its arc-length as follow

00 = {z(s) = ('(s),2%(s))| 0 < s < S},

where S is the length of 09). We can think of z(s) as a function with period S.
We now complete the definition of the family I" of curves -, imposing simplicity
conditions as follows.
(i) Every two points in {2 are joined by a unique curve 7.
(ii) The endpoints of each 7 are on 92 and all other points are in the interior.
The lengths of the curves in I' are uniformly bounded.

Those two conditions can be interpreted as a non-trapping condition plus a
convexity one. Non-trapping means that each curve 7, ,(t) reaches 9 for finite
positive and negative t.

We then define the associated X-ray transform as in (1.1) for all v € I'. The
family T" has the natural structure of a manifold given by 02 x 02 since every
v € T can be parameterized its endpoints z(s1) and z(ss2), and therefore by (s1, s2).
We use the notation 7(s, s, in this parameterization. We also assume sufficient
regularity, and in fact, C? suffices. We refer to [24, 33] for more details. With that
reparameterization, we write

Xfers)= [ s
Vs1.s2]
THEOREM 2.3. Under the above conditions, the transform X is injective on
C?(Q) and satisfies the stability estimate

1fllc2@) < C 1O X Fllz20.5)x0.67y 7V € CH).

SKETCH OF THE PROOF. We skip some of the regularity considerations near
the boundary to simplify the exposition. The complete proof can be found in
[24, 33]. The reader can just assume that supp f is contained in the (open) €.

Let 754 (t) be the oriented segment of the curve - connecting z(s) € 9 and
x € €. Set

u(s,xz) = fdt, s€[0,5], z €.

Vs,
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Let 6(s,z) be the argument (the polar angle) of v(s,z) := s, at its endpoint z,
ie.,
v(s,x) = (cos (s, x),sin(s, ))
Then one verifies that u solves the following transport equation
(2.14) v(s,x) - Vyu(s,x) = f(z),
with boundary condition
(2.15) u(s1,2(s2)) = X f(s1,82).

The PDE (2.14) just reflects the fact that the derivative of u along the extension of
s,z Past its endpoint « is f(z). It is very important for this argument that along
that extension, s remains unchanged. This is a version of the transport equation
(2.4) but the curves are parameterized differently now.

To make the PDE homogeneous, we use the fact that f(z) is independent of s.
Then we can differentiate with respect to s to get

(2.16) Lu := % [v(s,z) - Vyu(s,z)] = 0.

As above, set G := v(s,x) - V. Set also G := v, (s,z) - V,. Multiply (2.16) by
the integrating factor G u and put the resulting expression on a divergent form
using the following identity, compare with Lemma 2.1:

9
Os

Then we apply the divergence theorem as above. ([

(G 10)0, G = DV 4 0y (h20,) — Dy () + ~((Gu) (G

*** More references about the method. 2D vs. higher dimensions
*okk

3. Formulation of the problem and preliminaries
3.1. Non-trapping and simple manifolds.

DEFINITION 3.1 (non-trapping manifold). Let (M, g) be a compact Riemannian
manifold with boundary OM. We call (M, g) non-trapping, if all mazimal geodesics
i M are of finite length.

If (M, g) is non-trapping, then X given by (1.1) is well defined on C'(M) over
the set of all maximal geodesics. One way to have a convenient parameterization
of those geodesics is to require strict convexity of the boundary. This means that
the second fundamental form on dM is strictly positive, see Section D.8.1. It also
means that if we extend g outside M in a smooth way, then any geodesic (t)
tangent to M at a boundary point v(0) has only that point in common with M
(close to it), and dist(y(t), 0M) ~ t2. If (M, g) is non-trapping and has a strictly
convex boundary, then we can use d_SM as a parameterization of all (non-zero
length) maximal geodesics through M. This gives that set a structure of a manifold.
Its boundary (not included in it by definition) consist of SOM.

In [32], non-trapping manifolds with a strictly convex boundary are called
Compact Dissipative Riemannian Manifolds (CDRM). Notice that the no-conjugate
points assumption below is not required for CDRM.
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If (M, g) is non-trapping, then for every v € S, M, there exist “times” 7_(z,v) <
0 and 74 (z,v) > 0 so that

(3.1) Voo (T—(2,0)) € OM, Yy (T4 (x,v)) € OM.

They are defined as the maximal interval [7_(z,v), 74 (z,v)] over which 7., is
defined. Notice that -, ,(t) may have other contacts with OM in this interval,
including whole segments or infinitely many discrete points. We also allow that
interval to be a point: [0, 0], which happens, for example, at points where M is
strictly convex. Clearly,

(3.2) T_(x,—v) = =14 (2, v).

The functions 7+ may not be even continuous for non-convex boundaries. For
non-trapping manifolds, one can define the geodesic X-ray transform X as a map
parameterized by 0_SM:

+(z,v)
(3.3) X f(a.v) = / FOrn(®), 4™ At (2,0) € 9_SM

where f is a symmetric tensor field of order m. If in addition, OM is strictly convex,
then 0_SM has the structure of a compact manifold with boundary. In that case,
we actually define 74 uniquely by the conditions

(')/m’v(’r, (LI'I, U))7 'ya:,v (T— (-T7 U))) S 8,SM7
(’YJK,U(T-F(‘ra U))v ;)/3771;(7'4_(1', 'U))) € a+SM
Obviously, if 9M is strictly convex, 74 are smooth in SM away from the boundary
of 9SM = SOM because then the corresponding geodesic hits M transversely

and we can use the explicit function theorem. They are continuous on SM.
We will study simple manifolds first.

(3.4)

DEFINITION 3.2 (simple manifold). Let (M, g) be a compact Riemannian man-
ifold with boundary OM. We call (M, g) simple, if
(i) OM is strictly convex;
(ii) Ewvery two points x and y in M can be connected by a unique geodesic

smoothly depending on x and y. The later means that exp, 'y is a well
defined map, smooth on M x M.

PROPOSITION 3.3. Let (M, g) be simple. Then

(a) M is diffeomorphic to a closed ball.

(b) M is non-trapping.

(c) There are no conjugate points in M; i.e., every maximal geodesic in M ‘s
free of conjugate points.

PROOF. Let  be an interior point. Then exp, (M) C Tx M contains some
neighborhood of 0; in other words, 74 (x,v) > 0 for every v € S,M. Next,
exp, (M) is star-like, i.e., if v belongs to it, then so does sv for all s € [0,1]. This
means that

exp, H(M) = {sv € T,M|v € S; M, 7_(x,v) <5 < 7y (x,0)}.
Clearly, this set is diffeomorphic to a ball. Since exp, maps it to M diffeomorphi-
cally, then so is M. This proves (a) and (b).

Part (c) is a direct consequence of the assumption that exp,, is a diffecomorphism.
O
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The main questions we want to answer about X is inevrtibility, stability and
recovery of singularities, and the same questions when X is restricted over an open
subset of geodesics.

3.2. Functional spaces. We will work in Sobolev spaces of tensor fields on
M. For functions, L?(M) is defined, in an invariant way, by the norm

112200 = / P d Vol
M

The associated inner product will be denoted by (f, g)r2(ar). If f is a symmetric
tensor field of order m, we set similarly

(3.5) (FB) 2 (ar) = / fir o i d Vol
M

Notice the raising of the indices of h. If h = f, the the integrand is the natural
magnitude |f(z)| squared of f(x) pointwise. Sobolev spaces of integer order k =
0,1,... are defined by

||f||§1k(M) = /M |V...Vf|*dVol,

where the covariant derivative is taken k times (making the resulting tensor field a
field of order m+k). The Banach spaces C* are defined similarly by using covariant
derivatives. Since in local coordinates, covariant erivatives are just partial ones plus
zero order terms; the standard, non-invariant H* and C* norms are equivalent to
the invariant ones above. The constants in the estimates showing their equivalence
however depend on the coordinate system. This is only a danger if we use infinitely
many non-invariant norms. If in a proof, we use finitely many charts, and in each
one we work with the invariant norms, at the end, we still get a norm equivalent
to the invariant one.

One natural choice of a measure on 94+ SM is dS(z)do,(v), see Section D.4 and
Section D.8.2. We saw however in the Euclidean case that such a measure is not
invariant if you choose a different surface transversal to an open set of geodesics and
parameterize the same way; for an invariant definition we need the factor |v(z) - 6],
see (I1.1.12) and Corollary 11.1.2.

3.3. Potential fields and potential-solenoidal decomposition. We de-
rive here the Riemannian analog of the potential-solenoidal decomposition which
we already encountered in Chapter II, Sections 7 and 8 in the Euclidean space.

An obvious counter-example to uniqueness when m = 1 comes from the fun-
damental theorem of calculus. Let v € CJ(M) be a function (vanishing on dM).
Then X (dv) = 0 because

X(dv)(7) = / 0y (Y(1)39 (1) dlt =

where 71 = 71 (1) are the endpoints of . This observation extends to tensor fields
of any positive order m > 1, as we show below. Notice that we did not use the fact
that v is a geodesic there, or even that there is a Riemannian structure in M; in
fact dv is independent of the metric. Therefore, such dv would be in the kernel of
X even if we integrate over other families of curves connecting boundary points.
Given a contravariant tensor field v of order m, written in local coordinates as
v ={vi, .4, }, we define the symmetric differential dv of v by dv = cVv, where o

T Syt = o) —ofr) =0

T—
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is the symmetrization operator, i.e., the average over all permutation of the indices
of the (m + 1)-tensor Vu. For m = 1, we have

1
(dv)ij = 5 (Vivj + Vjui).

Using the rules of covariant differentiation, it is straightforward to show the follow-
ing:

d . m . m

7O ®), 37 () = (do(v(£), 7™ (1)).
Therefore, if v = 0 on M, we have X (dv) = 0. If m = 0, v is a function and dv is
just its differential. For m > 1, dv depends on the metric and the fact that v was
a geodesics (hence, D?y = 0) was used above.

DEFINITION 3.4 (Potential fields). Tensor fields of order m > 1 of the kind dv
with v € HF (M) are called potential fields.

We will see below that the potential fields form a closed subspace of the tensorial
L?(M) and that they belong to the kernel of X even when v has the regularity stated
above (not necessarily in Cg).

Since potential filed belong to Ker X and there are no other obvious fields in
Ker X, it is natural to conjecture that Ker X coincides with the potential fields,
when m > 1, and that it is trivial when m = 0. We call this property s-injectivity
of X. Naturally, for m = 0, we just call it injectivity.

DEFINITION 3.5. X s called s-injective if Xf = 0 for f € L?*(M) implies
f =0 when m =0, and that f is potential when m > 1; i.e., that f = dv for some
v e HYM).

The a priori assumption f € L?(M) is not needed when (M, g) is simple, as
we will see below even if f is a distribution supported in M, by ellipticity, we can
prove this for f + dv with some suitable v supported in M. For this, we extend
(M, g) to a larger and still simple (M, §).

Proving s-injectivity of X is open in general, and harder for m > 2. We prove
and review below some known results.

One way to deal with the non-uniqueness due to potential fields when m > 1
is to try to prove that X is injective on the orthogonal complement of those fields.
The “natural” Hilbert space is the L?(M) space of symmetric tensors introduced
in Section 3.2 above. Then the symmetric m-field f is orthogonal to all potential
ones if and only if

(f,dv) =0 Vv e H}(M).

This is equivalent to df = 0, where § = —d* is the divergence operator sending
symmetric tensor fields of order m > 1 into symmetric tensor fields of order m — 1
given in local coordinates by

Of)iseviiom s = V" fir i sim
where Vim fi o= gt fiy o I f = fjda? is an one form, then
5 =V =g (0:f; ~ T fi)
The divergence of symmetric two-tensor fields is

(5f)j =V ij = gikkaij
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and a coordinate representation of Vy f;; can be found in equation (6.2) of Appen-
dix D.

THEOREM 3.6. In the L?*(M) space of symmetric m-tensors, m > 1, there
exist a unique choice of orthogonal projections P and S, P + S = 1Id, so that any
f € L?(M) admits the orthogonal decomposition

(3.6) f=f+dv, f*=8f dv=Pf
with some symmetric (m — 1)-tensor v € H& (M), and §f* = 0.

PRrROOF. Assume that the theorem holds and such projections exist. Then for
any f, f = f° 4+ dv, with 6 f* = 0. Take divergence of both sides to get J f = ddv,
and v € H} (M), i.e., v € H' (M), v = 0 on OM. Therefore, v solves

{6dv —5§f in M,

3.7
(3:7) vlom = 0.

It is not hard to see that —dd is an elliptic non-negative differential operator of
order 2. We can think of symmetric tensors as vector-valued functions (if m = 2,
the dimension is n(n + 1)/2). Then —dd can be thought of as a matrix-valued
differential operator (a system). Note first that —dd is formally self-adjoint, and
clearly non-negative because (—ddv,v) = ||dv||? for any v € H}(M). Denote by
op(0), op(d) the principal symbols w.r.t. the scalar product defined by the integrand
in (3.5) (which is the natural inner product in the space ST? (C"), see (I1.8.3) and
the paragraph preceding it).

One could actually write down o,,(0), op(d) explicitly. In the case m = 2, we
get

1 1

(38) T(o—p((s)f)l = fjfij, %(O—p(d)v)ij = i(gjvl + givj)'

Recall that ¢ = g% (x)¢&;, so in particular, those symbols depend on z in a “hidden”
way. The ellipticity is then easy to check directly. In fact, we get that —dd is
strongly elliptic, i.e., not only op(z,§) vanishes for £ = 0 only, but it in fact, is
a strictly positive tensor (matrix) for & # 0. The Dirichlet boundary conditions
for such a strongly elliptic system are automatically coercive [40, V.4]. Since the
kernel and the cokernel of that system are trivial, we get that there is a unique
solution satisfying the usual Sobolev estimates. We will denote the solution u to
the system ddu = f, u = 0 on OM by u = (6d)5 u. Then (6d)p' : H™! — H{,
see [41, p. 303]. Its norm depends continuously on g € C!, see [37, Lemma 1].
Also, (6d)p' : H® — H**2 N H{, s = 0,1,... with a norm bounded by a constant
depending on an upper bound of ||g||cx, k = k(m) > 1. By (3.7),

(3.9) v = (8d)p"5f.
This motivates the following definition
(3.10) P =d(6d)5's, S=I1d-7P.

It is not hard now to see that those two operators indeed have the properties
required.

Notice that the (m — 1)-form v so that Pf = dv, v € H}(M), is uniquely
determined. O
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4. The geodesic X-ray transform of functions on simple manifolds
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5. The geodesic X-ray transform of vector fields on simple manifolds
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6. The geodesic X-ray transform of 2-tensor fields on simple manifolds



7. THE GEODESIC X-RAY TRANSFORM OF HIGHER ORDER TENSOR FIELDS ON SIMPLE MANIFOLD$

7. The geodesic X-ray transform of higher order tensor fields on simple
manifolds
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8. Manifolds with conjugate points



CHAPTER VI

The X-ray transform over general curves

1. Introduction

1.1. Definition. We study integral transforms over more general families of
curves here. Examples include integrals over magnetic geodesics and the circular
transform studied later in this chapter.

We work in R first. We want to have a “geodesic like” family of curves I
having the following properties. For every point = and direction v (the length does
not matter), we want to have a unique curve 7, ,(¢) through x in the direction of
v, i.e., so that v;,(0) = = and 4, ,,(0) = pv with some smooth p(z,v) > 0. We
also want the dependence on (z,v) to be smooth and the curve to have a non-zero
tangent everywhere. This naturally leads to the following ODE

(1.1) 7=G0.7)

which just says that 7 is determined by an initial position and direction and then
the acceleration 4 depends smoothly on them. Then the weighted X-ray transform
over I' is then defined as

(1.2) X, f(7) = / w((s),4(5) f(1(s).ds, €T,

with w(z,v) a smooth function on TR™.

It is convenient but not really necessary to assume that we are given a Rie-
mannian metric g. In many examples there is an underlying metric already and if
there is none, we can choose some. Then we will take the second derivative in (1.1)
in covariant sense writing

(1.3) Viy = G(v, ),

by modifying G. Here V, is the covariant derivative along 4. Explicitly, Vv =
¥ 4+ Ffjﬁi'yj . Then we add the second term to G to get the new generator. An
example is the generator of the geodesic equation G, see (5.2) in Appendix D given
by G(z,v) = =TF;(x)v’v? in (1.1) (in a non-invariant form). On the other hand,
in covariant form, the geodesic equation is simply V% = 0, therefore G in (1.3) is
Zero.

The formulation above has some inconveniences. The length |¥| of the curves
is not necessarily conserved along each one of them. Indeed, we have (d/dt)|¥|? =
2(G(v,%),%) and the latter vanishes if and only if the acceleration G is normal to
the curves at all points.

To fix a curve we need initial conditions for (vy,%) at some point, say t = 0.
Rescaling 4(0) by multiplying it by a positive constant may in principle lead to
a different curve, not just a re-parameterization of the given one. This in fact
happens in the circular transform example we study below. To guarantee that the
curve is unique, we will do the following. Let H be a (small enough) hypersurface,

113
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let zg € H, and let 0 # vy be a vector at it transversal to H. For (x,v) in some
neighborhood of (xg,vy), we define v, ,(t) to be the solution of (1.1) with initial
condition 7, ,(0) = x, 4,(0) = pv with some smooth p(z,v) > 0 defined for
such (x,v). That solution is defined on some interval around zero which can be
chosen uniform for all such (z,v) close enough to (zg,vg). We will re-parameterize
those corves to force the speed to be unit (in the metric g). If ¢ = ¢(s) is such a

re-parameterization for a fixed -, then we have
dy dyds

dt — dsdt’
The make the dy/ds a unit vector, we need to solve the ODE

dlt) _dntt)

dt dt

with initial condition s(0) = 0 (for example), where ¢ = 0, and therefore s = 0
correspond to y(0) € H. Since we assume that d-vy/dt never vanishes, the r.h.s.
above is positive and smooth over each v and we have a smooth solution s(t)
defined along the whole 7, which is also invertible with ¢ = ¢(s) smooth. We do
that for every v € G as above to get unit speed curves. Then s(t) would depend on
the initiel points and directions as well in a smooth way. The change of the variables
t = ¢(s) in (1.2) would change the weight by a multiplication by a non-vanishing
Jacobian and by a change of variables in the weight. The property of the weight to
be zero or not at a particular point and direction; or on some set, would not change.
Also, if “everything is analytic”, more preciely, H, w, G, then this would preserve
analyticity. We will need this fact later. Finally, the new family of curves would
solve (1.1) with a new generator G. *** It is a bit more complicated because
w and G depend on 7 in the new variables also through the point where
that geodesics hit H *** Also,

(14) <G(SB,’U),U> =0

for all (z,v) which is equivalent to the unit speed property.

Having made this reduction, we get the following simplified problems.

The local problem of recovery of the singularities. Given X, f for ~v
close to a fixed vy, can we recover WF(f) on the conormals of the curves in that
set? We assume that f is compactly supported and that vy and the nearby curves
have endpoints outside supp f. As we saw in Chapter V, if the curves are geodesics
and there are no conjugate point on them (restricted to supp f), the answer is
affirmative. If there are conjugate points, the nature of the problem changes. We
will prove similar results in the general case.

Support theorems. We show that the classical Helgason support theorems
generalize for analytic families of curves and weights (non-vanishing). In fact, even
if the system is just smooth, there is still a support theorem when n > 3.

The global invertibility problem. Let 2 be a bounded domain with smooth
boundary 012, strictly convex with respect to the curves in I'. Assume that the latter
set consists of curves starting from all points on 9f2 in all direction pointing into it.
We want to find out if X, f is invertible, stably or not and prove stability estimates.

2. The local problem

Let H be a smooth oriented hypersface as above. Let I' be some open sets of
curves 7y, solving (1.3) with a generator G satisfying (1.4) parameterized by initial
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points  and unit directions v consistent with the orientation. We fix one of them
and call it yp := Yz9,0,- We assume that I' is a “small enough” neoghborhhod of
o in the following sense: during the proofs, we may have to shrink I' finitely many
times, and we reserve that freedom. Finally, all 7’s in I" are assumed to be defined
over teh same interval [0, 7.

We are interested in inverting X, f microlocally, where f is a compactly sup-
ported distribution so that the endpoints of all v € I" are outside supp f.

*** this is just the beginning ***
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3. The magnetic geodesic X-ray transform



4. THE CIRCULAR TRANSFORM

4. The circular transform
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CHAPTER VII

The Generalized Radon transform






CHAPTER VIII

The X-ray and the Radon transforms as FIOs

1. The Euclidean X-ray transform and the Euclidean Radon transfrom
as FIOs

2. The geodesic X-ray transform as an FIO
3. X-ray transforms over general families of curves

4. Radon transforms over general family of hypersurfaces






APPENDIX A

Distributions and the Fourier Transform

1. Distributions

[This is a collection of facts that we need, just a sketch]

1.1. Function Spaces. Let 2 C R™ be an open set, which, in particular, can
be the whole R".

1.1.1. C* spaces. CE(Q) consists of all functions f defined in Q so that 9,f is
continuous for |a| < k and supp f C Q. In particular, supp f is disconnected from
0N (if there is a boundary, because 2 = R™ has none). Just vanishing at 9 is not
enough.

C5°(Q) is the space of all smooth functions f with supports in Q. [define
topology, call it D’

C*(9) is the space of all functions f defined in 2 so that 9, .f is continuous for
|a| < k. There is no control of the behavior of such functions f(z) as x — 9.

C>(9) consists of functions smooth in €. [define topology]

If K C R" is a compact set, then C*(K) consists of all f for which 0% f is
continuous on K for |a| < k. This is a Banach space with norm |[|f|[cr k) =
ngk maxg |Oa fl-

The space C*°(K) consists of all f smooth in K| i.e., for which 0% f is continuous
on K for each a. It is a Fréchet space with seminorms | - ||cr(xy, kK =0,1,....

Ck(K) is the subspace of C*(K) consisting of all functions vanishing outside
K with the same norm.

C§°(K) is the Fréchet subspace of C°°(K) consisting of all functions vanishing
outside K.

1.1.2. Sobolev Spaces. If k =0,1,... is an integer, then H*(R") is the Hilbert
space of functions f(equivalent classes, to be exact) so that

1 ey = D 10 FlF2men)-

lo| <k

To be more precise, we view f a priori as a distribution; and if 0, f € L? for all
|a] < k, where the derivatives are taken in a distribution sense, we declare it to be
in H*: otherwise — not.

Passing to the Fourier transform, we get the equivalent norm which for which
we use the same notation (strictly speaking, we should replace £ by a dot below):

11 rey = 111+ \§|2)S/2f(§)”2L2(Rn)-
Note that this makes sense and defines a Hilbert space for any real s, which explains
why we change the notation from & to s.
One can define Sobolev spaces H*(M) on a compact manifold M (without
boundary) by requiring that any f € H®(M) has to be in H*(R"™) restricted to any

123

Stuff we need
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local chart. A global definition is also possible: let P be a second order positive
definite elliptic differential operator on M, for example the Laplacian associated to
some Riemannian metric. Then || f| = (ary = |(Id + P)*/? f|| 2(ar), and one can use
eigenfunction expansions to rewrite that norm.

Let 2 C R” be bounded, open, with smooth boundary. Then H* () is defined
by the norm

Hf||2}1k(9) = Z HaafHZL?(Q)-
la|<k

We cannot use the Fourier transform anymore to define fractional or negative
Sobolev spaces this way. For s > 0 non integer, we can define H*(Q2) by com-
plex interpolation; and one can also define this space for s < 0 [41]. The space
H(Q) is defined as the closure of C§°(£2) in H*(£2). Include now  in a larger
compact manifold M of the same dimension. One can show (and for s > 0 integer
this is straightforward) that H§(£2) consists of all f € H*(M) vanishing outside
if s+ 1/2 is not an integer, and only then.

*** Complex Interpolation ***

*** Trace Thm, Embedding thms ***

2. Riesz potentials and the Fourier Transform of some homogeneous
distributions

2.1. Riesz potentials.

LEMMA 2.1. The distribution |z|" extends to a meromorphic function of p from
Ry > —n to C with simple poles at p = —n —2k, k € Z,.

LEMMA 2.2.

(L n LN F(L—"_H) —Uu—n
(2.1) Flalt =2 4nt e n 22

where |z|*, |£|7#7™ are the meromorphic extensions in Lemma 2.2.

In particular,

. 2| el o 2m) Tt
(2.2) Fla| " = x| S™ 217, Flaf 1:WIE\ i
We used the fact that P
2 n
|Sn_1‘ = ul )
['(n/2)

and that I'(1/2) = /7.
Here is one way to compute F|z|~"F!. *** This should not be included
**% Write, formally,

H(é) = /671I'£|1‘|7n+1 dx :/ e iy dw
R+><Sn71

1 .
(2.3) == / e e dr dw
2 JrRxgn—1
n—2
:7r/ 5(w~€)dw=m.
sn-1 €l

The second line can be explained by the fact that the integrand e™'*¢ is an even
function of (r,w). The first two integrals above are not convergent (but still make
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sense as certain Fourier transforms), and those calculations can be justified with
distribution theory.

2.2. Homogeneous distributions and their Fourier Transforms. Riesz
potentials are a special case of homogeneous distributions. We only sketch a few
relevant theorems from [18] without proofs because we will not use them with their
full strenght. If f € LL _(R"), f is homogeneous of order y if f(tx) = t*f(z) for

loc

t > 0. If we think of f as a distribution, then
(fro)= | fl@)p(x)de =1t" | f(x)d(x)d
R" R”

with ¢:(z) = t"¢(tz) as can be seen by a change of variables. This motivates the
following.

DEFINITION 2.3. The distribution f € D'(R"™) is called homogeneous of order
w if for every ¢ € C(R™),

(fr0) =t"(f,d1), YVt >0, where ¢s(x) =1t"d(lx).

We define homogeneous distributions in R™ \ 0 in the same way but with ¢ €
C5o(R™\ 0).

THEOREM 2.4. Let f be a homogeneous distribution in R™ \ 0 of order p and
let p is not an integer less or equal than —n. Then there exists unique extension f
of f to a homogeneous distribution in R™\ 0 of order u. Moreover the map f f
18 COntinuous.

For a proof, we refer to [18, Theorem 3.2.3]. We will only comment on the
uniqueness part. If f is such an extension, then f— f is supported at the origin, and
is therefore a linear combination of § and its derivatives. Since 9% is homogeneous
of order —n — o and none of those numbers can be equal to p, we get f — f = 0.

If u < —n and f is locally integrable away from the origin, then f(z) =
|x|# f(x/|x|) there, and the extension if given by the same function, which is locally
L' even near the origin. Those two observations is all that we will need for our
purposes.

THEOREM 2.5. Let f be a homogeneous distribution in R™ of order u. Then
feS'R™) and f is a homogeneous distribution in R™ of order —p—mn. Moreover,
if f is smooth away from the origin, then so is f.

For a proof, we refer to [18, Theorem 7.1.16, 7.1.18]. In particular, the proof

that f is homogeneous as well follows easily from Definition 2.3.
sokk ) one Kkok

3. The Hilbert Transform

1 s
Hf(p)=— pv Lds,
™ RP—S
where “pv [” stands for an integral in a principal value sense.
H = —isgn(D) = —iF 'sgn(&)F

kKK more kK
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4. Duality
Throughout this section, X C R™ and Y C R™ are open sets.

DEFINITION 4.1. A linear map
A:C5(Y) = C°(X)
is called continuous, if

(i) For any compact Ky CY there is a compact Kx C X so that supp A¢ C
Kx ifsupp ¢ C Ky,
(ii) For any compact K CY and any N > 0, there exist constants C' and M

so that
Z sup |0%A¢| < C Z sup|0%¢|, V¢ € C°(Y), suppd C K.
|al<N 1BI<M
For such a map, define the transpose A" : D'(X) — D'(Y) by
(4.1) (A'f,¢) = (f,A¢), feD(X), ¢cC(Y).

Then A’ : D/(X) — D'(Y) is a sequentially continuous map.

If the map A preserves the smooth functions but not necessarily the compact-
ness of the support (in a uniform way, as in Definition 4.1(i)), we can give the
following definition.

DEFINITION 4.2. A linear map
A:C(Y) = C™(X)

is called continuous, if for any compacts Kx C X, Ky C Y, and any multi-indez
«, there exist constants C and M so that

sup |[0%A¢| < C Z sup |0°¢|, Vo € C(Y), suppd C Ky
fox BI<M

Then A’ can be defined on £'(X) only, i.e., we have A’ : £'(X) — D’(X) defined
by

(4.2) (A'f,0)=(f.A¢), [fef(X), ¢eCF(Y).
The operator A" : £'(X) — D'(Y) is sequentially continuous.

In applications, this is often applied to A being the transpose of an operator
that we want to extend, i.e., A = B’. More precisely, let B : Cg°(Y) — D'(X)
be a sequentially continuous operator. Suppose that we can verify directly that B’
maps C§°(X) to C*°(Y), and that B’ : C§°(X) — C>°(Y) is continuous. Then B
extends to a map B : £'(Y) — D’(X) that is sequentially continuous. If we have
the stronger property: B’ : C§°(X) — C§°(Y) is continuous, then by the results
above, B extends to a map B : D'(Y) — D’'(X) that is sequentially continuous.



APPENDIX B

Wave Front Sets and Pseudo-Differential
Operators (YDOs)

1. Introduction

Microlocal analysis, loosely speaking, is analysis near points and directions,
i.e., in the “phase space” rather than in the base space, as the classical analysis.
We introduce first the notion of the wave front set of a distribution which gives the
location of the “singularities” in the phase space. Next, we review the basic theory
of UDOs needed for our exposition.

2. Wave front sets

The phase space in R”™ is the cotangent bundle T*R"™ that can be identified
with R™ x R™. Given a distribution f € D'(R"), a fundamental object to study is
the wave front set WF(f) C T*R"™ \ 0 that we define below.

2.1. Definition. The basic idea goes back to the properties of the Fourier
transform. If f is an integrable compactly supported function, one can tell whether
f is smooth by looking at the behavior of f(£) (that is smooth, even analytic) when
€| = oo. It is known that f is smooth if and only if for any N, |f(€)| < Cnl€|™N
for some Cp. If we localize this requirement to a conic neighborhood V' of some
& # 0 (Vis conic if £ € V = t& € V,Vt > 0), then we can think of this as a
smoothness in the cone V. To localize in the base x variable however, we first have
to cut smoothly near a fixed zg.

We say that (x0,&) € R™ x (R™\ 0) is not in the wave front set WF(f) of
f € D'(R") if there exists ¢ € C§°(R™) with ¢(xo) # 0 so that for any N, there
exists Cn so that

167(6)] < Cwlel ™Y

for £ in some conic neighborhood of &y. This definition is independent of the choice
of ¢. If f € D'(Q2) with some open 2 C R", to define WF(f) C 2 x (R™\ 0), we
need to choose ¢ € C§°(Q). Clearly, the wave front set is a closed conic subset of
R” x (R™\ 0). Next, multiplication by a smooth function cannot enlarge the wave
front set. The transformation law under coordinate changes is that of covectors
making it natural to think of WF(f) as a subset of T*R™\0, or T*Q\ 0, respectively.
The wave front set WF(f) generalizes the notion singsupp(f) — the comple-
ment of the largest open set where f is smooth. The points (x,&) in WF(f) are
referred to as singularities of f. Its projection onto the base is singsupp(f), i.e.,

singsupp(f) = {z; 3¢, (z,€) € WF(f)}.

127
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FiGure B.1. Example of wave front set

Examples.

(a) WF(6) = {(0,¢); & # 0}. In other words, the Dirac delta function is
singular at z = 0, in all directions.

(b) Let « = (a/,2"), where 2’ = (21, ...,2k), 2" = (Tk41,. .., Zn) with some k.
Then WF(4(z')) = {(0,2",£,0),&" # 0}, where 6(z') is the Dirac delta function on
the plane 2’ = 0, defined by (6(2), ¢) = [ ¢(0,2”)dz". In other words, WF(§(z"))
consists of all (co)vectors with a base point on that plane, perpendicular to it.

(¢) Let f be a piecewise smooth function that has a non-zero jump across
some smooth hypersurface S. Then WF(f) consists of all (co)vectors at points of
S, normal to it. This follows from a change of variables that flattens S locally.
This also applies to submanifolds S of codimension lower than one. Delta functions
supported on such submanifolds have the same wave front sets. Those are examples
of conormal singularities.

(d) Let f=pvi—7is(z) in R. Then WF(f) = {(0,&); ¢ > 0}.

In example (d) we see a distribution with a wave front set that is not symmetric
under the change £ — —¢. In fact, wave front sets (of complex-valued distributions)
do not have a special structure except for the requirement to be closed conic sets;
given any such set, there is a distribution with a wave front set exactly that set.

We see in (c) that the points in WF(f) cannot be characterized as (z, &) where
the directional derivative at z in the direction of ¢ does not exist in classical sense.
In that example, the directional derivative at points on S does not exist for all £
not tangent to S, at least; while only (co)normal ¢ are in the wave front set.

Two distributions cannot be multiplied in general. However, if WF(f) and
WF'(g) do not intersect, there is a “natural way” to define a product. Here,

WF'(g) = {(z, =€); (2,€) € WF(g)}.

3. Pseudodifferential Operators

3.1. Definition. We first define the symbol class S™(Q2), m € R, as the set of
all smooth functions p(z, §), (z,€§) € QxR", called symbols, satisfying the following
symbol estimates: for any compact K C 2, and any multi-indices «, 3, there is a
constant Cx o8 > 0 so that

(3.1) 10808 p(2,€)| < Crap(1+ €))7, W(z,€) € K x R™

More generally, one can define the class S7%5(€2) with 0 < p, § < 1 by replacing
m — |a| there by m — pla| + 6[8|. Then S™(Q2) = S7(£2). Often, we omit Q and
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simply write S™. There are other classes in the literature, for example 2 = R"™,
and (3.1) is required to hold for all z € R".

The least constant Ck g we can choose in (3.1) defines a seminorm in S™ ().
This makes the latter a Fréchet space.

The estimates (3.1) do not provide any control of p when a approaches boundary
points of Q, or co.

Given p € S™(Q)), we define the pseudodifferential operator (¥DO) with symbol
p, denoted by p(z, D), by

(3.2) mmw=ww/ﬁWMmm¢famm

The definition is inspired by the following. If P =}, ., aa(x)D® is a differential
operator, where D = —i0, then using the Fourier inversion formula we can write
P as in (3.2) with a symbol p = ngm aq(x)E* that is a polynomial in & with a-
dependent coeflicients. The symbol class S™ allows for more general functions. The
class of the pseudo-differential operators with symbols in S™ is denoted usually by
U™ The operator P is called a ¥DO if it belongs to ¥ for some m. By definition,
ST =N, 8™, and ¥V~>° =N, ¥,

An important subclass is the set of the classical symbols that have an asymp-
totic expansion of the form

(3.3) p(a,8) ~ > pm—j(@,9),
j=0

where m € R, and p,,,_; are smooth and positively homogeneous in £ of order m — j
for [€] > 1, ie., pm—j(x,AE) = N Ipy_i(z,€) for [£] > 1, A > 1; and the sign ~
means that

N
(3.4) p(,€) = > prm-j(z,6) € SN YN >0,
j=0

Any UDO p(z, D) is continuous from C§°(€2) to C*(2), and can be extended
by duality as a continuous map from £'(2) to D'(£2).

3.2. Principal symbol. The principal symbol of a ¥DO given by (3.2) is the
equivalence class S™(Q)/S™~1(2), and any its representative is called a principal
symbol as well. In case of classical ¥DOs, the convention is to choose the principal
symbol to be the first term p,,, that in particular is positively homogeneous in €.

3.3. Smoothing Operators. Those are operators than map continuously
E'(Q) into C*°(Q). They coincide with operators with smooth Schwartz kernels
in ©Q x Q. They can always be written as YDOs with symbols in S™°°, and vice
versa — all operators in U~ are smoothing. Smoothing operators are viewed in
this calculus as negligible and YDOs are typically defined modulo smoothing oper-
ators, i.e., A = B if and only if A — B is smoothing. Smoothing operators are not
“small”.

3.4. The pseudolocal property. For any ¥DO P and any f € £'(),
(3.5) singsupp(Pf) C singsupp f.

In other words, a WDO cannot increase the singular support. This property is
preserved if we replace singsupp by WF, see (4.1).
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3.5. Symbols defined by an asymptotic expansion. In many applica-
tions, a symbol is defined by consecutively constructing symbols p; € 5™, j =
0,1,..., where m; ~\, —oo, and setting

(3.6) p(x,€) ~ ij (z,€).

The series on the right may not converge but we can make it convergent by using
our freedom to modify each p; for £ in expanding compact sets without changing
the large £ behavior of each term. This extends the Borel idea of constructing a
smooth function with prescribed derivatives at a fixed point. The asymptotic (3.6)
then is understood in a sense similar to (3.4). This shows that there exists a symbol
p € S™0 satisfying (3.6). That symbol is not unique but the difference of two such
symbols is always in S™>°.

3.6. Amplitudes. A seemingly larger class of ¥DOs is defined by

BT Af=en [dC Sy O 4) dyds, T € GF(@),
where the amplitude a satisfies
(38) 1080707 a(r,,6)| < Crapn(L+ 1)1, V(z,y,6) € K xR

for any compact K C © x Q, and any «, 3, 7. In fact, any such YDO A is a YDO
with a symbol p(z, &) (independent of y) with the formal asymptotic expansion

(3.9) p(x, &) ~ ZD?@;la(a:,x,f).

a>0

In particular, the principal symbol of that operator can be taken to be a(z,x,§).
We often use the notation Op(a) or Op(p) to denote operators of the kind (3.9)
and (3.2).

3.7. Transpose and adjoint operators to a YDO. The mapping proper-
ties of any WDO A indicate that it has a well defined transpose A’, and a complex
adjoint A* with the same mapping properties. They satisfy

(Au,v) = (u, Av), (Au,v) = (u, A*v), Vu,ve C§°

where (-, ) is the pairing in distribution sense; and in this particular case just an
integral of uv. In particular, A*u = A’u, and if A maps L? to L? in a bounded
way, then A* is the adjoint of A in L? sense.

The transpose and the adjoint are YDOs in the same class with amplitudes
a(y,z, =) and a(y, z, ), respectively; and symbols

Sl (@ D Y DI 6),

a>0 a>0

if a(z,y,£) and p(x,€) are the amplitude and/or the symbol of that ¥YDO. In
particular, the principal symbols are po(z,—&) and po(z,£), respectively, where
po is (any representative of) the principal symbol.
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3.8. Composition of YDOs and YDOs with properly supported ker-
nels. Given two WVDOs A and B, their composition may not be defined even if they
are smoothing ones because each one maps C§° to C* but may not preserve the
compactness of the support. For example, if A(z,y), and B(z,y) are their Schwartz
kernels, the candidate for the kernel of AB given by [ A(z,z)B(z,y)dz may be a
divergent integral. On the the hand, for any YDO A, one can find a smoothing
correction R, so that A+ R has properly supported kernel, i.e., the kernel of A+ R,
has a compact intersection with K x Q and Q x K for any compact K C 2. The
proof of this uses the fact that the Schwartz kernel of a YDO is smooth away from
the diagonal {x = y} and one can always cut there in a smooth way to make the
kernel properly supported at the price of a smoothing error. YDOs with properly
supported kernels preserve C§°(2), and also £'(€2), and therefore can be composed
in either of those spaces. Moreover, they map C*°(€2) to itself, and can be extended
from D’(Q) to itself. The property of the kernel to be properly supported is often
assumed, and it is justified by considering each DO as an equivalence class.

If A€ ¥™(Q) and B € U¥(Q) are properly supported ¥DOs with symbols a
and b, respectively, then AB is again a ¥DO in U™*%(Q)) and its symbol is given
by

S (1)l oga(e, ) Dsb(a, €)

a>0

In particular, the principal symbol can be taken to be ab.

3.9. Change of variables and YDOs on manifolds. Let Q' be another
domain, and let ¢ : & —  be a diffeomorphism. For any P € Um(Q), Pf :=
(P(fo@))o¢d~! maps C§°(Q) into C*°(). It is a YDO in ¥™(Q) with principal
symbol

(3.10) p(¢~ ' (y), (d)'n)

where p is the symbol of P, d¢ is the Jacobi matrix {0¢;/0x;} evaluated at x =
¢ 1(y), and (d¢) stands for the transpose of that matrix. We can also write
(dg)" = ((d¢~1)~1). An asymptotic expansion for the whole symbol can be written
down as well.

Relation (3.10) shows that the transformation law under coordinate changes is
that of a covector. Therefore, the principal symbol is a correctly defined function
on the cotangent bundle T*(). The full symbol is not invariantly defined there in
general.

Let M be a smooth manifold, and A : C§°(M) — C°°(M) be a linear operator.
We say that A € U (M), if its kernel is smooth away from the diagonal in M x M,
and if in any coordinate chart (A, x), where x : U —  C R", we have (A(uox))o
Xt € Um(Q). As before, the principal symbol of A, defined in any local chart, is
an invariantly defined function on 7M.

3.10. Mapping properties in Sobolev Spaces. Any P € ¥ () is a con-
tinuous map from HE  (Q) to HS ™(Q). If the symbols estimates (3.1) are satis-

comp loc

fied in the whole R™ x R™, then P : H*(R") — H*~™(R").

3.11. Elliptic YDOs and their parametrices. The operator P € ¥ (Q)
with symbol p is called elliptic of order m, if for any compact K C 2, there exists
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constants C' > 0 and R > 0 so that
(3.11) cliEl™ < |p(z,&)| for xz € K, and |£]| > R.

Then the symbol p is called also elliptic of order m. It is enough to require the
principal symbol only to be elliptic (of order m). For classical ¥DOs; see (3.3), the
requirement can be written as p,,(x,&) # 0 for £ # 0. A fundamental property of
elliptic operators is that they have parametrices. In other words, given an elliptic
UDO P of order m, there exists @ € ¥~™(), so that

QP -1de U=, PQ-1de U .

The proof of this is to construct a left parametrix first by choosing a symbol gg =
1/p, cut off near the possible zeros of p, that form a compact any time when x
is restricted to a compact as well. The corresponding YDO @y will then satisfy
QoP =1Id+ R, R € ¥~!'. Then we take a ¥DO E with asymptotic expansion
E~Id— R+ R? - R?+ ..., that would be the formal Neumann series expansion
of (Id + R)™!, if the latter existed. Then EQy is a left parametrix that is also a
right parametrix.

An important consequence is the following elliptic regularity statement. If P
is elliptic (and properly supported), then

singsupp(PF) = singsupp(f), Vf € D'(Q).

In particular, Pf € C* implies f € C*°.

Elliptic ¥DOs are not invertible or even injective in general. For example, the
Laplace-Beltrami operator A on the sphere S”~! is elliptic but —A — z which is also
elliptic, is not injective when z is an eigenvalue — and there are infinitely many of
them. On small sets, they are injective, however. In the next theorem, we consider
L2(U) as a subspace of L?(f2) consisting of functions vanishing outside ().

_THEOREM 3.1. Let P € U™ be elliptic properly supported in a neighborhood €2y
of Q. Then there exists € > 0 so that for any open U C Q with measure |[U| < e, P
is injective on distributions supported in U and

(3.12) 1fllz2wy < CIPflla-me,y Yf € L*(U),

PrOOF. Let Q € ™™ be a properly supported parametrix; then QP = Id+ K,
where K is smoothing in a neighborhood of K, i.e., it has a smooth Schwartz kernel
K(z,y) near Q x . Then

1K@l < | [ K], < Ilusl o,

L*(U)

where ||K|lus is the Hilbert-Schmidt norm of XC. Since K is uniformly bounded in
Q x Q, we have ||K|las < C|U|. Therefore, for |[U| < 1, K : L>(U) — L*(U) has a
norm less than one; and therefore, Id+ K is invertible there. Write (Id+K)~1QP =
Id on L?(U) to get (3.12). This estimate holds for every f € L? which vanishes
outside Q. Any distribution f € Ker P would be C* by ellipticity, therefore we get
injectivity for distributions as well, as stated. O

Note that the constants C' and ¢ can be estimated in terms of some of the
seminorms of the symbol of P and in particular can be chosen uniform for a class
of P’s with that seminorm uniformly bounded.
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4. YDOs and wave front sets

The microlocal version of the pseudo-local property is given by the following:
(4.1) WF(Pf) Cc WE(f)

for any (properly supported) ¥DO P and f € D'(2). In other words, a ¥DO
cannot increase the wave front set. If P is elliptic for some m, it follows from the
existence of a parametrix that there is equality above, i.e., WF(Pf) = WF(f).

We say that the ¥DO P is of order —co in the open conic set U C T*Q\ 0, if for
any closed conic set K C U with a compact projection on the the base “z-space”,
(3.1) is fulfilled for any m. The essential support ES(P), sometimes also called the
microsupport of P, is defined as the smallest closed conic set on the complement of
which the symbol p is of order —oo. Then

WF(Pf) ¢ WF(f) NES(P).

Let P have a homogeneous principal symbol p,,,. The characteristic set Char P is
defined by

Char P = {(z,§) € T"Q\ 0; pm(x,§) = 0}.
Char P can be defined also for general YDOs that may not have homogeneous
principal symbols. For any YDO P, we have

(4.2) WF(f) C WF(Pf)UChar P, Vf € &'(Q).

P is called microlocally elliptic in the open conic set U, if (3.11) is satisfied in all
compact subsets, similarly to the definition of ES(P) above. If it has a homogeneous
principal symbol p,,, ellipticity is equivalent to p,, # 0 in U. If P is elliptic in U,
then Pf and f have the same wave front set restricted to U, as follows from (4.2)
and (4.1).

4.1. The Hamilton flow and propagation of singularities. Let P €
U™ (M) be properly supported, where M is a smooth manifold, and suppose that
P has a real homogeneous principal symbol p,,. The Hamiltonian vector field of
Pm on T*M \ 0 is defined by
o - <apm 0 Opm 0 >

j=1

89@ 8@ (95] 8xj

The integral curves of H,, = are called bicharacteristics of P. Clearly, H,, pm =0,
thus p,, is constant along each bicharacteristics. The bicharacteristics along which
pm = 0 are called zero bicharacteristics.

Hormander’s theorem about propagation of singularities is one of the funda-
mental results in the theory. It states that if P is an operator as above, and Pu = f
with w € D'(M), then

WF(u) \ WF(f) C Char P,

and is invariant under the flow of H,, .

An important special case is the wave operator P = 87 — A,, where A, is
the Laplace Beltrami operator associated with a Riemannian metric g. We may
add lower order terms without changing the bicharacteristics. Let (7,&) be the
dual variables to (t,x). The principal symbol is py = —72 + |§|3, where |§|§ =
> g7 (2)&€;, and (¢9) = (gi;)~*. The bicharacteristics equations then are 7 = 0,
t=—27,47 =23 ¢gY¢, fj = —20,; > ¢"(2)&&;, and they are null one if 72 = |§\3.
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Here, & = dz/ds, etc. The latter two equations are the Hamiltonian curves of
H =Y g% (x)&:&; and they are known to coincide with the geodesics (v,%) on
T M when identifying vectors and covectors by the metric. They lie on the energy
surface H = const. The first two equations imply that 7 is a constant, positive or
negative, and up to rescaling, one can choose the parameter along the geodesics to
be t. That rescaling forces the speed along the geodesic to be 1. The null condition
72 = |€]2 defines two smooth surfaces away from (7,&) = (0,0): 7 = £[¢];. This
corresponds to geodesics starting from x in direction either £ or —¢. To summarize,
for the homogeneous equation Pu = 0, we get that each singularity (z,£) of the
initial conditions at t = 0 starts to propagate from x in direction either ¢ or —¢ or
both (depending on the initial conditiosn) along the unit speed geodesic. In fact,
we get this first for the singularities in T*(R; x R?) first, but since they lie in
Char P, one can see that they project to T*R} as singularities again.

5. Schwartz Kernels of YDOs

Since WDOs satisfy the continuity requirement of the Schwartz kernel theorem,
they have kernels, which in general are distributions. One can characterize YDOs
completely by their kernels. In fact, in the applications we consider in this book,
typical ¥DOs are X'X, R'R, etc. They are naturally described by their Schwartz
kernels and the oscillatory representations (3.2) and (3.7) are foreign to them. We
will review some of the relationships between a symbol and an amplitude on one
hand; and a Schwartz kernel, on the other.

By (3.7), we formally get that A = a(z,y, D) has a Schwartz kernel A(x,y)
given by

Alz,y) = (@2m)" / eV Ea (e, y, €) de.

The oscillatory integral above may not be convergent but it is always well defined
as a distribution. If we denote by a(z,y, z) the inverse Fourier transform of a with
respect to ¢ (with dual variable z), we get

(5.1) Az, y) = alz,y, x —y).

Any amplitude a is a smooth function of (z,y) with values in tempered distributions
by the amplitude estimates (3.8), hence a(z,y, z) is well defined as distribution of
z smoothly depending on z. Then it is a simple exercise to show that a(z,y,x —y)
is also well defined in the same class.

PROPOSITION 5.1. A(z,y) is C* away from the diagonal x = y.

Proor. For any multi-index we have
(0= 1) Alw.y) = 20" [ @D EDalz,y.€)de.

When m— |a] < —n, where m is the order of a, the integral is absolutely convergent
and therefore, the left-hand side is a continuous function of (z,y). Apply afj,y to
that to get 97, (z — y)*A(z,y) € C(R™ x R") when m — |a| < —n. This proves
the claim. O

This gives a simple proof of the pseudo-local property 3.5.
The following immediate corollary worth formulating.



5. SCHWARTZ KERNELS OF ¥DOS 135

COROLLARY 5.2. If the Schwartz kernel of the linear operator A has singular-
ities away from the diagonal, it is not a WDO.

For example, for the geodesic X-ray transform X, X’X is a YDO in an open
convex {2 if and only if there are no conjugate points there.

An important question is how to tell that A is a DO if we know its Schwartz
kernel, and how to find it symbol, when it is. One interesting example, covering
X'X and R'R is Riesz potentials; by Lemma A.2.2, convolutions with |z|=%, 0 <
k < n, i.e., operators with kernels |z — y| =%, are Fourier multipliers with symbols
C|é|~"+* and therefore, ¥DOs. Note that the singularity at £ = 0 can be dealt
with, see (I1.3.9).

Going back to ¥DOs in U™, it can be shown that [42]

‘af,yA(fE, y)| S C|x — y‘—n—m_lﬂl

if n +m + |8] > 0. This is consistent with the z-independent symbol case above.
Based on this, we would suspect that a linear operator with a Schwartz kernel
satisfying the estimate above might be a ¥DO of order —m. Such a theorem (with
additional assumptions) can be found in [42].

We will consider the following special case, see also Theorem 7.1.24 in [19].

THEOREM 5.3. Let

Az, y) = M

|z —y|*

, 0<k<n,

where a(x,y,0) is smooth and has the parity of the integer n — 1 — k. Then A is
the Schwartz kernel of a WDO of order —n + k with amplitude

alw,t,€) = mi~n / a(z,y,0)5 V(¢ - 0) do,
Sn—l

where 6%) the the k-the derivative of 5.

ProoOF. Write A(z,y) = a(z,y, 2/|2|)|2| 7%, 2 = © — y. If the operator A with
kernel A is a ¥DO, it has to have an amplitude

a(w,y,€) = / e @2/l 4

|2]*

see (5.1). Pass to polar coordinates z = 76 to get

a(%%f):/s / e 0 (z,y, 0)r" 1R dr do
n—1 0

1 R —1-k
= e Yz, y, 0)r" drdf
2 Jons )

= i "k / alz,y, )6+ (. 9)db.
S’n—l

We have an amplitude of order —n + k, with a singularity at £ = 0. Cutting off the
singularity at £ = 0 in a smooth way (contributing to a smoothing operator), we
get an amplitude in the symbol class S~ t*,
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(a(e.v.).6) = | ‘W&@) d

-/ / (2, ,0))r" 175 (r6) dr 0
Sn 1
P 1—-k 7
/ / az,y,0 @(rf)dr dé.
S‘n, 1

By the Fourier Slice Theorem for R (Theorem II.1.11, [ ePri g (r0) dr
DIRf(p,0). Set p =0 to get

(a(e,y, ) 8) = 7 / o(2,9,0) D1 R (p, 0)]p—o .

Snfl
Since ¢(§) — Ro(p, 0) has a Schwartz kernel §(p—0-&), this proves the theorem. O

6. YDOs acting on tensor fields

WDOs acting on tensor fields are a part of the more general theory of ¥DOs
acting on smooth sections of vector bundles. We will consider covariant tensor
fields only. In local coordinates in R", we say that the linear operator A mapping
k-fields to [ ones (Af)i, .4 ]1 ]"fj1 . belongs to W™ if each a]1 _J" belongs to
™. Under a change of varlables y = y(z) (the same for f and A f) the principal
symbol of each a] . Jl" would change as a function on the cotangent bundle but f
and Af change as Well by the laws of transformations of covariant tensors, see (2.1)
in Appendix D. We get

(Af)hll( ) - azl .Zlk (l‘(y), (8y/8x)TDy)f]1]k (y) + (Rf)llll (y)a

where R is of order —1. To convert this formula to a coordinate representation in the

y-basis, we need to multiply it by ax L ‘3”’ " and replace f by fj, . . ax“ .. ‘?;”Jj’;
y'l Y

i.e., to apply that linear transformatlon to f above and the inverse one. This give
us the following transformation law for the principal symbol o,(a) of A in the
y-coordinates

)

dxtt dxh Pyt dyli

AR e e

Therefore, the principal symbol of A transforms as a tensor field of order (k,1),
see (2.1) in Appendix D again, and we could have derived this fact by treating

g1 fl‘) as a tensor field itself.

oy (@) = oy (all )

oplaj)
7. Analytic YDOs

We review here a part of the analytic ¥DOs theory, following [43]. We adopt
a very minimalistic approach — to present this part of the theory that we really
need.

We start with the notion of an analytic function (sometimes called real analytic)
in a domain  C R™. This class is denoted by A(€2) and consists of all smooth
functions satisfying either of the three equivalent conditions:

(i) The Taylor series of f about any point a € Q converges to f near z = a.
Note that this does not require existence of a point a so that the Taylor series about
a converges in the whole Q. Example: f(z) =logz on Q = (0,00).
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(ii) For every compact set K C € there exits constants A > 0 and C > 0 so
that

(7.1) 0% f(x)| < ACl®la!, vz e K.

(iii) The function f can be extended to a holomorphic function in some complex
neighborhood Q€ of Q in C”.

Holomorphic functions in open sets in C™ are those smooth functions solving
the Cauchy-Riemann system

= 1/0h . Oh )
azhahQ(W+lay7>0, ]—1,...,”,

where 2/ = 27 +iyJ.

Sums, products and compositions of analytic functions are analytic. If f has no
zeros is some domain, then 1/ f is analytic there. If f is an analytic diffeomorphism,
its inverse is analytic, too.

One of the essential difficulties when working with analytic functions is the lack
of non-trivial analytic functions with compact support. To overcome this difficulty,
we use sequences of cut-off functions instead of a single one. Let € V be open. We
want to construct an “analytic” function gy, N = 1,2,... so that g, = 1 on U
and g, = 0 outside V. Of course, there is no such analytic function. Instead, we
require an estimate of the type (7.1) to hold for || = N only.

One such choice is a smooth function gy with the properties: for every d > 0,
0<gn<1,gv =10onU and gy(z) = 0 when dist(z,U) > d, and

0%gn| < (CN/d)*!, Ja] < N.

Note that (CN)lel < e€Nmal) see also (7.1).

Cutoffs in the phase variable £ are done with a different type of sequences
g% (&) dependent on a large parameter R > 0, see [43]. We would really like to
have analytic cutoffs g(&) (equal to 1 in some cone and to 0 away from a large one)
which do not destroy the analyticity in the x variable, i.e., for which g(D) would be
analytically pseudolocal. We also want them to be symbols of order 0. Such cutoffs
do not exist but one can build a sequence g7 (¢) that does this asymptotically, in
some sense. For the analytic pseudolocal property it is needed g(x) to be analytic
away from the origin. We will require then §® to be analytic for |z| > C//R, which
is true for g’ introduced below.

Given two open conic sets I' € I'* in R™ \ 0, there exists C' > 0 so that for for
every R > 0 one can find a smooth function g in C™ \ iR" so that

0<gf<i1 on R™\ 0,
(7.2) g®=1 onT,
g® =0 outside T'*,
and |g(¢)| < Cexp(C|SC|/R), 09" (¢)] < Cexp{C(I¢| — [%¢])/R}. The proof of

this statement in [43] is not trivial.
The cutoffs functions g will be used later.

7.1. Analytic wave front sets. One can tell the analyticity of a distribution
by its localized Fourier transform in the following way. The distribution u € D’(2)
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is analytic in € if and only if for every xo € Q, there exists oy € C5° with p(zg) =1
near xg so that

(7.3) [onu(é)] < CNTINIL + [¢)

with C independent of N. To prove the necessity of this condition, we just choose
@YN = gn as above.

If estimate (7.3) holds in a conic neighborhood of some (xg,&y) € T*R™\ 0, we
say that u is microlocally analytic at (and also near) (zg, £p). The complement of all
such points is the analytic wave front set WF  (u). The definition is independent on
the choice of the cut-off function, and the proof of that actually uses the cutoffs g%
described below. The projection of WF 4 (u) on the base (where x lives) coincides
with the analytic singular support — the complement to the largest open set where
u is analytic, see also [18].

An equivalent definition of an analytic wave front set is given by Bros-Iagolnitzer
[10]. A distribution u is called microlocally analytic at (g, &%), €° # 0 if

(7.4) / ME)E A2y (1) (7) dw = O(e )

for some x € C§° with x(xg) # 0 and for & near £°. This is necessarily a conic
(open) set. The complement of the points in T*R™ \ 0 where « is microlocally
analytic is the analytic wave front set of u. This definition is equivalent to the
Hormander’s one in (7.3) as shown by Bony [9], see also [34].

The following theorem is essential for proving support theorems in this book.

THEOREM 7.1 (Sato-Kawai-Kashiwara [29]). Let u be a distribution such that
0 € suppu and suppu C {z" > 0}. Then (0,4e™) € WFx(u), where e” :=
0,...,0,1).

Under the conditions of the theorem, u cannot be analytic near 0, therefore,
there will be & # 0 so that (0,&) € WF4(u). The proof is then completed by the
following result by Kashiwara.

THEOREM 7.2 (The “Watermelon theorem”). Let u be a distribution satisfying
suppu C {z™ > 0}. If (0,n) € WFa(u) for some n # 0, then (0, (1,t)) & WFa (u)
for allt € R.

Here, n = (1, m,). The Watermelon theorem says that we have two alternatives
for such an u at x = 0: either WF s (u) consists of (0, e™), A # 0 only; or there
is £ with £ # 0 so that (0,€) € WF4 (u); and then all (z,£) not collinear with e”
will be in WF 4 (u). In the latter case, by the closedness of WF 4 (u) as a conic set,
(0,€) € WF4 (u) for all £ # 0. Therefore, the alternatives are £ = Ae™ or all . In
either case, we get Theorem 7.1 as a corollary of Theorem 7.2.

The next lemma shows that independently of the behavior of the amplitude in
the ¢ variable, vanishing in a certain open cone means the corresponding ¥DO is
analytically regularizing there.

LEMMA 7.3. Let a(z,y,£&) be a smooth function on Q x Q x (R™\ 0)so that for
every K @ Q) x Q, there is C > 0, so that
0% a(z,y,€)| < CITal(1 + €)™, ¥(@,y) € K, VE € R, Ya

for some m. Let a = 0 for £ in some open cone I' C R™\ 0. Then for every
u € &'(Q), then Op(a)u (defined by (3.7), which makes sense as an oscillatory
integral) is microlocally analytic in Q x T'.
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Note that only analyticity in z is needed, and even though a may not be a
(smooth) symbol in the lemma; in our applications, it will always be. On the
other hand, the amplitude may not be of the kind a(z,y, £)g?(¢) described below.
Actually, our main use of this lemma is the following. Localizing our integral
transform and forming the corresponding normal operator, we do get an amplitude
supported in a cone, but if is not of the type ag®. Then we use this lemma to
complete the argument, see ...

The following “obvious” statements hold (but the proofs are not trivial): the
analytic wave front set of u|y, where Y is open, is the intersection of WF (u) and
T*Y. Also, the projection of WF 4 (1) on the base is the analytic singular support
suppp u of u, i.e. the complement of the largest open set where u is analytic.

7.2. Analytic YDOs. The continuous linear map A : £'(2) — D’'(Q) is called
analytically regularizing if its image is in A(Q)). Those are the negligible operators
in the analytic YDO calculus.

Examples of analytically regularizing operators are operators with analytic ker-
nels, of course; and ¥YDOs with amplitudes decaying exponentially in the following
sense. If a(z,w,&) is smooth in Q€ x Q€ x R™, holomorphic in (z,w), and if for
every compact set K C Q€ x Q€ we have

(7.5) la(z,w, )| < C"lfl/c, V(z,w) € K, V¢ € R",

then Op(a) is analytically regularizing. In particular, if a(z,y, ) is analytic in (z, y)
and has a compact support in the £ variable, then Op(a) is analytically regularizing.
Note that analyticity in £ is not required in those examples.

Ideally, one would require analytic amplitudes to be analytic in all variables.
This would exclude such important cases as |£|~2, for example, or the operators
X'X and R'R. Tt would prevent elliptic analytic ¥DOs from having parametrices.
The examples above show that analyticity in the £ variable in compact sets con-
tributes an analytically regularizing operator. This explains why we do not require
analytic regularity near £ = 0 below.

DEFINITION 7.4 (pseudoanalytic amplitudes). The smooth function a(x,y,§)
on Q0 x R™ is called a pseudoanalytic amplitude of order m in 2 x Q if there exists
a complex neighborhood Q€ of Q so that a it extends to a holomorphic function
a(z,w, &) in Q€ x Q€ xR, so that for any compact set K C Q€ x QF, there exists
C, Ro > 0 so that for oll (z,w) € K, £ € R™, and multiindices «,

(7.6) |0 a(z,w,§)| < cleltialigm=lel for €] > Ry max(|al,1).

DEFINITION 7.5 (analytic amplitudes). The pseudoanalytic amplitude a(z,y, &)
in Q x Q is called an analytic amplitude if there exists a complex neighborhood €
of Q and 69 > 0 so that a it extends to a holomorphic function a(z,w,() in

(7.7) {(z,w,¢) € Q° x QF x C"| 1+ [I¢| < do|R¢} -

so0 that for any compact set K C Q€ x QC, there exists C, Ry > 0 so that for all
(z,w) € K, £ € R™, and multiindices «,

(7.8) |0ga(z,w,§)| < C"O“Ha!|€|m*‘°‘| for |xz| > Romax(|af, 1).

In fact, given a pseudoanalytic amplitude, one can find an analytic one so that
the difference of the corresponding WDOs is analytically regularizing.

reference

same estimate?
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If we have a holomorphic a function on the set (7.7), it is enough that for some
m, and for any K€ € Q€ x Q€ to have

(7.9)  la(z,w, QI < CICI™, V(z,w) € K, € C", 1+ [3¢]| < [RC|/R.

Then the estimates (7.6) can be obtained by the Cauchy integral formula in the
ball [¢ — & < [€]/(2R).

DEFINITION 7.6 (analytic ¥DO). The $DO A in ) is called an analytic YDO
if for every Q € € there exists a pseudoanalytic amplitude @ in @ x Q so that
A — Op(a) is analytically regularizing in Q.

Analytic ¥DOs are analytic pseudolocal similarly to (3.5).

There is a calculus of the analytic YDOs similar to the smooth calculus but
the proofs are mode delicate since in the asymptotic expansions, we need to control
all constants. In particular, each analytic ¥DO a(x,y, D) is equivalent (on any
compact subset), modulo analytically regularizing operators, to an operator of the
type p(z, D), called symbol of A; and the symbol is unique, modulo analytically
regularizing ones.

Microlocally equivalent symbols are defined in the following way. Let p(x, &) be
a pseudoanalytic symbol in ) and if U C R™ is an open set, and let I'° be an open
comic subset of R™ \ 0. Then we say that a is equivalent to 0 (microlocally) on
U x T, if its extends to a smooth function of (z,&) € U€ x I'” holomorphic in z
and satisfying the following. For every conic-compact subset K of U€ x I'Y,

Ip(z,6) < Ce I8/ (2 6) e K.

Here, U® is a complex neighborhood of U, as usual. This allows us to define
equivalent symbols near a fixed (z¢,£°) in a natural way; and equivalent symbols
in a conic set not necessarily of product type (by the requirement to be equivalent
near every point).

One defines Char(A) in a natural way now: as the complement of all points, at
which it symbol is equivalent to zero. Then (4.2) holds for the analytic wave front
sets as well.

Symbols microlocally equivalent to zero in a conic set correspond to ¥DOs
analytically regularizing in that open conic set; i.e., operators for which WFy (u)
is not contained there for every u € £'(€2). Then one can show that microlocally,

every analytic ¥DO is equivalent to Op(a)g®(D) with some g% as in (7.2).
¥Rk kK

7.3. Parametrices of elliptic analytic YDOs. Elliptic analytic YDOs are
those analytic WDOs which are elliptic as standard WDOs. They have parametrices
in standard sense but they also have parametrices in the analytic calculus.

THEOREM 7.7. Let A be an analytic VDO in Q, elliptic of order m. Then for
every Q € Q there exist a WDO B in Q of order —m so that

(i) B extends to B : D'(Q2) = £'(Q) continuously;

(ii) B restricted to Q is an analytic WDO (of order —m,) in Q;

(ii) AB — Id and BA — 1d are analytically reqularizing operators in Q.

The theorem extends to matrix-valued operators which symbols are elliptic in
the sense that they have a left inverse for || > 1; then we can claim that BA —Id
is analytically regularizing only.
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In particular, if A is an elliptic analytic ¥DO in €, then
WFA(AU) = WFA(u)

Standard elliptic ¥DOs are Fredholm but not invertible in general. On the
othet hand, analytic elliptic ¥DOs are injective on a priori compactly supported
functions.

COROLLARY 7.8. Let A be an elliptic analytic VDO in Q and let Af =0 for
some f € E'(Q). Then f=0.

PROOF. Let Q @ Q be such that supp f C Q. Let B be a parametrix for A
related to Q. Then f = Rf, where R is analytically regularizing in Q. Therefore,
f is analytic in Q. Since it is compactly supported there, it vanishes by analytic
continuation. (I

REMARK 7.1. Note that it was enough to assume Af € A(Q2). Also, the
assumption that f was a priori compactly supported was essential. Such a statement
is clearly wrong on analytic compact manifolds (to which the analytic calculus
extends) or in domains without the compactness assumption. For example f = 1
is in the kernel of the Laplacian in the latter case; and also in the former one, if we
define an analytic Riemannian metric on the manifold first.

7.4. Microlocally defined analytic YDOs. We would like to have a way
to construct an analytic DO of a fixed order m with a certain prescribed pseu-
doanalytic symbol when the phase variable £ belongs to a fixed conic set V. In
the standard ¥DO calculus, we can just extend the symbol smoothly by keeping
it a symbol of order m, and we can set to to be zero outside a larger conic set. In
the analytic calculus, such an extension has to be analytic (for large |¢]) and may
not exist. This looks as a technical problem only because we only want to do our
analysis in V' but possible lack of analytic extension outside V' would prevent us
form doing it. Fortunately, we can use the cutoffs ¢ introduced earlier to solve
the problem.

DEFINITION 7.9 (analytic amplitude in a conic set). Fiz (19,£%) € R™ x (R™\
0). An analytic amplitude near (xq,£°) of order m us any holomorphic function
a(z,,w,C) on the set

(7.10) {(z,w,0) € Q° x Q° x C"| RC €T, 14 |I¢| < So|RC|}
where U is an open neighborhood of z° in C™, T° is an open cone in R™ \ 0
containing £ and 5o > 0 is such that

la(z,w, )| < C|¢|™  on the set (7.10).

Let now U = U® NR" be the real part of UC. Let €2 ¢ ' € I'* @ I'° be open
cones. Let g* be the function as in (7.2) related to I' and I'*. Then we construct
the DO (but not an analytic ¥DO)

(7.11) ARu(z) = (2m)" // @00 (e y, €)gR(€)uly) dy dE.

It follows from Lemma 7.3 that if we choose another g’ R" then the difference of the
resulting operators will be analytically regularizing near (zo,£%). In that sense, AT
is independent of the choice of g* near (x, £°).
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LEMMA 7.10. Let V' € V. C U C R™ be all open. If u € E'(U) is microlocally
analytic in V x T, then ARu is analytic in V' for R > 1.

The lemma implies the following, in particular. Let u be any distribution and
let x € C§° be equal to one near xg. Then Afyu is well defined. If we chose
another such function ¥, then A®(y — Y)u is analytic near zo for R > 1 by the
lemma. Indeed, if V' 3 z¢ is small enough, then (x — x)u = 0 in V, and by the
lemma, A®(x — ¥)u is analytic in a smaller neighborhood for R > 1. Therefore,
by changing x in A®yu, we are just adding an analytic function to the result near
xo. Therefore, we have the freedom to chose different g% and x and the resulting
A%y will be all microlocally equivalent near (g, £°).

One can build now a symbolic calculus of the analytic ¥DOs in a conic neigh-
borhood of (zg,£°). Every such operator has a symbol (z,¢) independent of y. We
can compose such operators using the same composition rules. Elliptic operators
are defined as in the global case but the elliptic estimate is only required in a conic
neighborhood of (9,£%). They have parametrices. In particular, we get that in
such a conic neighborhood, for an elliptic A, Awu is microlocally analytic there if
and only if v is.

8. The complex stationary phase method of Sjostrand

As we saw, the analytic ¥DO calculus requires very special cut-offs when we
need to localize. In applications to the geodesic ray transform, the cut-offs are
imposed naturally on the manifold of the geodesics. Let us say that we want to
recover the analytic wave front set WF A (f) of f knowing the weighted geodesic
X-ray transform X, f of f with w > 0 and real analytic on some open set U of
geodesics. This is how we prove a support theorem for X,,. Then one would want
to study N := X'xX where x is a smooth cutoff restricting to . If there are no
conjugate points, IV is a ¥YDO elliptic on the conormals of the geodesics in U on
which x > 0, which recovers the smooth WF(f). Using the same kind of arguments
to recover WF o (f) is problematic because x cannot be analytic and having support
localized in some set unless it is zero. The resulting YDO N would not be in an
analytic ¥DO; the symbol loses analyticity with respect to all variables z,y,£. We
cannot have the luxury of choosing the allowed cutoffs yn (z)gf(£); they are what
they are. One can try to micro-localize in a smaller cone using the allowed cutoffs
and analyze the difference, as done in ... in the Euclidean case but that approach
has its own problems in the geodesic one.

A more direct approach to recover the analytic wave front set is to use the
complex stationary phase method of Sjostrand [34] as done in [20]. The idea is to
multiply X, f = 0 by ¢*®, A > 1 with some properly chosen phase ¢ having a real
and an imaginary parts, integrate with respect of some of teh variables, and then
apply the complex stationary phase method in Sjostrand [34] to obtain an FBI
type of transform as in (7.4) which can be used to resolve WF 4 (f). This argument
is local in nature and the localization problems are easier to resolve.

The main tool is the following.

THEOREM 8.1. Let U C C™ be a neighborhood of 0 and let ¢ be a holomorphic
function on U satisfying the following: z = 0 is its only unique point, ¢(0) = 0
and det D?¢(0) # 0. Let V. € U be another neighborhood of 0 and assume that
Rp(x) > 0 for each x € Vg := VNR™ and R > 0 on OVr. Then, there exist
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C >0 and € > 0, so that for every bounded holomorphic function w on U we have

I(h): = /v e M@y (z) da

=(m"? > %A*"/H <;A> ' (%) (0) + R(h),

0<k<A/C

(8.1)

*** to be completed ***
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APPENDIX D

Elements of Riemannian Geometry and Tensor
Analysis

We recall some basic facts about Riemannian geometry here. Similarly to the
other appendices, this is not meant to be a self-contained exposition; we assume
that the reader is familiar with the main concepts. We follow the local coordinates
approach which should not be considered as a sign of disrespect for the invariant
way to introduce the main concepts. We work in some domain 2 C R™ which,
with any coordinate system there can be considered as a coordinate chart of some
manifold M. For this reason, when we have an invariantly defined object (say, a
vector field) we consider it as such an object on M.

1. Vectors and covectors

We denote local coordinates by z', 2, .... We use the Einstein summation

convention all the time. By smooth functions, we mean C'*° ones. Unless mentioned
otherwise, all objects below are smooth. The most naive definition of a vector v
at a point x is just an element of R™, “attached” at x, which, under a change of
variables, transforms by the first law in (1.1). We think of the vectors as the pair
(z,v). All vectors at a point z form a linear space T, called the tangent space at
2. The collection of all T,{2 is the tangent bundle TS).

A covector w at x, i.e., (z,w), is defined similarly but we postulate the sec-
ond change of variables law in (1.1). We define the cotangent space T and the
cotangent bundle T} in a similar way. If at any point x we are given a vector or
a covector smoothly dependent on the point, we have vector/covector fields. We
denote vector fields either by (v!,...,v™) or by v’d,:. The later reflects the fact
that we can associate vectors to first order differential operators which share the
same transformation laws, of course. Covector fields (w1,...,w,) can be distin-
guished by their lower indices, and can be also represented by w;dz’ because we
can think of covectors as linear forms acting on vectors by (w,v) = w;v*. This is
clearly coordinate independent and can be used to define covectors once we have
defined vectors.

A word of warning: vectors/covectors at different points cannot be compared.
By definition, they are associated with its “base points”. Even if they are “equal”,
a generic change of coordinates will change this. This makes vectors different from
vectors in the Euclidean space in elementary geometry, where they can be translated
freely without changing them. The harmony can be restored if in that particular
case, we think of the Euclidean space as the tangent space T3,€2 at a fixed point.

The notations v°0,: and w;dz’ make it easy to remember the coordinate change
laws. If (2'%,..., 2'") is another coordinate systems (i.e., r — 2’ is a diffeomorphism
between two open sets), then v and w have components v and w} computed by
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the chain rule

! 927 O A 0x’
’Ula - = Uz%ﬁ widl'l = wi%dx/j,
xt xt Jx x
thus
, Oz’ oxt
19 1 /_ — .
(1.1) V=, Wy = wig s

Given a function f, the differential df is a covector defined by df = f,:dz?. If
t — ¢(t) € M is a smooth curve, then ¢(t) = de/dt is a vector field (along ¢) with
components c(t) at any point of the curve.

2. Tensor fields

A tensor h;lllf (in a fixed coordinate system) of type (r,s), where 7, s are
non-negative integers and all indices vary from 1 to n is just a map from the set of
indices to R. We also associate to each tensor a multi-linear map with “matrix”

given by that tensor:
0
Ox™ Oxir’
When we have a tensor at each point x, smoothly depending on it, we call it a tensor

field. Similarly to vectors and covectors, we postulate the following transformation
law under change of coordinates:

(2.1) i, 2 Q2 Dat OahOat gy,

J1--Js 8xk1 aka Oz’ Ox'is ly...0s
Tensors/tensor fields of the type (r, s) are called r times contravariant and s time
covariant. Tensor fields of type (0,0) are just functions; those of type (1,0) are
vector fields, type (0,1) are covector fields. The change of variables makes the
associated multilinear map on s vectors and r covectors, invariant under coordinate
changes.

Rl deh @ @ da) ® ® - ®

3. Riemannian metrics

A Riemannian metric on an open domain (2 is defined by a positive definite
quadratic form depending on the base point z, i.e., by a symmetric matrix g;;(z)
with the property

gij(x)v'o? > [v]?/C
on any compact subset. We will not study metrics degenerating at the boundary,
and by a metric in 2, we mean {g;;} satisfying the estimate above uniformly on .
Metrics are tensors of type (0,2) and we often use the notation
gijdxidxj
to emphasize that we thing of g = {g;;} as a bilinear form.

We use the convention of raising and lowering the indices freely. For example,
given a vector field v as above, v; stands for v; = g;j(z)v?. This allows to identify
vector fields and covector ones.

The norm in the metric is denoted by |v| = (gi;(z)v'v?)!/? for vectors and by
the same notation |w| = (g% (z)w;w;)"/? for covectors. Here, {g*/} is the matrix
inverse to g which is consistent with the raising of the indices convention. Clearly,
if we identify the vector v with a covector w, they would have the same norms. The
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inner product of vectors is denoted sometimes by (u,v) = g;;u’v’, and we use the
same notation for covectors.

A metric allows us to measure magnitudes/lengths of vectors, and therefore
lengths of curves. If [a,b] 3t — ¢(t) € M is such a curve, then

length(c) / |e(t)] dt.

As usual, here |¢| is the norm of the vector ¢ in the metric. One can define naturally
lengths of piecewise smooth curves. Then one can define the distance between
two points z and y as the infimum of the lengths of all piecewise smooth curves
connecting them. If we work in a domain (or in a closure of such), then we need to
restrict those curves to the domain.

4. Volume forms

The metric defines an invariant volume form d Vol = (det g)'/2dz. This allows
us to define naturally L? spaces of functions with an invariant norm. The natural
invariant volume form on T'M is (det g)dz dv; and on T*M, it is dx d€.

For a fixed x, the natural volume form on T, M is given by (det g)l/ 2dv. Then
the volume form on T'M is just d Vol(z) do,(v). Similarly, the natural volume form
on T*M is (det g)’1/2d§. On the tangent bundle, the natural choice of the area
form is

do,(v) = (det )% dog(v), dog(v) : ‘ 2 Z ) idul/\-~-/\d/v\i/\-~-/\dvn7
v
where the hat over a term means that this term is ommiteed.

5. Geodesics

For every z, if y is close enough to z, there is a unique minimizing curve (t)
connecting x and y, called a geodesic. It satisfies the following geodesic differential
equation which can be derived by variation of the curve:

(5.1) AP+ T4 = 0.
Here,

1 0g; dg; 09i;
5.2 I L=
(52) = 99 ((‘%Z + Ozl OxaP

are the Christoffel symbols. It is easy to check that Christoffel symbols are not
tensor fields because they do not satisfy (2.1) under coordinate changes.

Any curve satisfying the geodesic equation is called a geodesic (defined in an
interval, finite or infinite). If y(t) is geodesic, then so is y(kt) for every constant
k # 0. It can be computed directly, and it will be seen below from a different point
of view, that |¥| remains constant along the geodesic. Therefore, one can choose
unique parameterization up to reversing the direction from ¢ to —t, and shifts, so
that |y| = 1. Such geodesics are called unit speed geodesics.

Since the geodesic equation is a second order ODE, one way to determine unique
solution is determined is to prescribe an initial point and an initial direction:

10 =2, 4(0) =v.
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It is unit speed if and only if v is unit (at ). We denote the corresponding geodesic
by Va,0(t). We call it maximal, if it is defined in the maximal interval containing
t=0.

The geodesic equation (5.1) can be written as a system on the tangent bundle:

A=, % = —Fi—“jvivj. The solution defines a geodesic flow on T M with a generator
9 o
(5.3) G:=v B Ffj(a:)v’vj.
The flow preserves the the speed (i.e., |[v| = 1 along the flow).
Liouville

(4]
The exponential map v — exp, v is defined by

exp, U = Vg w(l).

Then v ,(t) = exp,(tv). The exponential map is jointly smooth in the z and in
the v variables. This is less than obvious at v = 0. Indeed, it is obvious that it is
smooth in polar coordinates for v, i.e., (z,t,6) — exp, (t6) is smooth, where |0] =1
by standard regularity results for ODEs. Since polar coordinates are singular at
the origin, this does not prove smoothness at v = 0. Actually, the same map for
magnetic dynamical systems is smooth in polar coordinates but C*! only in the v
variable, see, e.g., [12]. The reason for the smoothness in the non-magnetic case is
that the geodesic equation (5.1) contains a quadratic form of 4 versus a quadratic
plus a linear one for the magnetic geodesic equation.

Since the proof of the smoothness of exp, in some presentations is not done
properly, we will do it here.

THEOREM 5.1. The map (x,v) — exp, v is smooth on its domain of definition.

Proor. We will study the Taylor’s expansion at v = 0, which is the only
“suspicious” point. Write v =6, |#] = 1, t > 0. Then

d
expy (t0)]e=0 = 2, 7 expy(t0)]t=0 = 0.

To compute the higher order terms, we use the geodesic equation. Thus
2

o B8]0 = ~T ()3 (03 (Do = T (2)0'67.

Therefore,
2
(5.4) exp, (10) = @ + 0 — %Pfj(x)eiaj o).

The terms in this expansions are homogeneous polynomials of 6 of dergrees 0, 1
and 2. Since v = t6, we get
1 o
exp,(v) =z +v— if‘fj(x)vzvj + O(|v?).

This shows that exp, v is a twice differentiable at v = 0. In fact, using Taylor’s
theorem, see, e.g., [1], and a similar expansion in the x variable, we show that
exp, v is a C? function in all variables.

To prove C? regularity, we compute the third order term in (5.4) by differenti-
ating the geodesic equation and then setting ¢ = 0. That term then is

3
ST O O (Do
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It is easy to see that we get a homogeneous polynomial of 4 of degree three (we
have to use the geodesic equation again for two of the terms). We then complete
the proof by induction. O

We denote by exp,! inverse map, i.e., v = exp, !y if and only if y = exp, v
Such a v may not even exist for every y (given z) and there might be more than
one solution in other cases. If y is close enough to z, then there is a unique solution
with v close enough to 0 as the implicit function theorem easily implies. Even if y
is in a “small” neighborhood of x, there might be other v not guaranteed by the
implicit function theorem! For example, on the sphere, a point p close enough to
the South Pole S (just a fixed point) is connected to S by a unique geodesic (a part
of a meridian) with length equal to the distance dist(p, S). There is another, much
longer geodesic (the remainder of the “grand circle” /meridian determined by the
short one) which also connects p and S. Those two different geodesics determine
two different vectors v so that exp,v = S, and it does not matter how close to S
the point p is for this example; we can even take p = S. If we want to have an
example in R?, we can just map a neighborhood of a fixed meridian to an open set
in R2.

Given x and y, if there exists a unique geodesic y connecting them, so that its
length is dist(z, y), we say that there exists a unique minimizing geodesic connecting
x and y. On the sphere, for example, this is true if and only if x and y are not
antipodal. On the other hand, a minimizing geodesic on the sphere always exists.
If M is complete (every geodesics extends to the whole real line), then for every
two points there is a (possibly non-unique) minimizing geodesic connecting them.

6. Covariant Derivatives

Differential of a function is invariantly defined as a covector field. Coordinate
derivatives of tensor fields however, even of order (0,1) or (1,0), are nor tensor
fields because they do not transform the right way under coordinate changes. This
calls for an invariant definition of taking derivatives of tensors called a covariant
derivatie.

We postulate a few properties first. Among them: we want the derivative VA
of a tensor field h of type (r,s) to be a tensor field of type (r,s + 1); we want
Vf = df for every function; and we want to preserve the product rule in an
appropriate sense. Then it turns out that there is a unique such operator V (the
reader is strongly advised to consult a Riemannian geometry book for a complete
and precise statement, and proof, which we intentionally omit here). If h is a
tensor field of type (s,r), in local coordinates, Vh is the usual differential plus
multiplication terms involving the Christoffel symbols:

0

VA = g (T

S
im 1. 1m 1PTmA41-- Z 14 11 Ay
Zrkp J1-- ij h ]m 1PJm+1---Js "

m=1

(6.1)

The expression on the left should be considered as a tensor of type (r, s+ 1), not as
an operator, depending on k, applied to hzl “ for a fixed choice of the indices! For
example, Viws depends on the other components of w, as well; and its meaning is
just the {1,2}-th component of the tensor Vw. The most interesting cases for us
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y Yy

T T T

FIGURE D.1. Three types of conjugate point in the plane: blow
down (like on the sphere), a fold, and a cusp.

are
(6.2) Vifij = Our fij = T} foj — Thj fims

and

(6.3) Viw; = Oprew; — Ihwp, Vo' = 00’ + Fipvp.

Note that the operation of lowering or raising an index commutes with taking a
covariant derivative.

Given a vector field v, one denotes by V, the covariant derivative along X
given in local coordinates by V, = v*V,. The metric g is constant with respect to
covariant differentiation. If ¢(t) is a smooth curve, then the covariant V. derivative
defined on that curve is denoted often by D;. Then for every two fields on ¢(t), we

have
Dy{u,v) = <%u,v> + <u, %1}>

Using covariant derivatives, the geodesic equation then reads
V44 =0, orDyy=0, orDiy=0,

which is equivalent to (5.1) in local coordinates. It can also be interpreted as
requiring the tangent 4 to be a parallel vector field along ~.

7. Conjugate points

Assume that  and y are connected by a geodesic 7. Then y = exp,, vo, where vg
is the tangent vector at x of that geodesic with length dist(z, y). The points z and y
are called conjugate along + if the map v — exp,, v fails to be a local diffeomorphism
for v near vy. This is equivalent to saying that d, exp, is degenerate at v = vy. An
example is any pair of antipodal points on the sphere. This is a rather symmetric
example, however. A more generic example is a fold type of a conjugate point, where
varying the direction v at x, one gets geodesics having an envelope curve, consisting
of conjugate points to x. A cusp point is a another example, see Figure D.1.

Conjugate points can be described by the Jacobi equation which is the variation
(the linearization) of the geodesic equation for a family of geodesics depening on a
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parameter:
(7.1) DEJ(t) + R(3(1), J(1))3(t) = 0,

where D? is the second covariant derivative along v, i.e., D7 J(t) = V;V5J(¢) and
R is the curvature. The Jacobi equation is a second order ODE in local coordinates,
and therefore for a unique solution, it is enough to prescribe J(0) and D,J(0).
The points v(0) and (1) are conjugate along the geodesic v if and only if there
exists a non-trivial Jacobi field J on [0, 1] so that J(0) = J(1) = 0. Then D;J(0)
is a variation of v for which d, exp, v vanishes.
*** introduce the trivial Jacobi fields ***

8. Hypersurfaces: Semigeodesic (boundary normal) coordinates

Let S be a smooth hypersurface near a fixed point. Let 2’ = z/(p) be local
coordinates on S, and set 2™ = + dist(p, 9M) with the sign depending on which side
of S the point p lies (we can always choose an orientation locally). We accept the
convention that ™ > 0 defines the “interior”, even when S is not a closed surface.
Then z = (2/,2™) are called semigeodesic, or boundary normal coordinates. In
those coordinates, g;, = 0, Vi. This is easy to see on S given by ™ = 0 because
0/0x™ is orthogonal to it. To prove it for x close to OM, notice first that the lines
7' = 0, 2" = s are unit speed geodesics. Therefore, g,, = 1 and by the geodesic
equation (5.1), T% = 0 for every k. By (5.2), this implies 0g;,,/0z" = 0 for every
i. Since g;, = 0 for ™ = 0, we have the same for 0 < 2™ < 1.

For future reference, in semigeodesic coordinates we have

(8.1) Gin=0, T! =T7 =0, Vi

Those coordinates cannot be extended too far from S, in principle. If S = OM
is the boundary of a compact manifold, we can extend then by compactness to
some neighbohood of OM. to the whole M, but not to the whole M. In those
coordinates, the lines ' = const. are geodesics, normal to the surfaces ™ = const.,
and in particular to OM.

8.1. The second fundamental form and strict convexity of a hyper-
surface. Let S be locally defined hypersurface. The second fundamental form
measures how curved S is in M. For every two vector fields X, Y on S, the second
fundamental form II(X,Y) is defined as

I(X,Y) = (Vxv,Y),

where v is the unit normal field corresponding to a chosen orientation. If S = 0M
is the boundary of a compact manifold, the standard convention is to choose v to
point to the exterior. This formula shows that in particular, the second fundamental
form is an extrinsic property of S, i.e., idepends on the induced metric on S only
(which is just g|7s).

Let = (2/,2™) be boundary normal coordinates to S. Then v = —9/0x".
Then by (6.3), Vi’ = —T% ; and therefore,

189 8
8.2 I(X,Y)=T",XY08 = —— 222 xoyh
( ) ( ’ ) af 2 9

DEFINITION 8.1. OM is called strictly convex if the second fundamental form
on OM is strictly positive.
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Combining (8.2) with the geodesic equation (5.1), we see that for any geodesic
Yz, tangent to S at x € S, we have

2 y
fyg’j,v(t) =z" + tf - gffj (z)v'vd 4+ O(t%).

In particular, since 2™ = 0 and v™ = 0,
42
’Y;L,v(t) - 751—‘% (I)Uavﬂ + O(t3)7

where the Greek indices run from 0 to n — 1. Since the form on the right is
negative, we see that the geodesic is in the exterior of S for 0 < |¢| < 1. Moreover,
dist(S, y2,0(t)) ~ t2. By continuity, geodesics close to tangent to S will have the
same behavior of their signed distance to S see Figure D.2. This argument shows
that strict convexity corresponds to our expectation what the later should mean,
and can in fact be defined by it.

z" >0

FIGURE D.2. Geodesics near a strictly convex surface S = {z" =
0}. The interior is above the surface.

8.2. Area form of a hypersurface. Let S be a locally defined hypersurface.
In boundary normal coordinates, the area (volume) form on S is given by dS =
(det g)'/2da’. Recall that g;, = d;, and that g,s is the induced metric on S =
{z™ = 0} (here, as always, 1 < a < n —1). Then detg = det{gnp} as well.
The reason that dS is exactly that form is that this the only form with dSdz" =
dVol, and z™ is the signed geodesic distance to S. On the other hand, z’ are
arbitrary coordinates on .S; therefore the area form on S is just the volume form
on S considered as a Riemannian submanifold itself, with the induced metric.

8.3. Relation to Hamiltonian mechanics. Let H(z,£) be a smooth func-

tion on T*R"™ called Hamiltonian. The corresponding dynamical system is given
by

. OH : OH
8.3 i) = — = ——.
( ) X aé.j ) 5] oxI
It is straightforward to check that H = const. on the integral curves of H. Indeed,
d OH .. OH .
—H(z(t),E(t)) = — 1) + —&; = 0.

Assume that dH = 0 locally; then {H = E}, with the “energy” E fixed is called
an energy surface of H. The Hamiltonian curves stay on that surface then.
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The variables  and £ naturally “live” on the cotangent bundle under change
of variables.
Let g;;(x) be a Riemannian metric. Consider the Hamiltonian

1 ..
H(z,§) == 29 H@)&&;,
where, as usual, {g”/} is the inverse of {g;j}. Then the integral curves of H on
the energy level H = 1/2 coincide with the unit speed geodesics (y(t),%(t)) by
the identification of vectors and covectors provided by the metric g. This can be
checked directly.

8.4. Liouville’s Theorem. Given a Hamiltonian system, let ¥! be the flow
on T*R"™. Then Liouville’s Theorem says that for any measurable subset D,
Vol(¥t(G)) is independent of ¢ (for those ¢ for which the dynamics is still defined).

In other words, the volume form dx d£ is invariant under the flow. This follows, for

example, from the fact that the Hamiltonian vector field (g—f, f%) is divergence
J J

free; or from the fact that the flow preserves the symplectic form da A d¢ and its
powers, see, e.g., [3]. From the relation between the geodesic and the Hamiltonian
flow, we get that the volume form (det g)dz dv is preserved under the geodesic flow
on TR™.

Remarks: Petrov [27]
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