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Abstract: We consider how microlocal methods developed for tomographic problems
can be used to detect singularities of the Lorentzian metric of the Universe using mea-
surements of the Cosmic Microwave Background radiation. The physical model we
study is mathematically rigorous but highly idealized.

1. Introduction

We study the detection of singularities of the Lorenzian metric of the Universe from
Cosmic Microwave Background (CMB) radiation measurements. The singularities are
considered in the sense of thewave front set that describeswhere themetric is non-smooth
in the spacetime and also in which direction the singularity occurs. The direction of the
singularity is characterized by using the Fourier transform of the metric, see Definition
2.1 below.

A singularity in the metric could be caused for example by a cosmic string [2,39].
A cosmic string is a singularity in the stress energy tensor that is supported on a two-
dimensional timelike surface in the spacetime. The existence of cosmic strings finds
support in super-string theories [30]; however, there is no direct connection between
string theory and the theory of cosmic strings. We refer to [23,26,32] regarding the
existence (or inexistence) of cosmic strings in view of CMBmeasurements collected by
the Planck Surveyor mission in 2013.

The singularities ofwhich potential detectability is interesting to study include cosmic
stings, monopoles, cosmic walls and black holes. There is a vast physical literature
concerning the effects of particular types of singularities or topological defects on the
CMB measurements, see e.g. [4,5,7] and references therein. The contribution of the
present paper is to adapt techniques from the mathematical study of inverse problems to
CMB measurements. These techniques allow us to detect singularities without a priori
knowledge of their geometry. Hence it might be also possible to detect singularities that
are not predicted by the current physical knowledge. Furthermore, the techniques allow
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us to study the opposite question, that is, what type of singularities are invisible to our
measurements and therefore cannot be detected [8,9].

Several types of measurements have been proposed in astrophysical literature for
detection of topological defects of the Universe. These include optical measurements,
such as gravitational lensing effects caused by cosmic stings [1,31,33], observations of
density of mass in the Universe, measurements of gravitational waves [20,21], and the
temperature changes in the CosmicMicrowave Background [7,23,26,32]. We show that
the CMB measurements have a tomographic nature, and we concentrate on them in this
paper.

The detection of singularities has been extensively studied in microlocal theory of
tomography, see e.g. [10,11,27] and the review [6]. In many problems related to tomog-
raphy, for instance in medical imaging, it has been shown that measurements can be
used to detect singularities. Moreover, the visible singularities have been characterised
in many cases. In this microlocal context, a singularity is considered to be invisible if it
causes only a smooth perturbation in the measured data.

In the present paper we characterize the singularities of the Lorenzian metric that are
visible from a linearization of the CMB measurements, and that move slower than the
speed of light. We show also that all singularities moving faster than the speed of light
are invisible. We do not analyze recovery of singularities moving at the speed of light.
Our approach is based on a highly idealized deterministic model of CMBmeasurements,
but such a model can be viewed as a first step in developing tomographic methods for
more realistic, possible stochastic, models of the CMB measurements, see e.g. [15].

We obtain the characterization of visible singularities via microlocal analysis of the
geodesic ray transform on a Friedmann–Lemaître–Robertson–Walker type spacetime.
The transform is restricted on light rays and we call it the light ray transform. Such a
light ray transform has been studied in 1+2 dimensions in [14], and the 1+3 dimensional
light ray transform, as considered in the present paper, belongs to the class of Fourier
integral operators studied in [12].

Contrary to [12],we avoid using the I p,l calculus by firstmicrolocalizing on spacelike
covectors. Then we invert microlocally the light ray transform up to potential fields, see
(11) below for the definition, and conformal multiples of the metric of the spacetime.
This is sharp since those two subspaces belong to the kernel of the linearization and they
correspond to the gauge invariance of the non-linear problem under diffeomorphisms
and conformal changes. The spacelike covectors correspond physically to singularities
moving slower than the speed of light.

The geodesic ray transform for tensor fields on Riemannian manifolds appears as a
linearization of boundary and lens rigidity problems and related geophysics problems.
It is well studied, see e.g., [34,37] and [22] for a recent survey. It is known that potential
tensor fields, i.e., symmetrized covariant derivatives of tensors of order one less are in the
kernel. Such potential fields linearize the invariance due to isometries for tensors of order
2. In many Riemannian cases, this is the whole kernel. In the Lorentzian case, we have a
conormal invariance as well, which adds another subspace to the kernel. Ourmain results
show that microlocally, those two subspaces are the exact microlocal kernel. Let us also
mention that existence of conjugate points poses serious challenges for the inversion
of geodesic ray transforms, however, in the case we study, the Friedmann–Lemaître–
Robertson–Walker metric is conformal to the flat Minkowski one, which allows us to
use Fourier analysis.

This paper is organized as follows. Section 1 is the introduction and Sect. 2 introduces
some notations. In Sect. 3, we formulate the inverse problem for the CMBmeasurements
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and its linearization, and in Sect. 4 we state the main results. Section 5 deals with
the parametrization of the CMB measurements. In Sect. 6, we describe the conformal
invariance inherent in the problem. Section 7 contains the reduction of the linearized
problem to inversion of the light ray transform. In Sect. 8, we study the light ray transform
in a translation invariant case and express its normal operator as a Fouriermultiplier. This
motivates our subsequent study in the general case, which is not translation invariant
due to the fact that measurements are available only in a small set in the spacetime. In
Sect. 9, we study the null space of the light ray transform that corresponds to the gauge
invariance of the problem. In Sects. 10 and 11, we characterize the visible spacelike
singularities. Moreover, we compute the symbol of the normal operator of the light ray
transform on the cone of spacelike covectors, onwhich it is a pseudodifferential operator.

2. Notations

Let M ⊂ R
n be open.We denote byD′(M) the distributions on M and by E ′(M) the dis-

tributions with compact support. Moreover, we denote by Cm(M),m = 0, 1, 2, . . . ,∞,
the space of m-times continuously differentiable functions, and let Cm

0 (M) ⊂ Cm(M)

be the subspace of functions with compact support. For m < ∞, we define also the
Banach space

Cm
b (M) = {u ∈ Cm(M);

∑

|α|≤m

sup
x∈M

|∂α
x u(x)| < ∞}.

We denote by Sym2 the symmetric 2-tensors on M , and by �1 the 1-forms on M . We
use the notations F(M; E), F = D′, E ′,Cm,Cm

b ; E = Sym2,�1, C, for the subspaces
F of distributions taking values on the vector bundle E .

We denote by Sm(T ∗M) = Sm1,0(T
∗M), m ∈ R, the symbols as defined in [16]. If

χ ∈ Sm(T ∗M) then we denote the corresponding pseudodifferential operator also by
χ . We denote the wave front set of a distribution u ∈ D′(M; E) by WF(u). For reader’s
convenience we recall the definition here.

Definition 2.1. Let u ∈ D′(M; E), E = Sym2,�1, C. A point (x, ξ) ∈ T ∗M\0 is in
the wave front set of u if there does not exists an open cone � ⊂ T ∗

x M containing ξ

and a function φ ∈ C∞
0 (M) satisfying φ(x) �= 0 such that for all N = 1, 2, . . . there is

C > 0 such that the Fourier transform of φu decays as follows:

|φ̂u(ξ)| ≤ C(1 + |ξ |)−N , ξ ∈ �.

Let us recall a typical example, see e.g. [18, Th. 8.1.5]. Let u ∈ C∞
0 (M), k ≤ n,

and let us consider coordinates (x ′, x ′′) ∈ R
k×(n−k) on M . Then the Euclidean surface

measure δ(x ′′) of {(x ′, 0); x ′ ∈ R
k} satisfies

WF(uδ(x ′′)) = {(x ′, 0; 0, ξ ′′) ∈ T ∗M\0; (x ′, 0) ∈ supp (u)},
where ξ ′′ is the covector corresponding to x ′′. As all smooth surfaces in M are locally
of this form, it can be seen that the wave front set of a surface measure is the conormal
bundle of the corresponding surface. This applies in particular to cosmic strings that are
singularities supported on two dimensional surfaces, see e.g. [2, Chapter 6].
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3. Mathematical Formulation of the CMB Measurements

3.1. The data and the inverse problem. Let us begin by formulating a mathematical
problem on a time-oriented Lorentzian manifold (M, g) of dimension 1 + n. Below, we
will consider a linearized version of this problem, and solve the linearized problem only
in a microlocal sense. We assume that M is a smooth manifold and that g is aC2-smooth
metric tensor with signature (−,+, . . . ,+).

We recall that a point (x, V ) on the tangent bundle T M is called spacelike if the inner
product (V, V )g is strictly positive, timelike if (V, V )g < 0, and lightlike if (V, V )g = 0.
A submanifold 
 ⊂ M is called spacelike if all the tangent vectors in T
 are spacelike,
and a geodesic γ : [0, �] → M is called a null geodesic if its tangent vector γ̇ (τ ) is
lightlike for one, and hence for all τ ∈ [0, �]. Let us also recall that (x, Z) ∈ T M is
called an observer if Z is future pointing and (Z , Z)g = −1.

Let 
 ⊂ M be a smooth spacelike submanifold of codimension one, and let ν be
the future pointing normal vector field on 
 that is of unit length in the sense that
(ν, ν)g = −1. Let U be another smooth submanifold of M and let Z be a smooth section
of T M defined on U , and suppose that (x, Z) is an observer for all x ∈ U .

Let E0 > 0 and let us consider a null geodesic β satisfying

β(0) ∈ 
, (β̇(0), ν)g = −E0, (1)

and suppose that β(τ) ∈ U for some τ ∈ R. We define

x = β(τ), V = E−1β̇(τ ) − Z , (2)

where E = −(β̇(τ ), Z)g . Note that V satisfies

(V, Z)g = 0, (V, V )g = 1, (3)

and that (x, V ) determines uniquely a null geodesic β satisfying (1). Indeed, β(τ) = x
and β̇(τ ) = E(V + Z) determine a null geodesic up to an affine reparametrization, that
is, up to a choice of τ and E , and (1) fixes the parametrization.

We denote by Sg,x,Z the set of vectors V ∈ TxM satisfying (3). The set Sg,x,Z is
called the celestial sphere of the observer (x, Z), see e.g. [29]. Furthermore, we denote
by Sg,ZU the set of points (x, V ) ∈ T M such that x ∈ U , V ∈ Sg,x,Z , and that there is
a null geodesic β satisfying (1) and (2) for some τ ∈ R.

Physically, the null geodesics β satisfying (1) correspond to photons that are emit-
ted with a fixed energy E0 uniformly in all future pointing lightlike directions on 
.
Moreover, E and V in (2) are the energy and the Newtonian velocity of β as measured
by the observer (x, Z). The proportional difference between the emitted and observed
energies,

Rg,Z (x, V ) = E0 − E

E
= (β̇(0), ν)g

(β̇(τ ), Z)g
− 1, (x, V ) ∈ Sg,ZU , (4)

is called the redshift of β asmeasured by (x, Z). Here β is the null geodesic satisfying (1)
and (2) for some τ ∈ R. A general formulation of the inverse problem that we consider
is the following:

Problem 3.1 (Inverse problem for redshift measurements). Given the function Rg,Z :
Sg,ZU → R determine (W, g) where W ⊂ M is the union of the null geodesics
connecting points of U to points of 
.
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The red shift measurements (4) do not change under the group of transformations
generated by diffeomorphisms and conformal changes. Indeed, ifψ is a diffeomorphism
that is identity on 
 and U , then the redshift data corresponding to g and its pullback
ψ∗g are the same. Next, if c is a smooth strictly positive function on M satisfying c = 1
on 
 and U , then the redshift data corresponding to cg and g are the same. This is based
on the fact that the null geodesics of cg are the same as those of g as point sets but they
are parameterized differently, see Lemma 6.1 below. Hence the determination of (M, g)
in Problem 3.1 should be understood modulo the gauge invariance given by this group
of transformations.

3.2. The linearized CMB inverse problem. Let us now turn to a linearization of Problem
3.1 at a Friedmann–Lemaître–Robertson–Walker type model, that is, at a Lorenzian
manifold of the following warped product form

g(x) = −dt2 + a2(t)dy2, x = (t, y) ∈ M = (0,∞) × R
3, (5)

where a > 0 is smooth on (0,∞) and may have singularity as t → 0. A singularity at
the boundary t = 0 corresponds physically to the Big Bang. In particular, the choice
a(t) = t2/3 gives the Einstein-de Sitter cosmological model [29, p. 31]. Occasionally
we write a(x) = a(t) for x = (t, y).

Let t0 > 0 be small and consider the surface


 = {(t, y) ∈ M : t = t0}. (6)

Then the photons satisfying (1) give a model for the CMB radiation. Physically, the
time t0 corresponds to the time when the Universe was cool enough so that stable atoms
could form. As these atoms could no longer absorb the thermal radiation, the photons
that were around stayed forming the CMB radiation.

The model is highly idealized as the initial frequency spectrum of microwave back-
ground radiation would more likely follow e.g. Planck photon distribution function, see
e.g. [29, Ex. 5.5.4]. A physically more realistic model would allow the photons emitted
at the surface 
 to have an energy distribution with median E0. This would lead to
similar considerations as below, by assuming that we measure the energy distribution
of photons and find the median of this distribution. However, for simplicity we consider
the case when all emitted photons have constant energy.

Let gε ∈ C2(M; Sym2), ε ∈ [0, 1], be a one parameter family of Lorentzian metrics,
and suppose that gε = g in M\M0 where

M0 = (t0,∞) × R
3.

Here t0 is as in (6).Wewill nowdescribe theCMBmeasurements on (M, gε). Let t1 > t0,
let U1 ⊂ R

3 be open and bounded, and define U = {t1} × U1. To avoid technicalities in
the exposition, we assume that gε = g on U and consider the observers (x, ∂t ), x ∈ U .
We will study more general observers in Sect. 5.

Let S2 be the Euclidean unit sphere in R
3. We define the diffeomorphism

θ : S2 → Sgε ,x,∂t − ∂t , θ(v) = −(1, a(t1)
−1v) ∈ R

1+3. (7)
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Fig. 1. The observer (y, ∂t ) measures the energy of the photon β. The photon has the Newtonian velocity
v on the celestial sphere of (y, ∂t ). We show that the measurement carries information on the singularity
(x, ξ) ∈ WF(∂εgε |ε=0) that satisfies β(τ1) = x and ξ(β̇(τ1)) = 0, see Theorem 4.4

If gε is sufficiently close to the background metric g then Lemma 3.2 below says that
Sg,ZU can be parametrized by U1 × S2, and the redshifts Rgε ,∂t of CMB photons as
measured by (x, ∂t ), x ∈ U , can be parametrized as follows

Rε(y, v) = (γ̇ε(τε(x, θ); x, θ), ∂t )gε − 1, (y, v) ∈ U1 × S2, (8)

where x = (t1, y), θ = θ(v), γε(·; x, θ) is the geodesic of (M, gε) with the initial data
(x, θ), and

τε(x, θ) = min{τ > 0; γε(τ ; x, θ) ∈ 
}. (9)

Lemma 3.2. Let g be a Lorentzian metric tensor of the form (5). Let t1 > t0, letU1 ⊂ R
3

be bounded, and define U = {t1} × U1. Let gε ∈ C2(M; Sym2), ε ∈ [0, 1], be a
one parameter family of Lorentzian metrics satisfying g0 = g. Suppose that the map
ε 
→ gε is differentiable from [0, 1] to C2

b (M0; Sym2) and that gε = g in U ∪ 
. Let
(x, v) ∈ U × S2, and define θ = θ(v) and τε = τε(x, θ) for small ε. Let c > 0. Then
the geodesic

βε(ρ) = γε(−cρ + τε; x, θ),

satisfies βε(0) ∈ 
 and βε(τε/c) = x. In particular, if we choose the parametriza-
tion c = E0/(γ̇ε(τε; x, θ), ∂t )gε , then (β̇ε(0), ∂t )gε = −E0 and the redshift of βε as
measured by (x, ∂t ) satisfies

Rgε ,∂t (x, θ + ∂t ) = (γ̇ε(τε; x, θ), ∂t )gε − 1.

Proof. We will show that τε is well-defined for small ε > 0 in Lemma 5.1 below. We
have βε(0) ∈ 
, βε(τε/c) = x , (β̇ε(0), ∂t )gε = −E0, and the redshift is

(β̇ε(0), ∂t )gε

(β̇ε(τε/c), ∂t )gε

− 1 = −E0

−c(θ, ∂t )gε

− 1 = (γ̇ε(τε; x, θ), ∂t )gε − 1,

since (θ, ∂t )gε = 1. �

We are ready to formulate the linearized version of Problem 3.1 that we will consider.
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Problem 3.3 (Linearized microlocal CMB inverse problem). Given ∂εRε(x, v)|ε=0, (x,
v) ∈ U × S2, determine the wave front set WF(∂εgε |ε=0) on T ∗W where W ⊂ M is as
in Problem 3.1.

We characterize the spacelike vectors in WF(∂εgε |ε=0) that can be recovered, and
show that all timelike vectors are smoothed out. Physically, the timelike vectors in
WF(∂εgε |ε=0) correspond to singularities moving faster than light, whence we do not
expect such singularities to be present to begin with.

Lightlike singularities could correspond to gravitational waves. Their recovery from
the anisotropies in the Cosmic Microwave Background radiation is an interesting ques-
tion. However, we leave this as a topic for future work.

4. Statement of the Results

Let f be a symmetric 2-tensor on a Lorentzian manifold (M, g), and define the light ray
transform of f by

Xg f (x, θ) =
∫

R

( flm ◦ γ )γ̇ l γ̇mdτ, (10)

where x ∈ M , θ ∈ TxM is lightlike, and γ (τ) = γ (τ ; x, θ) is the geodesic of (M, g)
with the initial data (x, θ). When g is of the form (5), we define for t1 > t0,

Lt1 f (y, v) = Xg f (x, θ), y ∈ R
3, v ∈ S2,

where x = (t1, y) and θ = θ(v) is defined by (7). Note that for an arbitrary Lorentzian
manifold (M, g), themap Xg may fail to bewell defined evenwhen f ∈ C∞

0 (M; Sym2).
This is the case, for example, if (M, g) has closed null geodesics. However, we show
the following lemma.

Lemma 4.1. The light ray transform Lt1 is a Fourier integral operator of order −3/4
whose associated canonical transformation is the twisted conormal bundle of the fol-
lowing point-line relation

{(p, y, v) ∈ M × R
3 × S2; p = γ (τ ; (t1, y), θ(v)) for some τ ∈ R}.

In particular, Lt1 is continuous from E ′(M; Sym2) to D′(R3 × S2).

The proof of the lemma will be presented in Sect. 10. The following theorem reduces
the linearized CMB inverse problem to inversion of a limited angle restriction of the
light ray transform.

Theorem 4.2. Let t1 > t0, let U1 ⊂ R
3, and let gε ∈ C2(M; Sym2), ε ∈ [0, 1], satisfy

the assumptions of Lemma 3.2. Define

f (t, x ′) =
{

∂εgε(t, x ′)|ε=0, t ∈ (t0, t1),
0, otherwise,

Then on U1 × S2,

∂εRε |ε=0 = 1

2a(t0)
Lt1a

2La∂t a
−2 f,

where La∂t is the Lie derivative along the scaled world velocity a∂t , and the powers a2

and a−2 of the warping factor are interpreted as multiplication operators.
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The light ray transform has a non-trivial null space.

Lemma 4.3. Let g be a Lorentzian metric tensor of the form (5) and let t1 > 0. Define
M1 = (0, t1) × R

3 and

N = {cg + dsω; c ∈ E ′(M1), ω ∈ E ′(M1;�1)},
where ds is the symmetric differential defined in coordinates as follows

(dsω)i j = (∇iω) j + (∇ jω)i

2
. (11)

Here ∇i = ∇∂xi
is the covariant derivative on (M, g). Then Lt1 f = 0 for all f ∈ N .

Proof. By density of C∞
0 in E ′, we may assume that c ∈ C∞

0 (M1) and that ω ∈
C∞
0 (M1;�1), and consider f = cg+dsω. Then Lt1 f = 0 onR

3×S2, since (γ̇ , γ̇ )g = 0
holds for null geodesics γ and

∂τω(γ̇ (τ )) = (dsω)i j γ̇
i (τ )γ̇ j (τ )

holds for all geodesics γ . �

In fact, this lemma holds for every Lorentzian metric as far as the null-geodesics

are non-trapping. Note that the group of transformations g 
→ g + h, h ∈ N , is the
linearization of the gauge invariance of the nonlinear problem, see the discussion after
Problem 3.1.

The lemma is an analog of the corresponding results for compact Riemannian mani-
folds, where it is known that the geodesic ray transform vanishes on potential fields, i.e.,
on tensors of order m ≥ 1 which are symmetric differentials of tensor fields of order
m − 1 vanishing on the boundary, see [34]. What is new here is the scalar multiple cg
of the metric.

Our main result is the following.

Theorem 4.4. Let g be a Lorentzianmetric tensor of the form (5). Let t1 > 0, letU1 ⊂ R
3

be open, and define M1 = (0, t1) × R
3. Let (x, ξ) ∈ T ∗M1 be spacelike, and suppose

that there is a null geodesic γ of (M, g) and τ1, τ2 ∈ R such that

γ (τ1) = x, ξ(γ̇ (τ1)) = 0, γ (τ2) ∈ {t1} × U1. (12)

Then there is χ ∈ S0(T ∗(R3 × S2)) supported in T ∗(U1 × S2) such that for all f ∈
E ′(M; Sym2) the following are equivalent

(i) (x, ξ) ∈ WF(L∗
t1χLt1 f ),

(ii) (x, ξ) ∈ WF( f + h) for all h ∈ N .

In particular, the theorem says that the operator L∗
t1χLt1 does not move spacelike

singularities. We will give an explicit choice of χ in Sect. 11 and show that L∗
t1χLt1 is

a pseudodifferential operator of order −1. We will also compute its principal symbol
after a conformal scaling, see Proposition 11.4 below.

Note that the visibility condition (12) is analogous with the visibility condition for
limited angle X-ray tomography, see e.g. [27, Th. 3.1]. It is also sharp in the sense that if
for a spacelike (x, ξ) ∈ T ∗M there does not exist a null geodesic γ satisfying (12) then
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for all χ ∈ C∞
0 (U1) the wave front set WF(χLt1 f ) is empty if WF( f ) is contained in

a small conical neighborhood of (x, ξ) in T ∗M .
Wewill also show that all timelike singularities are lost in the sense that ifWF( f ) con-

tains only timelike covectors then WF(Lt1 f ) is empty. In other words, Lt1 is smoothing
on the cone of timelike covectors.

We note that the above mathematical model on the CMB measurements is highly
idealised in several ways. First, we have assumed that the measurements are done in
a set U = {t1} × U1 where U1 ⊂ R

3 is an open set. This is essentially equivalent to
having observations in an open neighbourhood of U in R

4. As the open neighbourhood
of the world-line of the Earth in the space-time, where measurements could realistically
be done, is small in the cosmological scale, it would be more realistic to study models
where the observations are given for light rays that intersect a smaller dimensional sub-
manifold, for example a timelike geodesic. We emphasize that the invisible singularities
characterised in Theorem 4.4 are, of course, invisible also in measurements done on a
smaller submanifold. Thus Theorem 4.4 gives information on structures that could exist
but that cannot be detected even in highly idealised measurements.

Second, the CMB measurements, e.g. those done by the Planck collaboration, are
noisy and thus the microlocal analysis considered in this paper needs to be combined
with statistical analysis, involving non-Gaussian models for the CMB temperature fluc-
tuations. For reviews on the presently used statistical methods, see e.g. [3,24,25]. We
plan to consider physical issues related to this paper in the future.

5. Parametrization of the CMB Measurements

In this section we show that the function τε , see (9), is well-defined. We do this in a
slightly more general context than that in Lemma 3.2, that is, we relax the assumption
that gε = g on U , and consider observers (x, Zε) on U where Zε is not necessarily ∂t .

Let gε ∈ C2(M; Sym2), ε ∈ [0, 1], be a one parameter family of Lorentzian metrics
satisfying g0 = g, where g is a Lorentzian metric tensor of the form (5). LetWε ⊂ M be
a spacelike submanifold of codimension one, and let Zε be a section of T M defined on
Wε such that (x, Zε) is an observer with respect to gε . LetU1 ⊂ R

3 be open and suppose
that �ε : U1 → Wε is a diffeomorphism. In this section we consider measurements by
the observers

(�ε(y), Zε), y ∈ U1. (13)

We assume that W0 = {t1} × U1 where t1 > t0, �0(y) = (t1, y), and that Z0 = ∂t .
For small ε > 0, the CMB measurements by observers (x, Zε) can be parametrized

by the vectors in the celestial spheres Sgε ,x,Zε , x ∈ Wε . Indeed, we have the following
lemma:

Lemma 5.1. Let M ⊂ R
n be open, let g be a smooth Lorentzian metric tensor on M, let

Z be a smooth vector field on M, and suppose that (x, Z) is an observer for all x ∈ M.
Let K0 ⊂ M be compact and define

K = {(x, V − Z) ∈ T M; x ∈ K0, V ∈ Sg,x,Z }.
Let
 ⊂ M be a smooth submanifold of codimension one, and suppose that the geodesics
γ (·; x, θ), (x, θ) ∈ K, intersect 
 non-tangentially. Then there are neighborhoods G ⊂
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C2
b (M; Sym2) of g and K ⊂ T M of K such that the geodesics γh(·; x, θ), (x, θ) ∈ K,

with respect to h ∈ G intersect 
. Moreover, the function

τh(x, θ) = min{τ > 0; γh(τ ; x, θ) ∈ 
}
is C1 in K× G, and the functions γh(τ ; x, θ) and γ̇h(τ ; x, θ) are C1 in a neighborhood
of the set

{(τ, x, θ, h); τ ∈ [0, τh(x, θ)], (x, θ) ∈ K, h ∈ G}.
Proof. Let G0 ⊂ C2

b (M; Sym2) be a neighborhood of g such that all h ∈ G0 are
Lorentzian. We define the open set U = T M × G0 on the Banach space E = T M ×
C2
b (M; Sym2), and consider the vector field F : U → E , F(x, θ, h) = (θ, f (x, θ, h),

0), where f : E → R
n has components

f j (x, θ, h) = −�
j
k�(x, h)θkθ�, (x, θ) ∈ T M, h ∈ C2

b (M; Sym2),

and �
j
k�(x, h) are the Christoffel symbols of the metric tensor h at x . We recall that

�
j
k�(x, h) = 1

2
h jm

(
∂hmk

∂x�
+

∂hm�

∂xk
− ∂hk�

∂xm

)
,

where h jm is the inverse of h jk , and see that �
j
k� : M × G0 → R is continuously

differentiable. Hence F is continuously differentiable, and the flow of F is continuously
differentiable on its domain of definition Dom(F) ⊂ R × U , see e.g. [19, Th. 6.5.2].
Note that the projection of the flow on T M gives the geodesic flow with respect to the
metric tensor h.

Let κ = (x, θ) ∈ K . We have assumed that (τg(κ), κ, g) ∈ Dom(F). As γ (·; κ)

intersects 
 non-tangentially, the implicit function theorem gives neighborhoods Kκ ⊂
T M of κ and Gκ ⊂ C2

b (M; Sym2) of g such that τh is C1 on Kκ × Gκ . The set K is
compact since K0 is compact and Sg,x,Z is diffeomorphic to the sphere Sn−2. We choose
a finite set J ⊂ K such that Kκ , κ ∈ J , is an open cover of K , and define K = ∪κ∈JKκ

and G = ∩κ∈JGκ . �

Let us now continue our study of the observers (13). We choose a smooth family of

diffeomorphisms �x,ε : S2 → Sgε ,x,Z , x ∈ Wε , such that

�x,0(v) = (0,−a(t1)
−1v) ∈ R

1+3, x ∈ W0.

Then the redshift measurements can be parametrized as

R̃ε(y, v) = (γε(τε(xε, θε); xε, θε), Zε)gε , (y, v) ∈ U1 × S2,

where xε = �ε(y), θε(x, v) = �xε ,ε(v) − Zε , γε(·; x, θ) is the geodesic of (M, gε)

with the initial data (x, θ), and τε is defined by (9). Note that θ0 = θ where θ is defined
by (7).

We omit writing ε as a subscript when it is zero. The linearized measurements satisfy

∂ε R̃ε(y, v)|ε=0 = ∂εRε(y, v)|ε=0 + ∂ε(γ (τ (xε, θε); xε, θε), Zε)g|ε=0,

where the second term is a smooth function on U1 × S2 if the derivatives at ε = 0 of
Zε and the local parametrizations �ε and �x,ε are smooth on U1 × S2. Thus the second
term plays no role in the microlocal analysis of ∂ε R̃ε(x, v)|ε=0 and we are reduced to
the case covered in Theorem 4.2.
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6. Conformal Invariance

In this section we show that Theorem 4.4 is invariant under conformal scaling. Let us
recall that a metric tensor g of the form (5) is conformal to the Minkowski metric tensor
in suitable coordinates. Indeed, we define the strictly increasing function

s(t) :=
∫ t

0
a(t)−1dt. (14)

Then

g(s, x ′) = a2(s)(−ds2 + (dx ′)2), (s, x ′) ∈ (0,∞) × R
3.

For example, the Einstein-de Sitter model corresponds to a(t) = t2/3, and then s(t) =
3t1/3 and a(s) = s2/9.

It is well known that null geodesics are invariant up to a reparametrization under a
conformal change of the metric. For the reader’s convenience we give a proof here.

Lemma 6.1. Let g be a smooth Lorentzian metric tensor, let a be a smooth strictly
positive function, and define g̃ = a−2g. Then the null geodesics γ of g correspond to
the null geodesics μ of g̃ under the reparametrization

γ (τ) = μ(σ(cτ)), τ (σ ) =
∫ σ

0
a(μ(ρ))2dρ, (15)

where c = a(γ (0))2, τ(σ ) is a strictly increasing function and σ(τ) is its inverse
function. The reparametrization is chosen so that γ (0) = μ(0) and γ̇ (0) = μ̇(0).

Proof. We define α by eα = a. Koszul formula implies

∇XY = ∇̃XY + (Xα)Y + (Yα)X − (X,Y )g̃gradg̃α, (16)

where gradg̃ is the gradient with respect to the metric g̃. We apply this formula to
X = Y = μ̇, where μ is a null geodesic with respect to g̃. Then the first and the last
term on the right hand side vanish and we have

Dσ μ̇ = 2(α ◦ μ)′μ̇,

where Dσ μ̇ is the covariant derivative of μ̇ with respect to g along μ, and the prime
denotes the derivative of a real valued function onR.Wehave τ ′ = e2α◦μ,σ ′ = e−2α◦μ◦σ

and

σ ′′ = −2(α ◦ μ ◦ σ)′σ ′ = −2((α ◦ μ)′ ◦ σ)(σ ′)2.
Let us consider the curve γ defined by the formula (15) with c = 1. Then the covariant
derivative Dτ γ̇ with respect to g along γ satisfies

Dτ γ̇ = Dτ (σ
′(μ̇ ◦ σ))

= ∂τ (σ
′(μ̇k ◦ σ))∂k + (σ ′)2(μ̇i ◦ σ)(μ̇ j ◦ σ)(�k

i j ◦ μ ◦ σ)∂k

= σ ′′(μ̇ ◦ σ) + (σ ′)2(Dσ μ̇) ◦ σ = 0.

Here �k
i j are the Christoffel symbols of g. We see that γ is a geodesic with respect to the

metric g. The same is true for any c �= 0 since affine reparametrizations of geodesics
are geodesics. Moreover,

γ̇ (τ ) = ca−2(γ (τ ))μ̇(ρ), ρ = σ(cτ). (17)

�
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Corollary 6.2. Let g be a smooth Lorentzian metric tensor, let a be a smooth strictly
positive function, and define g̃ = a−2g. Then the corresponding light ray transforms
satisfy Xg f = a2Xg̃a−2 f .

Proof. We set ρ = σ(cτ) and use (17) and dτ = c−1a2dρ. �

Lemma 6.3. Let g be a smooth Lorentzian metric tensor, let a be a smooth strictly
positive function, and define g̃ = a−2g. Let c be a smooth function and ω be a smooth
1-tensor. Then

a−2(cg + dsω) = c̃g̃ + d̃sω̃,

where c̃ = c + (ω̃, d log a)g̃ and ω̃ = a−2ω. Here d̃s is the symmetric differential with
respect to g̃.

Proof. We define α by eα = a, and write (16) in coordinates. This gives the following
formula for the Christoffel symbols �k

i j and �̃k
i j of g and g̃, respectively,

�k
i j = �̃k

i j + δki ∂ jα + δkj ∂iα − bk g̃i j ,

where bk = (gradg̃α)k . The symmetric derivative transforms as

(dsω)i j = 1

2

(
∂iω j + ∂ jωi

) − �k
i jωk = (d̃sω)i j − ωi∂ jα − ω j∂iα + ωkb

k g̃i j .

Moreover,

e2α(d̃s(e−2αω))i j = (d̃sω)i j − ω j∂iα − ωi∂ jα.

�

Let g be of the form (5) and define g̃ = a−2g. Let x ∈ M and let ξ ∈ T ∗M be

spacelike for g. Then ξ is spacelike for g̃. Suppose that γ is a null geodesic of (M, g)
and that there are 0 < τ1 < τ2 such that (12) holds. Let μ be the reparametrization (15)
of γ . Then μ is a null geodesic of (M, g̃) and there are ρ1, ρ2 ∈ R such that

μ(ρ1) = x, ξ(μ̇(ρ1)) = 0, γ (ρ2) ∈ {t1} × U1.

Suppose now that Theorem 4.4 holds for g̃, that is, there is a symbol of order zero χ

supported in T ∗(U1 × S2) such that for all f̃ ∈ E ′(M; Sym2) the following holds:

(x, ξ) ∈ WF(L̃∗
t1χ L̃ t1 f̃ ) iff (x, ξ) ∈ WF( f̃ + c̃g̃ + d̃sω̃)

for all c̃ ∈ D′(M) and ω̃ ∈ D′(M;�1). Here L̃ t1(y, v) = Xg̃(x, θ), where x = (t1, y)
and θ = θ(v) is defined by (7). Note that Lt1 = a2(t1)L̃ t1a

−2, and

L∗
t1χLt1 = a4(t1)a

−2 L̃∗
t1χ L̃ t1a

−2.

Let f ∈ E ′(M; Sym2), c ∈ D′(M) andω ∈ D′(M;�1), and let us define f̃ = a−2 f ,
ω̃ = a−2ω, and c̃ = c + (ω̃, d log a)g̃ . Then

a−2( f + cg + dsω) = f̃ + c̃g̃ + d̃sω̃,

and

(x, ξ) ∈ WF(L∗
t1χLt1 f ), iff (x, ξ) ∈ WF(L̃∗

t1χ L̃ t1 f̃ )

(x, ξ) ∈ WF( f + cg + dsω) iff (x, ξ) ∈ WF( f̃ + c̃g̃ + d̃sω̃).

Thus Theorem 4.4 holds for g if it holds for g̃.
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7. Derivation of the Tomography Problem

In this section we prove Theorem 4.2. The proof is similar to that in [28]. All the
differentiations below are justified by Lemma 5.1. We omit writing ε = 0 as a subscript.

Let t1 > t0, let U1 ⊂ R
3, and define U = {t1} × U1. Let (x, v) ∈ U × S2 and write

θ = θ(x, v). Note that ∂t = a−1∂s where s is defined by (14). We have

∂ε(γ̇ε(τε(x, v); x, θ), ∂t )gε = a−1(t0)∂ε(γ̇ε(τ (x, v); x, θ), ∂s)gε ,

since γ̈ = 0 and therefore

∂ε(γ̇ (τε(x, v); x, θ), ∂s)g = ∂τ (γ̇ (τ ; x, θ), ∂s)g|τ=τε(x,v)∂ετε(x, v)

= (γ̈ (τε(x, v); x, θ), ∂s)g∂ετε(x, v) = 0.

Moreover,

∂ε(γ̇ε(0; x, θ), ∂s)gε = ∂ε(θ, ∂s)g = 0,

since gε = g in U . Hence
a(t0)∂εR(x, v) = ∂ε

(
(γ̇ε(τ (x, v); x, θ), ∂s)gε − (γ̇ε(0; x, θ), ∂s)gε

)
. (18)

We use the reparametrization (15) and recall the formula (17). Then

(γ̇ε(τ ; x, θ), ∂s)gε = c(μ̇ε(ρ; x, θ), ∂s)g̃ε , (19)

where c = a(x)2, ρ = σ(cτ), g̃ε = a−2gε and με(ρ; x, θ) is the geodesic of (M, g̃ε)

with initial data (x, θ).
The computations below will use the fact that g̃ = −ds2 + (dx ′)2 is a constant

tensor in the (s, x ′) coordinates. When computing in coordinates we write (s, x ′) =
(x0, x1, x2, x3), and use also the notation με(ρ) = με(ρ; x, θ).

The geodesic equations for με can be written in the form

∂ρ(g̃ε, jkμ̇
k
ε) = 1

2

(
∂x j g̃ε,lm

)
μ̇l

εμ̇
m
ε . (20)

Indeed, the Eq. (20) can be transformed to the equation,

∂2ρμ j
ε + �̃

j
ε,lmμ̇l

εμ̇
m
ε = 0,

written in terms of the Christoffel symbols �̃
j
ε,lm of the metric g̃ε , by using the chain

rule on the left hand side and symmetrizing the obtained sum, see e.g. [38, p. 51].
We denote h = ∂ε g̃ε |ε=0 and have

∂ε

((
∂x j g̃ε,lm

)
μ̇l

εμ̇
m
ε

)
|ε=0 = (

∂x j ∂ε g̃ε,lm |ε=0
)
μ̇l μ̇m +

(
∂x j g̃lm

)
∂ε

(
μ̇l

εμ̇
m
ε

)
|ε=0

= (
∂x j hlm

)
μ̇l μ̇m,

where we have used the fact that g̃ is a constant tensor. Hence

∂ρ∂ε(μ̇ε, ∂s)g̃ε |ε=0 = ∂ε∂ρ

(
g̃ε,0kμ̇

k
ε

)
|ε=0 = 1

2

(
∂x0hlm

)
μ̇l μ̇m .
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We integrate this with respect to ρ and obtain

1

2

∫ r

0
(∂shlm)μ̇l μ̇mdρ = ∂ε(μ̇ε(r), ∂s)g̃ε |ε=0 − ∂ε(μ̇ε(0), ∂s)g̃ε |ε=0, (21)

where r > 0. Now (21), (18) and (19) imply

c−1a(t0)∂εR(x, v)|ε=0 = 1

2

∫ σ0

0
(∂shlm)μ̇l μ̇mdρ,

where σ0 = σ(cτ(x, v)).
Let t1 > 0, let f be the cutoff of ∂εgε |ε=0 as in Theorem 4.2, and suppose that

x ∈ U1. Then h = a−2 f on μ([0, σ0]) and f = 0 on μ(R\[0, σ0]). Note also that
(La∂t h)lm = (L∂s h)lm = ∂shlm . Hence

∂εR(x, v)|ε=0 = c

2a(t0)
Xg̃La∂t a

−2 f = 1

2a(t0)
Xga

2La∂t a
−2 f,

and we have proven Theorem 4.2.

8. Backprojection of the Light Ray Transform

Let us now turn to the proof ofTheorem4.4.By the conformal invariance,wemay assume
that the backgroundmetric is theMinkowski metric, that is, a = 1 identically. If we have
data on all the light rays, i.e., if U1 = R

3, then the light ray transform Lt1 is invariant
with respect to translations. Although the case U1 = R

3 is physically unrealistic, we
discuss it briefly in this section since it allows for very explicit computations.

After a translation in the t coordinate, wemay suppose that t1 = 0.Wewrite L = L0,
and have

L f (y, v) =
∫

R

flm(s, y + sv)θ lθmds, y ∈ R
3, v ∈ S2, (22)

where θ = (1, v) ∈ R
1+3. Note that we have made change of variable s = −τ in

comparison with (10), and also use θ = −θ(v) in comparison with (7).
We use the Euclidean surface measures in all the integrations below. Let f, h ∈

C∞
0 (R4; Sym2). Then

(L f, Lh)L2(R3×S2)

=
∫

S2

∫

R

∫

R3

∫

R

flm(r, y + rv)h jk(s, y + sv)θ jθkθ lθmdsdydrdv

=
∫

S2

∫

R

∫

R4
flm(r, x ′ + (r − x0)v)h jk(x)θ

jθkθ lθmdxdrdv,

where we have used the fact that

(s, y) 
→ (s, y + sv) = x = (x0, x ′) (23)

is a linear isometry on R
1+3. After making the change of variables ρ = x0 − r , we see

that and the normal operator L∗L is the convolution K jklm ∗ flm , with the kernel

(K jklm, φ)D′×D(R4) =
∫

S2

∫

R

θ jθkθ lθmφ(ρθ)dρdv.

The following lemma is in the spirit of the representation of the ray transform in
[34,36] if we allow for a singular weight on the light cone.
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Lemma 8.1. TheFourier transformof K jklm is a locally integrable function and satisfies

K̂ jklm(ξ) =
{
2π(|ξ ′|2 − |ξ0|2)−1/2

∫
S1ξ

θ jθkθ lθmdv, ξ is spacelike,

0, otherwise.

Here ξ = (ξ0, ξ
′) ∈ R

1+3, θ = (1, v), | · | is the Euclidean norm, and

S1ξ = {v ∈ S2; ξ0 + ξ ′v = 0} (24)

is a circle of radius |ξ ′|−1
√|ξ ′|2 − |ξ0|2.

Proof. Tosimplify thenotation,wefix the indices j, k, l,m anddenotea(v) = θ jθkθ lθm .
Let us also define κ(v, ξ) = ξ0 + ξ ′v. Then

(K̂ jklm, φ)S ′×S(R4) =
∫

S2

∫

R

∫

R4
ae−iρξ ·θφ(ξ)dξdρdv

= 2π
∫

S2
(κ∗δ, φ)S ′×S(R4) adv.

Here the pullback is by κv(ξ) = κ(v, ξ) with fixed v. Note that the gradient ∇κv = θ

does not vanish, and therefore the pullback is well-defined.
Let us assume for amoment that supp (φ) does not intersect the set of lightlike vectors

{ξ = (ξ0, ξ
′) ∈ R × R

3; |ξ0| = |ξ ′|}.
Then

∫

S2
(κ∗δ, φ)S ′×S(R4) adv = ((κ∗δ, a)D′×D(S2), φ)S ′×S(R4),

Here the second pullback is by κξ (v) = κ(v, ξ) with fixed ξ . Let us now show that this
is well-defined. We have ∇R3κξ = ξ ′. Thus on S1ξ = κ−1

ξ (0)

|∇S2κξ (v)|2 = |ξ ′ − (ξ ′v)v|2 = |ξ ′|2 − |ξ ′v|2 = |ξ ′|2 − |ξ0|2.
We see that the pullback by κξ is well-defined if and only if ξ is not lightlike.

If ξ is timelike, then |ξ ′| < |ξ0| = |ξ ′v| ≤ |ξ ′| on S1ξ which is a contradiction. Thus

S1ξ does not intersect the timelike vectors and K̂ jklm = 0 on timelike vectors.
Suppose now that ξ is spacelike. Then

(κ∗
ξ δ, a)D′×D(S2) = (|ξ ′|2 − |ξ0|2)−1/2

∫

S1ξ

a(v)dv. (25)

The set S1ξ is the intersection of S2 with the affine plane

Pξ = {v ∈ R
3; ξ ′v = −ξ0}.

As ξ is spacelike, 0 ≤ |ξ0| < |ξ ′|, and we see that w = −ξ0ξ
′/|ξ ′|2 ∈ Pξ . Thus S1ξ is a

circle of radius r satisfying r2 + |w|2 = 1, that is,

r = |ξ ′|−1
√

|ξ ′|2 − |ξ0|2.
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To finish the proof, it is enough to show that K̂ jklm coincides with a locally integrable
function. Let us first assume that supp (φ) does not intersect the set

{ξ = (ξ0, ξ
′) ∈ R × R

3; |ξ ′| = 0}. (26)

Then for each ξ ∈ supp (φ) we can choose spherical coordinates so that

v = v(α, β) = (sin α cosβ, sin α sin β, cosα)

and v(0, β) = −ξ ′/|ξ ′|. In these coordinates
∫

S2
(κ∗δ, φ)S ′×S(R4) adv =

∫

S2

∫

R3
φ(−ξ ′v, ξ ′)a(v)dvdξ

=
∫

R3

∫ 2π

0

∫ π

0
φ(|ξ ′| cosα, ξ ′)a(α, β) sin αdαdβdξ.

The change of coordinates ξ0 = |ξ ′| cosα gives

∫

S2
(κ∗δ, φ)S ′×S(R4) adv =

∫

R3
|ξ ′|−1

∫ 2π

0

∫ |ξ ′|

−|ξ ′|
φ(ξ0, ξ

′)a(ξ0, β)dξ0dβdξ.

Hence away from the set (26), the Fourier transform K̂ jklm is the function

|ξ ′|−11C (ξ)

∫ 2π

0
a(ξ0, β)dβ, (27)

where 1C is the indicator function of the set of spacelike vectors, that is, 1C (ξ) = 1 if ξ

is spacelike and it is zero otherwise. Note that a is bounded and that the function (27) is
locally integrable.

We have seen that K̂ jklm vanishes on timelike vectors and that it is a function away
from the set (26). The origin is the only vector in the set (26) that is not timelike. As
K jklm is homogeneous of degree −3, its Fourier transform is homogeneous of degree
−1. The Fourier transform K̂ jklm is a function since the only distributions supported in
the origin are the linear combinations of derivatives of the delta distribution, and these
derivatives are homogeneous of degree −4 or less. �


Note that the integral
∫
S1ξ

θ jθkθ lθmdv is homogeneous of degree zero with respect to

ξ . It can be evaluated explicitly for all the 44 combinations of the indices. As an example,
let us give K̂ j j j j (ξ), j = 0, 1, 2, 3, for a spacelike ξ ∈ R

4. After a rotation in ξ ′, we
may assume that ξ = (ξ0, 0, 0,−|ξ ′|). Then at ξ it holds that

K̂ 0000(ξ) = 4π2

|ξ ′| , K̂ 1111(ξ) = 3π2(|ξ ′|2 − |ξ0|2)2
2|ξ ′|5 , K̂ 3333(ξ) = 4π2ξ40

|ξ ′|5 ,

and K̂ 2222(ξ) = K̂ 1111(ξ).
An analogous light ray transform can be defined for scalar functions as follows,

Lsc f (y, v) =
∫

R

f (s, y + sv)ds, y ∈ R
3, v ∈ S2,

and a variation of the above argument shows that L∗
sc Lsc is given by the Fouriermultiplier

K̂ 0000. The scalar case will be considered in depth in [35].
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9. The Null Space of the Symbol of the Normal Operator

In this section we will characterize the null space of the tensor K̂ jklm(ξ) for spacelike
ξ ∈ R

4. Note that if ω ∈ C∞
0 (R4;�1), then the Fourier transform of its symmetric

differential is

(̂dsω)i j (ξ) = ξi ω̂ j + ξ j ω̂i

2
.

To cover also the limited angle case, to be discussed in the next two sections, we will
prove the following slightly more general result. We refer to (24) for the definition of
S1ξ .

Lemma 9.1. Let ξ ∈ R
4 be spacelike, let χ ∈ C∞(S1ξ ) and suppose that χ ≥ 0 and that

χ does not vanish identically. Then the null space of the linearmap N : flm 
→ N jklm flm
on Sym2, where

N jklm =
∫

S1ξ

χθ jθkθ lθmdv, θ = (1, v), j, k = 0, 1, 2, 3, (28)

is Ker(N ) = {cglm + ξlωm + ξmωl; c ∈ R, ω ∈ R
4}. Here g is the Minkowski metric.

Proof. We have glmθ lθm = 0 since θ is lightlike, and θmξm = 0 since v ∈ S1ξ . Thus
the tensors cg + ξ ⊗ ω + ω ⊗ ξ are in Ker(N ). Let us now show that there are no other
tensors in Ker(N ). Suppose that f ∈ Ker(N ). Then

0 =
∫

S1ξ

χ f̄ jkθ
jθkθ lθm flmdv =

∫

S1ξ

χ | f jkθ jθk |2dv.

Then f jkθ jθk = 0 for v in a nonempty open subset of S1ξ .

We write ξ = (ξ0, ξ
′) ∈ R

1+3. After a rotation in ξ ′, we may assume that ξ ′ =
(0, 0, 1). As ξ is spacelike, there is a Lorentz boost B such that ξ = Be3, where
e3 = (0, 0, 0, 1). The boost B is a linear map Bk

j such that if θ̃k = Bk
j θ

j then θ̃ j = θ j ,
j = 1, 2, and

θ̃0 = θ0 cosh α + θ3 sinh α, θ̃3 = θ0 sinh α + θ3 cosh α, (29)

where α is the hyperbolic angle (or rapidity) of the boost.
When v ∈ S1ξ and θ = (1, v) we have

0 = ξθ = (Be3)θ = θ̃3,

since the boost B is symmetric. Combining this with (29) and θ0 = 1 gives θ̃0 =
1/ cosh α. Indeed,

θ3 = − sinh α

cosh α
and θ̃0 = cosh α − sinh2 α

cosh α
= 1

cosh α
.

Let us denote A = B−1 and define a 3 × 3 symmetric tensor h by

hlm = cosh−2 α f̃lm, l,m = 0, 1, 2,



586 M. Lassas, L. Oksanen, P. Stefanov, G. Uhlmann

where f̃lm = A j
l f jk A

k
m . Let us also write W = cosh α(θ̃0, θ̃1, θ̃2) ∈ R

3 and w =
(W 1,W 2) ∈ R

2. Then

0 = f jkθ
jθk = f̃lm θ̃ l θ̃m = hlmW

lWm,

since θ̃3 = 0. Moreover, W 0 = 1 and w = cosh α(θ1, θ2) satisfies

|w|2 = cosh2 α(1 − |θ3|) = cosh2 − sinh2 α = 1,

since θ = (1, v) and v ∈ S2. Thus

h((1, w), (1, w)) = hlmW
lWm = 0

for w in a nonempty open subset of S1. After a rotation we may assume that w =
(sin β, cosβ) is in this set for small β. Differentiating three times with respect to β we
get

0 = h((1, w), (1, w)), (30)

0 = h((1, w), (0, w′)), (31)

0 = h((0, w′), (0, w′)) − h((1, w), (0, w)), (32)

0 = −3h((0, w′), (0, w)). (33)

Now (33) implies that h12 = 0. By (33) we have

h((1, w), (0, w′)) = h((1, 0), (0, w′)) + h((0, w), (0, w′)) = h((1, 0), (0, w′)),

which implies together with (31) that h02 = 0. Differentiating this once more we see that
h01 = 0. As all the cross terms vanish, (30) implies that h11 = −h00. Differentiating
(33) we see that

0 = h((0, w), (0, w)) − h((0, w′), (0, w′)),

which implies that h11 = h22. Thus h is proportional to the 1+2 dimensionalMinkowski
metric.

We have shown that there is c ∈ R such that f̃ml −cgml vanishes whenm, l = 0, 1, 2.
Moreover, we can choose ω̃ ∈ R

4 such that

f̃ − cg − e3 ⊗ ω̃ − ω̃ ⊗ e3 = 0.

We recall that ξ = Be3. As the 1+3 dimensional Minkowski metric g is invariant under
the Lorentz boost B, we have

f = cg + ξ ⊗ ω + ω ⊗ ξ,

where ω = Bω̃. �

Let us now construct a projection onto a complement of Ker(N ) as a symbol P of

order zero that commutes with N . The construction is inspired by [34,36]. We will raise
and lower indices by using the Minkowski metric g. We define

λ
i j
kl = κ i

kκ
j
l , κ i

k = δik − ηkη
i , η = ξ√

g(ξ, ξ)
,
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where ξ is assumed to be spacelike, and δik is theKronecker delta. Then ηiηi = g(η, η) =
1 and

κ i
kηi = ηk − ηkη

iηi = 0. (34)

Thus ξ ⊗ ω + ω ⊗ ξ ∈ Ker(λ) for any ω ∈ R
4.

We have κ i
k gi j = gkj − ηkη j , whence λg = μ, where

μkl = gkl − ηkηl .

Let us define hi j = gi j − ηiη j , and

P = λ − μ ⊗ h

3
. (35)

Lemma 9.2. Let N be a tensor of the form (28). Then P is a projection satisfying
Ker(P) = Ker(N ) and PN = N = N P.

Proof. We have

hi j gi j = gi j gi j − g(η, η) = 4 − 1 = 3,

whence g ∈ Ker(P). Moreover,

hi jηi = η j − η jηiηi = 0, (36)

whence ξ ⊗ω+ω⊗ξ ∈ Ker(P) for anyω ∈ R
4.We have shown that Ker(N ) ⊂ Ker(P).

Let us show that P2 = P . We have κ
p
k κ i

p = κ i
k by (34), whence λ2 = λ. Similarly

(36) implies that

hi jμi j = δ
i j
i j − g(η, η) = 3,

and (μ ⊗ h)2 = 3μ ⊗ h. Moreover,

λ(μ ⊗ h) = (λμ) ⊗ h = (λg) ⊗ h = μ ⊗ h.

Analogously with above, we have μ ⊗ hλ = μ ⊗ h. Thus

P2 = λ2 − λ
μ ⊗ h

3
− μ ⊗ h

3
λ +

(μ ⊗ h)2

9
= λ − 2

μ ⊗ h

3
+

μ ⊗ h

3
= P.

We have P pq
kl N i j

pq = Ni j
kl since

κ
p
k θp = θk − ηk

ξ pθp√
g(ξ, ξ)

= θk, h pqθpθq = g(θ, θ) − ξ pθpξ
qθq

g(ξ, ξ)
= 0.

Analogously N P = N , therefore Ker(P) ⊂ Ker(N ). �

Lemma 9.3. Let M ⊂ R

4 be open and let (x, ξ) ∈ T ∗M be spacelike. Then for all f ∈
E ′(M; Sym2) we have that (x, ξ) ∈ WF(P f ) if and only if (x, ξ) ∈ WF( f + cg + dsω)

for all c ∈ E ′(M) and ω ∈ E ′(M;�1). Furthermore, if A is a pseudodifferential
operator satisfying A(cg + dsω) = 0 for all c ∈ E ′(M) and ω ∈ E ′(M;�1), then
(x, ξ) ∈ WF(AP f ) if and only if (x, ξ) ∈ WF(A f ).
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Proof. Let χ ∈ S0(T ∗M) satisfy χ(x, ξ) = 1 and suppose that supp (χ) contains only
spacelike covectors. Note that (x, ξ) ∈ WF(P f ) if and only if (x, ξ) ∈ WF(Pχ f ),
since P(1 − χ) is smoothing near (x, ξ).

Let h be the Fourier transform of (1 − P)χ f . Then h(η) ∈ Ker(P) = Ker(N ), and
therefore h(η) is of the form

c̃(η)g + η ⊗ ω̃(η) + ω̃(η) ⊗ η, η ∈ R
4.

By taking the inverse Fourier transform, we see that (1− P)χ f is of the form cg + dsω
for some c ∈ D′(R4) and ω ∈ D′(R4;�1). Let χ2 ∈ C∞

0 (M) satisfy χ2(x) = 1. Now
(x, ξ) /∈ WF(Pχ f ) implies (x, ξ) /∈ WF( f − χ2(cg + dsω)), since

χ f = Pχ f + (1 − P)χ f = Pχ f + cg + dsω. (37)

Suppose now that there are c ∈ E ′(M) and ω ∈ E ′(M;�1) such that (x, ξ) /∈
WF( f + cg + dsω). Then (x, ξ) /∈ WF(P f ) since

χ P( f + cg + dsω) = χ P f,

and the pseudodifferential operator P does not move singularities. Furthermore, the
formula (37) implies that (x, ξ) ∈ WF(APχ f ) if and only if (x, ξ) ∈ WF(Aχ f ). �


10. Microlocal Analysis of the Light Ray Transform

Let us now study the light ray transform in the limited angle case, that is, whenU1 ⊂ R
3 is

an arbitrary open set in Theorem 4.4. Letχ ∈ C∞
0 (U1). The restricted light ray transform

χL belongs to the class of operators considered in [12]. Here we will complement the
results in [12] by computing the symbols of the restricted light ray transform and its
normal operator with a suitable cutoff.

It is well known that a restricted ray transform is a Fourier integral operator associated
with the canonical relation given by the twisted conormal bundle N∗Z ′ of its point-line
relation Z [13]. We will next give a parametrization of N∗Z ′ and the symbol of χL in
this parametrization.

We take the Fourier transform with respect to y ∈ R
3 and get

FL f (η, v) = =
∫

R3

∫

R

flm(s, y + sv)θ lθme−iηydsdy

=
∫

R4
flm(x)θ lθme−iη(x ′−x0v)dx .

Here θ = (1, v) and we have used the change of variables (23). We see that the Schwartz
kernel of χL is the oscillatory integral

∫

R3
eiφ(x,y,v,η)a(x, y, v, η)dη, x ∈ R

4, (y, v) ∈ R
3 × S2, (38)

where a(x, y, v, η) = (2π)−3θ lθm and φ(x, y, v, η) = η(y − x ′) + x0ηv. We write
C = R

3 × S2. The critical set of φ is

Cφ = {(y, v; x; η) ∈ C × R
4 × (R3\0); φ′

η = 0}
= {(y, v, x, η); y = x ′ − x0v}.
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The phase function φ parametrizes the conormal bundle N∗Z of the point-line relation

Z = {(x ′ − x0v, v; x0, x ′) ∈ C × R
4; v ∈ S2, x ∈ R

4}
via the diffeomorphism Cφ � (y, v, x, η) 
→ (y, v, φ′

y,v, x, φ
′
x ) ∈ N∗Z . Note that the

twisted conormal bundle

N∗Z ′ = {(y, v, η,w; x0, x ′, ξ0, ξ ′) ∈ (T ∗C × T ∗
R
4)\0;

y = x ′ − x0v, η = ξ ′, w = x0ξ ′|TvS2 , ξ0 = −ξ ′v,

v ∈ S2, η ∈ R
3, x ∈ R

4} (39)

is a canonical relation. Indeed, N∗Z ′ ⊂ (T ∗C\0) × (T ∗
R
4\0), since η = 0 if and only

if ξ ′ = 0, and ξ ′ = 0 implies ξ0 = −ξ ′v = 0.
In the parametrization (38), the symbol of χL is

(2π)3/4χ(y)θ lθm, θ = (1, v), (y, v) ∈ C.

The symbol is of order zero (38) and hence χL is a Fourier integral operator of order
−3/4 associated with the canonical relation N∗Z ′, see [16, Def. 3.2.2]. The theory of
Fourier integral operators implies that χL gives a continuous map from E ′(R4) toD′(C).
Taking into account the conformal invariance, we have proven Lemma 4.1.

Let us next verify the claims in the end of Sect. 4 about the sharpness of Theorem
4.4.

Lemma 10.1. Let (y, v, η,w; x, ξ0, ξ ′) ∈ N∗Z ′. Then ξ is lightlike if and only if
ξ ′|TvS2 = 0. Moreover, if ξ is lightlike then ξ ′ = −ξ0v.

Proof. We have |ξ0| = |ξ ′v| ≤ |ξ ′||v| = |ξ ′| with the equality holding if and only if ξ ′
and v are collinear. But ξ ′ and v being collinear is equivalent with ξ ′|TvS2 = 0. Thus
ξ ′|TvS2 = 0 if and only if |ξ0| = |ξ ′|. Suppose now that ξ is lightlike. Then ξ = cv for
some c ∈ R, and thus ξ0 = −ξ ′v = −c. �

Lemma 10.2. Let (x, ξ) ∈ T ∗

R
4\0. Then the relation C = N∗Z ′ mapping T ∗

R
4 to

T ∗C satisfies the following:

(1) If ξ is timelike, then C(x, ξ) = ∅.
(2) If ξ is spacelike, then C(x, ξ) = {(x ′ − x0v, v, ξ ′, x0ξ ′|TvS2); v ∈ S1ξ }, where S1ξ is

the circle defined in Lemma 8.1.
(3) If ξ is lightlike, then C(x, ξ) = (x ′ + x0

ξ0
ξ ′,− ξ ′

ξ0
, ξ ′, 0).

Proof. If (y, v; η,w) ∈ T ∗C is in relation N∗Z ′ with (x, ξ) ∈ T ∗
R
4, that is, (y, v; η,w)

∈ N∗Z ′(x, ξ), then

|ξ0| = |ξ ′v| ≤ |ξ |.
Thus ξ is lightlike or spacelike. Let us suppose that ξ be spacelike.We have y = x ′−x0v,
η = ξ ′ and w = x0ξ ′|TvS2 . Finally, ξ0 = −ξ ′v is equivalent with v ∈ S1ξ . Let us now
suppose that ξ in lightlike. Note that ξ0 �= 0 since otherwise ξ = 0. Lemma 10.1 implies
that v = −ξ ′/ξ0 and that w = 0. �
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The restricted light ray transform χL maps singularities through the relation N∗Z ′,
that is, WF(χL f ) ⊂ N∗Z ′ WF( f ), see [16, Th. 4.1.1, Th. 2.5.14]. Hence Lemma 10.2
implies that WF(χL f ) is empty if WF( f ) contains only timelike covectors. Let us now
suppose that (x, ξ) ∈ T ∗

R
4 is spacelike and that the circle

S1x,ξ = {x ′ − x0v; v ∈ S1ξ } (40)

does not intersect U1. Then Lemma 10.2 implies that WF(χL f ) is empty if WF( f ) is
contained in a small conical neighborhood of (x, ξ) in T ∗

R
4.

The condition (12) is equivalent with S1x,ξ ∩ U1 �= ∅. Namely, if a null geodesic
intersects x then, up to an affine reparametrization, it coincides with γ (τ ; x, θ) where
θ = (1, v) for some v ∈ S2. Now ξ(γ̇ (0; x, θ)) = ξ0 + ξ ′v, whence v ∈ S1ξ is equivalent

with vanishing of ξ(γ̇ (0; x, θ)). Finally, γ (τ ; x, θ) intersects {0} × U1 for some v ∈ S1ξ
if and only if S1x,ξ ∩ U1 �= ∅.

Let us now suppose that (x, ξ) ∈ T ∗
R
4\0 is lightlike, and consider the null geodesic

μ(τ) = (x0 + τ, x ′ − τξ−1
0 ξ ′), τ ∈ R. (41)

Then N∗Z ′ maps all the points (μ(τ), ξ) ∈ T ∗
R
4, τ ∈ R, on the same point in T ∗C. We

expect that this leads to artifacts when trying to recover lightlike singularities, however,
we do not analyze this further in the present paper.

11. Microlocal Analysis of the Normal Operator

Let us consider an operator A having kernel of the form (38), and use the following
notation for the projections

N∗Z ′
π

�����
���

��� ρ

���
��

��
��

��

T ∗
R
4 T ∗C

(42)

When the projection ρ is an injective immersion, the diagram (42) is said to satisfy
the Bolker condition. In this case the corresponding normal operator A∗A is a pseu-
dodifferential operator [13]. In our case, the Bolker condition holds only outside the
set

L = {(y, v, η,w; x, ξ) ∈ T ∗C × T ∗
R
4; ξ is lightlike}.

Lemma 11.1. The restriction of ρ on N∗Z ′\L is an injective immersion but dρ fails to
be injective on N∗Z ′ ∩ L .

Proof. Wemayuse (y, v, ξ ′, x0) ∈ C×R
3+1 as coordinates on N∗Z . In these coordinates

ρ = (y, v, ξ ′, x0ξ ′|TvS2), dρ =
⎛

⎜⎝

id 0 0 0
0 id 0 0
0 0 id 0
0 ∗ ∗ ξ ′|TvS2

⎞

⎟⎠ ,
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where ∗ denotes an element that does not play a role in the proof. We see that dρ is
injective if and only if ξ ′|TvS2 �= 0. By Lemma 10.1 this is equivalent with ξ being
lightlike.

Let us nowshowglobal injectivity of the restriction.Let (y, v, ξ ′, x0) and (ỹ, ṽ, ξ̃ ′, x̃0)
be in C × R

3+1, and suppose that ξ is not lightlike and that ρ maps the corresponding
points in N∗Z on the same point. Then ỹ = y, ṽ = v, ξ̃ ′ = ξ ′, and x̃0ξ ′|TvS2 = x0ξ ′|TvS2 .
Moreover, x̃0 = x0 since ξ ′|TvS2 �= 0 as ξ is not lightlike. �


Wewill show next that A∗A is a pseudodifferential operator if wemicrolocalize away
from the set L .

Lemma 11.2. Let (x, ξ) ∈ T ∗
R
4\0. Then the composed relation C = (N∗Z ′)−1◦N∗Z ′

mapping T ∗
R
4 to itself satisfies

(1) If ξ is timelike, then C(x, ξ) = ∅.
(2) If ξ is spacelike, then C(x, ξ) = (x, ξ).
(3) If ξ is lightlike, then C(x, ξ) = {(μ(τ); ξ); τ ∈ R}, where μ is the null geodesic

(41).

Proof. The timelike case follows immediately fromLemma 10.2. Let ξ be spacelike, and
let (y, v; η,w) ∈ T ∗C be in relation N∗Z ′ with (x, ξ) and with a point (̃x, ξ̃ ). We have
ξ̃ ′ = η = ξ ′. This implies that also ξ̃0 = −ξ ′v = ξ0. As ξ ′|TvS2 �= 0 by Lemma 10.1, the
equation x̃0ξ ′|TvS2 = w = x0ξ ′|TvS2 implies x̃0 = x0. Finally x̃ ′ −x0v = y = x ′ −x0v,
whence x̃ ′ = x ′.

Let ξ be lightlike. Then Lemma 10.2 says that (x ′+ x0
ξ0

ξ ′,− ξ ′
ξ0

, ξ ′, 0) is the only point
in T ∗C that is in relation N∗Z ′ with (x, ξ). This determines ξ uniquely but x only up to
a translation along μ. �

Lemma 11.3. Let us define C = N∗Z ′\L . The composition C−1 ◦ C is clean in the
sense of [17, Th. 21.2.14]. The projection π2 from the intersection of C−1 × C with
T ∗

R
4×diag (T ∗C)×T ∗

R
4 to (T ∗

R
4)2 is proper, and the fibers π−1

2 (p), p ∈ (T ∗
R
4)2,

are connected.

Proof. We write

X = C−1 × C, Y = T ∗
R
4 × diag (T ∗C) × T ∗

R
4.

We need to show that X ∩ Y is a smooth manifold and that

Tp(X ∩ Y ) = TpX ∩ TpY, p ∈ X ∩ Y. (43)

Lemma 11.2 implies that X ∩ Y coincides with the smooth manifold diag (C) after a
reordering of the factors in the Cartesian product. We may use p = (y, v, ξ ′, x0) ∈
C × R

3+1 as coordinates on X ∩ Y . Notice that a tangent vector of X , parametrized
by (δp, δq) ∈ T(p,p)(C × R

3+1)2, coincides with a tangent vector of Y if and only if
dρ δp = dρ δq. This implies δp = δq since dρ is injective on C . Thus (43) holds.

A fiber π−1
2 (p), p ∈ (T ∗

R
4)2, is diffeomorphic with the circle S1ξ if p = (x, ξ, x, ξ)

and ξ is spacelike, and it is empty otherwise. �

Lemma 11.3 says that if we cut away the lightlike covectors, thenwe can use the clean

intersection calculus [17, Th. 25.2.3]. Let χ0 ∈ S0(T ∗
R
4) satisfy supp (χ0) ∩ Lπ = ∅

where

Lπ = {(x, ξ) ∈ T ∗
R
4; ξ is lightlike}.
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Then A∗Aχ0 is a Fourier integral operator with the canonical relation C−1 ◦ C where
C = N∗Z ′\L , and Lemma 11.2 implies thatC−1◦C is in N (diag (R4))′. Hence A∗Aχ0
is a pseudodifferential operator. The calculus implies also that the order of A∗Aχ0 is−1
if the order of A is −3/4 since the fibers π−1

2 (p), p ∈ (T ∗
R
4)2, are one dimensional

(i.e. the excess of the composition is one).
If we are given the data A f we can not compute Aχ0 f , but we can choose pseudod-

ifferential operators χ0 on R
4 and χ1 on C so that χ1A = χ1Aχ0 modulo a smoothing

operator. Alternatively, we could choose pseudodifferential operators χ1 and χ0, both
on R

4, so that χ1A∗Aχ0 = χ1A∗A modulo a smoothing operator. By Lemma 11.2 this
follows if χ0 = 1 in supp (χ1) and supp (χ0) ∩ Lπ = ∅. However, we prefer using χ1
on C since we need also a cut off χ2 ∈ C∞

0 (U1) due to the fact that we do not have data
on R

3\U1.

Proposition 11.4. Let χ̃1 ∈ C∞
0 (R) satisfy supp (χ̃1) ⊂ (−1, 1), and define

χ1(v, η) = χ̃1(|ηv|/|η|), v ∈ S2, η ∈ R
3.

Let U1 ⊂ R
3 be open and let χ2 ∈ C∞

0 (U1). Then the principal symbol of the pseudod-
ifferential operator L∗χ1χ2L is

σ0(x, ξ) = 2πχ̃1(|ξ0|/|ξ ′|)
(|ξ ′|2 − |ξ0|2)1/2

∫

S1ξ

χ2(x
′ − x0v)θ jθkθ lθmdv,

where θ = (1, v).

Proof. We choose χ̃0 ∈ C∞
0 (−1, 1) such that χ̃0 = 1 in supp (χ̃1), and define χ0(ξ) =

χ̃0(|ξ0|/|ξ ′|). If (y, v, η,w; x, ξ0, ξ ′) ∈ N∗Z ′ then η = ξ ′ and ξ0 = −ξ ′v = −ηv.
Thus |ηv|/|η| = |ξ0|/|ξ ′| and χ0(ξ) = 1 if χ1(v, η) �= 0. Now χ1L = χ1Lχ0 modulo
a smoothing operator and supp (χ0) ∩Lπ = ∅. Hence L∗χ1χ2L is a pseudodifferential
operator.

The kernel of L∗χ1χ2L is of the form

∫

C×R3×R3
e−iφ(x,y,v,ξ ′)eiφ(z,y,v,η)a(z, v, η)dηdξ ′dydv, x, z ∈ R

4,

where a(z, v, η) = (2π)−3χ1(v, η)χ2(z′ − z0v)θ jθkθ lθm . We have

φ(z, y, v, η) − φ(x, y, v, ξ ′) = (η − ξ ′)y − φ̃(z, v, η) + φ̃(x, v, ξ ′),

where φ̃(x, v, ξ ′) = ξ ′x ′ − x0ξ ′v. Hence the kernel simplifies to

∫

S2×R3×R3
δ(η − ξ ′)ei φ̃(x,v,ξ ′)−iφ(z,v,η)a(z, v, η)dηdξ ′dv

=
∫

S2×R3
eiξ

′(x ′−z′)−i(x0−z0)ξ ′va(z, v, ξ ′)dξ ′dv

=
∫

R4

∫

S2
eiξ(x−z)κ∗

ξ δ(v)a(z, v, ξ ′)dvdξ,
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where κξ (v) = ξ0 + ξ ′v. By (25) the symbol σ(z, ξ) of L∗χ1χ2L is

σ(z, ξ) = (2π)4(|ξ ′|2 − |ξ0|2)−1/2
∫

S1ξ

a(z, v, ξ ′)dv

= 2πχ̃1(|ξ0|/|ξ ′|)
(|ξ ′|2 − |ξ0|2)1/2

∫

S1ξ

χ2(z
′ − z0v)θ jθkθ lθmdv.

Thus σ0(x, ξ) = σ(x, ξ). �

Proof of Theorem 4.4. By the conformal invariance it is enough consider theMinkowski
case. Let (x, ξ) be spacelike and choose the cutoff χ̃1 in Proposition 11.4 so that χ̃1 = 1
near |ξ0|/|ξ ′|. Then σ0(x, ξ) = c(ξ)N jklm , where c(ξ) �= 0 and N jklm is the tensor (28)
with χ(v) = χ2(x ′ − x0v). We recall that the visibility condition (12) is equivalent to
S1x,ξ ∩U1 �= ∅, where the circle S1x,ξ is defined by (40). Thus we can choose non-negative
χ2 ∈ C∞

0 (U1) so that χ does not vanish identically on S1ξ .
Let P be the projection (35). Note that both N and P are homogeneous of degree

zero, and W0 = N + (1 − P) is elliptic near (x, ξ). Indeed, if W0 f = 0 then

0 = PW0 f = N P f, 0 = (1 − P)W0 f = (1 − P) f.

Thus P f ∈ Ker(N ) = Ker(P) and f = P f = P2 f = 0.
As W0 is the principal symbol of the zeroth order pseudodifferential operator

W = c−1L∗χ1χ2L + (1 − P),

there is a parametrix Q ofW such thatW = 1 modulo a smoothing operator near (x, ξ).
Thus P = QW P = Qc−1L∗χ1χ2LP . Hence

(x, ξ) ∈ WF(P f ) if and only if (x, ξ) ∈ WF(L∗χ1χ2LP f ),

and we apply Lemma 9.3 to conclude. �
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