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Abstract

We study the system of linear elasticity in an exterior domain in R3 with Neumann
boundary conditions. We prove an optimal lower bound for the asymptotic distribution
of the resonances near the real axis due to the existence of Rayleigh waves. To this
end we construct real quasimodes as the eigenvalues of an elliptic first order ΨDO
on the boundary. In case of a convex boundary, we prove that the resonance states
are asymptotically close to the quasimode states and we use this to find explicitly the
leading term of the resonance states (the Rayleigh waves) on the boundary.

1 Introduction

Let Ω ⊂ R3 be a domain with a compact complement O and a smooth boundary Γ. Denote
by

∆ev := µ0∆v + (λ0 + µ0)∇(∇ · v)

the operator of elasticity in R3, where v is a vector-valued function. Here λ0, µ0 are the
Lamé constants and as usual we assume that µ0 > 0, 3λ0 + 2µ0 > 0. We are interested in
the Neumann problem for ∆e in Ω. The Neumann boundary conditions for ∆e require that
the normal components of the stress tensor σij(v) = λ0∇ · vδij + µ0

(
∂vi

∂xj
+

∂vj

∂xi

)
vanish on Γ,

i.e.,
3∑

j=1

σij(v)nj|Γ = 0, i = 1, 2, 3, (1)

where n(x) is the outer normal to Γ. Let L be the self-adjoint realization of −∆e in L2(Ω)
with the Neumann boundary conditions (1). Throughout this paper all norms will be in
L2(Ω) unless otherwise stated. Resonances of L are defined as usual as the poles of the
meromorphic continuation R(λ) of the resolvent (L − λ2)−1 : L2

comp(Ω) → L2
loc(Ω) from
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Imλ < 0 to the whole complex plane C. They are also the poles of the meromorphic
continuation Rχ(λ) of the cut-off resolvent χR(λ)χ where χ is any smooth cut-off function
equal to 1 near Γ. The first main result of this paper is the following.

Theorem 1.1 There exists a function 0 < S(t) = O(t−∞), as t → ∞, such that for the
counting function

N(r) := #{λ is a resonance; 1 < Reλ < r, 0 < Imλ < S(|λ|)},

r > 1, we have

N(r) ≥ Area(Γ)

4πc2R
r2 +O(r).

Existence of resonances close to the real axis for the elasticity system is closely related to
the existence of Rayleigh waves [R]. It is well-known [T1] that in case of Neumann boundary
conditions, one has singularities propagating not only with the two sound speeds c1 =

√
µ0

and c2 =
√
λ0 + 2µ0, but a third type of singularities (Rayleigh waves) that propagate along

the boundary with a slower speed cR. This makes any obstacle a trapping one and one
could expect “almost real” resonances by the Modified Lax-Phillips Conjecture. Lack of an
exponential local energy decay was proved by M. Kawashita in [K1]. Existence of resonances
converging rapidly to the real axis was proved by the author and G. Vodev in [SV1] for
strictly convex obstacles (see also [K2] for more general systems) and next in [SV2] for
obstacles with any geometry. In case of an analytic boundary the rate of convergence is
exponential [V]. An asymptotic of the counting function of the Rayleigh resonances for a
class of non-trapping obstacles was established by J. Sjöstrand and G. Vodev in [SjV]. The
asymptotic of the scattering phase was studied in [CV1], [CV2].

We notice that for some (trapping) obstacles there might be more resonances near the real
axis. For example, if there is an elliptic periodic ray, reflecting off the boundary according
to the laws of geometric optics, one might expect a lower bound c0r

3, c0 > 0 similarly to the
wave equation case [S]. The bound that we get in Theorem 1.1, however, is optimal for the
Rayleigh resonances because it coincides with the leading term in the asymptotic of N(r) in
case of a convex body [SjV].

Theorem 1.1 is a consequence of the existence of real Rayleigh quasimodes associated to
L and the result in [S].

Theorem 1.2
(a) There exists a sequence of positive numbers (quasimodes) λj → ∞ and a sequence

of smooth functions uj ∈ D(L) (quasimode states) supported in a fixed neighborhood of Γ in
Ω such that (L − λ2

j )uj = O(λ−∞
j ), ‖uj‖L2(Ω) = 1 and uj|Γ are orthogonal up to an error

O(λ−∞) w.r.t. a suitably chosen norm in L2(Γ) equivalent to the original one.
(b) λj , j = 1, 2, . . . are the eigenvalues (repeated according to their multiplicities) of a

classical first order ΨDO P on Γ coinciding with cR(−∆Γ)
1/2 modulo zero order ΨDOs.
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(c) We have ‖uj‖L2(Γt) ≤ Ce−γλjt‖uj‖L2(Γ), 0 ≤ t � 1, with Γt := {dist{x,Γ} = t} and
any γ < (c−2

R − c−2
1 )1/2, C = C(γ). Modulo a normalizing factor (independent of j), uj have

the following asymptotic on Γ:

λ
−1/2
j uj|Γ =

(
1 − c2R

2µ0

)
λ−1

j ∇Γφj +
(
c−2
R − c−2

2

)1/2
n(x)φj +O(λ−1

j ),

where φj are the normalized eigenfunctions of P.

In order to construct the Rayleigh quasimodes whose existence is stated in Theorem 1.2,
we solve the equation N (λ)ϕ = O(λ−∞)ϕ, where N (λ) is the Neumann operator (the
Dirichlet-to-Neumann map) on the boundary (see (5)). To this end, we represent N (λ)
as a ΨDO with large parameter λ (λ-ΨDO) in the elliptic region in T ∗Γ. Next, we diago-
nalize explicitly N (λ) in a neighborhood of the characteristic variety Σ responsible for the
Rayleigh waves. This does not only allows us to construct quasimodes, but it gives us an
explicit expression of the principal term of the quasimode functions uj in Theorem 1.2(c).
Notice that Theorem 1.2 holds for the interior problem, too.

Rayleigh quasimodes were first constructed by F. Cardoso and G. Popov in [CP]. They
considered an elliptic periodic geodesic on the boundary and constructed quasimodes sup-
ported essentially near that geodesic. Their construction gives us more precise description
of the support of the quasimode state but is limited to the case above.

In order to derive Theorem 1.1 from Theorem 1.2, we exploit the link between quasimodes
and resonances established in [S] that generalized earlier results in [SV2], [TZ]. According
to [S], the main term in the asymptotic of the counting function of the resonances near the
real axis is bounded below by that of the quasimodes. On the other hand, the asymptotic
of the quasimodes is given by the classical Weyl asymptotic of the eigenvalues of P.

In general, one cannot expect the resonance states (and more generally, the functions in
the range of the residuum of the resolvent at the resonances) to be small perturbations of
the quasimode functions uj and therefore to have the same asymptotic on Γ. It may happen
(see also [S] for a discussion of this) that we have other resonances near the real axis caused
by elliptic broken rays, for example. Then the resonance states might be perturbations of
linear combinations of Rayleigh and non-Rayleigh quasimode states. In the case where O is
convex however, we can prove that the resonance states are close to linear combinations of
quasimode states. This allows us to find an expression for the leading term of the Rayleigh
waves at the boundary. Recall that in this case all resonances in Λ := {λ ∈ C; 0 < Imλ <
C1 ln |Reλ|, |Reλ| > C2}, where C1 > 0 is arbitrary, C2 = C2(C1) > 0, converge rapidly to
the real axis [SV1] and as shown in [SjV], N(r) = (4πc2R)−1Area(Γ)r2 +O(r), i.e., the lower
bound in Theorem 1.1 turns into an asymptotic.

Theorem 1.3 Let O be strictly convex. Then
(a) For a suitably chosen C0 > 0 there exists a bijection ρj = l(λj) between the quasimodes

λj (eigenvalues of P) with λj > C0 and the resonances ρj in Λ with Reλj > C0 such that
ρj = λj +O(λ−∞

j ).
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(b) For any resonance ρj as above, and any non-zero vj in the range of the singular part
of R(λ) at λ = ρj , we have ‖vj‖L2(Γt) = O((|ρj |t)−∞)‖vj‖L2(Γ), 0 < t� 1, and

ρ
−1/2
j vj|Γ =

(
1 − c2R

2µ0

)
ρ−1

j ∇ΓΦj +
(
c−2
R − c−2

2

)1/2
n(x)Φj +O(|ρj |−1), (2)

modulo a normalizing factor, where Φj is a normalized linear combination of eigenfunctions
of P with eigenvalues in a neighborhood of ρj of size O(|ρj |−∞).

This paper is organized as follows. In Section 2 we diagonalize the parametrix of the
Neumann operator in the elliptic region thus reducing the construction of quasimodes to
solving (P (λ) − λ)u = O(λ−∞)u, λ ∈ R on Γ with a scalar λ-ΨDO P (λ). In section 3 we
show that one can replace P (λ) by a self-adjoint classical ΨDO P independent of λ and this
gives us opportunity to define the quasimodes as the eigenvalues of P in Section 4, where
we also complete the proofs of the main theorems.

Acknowledgments. Thanks are due to the referee, whose remarks contributed signifi-
cantly to improving the quality of this paper.

2 Diagonalization of the Neumann operator

Denote by N = N (λ) the operator that maps the Dirichlet data on Γ of an outgoing
solution to its Neumann boundary data (see (5) below). Since the resonances in Λ are
among the poles of N−1(λ) [SV1], constructing quasimodes of L can be reduced to solving
N (λ)f = O(|λ|−∞)f . That is why we will study first N (λ) in more detail.

We are going to recall the construction of the parametrix Ne of N in the elliptic region.
For more details, see [G] for a similar construction for the wave equation, and [CP], [SV1],
[SV2] for the elasticity system.

We work with pseudodifferential operators with large parameter λ (λ-ΨDOs) defined as
follows. In local coordinates, we have

(Op(a)u) (x, λ) =

(
λ

2π

)n ∫ ∫
eiλ(x−y)·ξa(x, y, ξ, λ)u(y, λ) dy dξ, (3)

where the amplitude a(x, y, ξ, λ) belongs to the class Sm,k, i.e., it satisfies the estimate

|∂α
x∂

β
y ∂

γ
ξ a| ≤ Cα,β,γ,K|λ|k(1 + |ξ|)m−|γ| (4)

for 0 ≤ Imλ ≤ c, Reλ > 0, (x, y) ∈ K ⊂⊂ Rn×Rn, ξ ∈ Rn. Operator (3) is well defined for
λ ∈ Λ as well if the amplitude a is compactly supported with respect to ξ [SV1]. Without this
requirement, (3) is also well defined either by considering Reλ as the large parameter (see
[SV1], [SV2]) or by using almost analytic extension (see [SjV]). In this paper we are going
to work with compactly supported amplitudes only and we do not need to consider λ ∈ Λ;
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instead we will assume that 0 ≤ Imλ ≤ 1 in order to cover neighborhoods of the real axis
of the form 0 ≤ Imλ ≤ |λ|−k, k > 0. Because of the compact support with respect to ξ, the
order m with respect to ξ does not matter and can be assumed to bem = 0. If a ∈ Sm,k, then
we say that Op(a) ∈ Lm,k. In fact, all amplitudes below will have asymptotic expansions
a ∼ ∑∞

j=−k λ
−jaj(x, ξ). We refer to [G], [SjV] for definition of wave front set WFλ(f) of

f = f(x, λ) and wave front sets of λ-ΨDOs and for the basic properties of λ-ΨDOs.
Define the Neumann operator as follows

N (λ) : Hs(Γ) 3 f 7→
3∑

j=1

σj(v)nj|Γ ∈ Hs−1(Γ), s ≥ 3

2
, (5)

where σj = t(σ1j, σ2j, σ3j), σij is the stress tensor (see (1)) and v solves the following problem




(∆e + λ2)v = 0 in Ω,
v = f on Γ,
v − outgoing.

(6)

We will use the notation v = H(λ)f .
The cotangent bundle T ∗Γ can be naturally decomposed into a hyperbolic, mixed, elliptic

and two glancing regions with respect to the wave speeds c1 =
√
µ0 and c2 =

√
λ0 + 2µ0

of L (see [SV1], for example). To construct a parametrix Ne(λ) of N (λ) in the elliptic
region c1|ξx| > 1, where |ξ|x is the norm of the covector (x, ξ), we proceed as follows. In
local coordinates, pick up a function χ ∈ C∞

0 (T ∗Γ) supported near a point in the elliptic
region. Then we find an asymptotic solution of the Dirichlet problem with boundary data
Op(χ)f (see (17)) and define Ne(λ)f to be the normal component of the stress tensor of
that solution on the boundary. Using a partition of unity, we construct Ne as a λ-ΨDO
with symbol supported in the elliptic region. It is known that Ne is elliptic outside the
characteristic variety

Σ := {(x, ξ) ∈ T ∗Γ; cR|ξ|x = 1}
and has a simple zero on Σ. Here cR is the Rayleigh speed (see (9)) and 0 < cR < c1 < c2.
In fact, the principal symbol of Ne is a Hermitian matrix with three distinct and therefore
smooth eigenvalues near Σ; two of them are elliptic, one of them vanishes on Σ. Using
Green’s formula, it is easy to see that Ne is self-adjoint for real λ modulo O(λ−∞).

In [SV2] we proved that the parametrix Ne(λ) and the exact solution operator N (λ) are
connected via the following identity

N (f +R1f) = Nef +R2f (7)

for any f = f(x, λ) with ‖f(·, λ)‖ temperate in λ, WFλ(f) supported near Σ, where R1f =
R1(λ)f = O(|λ|−∞) and R2 = R2(λ) ∈ L−∞,−∞. Here and below g = O(|λ|−∞) refers to any
Hk norm of g unless otherwise stated. Since we do not assume that O is convex, N may not
have such a parametrix in the other regions.

In what follows we study the principal symbol σp(Ne) of Ne in more detail. We diagonalize
it explicitly by finding simple formulas for the eigenvalues and the eigenvectors. We also show
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that σp(Ne) admits a global (near Σ) diagonalization, a fact that is far from obvious. Indeed,
it is easy to see that one can diagonalize σp(Ne) in a neighborhood of each point in Σ with
unitary matrices depending smoothly on (x, ξ) ∈ T ∗Γ. However, this does not readily imply
that one can do the same thing globally near Σ due to possible topological obstructions.
Below we prove in particular that such obstructions do not exists.

Choose local coordinates x = (x′, x3) ∈ R2×R as follows: fix a point p0 ∈ Γ, and choose
Euclidean coordinates (p1, p2, p3) = (p′, p3), such that p0 = 0 and Γ is given by the equation
p3 = F (p′), where F (0) = 0 and ∇F (0) = 0. Then set x1 = p1 − F (p′), x′ = p′ near p0. We
can alway assume that Ω is given locally by x3 > 0 Then x′ = (x1, x2) are local coordinates
on Γ and in what follows we are going to drop the prime in order to simplify the notation.
Assume that we have local coordinates as above, let (x0, ξ0) ∈ T ∗Γ be in the elliptic region
and let us work in a neighborhood of that point.

To calculate the principal symbol Ne we will proceed as in [CP, sec. 2] (see also [N,
sec. 7]). Set

α :=
(
|ξ|2x − 1

µ0

)1/2

, β :=
(
|ξ|2x −

1

λ0 + 2µ0

)1/2

.

Using the explicit form of the eigenvectors of the symbol of L, we are looking for a solution
of the form u = ∇v1+(0,−∂3, ∂2)v2+(−∂3, 0, ∂1)v3, where vj, j = 1, 2, 3 are scalar functions.
Then as in [CP] we get that σp(Ne) = AR−1, where

A = −λ2




2iµ0βξ1 µ0ξ1ξ2 µ0(ξ
2
1 + α2)

2iµ0βξ2 µ0(ξ
2
2 + α2) µ0ξ1ξ2

1 − 2µ0|ξ|2 2iµ0αξ2 2iµ0αξ1


 , R = iλ



ξ1 0 −iα
ξ2 −iα 0
iβ ξ2 ξ1


 .

We thus get
σp(Ne)(0, ξ) = −λ(|ξ|2 − αβ)−1N1,

where

N1 =




µ0(α − β)ξ2
2 + β −µ0ξ1ξ2(α− β) −i(2µ0|ξ|2 − 2µ0αβ − 1)ξ1

−µ0ξ1ξ2(α− β) µ0(α − β)ξ2
1 + β −i(2µ0|ξ|2 − 2µ0αβ − 1)ξ2

i(2µ0|ξ|2 − 2µ0αβ − 1)ξ1 i(2µ0|ξ|2 − 2µ0αβ − 1)ξ2 α


 .

A direct inspection of N1 shows that (−ξ2, ξ1, 0) is an eigenvector. Based on this observation,
let us choose a unitary matrix V with one column parallel to that vector:

V =



ξ1/|ξ| 0 −ξ2/|ξ|
ξ2/|ξ| 0 ξ1/|ξ|

0 1 0


 .

Then

V ∗N1V =




β −i(2µ0|ξ|2 − 2µ0αβ − 1)|ξ| 0
i(2µ0|ξ|2 − 2µ0αβ − 1)|ξ| α 0

0 0 µ0α(|ξ|2 − αβ).


 .
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Therefore, one of the eigenvalues of σp(Ne)(0, ξ) is a3 := −λµ0α, while the other two are the
eigenvalues m1, m2 of

M :=

(
β −i|ξ| (2µ0(|ξ|2 − αβ)− 1)

i|ξ| (2µ0(|ξ|2 − αβ)− 1) α

)
(8)

multiplied by −λ(|ξ|2−αβ)−1. This leads to a quadratic equation for the other two eigenva-
lues a1 and a2. Its discriminantD := (α−β)2+4|ξ|2 (2µ0(|ξ|2 − αβ) − 1)

2
is clearly positive in

the elliptic region. Therefore, we have one eigenvalue of M of the kind m2 := (α+β+
√
D)/2

which is always positive, while the other one m1 := (α + β −
√
D)/2 may vanish. Next,

detM = (|ξ|2 − αβ)
(
4µ2

0|ξ|2αβ − (1 − 2µ0|ξ|2)2
)
.

The first factor is positive in the elliptic region, while the second one vanishes for |ξ| = s,
where s solves the equation

4µ2
0s

2

(
s2 − 1

µ 0

)1/2(
s2 − 1

λ0 + 2µ0

)1/2

−
(
1 − 2µ0s

2
)2

= 0. (9)

It is well-known that there is unique simple root of this equation in the interval s > 1/
√
µ0

(see [K1], [T1]). Denote that root by 1/cR. Then cR is the Rayleigh speed and we have that
detM and therefore the first eigenvalue a1 of σp(Ne)(0, ξ) has a simple zero at cR|ξ| = 1.
Writing this into an invariant form, we get that σp(Ne) has three eigenvalues in the elliptic
region, one of them vanishes on the characteristic variety Σ and therefore has the form
a1 = λ(cR|ξ|x − 1)a′1, a

′
1 6= 0, while the other two are non-vanishing in the elliptic region.

Studying the limit of detM as |ξ| → ∞ one can show that a′1 < 0. As we mentioned above,
this behavior of the eigenvalues of Ne is a known fact. Using equation (9), we get that
µ0(|ξ|2x − αβ) = 1 − 1/(4µ0|ξ|2x) on Σ, while the quadratic equation for m1 and m2 implies
m2 = (α + β +

√
D)/2 = α + β on Σ. Therefore, for the eigenvalues aj, j = 1, 2, 3 of σp(N)

we have a1 = 0, a2 = −λµ0(α + β) (1 − 1/(4µ0|ξ|2x))
−1

, a3 = −λµ0α on Σ. In particular,
a2 < a3 < a1 in a neighborhood of Σ, which proves that the three eigenvalues are distinct
near Σ.

We are going now to calculate the eigenvectors vj, j = 1, 2, 3 of σp(Ne). Let us first work
in the local coordinates defined above. To find an eigenvector v1 associated to the eigenvalue
a1 vanishing on Σ, we proceed as follows. By (8) we see that

w1 :=
(
i|ξ|(2µ0(|ξ|2 − αβ) − 1), β −m1

)
=
(
i|ξ|(2µ0(|ξ|2 − αβ)− 1),

1

2
(β − α+

√
D)
)

is an eigenvector of M corresponding to m1. One can therefore set w̃1 := (w1, 0) ∈ R3 to
get an eigenvector of V ∗N1V . Hence v1 := V w̃1 is the eigenvector we are looking for and a
direct calculation yields

v1(0, ξ) =
(
iξ1(2µ0|ξ|2 − 2µ0αβ − 1), iξ2(2µ0|ξ|2 − 2µ0αβ − 1),

1

2
(β − α+

√
D)
)
.

7



Similarly,

v2(0, ξ) =
(
iξ1(2µ0|ξ|2 − 2µ0αβ − 1), iξ2(2µ0|ξ|2 − 2µ0αβ − 1),

1

2
(β − α−

√
D)
)
.

The third eigenvector, as pointed out at the beginning, can be chosen to be

v3(0, ξ) = (−ξ2, ξ1, 0).

It is easy to check that v1,2 6= 0 near Σ because 2µ0|ξ|2 − 2µ0αβ − 1 = 1 − 1/(2µ0|ξ|2) =√
αβ/|ξ| > 0 on Σ. We claim that those three eigenvectors are defined invariantly. Notice

first that T ∗Γ can be identified with {(x, ξ) ∈ Γ × R3; x ∈ Γ, ξ ⊥ n(x)}. Using this,
we represent v1,2 as v1,2 = i(2µ0|ξ|2x − 2µ0αβ − 1)ξ + 1

2
(β − α ±

√
D)n(x). Similarly, v3 =

n(x)×ξ, where × stands for the vector product in R3. Let us summarize this in the following
proposition.

Proposition 2.1 The principal symbol σp(Ne) of the Neumann operator in the elliptic region
has three distinct eigenvalues aj, j = 1, 2, 3 near Σ such that a1 = (cR|ξ|x − 1)a′1, a

′
1 < 0 on

Σ and a2 < a3 < 0. Furthermore, σp(Ne) admits three globally defined near Σ eigenvectors
vj, corresponding to aj, j = 1, 2, 3, respectively, having the form

v1,2 = i(2µ0|ξ|2x − 2µ0αβ − 1)ξ +
1

2
(β − α±

√
D)n(x), v3 = n(x) × ξ

with D = (α − β)2 + 4|ξ|2x (2µ0(|ξ|2x − αβ) − 1)
2
. On Σ we have

√
D = α + β and

v1 = i
(
1 − c2R

2µ0

)
ξ + β|Σn(x), v2 = i

(
1 − c2R

2µ0

)
ξ − α|Σn(x).

We are going now to diagonalize Ne completely using essentially the construction in
[T2, sec. V.5] with minor modifications making sure that the transformation operators are
unitary. Let V1 ⊂⊂ V2 be two sufficiently small neighborhoods of Σ. First we will choose
a unitary operator U0 in V1 with “full symbol” supported in V2 diagonalizing the principal
symbol of Ne. More precisely, we require that U∗UX = X modulo L−∞,−∞ for any λ-ΨDO
X with symbol supported in V1. Note that although the full symbol of a λ-ΨDO is not
invariantly defined, the support of the full symbol is. All λ-ΨDOs in the construction below
will be assumed to have full symbols supported in V2. In order to simplify the notation we
will omit operators like X below and A = B will mean that for any X as above we have
AX = BX + R∞ with R∞ ∈ L−∞,−∞. This is equivalent to the assumption that instead
of working with operators, we work with symbols and A = B means that the symbols of A
and B coincide in V1 modulo negligible ones. We can construct U as follows. First, choose
Ũ with principal symbol

σp(Ũ ) :=
(
v1

|v1|x
,
v2

|v2|x
,
v3

|v3|x

)
. (10)

Then σp(Ũ) is a unitary matrix in V1. Therefore, Ũ∗Ũ = 1 + R with R self-adjoint of order
−1. Set U0 := Ũ(1 +R)−1/2. The square root here can be defined as a λ-ΨDO by using the
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Taylor expansion of z 7→ (1 + z)−1/2 near z = 0 and setting z = R(λ) = O(|λ|−1) for |λ| � 1
in that expansion. Then U0 has the required properties and the same principal symbol as
Ũ . Moreover, U0 is invertible for large λ.

Clearly U0 diagonalizes the principal symbol of Ne. We are going to work next with
matrix-valued operators T written in the following block form

T :=

(
T11 T12

T21 T22

)
,

where T11 is a scalar λ-ΨDO, T12 is 1 × 2, T21 is 2 × 1, T22 is 2 × 2. With this notation, we
have

U∗
0NeU0 = A+B :=

(
A′

1(cR(1 − ∆Γ)
1
2 − λ)A′

1 0
0 A2

)
+

(
B11 B12

B21 B22

)
.

where A′
1 is a scalar elliptic λ-ΨDO of order 0 with σp(A

′
1) = (a′1)

1/2, A2 is a 2 × 2 diagonal
matrix with diagonal entries elliptic λ-ΨDOs of order 1 with principal symbols a2 and a3.
The remainder B is of order 0. Let us fix some self-adjoint (for real λ) A′

1, A2 with those
properties. Then B is self-adjoint for real λ modulo L−∞,−∞.

After diagonalizing Ne modulo operators of order 0, next step will be to kill the off-
diagonal entries of B modulo operators of order −1. We are looking for a λ-ΨDO R1 of
order −1 such that (1 + R1)

−1(A + B)(1 + R1) is in a diagonal block form modulo L0,−1.
Assume that

R1 :=

(
0 −(R∗

1)21

(R1)21 0

)
.

Then (1 + R1)
−1(A + B)(1 + R1) = A + (AR1 − R1A + B) mod L0,−1. Therefore, the

off-diagonal entries of (1 +R1)
−1(A+B)(1 +R1) of order 0 will be killed if (R1)21 solves

(R1)21A1 −A2(R1)21 = B21, −(R1)
∗
21A2 +A1(R1)

∗
21 = B12. (11)

Here A1 := A′
1(cR(1 − ∆Γ)

1
2 − λ)A′

1. The second equation is just the adjoint to the first
one. Since σp(A1) and the diagonal entries of σp(A2) are distinct in V2, the solvability of
(11) on the principal symbol level follows from [T2, Ch. IX, Lemma 1.1]. Fix R1 with such a
principal symbol. Note that 1+R1 may not be unitary, because (1+R1)

∗(1+R1) = 1+R∗
1R1.

Set
U1 := (1 +R1)(1 +R∗

1R1)
−1/2.

Then U1 is unitary and U1 = 1 + R1 mod L0,−2. Therefore, after replacing 1 + R1 by U1,
operator U∗

1 (A+ B)U1 still has the diagonal form we need mod L0,−1. So after this step we
obtain

U∗
1U

∗
0NeU0U1 =

(
A′

1(P̃ − λ)A′
1 0

0 Q̃

)
+

(
C11 C12

C21 C22

)

with P̃ = cR(1−∆Γ)
1
2 mod L0,0, Q̃ = A2 mod L0,0 and C ∈ L0,−1, all of them self-adjoint for

real λ modulo negligible operators. Proceeding in the same way, we find unitary operators
U2, U3, . . . such that (U0 . . . Uk−1Uk)

∗Ne(U0 . . . Uk−1Uk) is in diagonal form mod L0,−k. Using

9



a standard argument, choose U ∼ U0U1U2 . . .. Then U will be unitary mod L0,−∞ and
U∗NeU = diag(A′

1(P − λ)A′
1, Q). We can arrange that U is unitary (exactly) by using

arguments similar to those above. From our construction it follows that P = cR(1 − ∆Γ)
1
2

mod L0,0. Since Ne is self-adjoint modulo L0,−∞ for real λ, we have the same for A′
1(P −λ)A′

1

and therefore for P . Thus we have proved the following.

Proposition 2.2 There exits U ∈ L0,0 with U∗U = UU∗ = 1 such that for any X as above
we have in block form

U∗NeUX =

(
A′

1(P − λ)A′
1 0

0 Q

)
X mod L−∞,−∞.

Here A′
1 ∈ L0,0, Q ∈ L1,1 are elliptic self-adjoint operators for real λ, P ∈ L1,1 is also self-

adjoint for real λ, and P = cR(1−∆Γ)
1
2 mod L0,0. Moreover, the principal symbol of U near

Σ is given by (10).

3 Reduction to a classical ΨDO.

The construction of quasimodes is related to solving the equation (P − λ)u = O(λ−∞)u
for certain real λ’s. Here P ∈ L1,1 depends on λ and only its principal term does not.
Here we will show that one can reduce that problem to solving a similar equation with P a
classical ΨDO independent of λ with the same principal term. We refer to [PV] for a similar
construction for the transmission problem. To stress on the dependence on λ we will use the
notation P (λ) instead of P and similarly for other λ-ΨDOs.

We can think that the symbol of P (λ) is extended from a neighborhood of Σ to the whole
T ∗Γ minus a small neighborhood V of the zero section such that in any local coordinates for
the symbol P (x, ξ, λ) of P (λ) we have

P (x, ξ, λ) − λ ∼ λ (cR|ξ|x − 1) +
∞∑

k=0

λ−kp−k(x, ξ) (12)

with p−k ∈ S−k. It is not hard to arrange that the so extended P (λ) is still self-adjoint
modulo negligible operators. The first step will be to reduce the problem to a similar one
with polyhomogeneous symbol outside V , i.e., with p−k homogeneous of order −k outside
V . Denote by P1(λ) such an operator with principal symbol (cR|ξ|x −1) outside V . Without
loss of generality we can assume that P1(λ) is self-adjoint for real λ. Then

P (x, ξ, λ) − λ ∼ P1(x, ξ, λ) − λ +
∞∑

k=0

λ−k p̃−k(x, ξ). (13)

Since P (λ) − P1(λ) is self-adjoint for real λ, p̃0(x, ξ) is real-valued. We have

p̃0(x, ξ) = p̃0

(
x,

ξ

cR|ξ|x

)
+ λ (cR|ξ|x − 1)

r1(x, ξ)

λ
, (14)

10



where r1 is smooth for ξ 6= 0 and real-valued. In order to avoid the singularity at ξ = 0, let
us redefine the first term in the r.h.s. above and r1 as smooth functions near the zero section
by keeping the equality above. Denote by P0(λ) an λ-ΨDO with polyhomogeneous symbol
outside V with principal symbol p̃0(x, ξ/(cR|ξ|x)) for (x, ξ) 6∈ V . Let R1(λ) have principal
symbol −r1/(2λ). We can choose P0(λ) and R1(λ) to be self-adjoint for real λ. Then

(1 +R1(λ)) (P (λ) − λ) (1 +R1(λ)) = P1(λ) + P0(λ) − λ +Q1(λ)

withQ1 ∈ L−1,−1 and P0 of order 0 such that its principal symbol has the desired homogeneity
property. Moreover, Q1(λ) is self-adjoint for λ ∈ R.

We are going to complete the proof by an inductive argument. Suppose that for some
k ≥ 1 we have

(1 +
k∑

j=1

ρj(λ))(P (λ) − λ)(1 +
k∑

j=1

ρj(λ)) = P1(λ) + . . .+ P−k+1(λ) − λ +Qk(λ) (15)

with P−j ∈ L−j,−j , j = −1, 0, 1, . . . , k − 1 with polyhomogeneous symbol outside V , ρj ∈
L−j,−j , j = 1, . . . , k and Qk ∈ L−k,−k . Assume also that all operators above are self-adjoint
for λ ∈ R. Then for the principal symbol λ−kq0

k(x, ξ) of Qk we have that

λ−kq0
l (x, ξ) − λ−kc−k

R |ξ|−k
x q0

k

(
ξ

cR|ξ|x

)
= 0 on Σ.

Therefore,

λ−kq0
k(x, ξ) = λ−kc−k

R |ξ|−k
x q0

k

(
ξ

cR|ξ|x

)
+ λ(cR|ξ|x − 1)λ−k−1rk+1(x, ξ)

with rk+1 smooth outside V and real-valued. Let us extend smoothly in V both terms in
the r.h.s. above by keeping the identity such that those extensions vanish in a subset of
the set where the l.h.s. above vanishes. Choose a λ-ΨDO P−k , self-adjoint for λ ∈ R, with
polyhomogeneous symbol outside V and with principal symbol equal to the first term in the
r.h.s. above. Multiplying (15) on the left and on the right by 1 +Rk+1, where Rk+1 = R∗

k+1

for λ ∈ R has principal symbol −λ−k−1rk+1/2, we get (15) with k replaced by k + 1. This
completes our inductive argument and proves the following.

Proposition 3.1 With X(λ) as above, there exists R(λ) ∈ L−1,−1 such that

(1 +R(λ))(P (λ) − λ)(1 +R(λ))X(λ) = (P̃ (λ) − λ)X(λ) +Q∞(λ)

with P̃ (λ) having a polyhomogeneous symbol outside a small neighborhood V of ξ = 0 and
Q∞ ∈ L−∞,−∞. Moreover, P̃ (λ) and R(λ) are self-adjoint for λ ∈ R.

11



Next step is to reduce the problem to a similar one with P̃ (λ) independent of λ. In what
follows we will say that a classical symbol aλ(x, y, ξ) belongs to the class Sk (of classical
symbols) uniformly in λ, if it is uniformly bounded in the Fréchet space Sk. If a classical
ΨDO Aλ has a full symbol belonging uniformly to Sk in any local coordinates, we say that
A ∈ Ψk uniformly in λ. A similar definition applies for k = −∞ (see also [PV]).

We are going to work in a neighborhood of the characteristic variety again, which in the
classical pseudodifferential calculus has the form cR|ξ|x = λ. Below, given two classical ΨDOs
depending on λ, the identity A(λ) = B(λ) will mean that A(λ)X(λ) = B(λ)X(λ)+R(λ) for
some X(λ) ∈ Ψ0 uniformly in λ having full symbol supported near the characteristic variety,
where R(λ) is smoothing and R(λ) = O(|λ|−∞). Such X(λ) can be obtained as λ-ΨDOs
with compactly supported symbols near Σ.

For the symbol P̃ (x, ξ, λ) of P̃ (λ) we have in local coordinates

P̃ (x, ξ, λ) − λ ∼ λ (cR|ξ|x − 1) +
∞∑

j=0

λ−j p̃−j(x, ξ) near Σ

with p̃−j homogeneous of order −j. Writing this down as a classical ΨDO we get

σ
(
P̃ (λ)

)
− λ ∼ cR|ξ|x − λ+

∞∑

j=0

p̃−j(x, ξ) near cR|ξ|x/λ = 1. (16)

Here and below “near |ξ|x/λ = 1” means that the identity above holds for |cR|ξ|x − λ| < ελ
with ε > 0 that can vary from step to step. If ε is small enough, and λ > 1 then ξ is outside
a fixed neighborhood of the zero section, say, |ξ|x < 1 and therefore p̃−j are not singular
there, so we can cut near ξ = 0. Relation (16) shows that there exists P ∈ Ψ1 independent
of λ with principal symbol cR|ξ|x for |ξ|x > 1, such that

P̃ (λ) − λ = P − λ

in the sense described above. Here we have used the fact that in R0 is smoothing, then
R0X(λ) = O(|λ|−∞). We have therefore proved the following.

Proposition 3.2 There exists ε > 0 such that for any classical ΨDO X(λ) ∈ Ψ1 uniformly
in λ having full symbol supported in |cR|ξ|x − λ| < ελ in any local coordinates, we have

(P̃ (λ) − λ)X(λ) = (P − λ)X(λ) +R(λ).

Here R(λ) = O(|λ|−∞) is smoothing and P ∈ Ψ1 with principal symbol cR|ξ|x.

Combining the last three propositions we obtain the central result in this section.

Theorem 3.1 There exits V (λ) ∈ Ψ1 uniformly in λ, invertible for large λ uniformly in λ,
and a self-adjoint P ∈ Ψ1 independent of λ, such that for Ne we have in block form

V ∗(λ)Ne(λ)V (λ)X(λ) =

(
P − λ 0

0 Q(λ)

)
X(λ) +R(λ).

Here Q(λ) ∈ L1,1 is elliptic and self-adjoint for real λ, R(λ) = O(|λ|−∞) is smoothing, and

P = cR(−∆Γ)
1
2 mod Ψ0.
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4 Construction of the quasimodes; the lower bound

We are ready to proceed with the construction of the quasimodes. Let φj and λj , j = 1, 2, . . .,
be the eigenfunctions and eigenvalues (counted with their multiplicities) of the scalar-valued
operator P in L2(Γ). We assume that φj are normalized and since P = cR(−∆Γ)

1/2 mod Ψ0,
all λj are positive except finitely many that we omit. Set ϕj := ϕ(λj) = V (λj)(φj, 0, 0). If we
denote ϕ = ϕ(λ), λ ∈ {λj}∞j=1, then WFλ(ϕ) ⊂ Σ. Therefore, X(λ)ϕ(λ) = ϕ(λ) + O(λ−∞).
HereX(λ) is constructed as follows: near any point ζ ∈ Σ we choose Xζ = Op(χ), where χ is
a cut-off function equal to 1 near that point. Using a partition of unity, we construct X(λ).
Therefore, Ne(λj)ϕj = O(λ−∞

j ), j = 1, 2, . . .. The same is true for ψj := ϕj/‖ϕj‖ because
V (λj) and V −1(λj) are uniformly bounded. Then V −1(λj)ψj, j = 1, 2, . . ., are orthogonal.
Next, N (λj)ψj = O(λ−∞

j ) and WFλ({ψj}) ⊂ Σ. We define the quasimodes as asymptotic
solutions to the Dirichlet problem with boundary data ψj, cut-off near the boundary. More
precisely, the asymptotic solution (see [SV1], [SV2]) is given locally by

He(λj)ψj =
2∑

k=1

(
λj

2π

)2 ∫ ∫
eiλj(Φk(x,ξ)−y·ξ)h(k)(x, ξ, λj)ψj(y) dy dξ. (17)

The phase functions Φk solve the eikonal equations c2k(∇Φk)
2 = 1, Φk|Γ = x′ · ξ to infinite

order at Γ and ImΦk = x3

√
c−2
R − c−2

k +O(x2
3), k = 1, 2 for 0 < x3 � 1 and (x′, ξ) ∈ Σ. Here

x = (x′, x3) are local coordinates as in section 2 and it is now convenient to assume that
x3 = dist(x,Γ). We get He(λj)ψj = O(e−γλjx3) with γ > 0 as in Theorem 1.2. The matrix-
valued amplitudes h(k) are solutions of the corresponding transport equations and have the
form h(k) =

∑∞
j=0 h

(k)
j (x, ξ)λ−j , with h

(k)
j formal series in x3 supported near (x′, ξ) ∈ Σ. Let

χ be a cut-off function equal to one near Γ and supported in Ωε := {x ∈ Ω; dist(x,Γ) < ε},
where ε > 0 is such that ImΦk ≥ γx3 for 0 ≤ x3 ≤ ε and (x, ξ) in a small neighborhood of
Σ with some fixed γ > 0 as above. Then we set

uj = λ
1/2
j χ (He(λj)ψj + ũj) . (18)

Here ũj = O(λ−∞
j ) is a correction term chosen so that Nuj = 0, where N stands for the

l.h.s. of (1). It satisfies the condition Nũj = −λ1/2
j Ne(λj)ψj, where the r.h.s. is O(λ−∞

j ) by
our construction. It is not hard to show that ũj can be chosen so that its H2 norm is also
O(λ−∞

j ) near Γ. With this choice of uj we have uj ∈ D(L).
We will show that

C−1‖ψj‖L2(Γ) ≤ ‖uj‖ ≤ C‖ψj‖L2(Γ) j = 1, 2, . . . (19)

with some C > 1. In fact, since ψj are normalized, we have ‖ψj‖L2(Γ) = 1 above. In
order to prove (19), integrate the estimate ‖χHe(λj)ψj‖2

L2(Γt)
≤ Ce−2γtλj‖ψj‖2

L2(Γ), where

Γt := {x3 = t} with respect to t ∈ (0, ε) to get ‖χHe(λj)ψj‖L2(Ωε) ≤ Cλ
−1/2
j ‖ψj‖L2(Γ). This

proves the second part of (19). In particular we get that uj ∈ D(L) and

(L− λ2
j )uj = O(λ−∞

j ), uj ∈ D(L),

13



because the cut-off represented by χ occurs in 0 < ε1 < dist(x,Γ) < ε, where He(λj)ψj are
exponentially small in H1.

The first part of (19) follows from the trace theorem. Indeed, for a fixed ε > 0,

‖ψj‖H3/2(Γ) ≤ Cλ
−1/2
j ‖uj‖H2(Ωε) +O(λ−∞

j ) ≤ Cλ
3/2
j ‖uj‖L2(Ω2ε) +O(λ−∞

j ), (20)

because uj solve (L− λ2
j )uj = O(λ−∞

j ) near Γ and L is elliptic. On the other hand, λ
3/2
j ≤

C‖φj‖H3/2(Γ) because φj are normalized eigenfunction of P, and since ψj = φj/‖φj‖, |ψj‖ =
O(1), we get the same estimate for ψj. This, combined with (20) proves the first part of
(19).

We are still not ready to apply the results in [S] to prove Theorem 1.1, because uj,
j = 1, . . . are not necessarily asymptotically orthogonal to each other. However, they are
linearly independent and we will show below that this property is preserved under O(λ−∞)
perturbations (in fact, O(λ−4) suffices). This would be enough to apply the results in [S]
since it is easy to see from the proof of the main results in [S] (see [S, Lemma 4] and the
arguments after it) that one can relax the orthogonality condition to the above property.
We will not use this argument however, instead we will repeat some of the arguments in the
proof of Theorem 2 in [S] adapted to the present situation.

Since we have standard Weyl asymptotic for the quasimodes λj (eigenvalues of P), we can
group them into clusters. More precisely, fix k large enough. Then we can find a sequence
Jl of intervals with the following properties: |Jl| = O(λ3−k), λ ∈ Jl; dist(Jl, Jl+1) = O(λ−k),
λ ∈ Jl; each Jl contains ml = O(λ3), λ ∈ Jl quasimodes staying at a distance at least O(λ−k),
λ ∈ Jl form the endpoints. We aim to prove that in

Ul := {λ ∈ C; Reλ ∈ Jl, 0 < Imλ < S(Reλ)}

there are at leastml resonances counted with multiplicities. Here 0 < S(t) = O(t−∞), t→ ∞
is a suitable chosen function.

Denote by Πl the projector onto the space spanned by the functions in the range of all
residua of Rχ(λ) with poles in Ul with some fixed cut-off function χ. Note that the residua
of Rχ(λ) and those of the meromorphic continuation of z 7→ (L − z)−1, z = λ2 have the
same range. It follows from [S, Remark 6] that Πluj = uj +O(λ−∞

j ) for j = 1, . . . ,ml if S(t)
is chosen in a suitable way. Functions uj, j = 1, . . . ,ml are linearly independent, because
V −1(λj)(uj|Γ) are asymptotically orthogonal. We aim to show that Πluj, l-fixed, are also
linearly independent. That would prove that RankΠl ≥ ml and the lower bound would
follow from this as in [S].

To prove the linear independence of Πluj, we will modify the L2 structure near the
boundary in order to make uj orthogonal. Choose ‖ · ‖∗ as follows (see (18))

‖uj‖∗ = λ
−1/2
j ‖V −1(λj)uj|Γ‖L2(Γ) j = 1, 2, . . . .

This norm induces a scalar product on U := span(u1, u2, . . .). The norms ‖ · ‖∗ and the
regular L2 norm ‖ · ‖ are topologically equivalent on U because of the estimate (19).
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Let us extend the definition of the scalar product (·, ·)∗ on the whole L2(Ω) by setting
(u1 + v1, u2 + v2)∗ := (u1, u2)∗ + (v1, v2), where u1,2 ∈ U , v1,2 ∈ U⊥. Then ‖ · ‖∗ remains
equivalent to ‖ · ‖.

Now, (ui, uj)∗ = δij +O(λ−∞
j ), ∀i, j and Πluj = uj +O(λ−∞

j ), j = 1, . . . ,ml. This allows
us to complete the proof of Theorem 1.1 in the same way as in [S] in order to show that
Πluj, j = 1, . . . ,ml are linearly independent, hence RankΠl ≥ ml for any l large enough.
Thus we conclude that Theorem 2 in [S] holds in this case as well and therefore

N(r) ≥ NP(r − r−k) − Ck,

with k ≥ 1. Here NP(r) is the counting function of the eigenvalues of P. The classical Weyl
asymptotics imply that

NP(r) =
Area(Γ)

4πc2R
r2 +O(r).

Those two inequalities imply immediately the estimate in Theorem 1.1.
Tracing back the construction of the operator V in Propositions 2.2, 3.1, 3.2, we get that

ϕj = Aφj, (21)

where A is a vector-valued λ-ΨDO with principal symbol σp(A) = (a′1)
−1/2v1 (see Proposi-

tion 2.1). Since a′1 depends on |ξ|x only and WFλ({φj}) ⊂ Σ, we can replace a′1 above by
the constant a′1|Σ and that will result in an error term O(λ−1

j ) in (21). By Proposition 2.1
we therefore get

ϕj =
(
1 − c−2

R

2µ0

)
λ−1

j ∇Γφj + β|Σn(x)φj +O(λ−1
j ) (22)

modulo a normalizing factor independent of j. Clearly, we have the same for ψj. This proves
the last part of Theorem 1.2. Note that uj in Theorem 1.2 should satisfy ‖uj‖ = 1, while
we have ‖uj‖∗ = 1 +O(λ−∞

j ), but we can always normalize uj by keeping their properties in
view of the equivalence of ‖ · ‖ and ‖ · ‖∗.

Proof of Theorem 1.3 As mentioned above, if λ0 is not a Dirichlet resonance, then λ0

is a (Neumann) resonance if and only if it is a pole of the inverse N−1(λ) [SV1] and its
multiplicity is given by [SjV]

mult(λ0) = tr
1

2πi

∮

γ
N−1(λ)Ṅ (λ) dλ.

Here Ṅ denotes derivative w.r.t. λ and γ is a small positively oriented closed curve such
that there are no other poles of N−1 in its interior. Since we assume here that O is strictly
convex, there are no Dirichlet resonances in Λ.

Part (a) of Theorem 1.3 is essentially proved in [SjV]. We recall the proof below because
we need it in order to complete the proof of part (b). Recall that λ in our calculus belongs to
the strip 0 ≤ Imλ ≤ 1, Reλ > 0. As shown in [SjV], if we can find N ∈ L1,1 (denoted there
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by hP (h), h = 1/λ), self-adjoint for real λ, such that (N −N)X ∈ L−∞,−∞, X(N − N) ∈
L−∞,−∞ for X with WFλ(X) in a neighborhood of Σ, then there is a bijection between
resonances near the real axis and the poles of N−1(λ) with the desired properties. More
precisely, one can divide the poles λ of N−1 with λ sufficiently large into groups (clusters),
each one contained in an interval Jl depending also on a parameter k � 1, such that those
intervals do not overlap and |Jl| = O(λ3−k), λ ∈ Jl. Next, ‖N−1‖ = O(λ1−k) for λ 6∈ Jl. The
number of such intervals in (λ/2, λ) is O(λ2). Next, the number of resonances in

Ul := {Reλ ∈ Jl; |Imλ| ≤ (Reλ)1−k}

is equal to the number of poles of N−1 there, counted with multiplicities. Arguing as above,
we can choose N = V (λ)diag(P − λ,Q(λ))V ∗(λ). Then for |λ| large enough the poles of
N(λ) are actually the eigenvalues of P counted with multiplicities. So the intervals Jl can be
constructed as in the proof of Theorem 1.1 above but instead of a lower bound, we have an
equality of the number of resonances and quasimodes in Ul, l � 1. Varying k, we thus prove
as in [SjV] that there exists a bijection from the set of the eigenvalues of P to all resonances
in ΛS := Λ ∩ {0 < Imλ < S(Reλ)} with some S(t) = O(t−∞) as t → ∞ and this bijection
satisfies the estimate in Theorem 1.3(a). By [SV1], all resonances ρj ∈ Λ with sufficiently
large real parts satisfy 0 < Imρj = O((Re ρj)

−∞), so we can pick S(t) above in a suitable
way to make sure that all sufficiently large resonances in Λ are actually in ΛS .

It remains to prove estimate (2) in Theorem 1.3(b). Let Πluj, j = 1, . . . ,ml be as above
with l fixed. Then Πluj = uj + O(λ−∞

j ). By characterizing resonances as the eigenvalues of
a certain complex scaled operator Lθ, it follows from [SjZ] that the rank of Πl is a sum of the
ranks of the residue of Rχ(λ) at each one of the distinct resonances among ρj, j = 1, . . . ,ml.
It is enough to prove (2) for vj := Πluj, j = 1, . . . ,ml, l� 1 since for any l the functions vj

form a basis in RankΠl, orthonormal up to an error O(|ρj |−∞), j = 1, . . . ,ml with respect
to the scalar product (·, ·)∗. Estimate (2) holds for uj, thus it is enough to prove that
vj = uj + O(λ−1

j ) in H1/2+ε(Ω), ε > 0. Recall that both vj and uj are supported in a fixed
compact neighborhood of Γ. Then (2) would follow from the trace theorem. Tracing the
arguments in the proof of Theorem 1 in [S] (see also [TZ]), we see that we have actually
vj = uj +O(λ−∞

j ) in H2(Ω). This follows from the fact that inequalities (11) and (13) in [S]
remain true if the operator norm is considered in B(L2,H2) with right-hand sides multiplied
by Ch−2.

This completes the proof of Theorem 1.3.
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[SjZ] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering
poles, Journal of AMS 4(4)(1991), 729–769.

[SV1] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann problem
in linear elasticity outside a strictly convex body, Duke Math. J. 78(1995), 577–714.

[SV2] P. Stefanov and G. Vodev, Neumann resonances in linear elasticity for an arbi-
trary body, Comm. Math. Phys. 176(1996), 645–659.

[S] P. Stefanov, Quasimodes and resonances: sharp lower bounds, Duke Math. J.
99(1999), 75–92.

[TZ] S.-H. Tang and M.Zworski, From quasimodes to resonances, Math. Res. Lett.,
5(1988), 261–272.

[T1] M. Taylor, Rayleigh waves in linear elasticity as a propagation of singularities phe-
nomenon, in Proc. Conf. on P.D.E. and Geometry, Marcel Dekker, New York, 1979,
273–291.

17



[T2] M. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton,
1981.

[V] G. Vodev, Existence of Rayleigh resonances exponentially close to the real axis, Ann.
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