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Abstract

We prove that we can recover a Riemannian metric in a bounded smooth domain
in R3 up to an isometry which is the identity on the boundary, by knowing the lengths
of the geodesics joining points on the boundary. We assume that the metrics are close
to the euclidian metric e.

1 Introduction and statement of the results

Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ = ∂Ω. Let g(x) = (gij(x)) be
a Riemannian metric in Ω. Assume that Ω̄ is strictly convex with respect to g, i.e., for any
two distinct points x ∈ Ω̄, y ∈ Ω̄ there is a unique geodesic joining x and y lying entirely in
Ω with possible exception the endpoints x and y. Let dg(x, y) denote the geodesic distance
between x and y. The inverse problem we address in this paper is whether we can determine
the Riemannian metric g knowing dg(x, y) for any x ∈ Γ, y ∈ Γ. It is easy to see that g
cannot be determined from this information. We have dψ∗g = dg for any diffeomorphism
ψ : Ω̄ → Ω̄ that leaves the boundary pointwise fixed, i.e., ψ|Γ = Id, where Id denotes the
identity map and ψ∗g is the pull-back of the metric g. R. Michel conjectured in [M1] that
this is the only obstruction to uniqueness, namely if we have two Riemannian metrics g1, g2

with Ω̄ strictly convex with respect to both, and if

dg1(x, y) = dg2(x, y) ∀(x, y) ∈ Γ2, (1.1)

then there exists a diffeomorphism ψ : Ω̄ → Ω̄, ψ|Γ = Id, so that

g2 = ψ∗g1. (1.2)
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The function dg measures the sojourn (travel) times of geodesics joining points of the
boundary. In the case that both g1 and g2 are conformal to the euclidian metric e (i.e.,
(gk)ij = αkδij, k = 1, 2 with δij the Krönecker symbol), then the problem we are considering
here is known in seismology as the inverse kinematic problem. In this case, it has been
proven (see [B], [C], [Mu], [Mu-R]) under further restrictions on the metrics that if dg1 = dg2,
then g1 = g2. In this case the diffeomorphism ψ as in (1.2) must be the identity.

The conjecture (1.2) has been considered in [M1] for general Riemannian manifolds in the
case that one of the two metrics has constant curvature. In [C] it is discussed the case that
one or both metrics have negative curvature. The linearized problem has been extensively
studied in [Sh]. In this paper we prove the conjecture (1.2) under the condition that the
metrics are close in an appropriate sense to the euclidian metric. More precisely, denote by
Ck

(0)(Ω) the set of all f ∈ Ck(Ω̄) such that ∂αf = 0 on ∂Ω for |α| ≤ k. Then we have.

Theorem 1.1 Suppose that g1 and g2 are two metrics satisfying (1.1). Then there exists
ε > 0, such that if

g − e ∈ C12
(0)(Ω), ‖g − e‖C12(Ω̄) < ε, (1.3)

then there exists a C11 diffeomorphism ψ : Ω̄ → Ω̄ such that ψ|Γ = Id and ψ∗g1 = g2.

We also remark that there are two closely related inverse problems. Suppose we have
a Riemannian metric which is the euclidian metric outside a compact set. The inverse
scattering problem for metrics is to determine the Riemannian metric by measuring the
scattering operator (see [G]). A similar obstruction to (1.2) occurs in this case with ψ equal
to the identity outside a compact set. It was proven in [G] that knowing the scattering
operator one can determine, under some non-trapping assumptions on the metric, dg on the
boundary of a large ball.

One can consider also the hyperbolic Dirichlet-to-Neumann map Λg associated to the
wave equation (∂2

t − ∆g)u = 0 with g a Riemannian metric on Ω̄, with Ω being a bounded
domain with smooth boundary and ∆g being the Laplace-Beltrami operator (see [Sy-U]). It
was proven in [Sy-U] under the assumption of no caustics in Ω̄ for g, that knowing Λg, one
can recover dg.

Our proof of Theorem 1.1 relies on deriving an identity (see (2.10)) for the difference of
the metrics and working in suitable chosen coordinates. The linearized version of the identity
at the euclidian metric gives, roughly speaking, that the integrals along the geodesics (lines
in the linear case) of the difference of the two metrics is zero (see (2.12) and (2.14)). Then
one concludes that the metrics are the same in those coordinates by inverting the X-ray
transform. This is done in section 2.

In section 3 we carry out the proof of Theorem 1.1 by using a perturbation argument
that leads to the inversion of a Fourier integral operator.

We remark that we assume in Theorem 1.1 that the metrics coincide to order 12 with
the euclidian metric at the boundary. We only need to assume that in some coordinates. In
[M1] Michel proved that the assumption (1.1) implies that the derivatives of the metrics up
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to order 2 coincide at the boundary in suitable coordinates. In the two dimensional case it
is proven in [M2] that (1.1) implies that all derivatives of the two metrics coincide at the
boundary in suitable coordinates.

2 Preliminaries. The main identity

Assume that we have two metrics g1 and g2 satisfying

g − e ∈ Ck
(0)(Ω), ‖g − e‖Ck(Ω̄) < ε (2.1)

with some k ≥ 2 and ε > 0. Assume also that they satisfy (1.1). By (2.1), g1 and g2 can be
extended outside Ω as e and the so extended metrics belong to Ck(R3). From now on we
will denote by g1 and g2 the extended metrics.

The Hamiltonian related to g, where g is either g1 or g2, is H = 1
2
(
∑3
i,j=1 g

ij(x)ξiξj − 1).

Given x(0) ∈ Γ, ξ(0) ∈ S2, such that ν(x(0)) · g−1ξ(0) < 0, denote by xgj , ξgj , j = 1, 2 the
solution to the Hamiltonian system

{
d
ds
xm =

∑3
j=1 g

mjξj ,
d
ds
ξm = −1

2

∑3
i,j=1

∂gij

∂xm
ξiξj , m = 1, 2, 3,

x|s=0 = x(0), ξ|s=0 = ξ(0).
(2.2)

Here g is either g1 or g2, while the initial conditions are the same for both metrics. We
remark that if ξ(0) · g−1ξ(0) = 1, then s is the arc-length in (2.2). The assumption (1.1)
implies the following property.

Lemma 2.1 (see [M1]) Let g1, g2 be two Riemannian metrics in Ω̄ with Ω̄ strictly convex
with respect to anyone of them and assume g1|Γ = g2|Γ. Assume also (1.1). Let xgm, ξgm ,
m = 1, 2, be the solution of (2.2) with the same initial conditions

xg1(0) = xg2(0) = x(0), ξg1(0) = ξg2(0) = ξ(0).

Then
xg1(t) = xg2(t) ∈ Γ, ξg1(t) = ξg2(t), (2.3)

where t is the common length of the corresponding geodesics joining x(0) and xg1(t) = xg2(t)
provided that ξ(0) · g−1ξ(0) = 1.

Proof. Let xg1 be the geodesics related to g1 defined above. Denote by s 7→ yg2(s) the
geodesics associated to g2 joining xg1(0) and xg1(t) ∈ Γ, where t is the length of xg1xg2. In
other words, yg2(0) = xg1(0), yg2(t) = xg1(t). Note, that t is also the length of that geodesic.
By [M1, Corollary 2.3], the geodesics xg1 and yg2 are tangent at the common endpoints.
Since yg2 solves (2.2) with g = g2 and initial data yg2 = x(0), ξ(0) = η(0) with some η(0), we
get that η(0) = ξ(0), because the two metrics coincide on the boundary. Therefore, yg2 solves
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(2.2) with g = g2 and by the uniqueness of that solution we get that yg2 = xg2. This proves
the lemma. 2

Consider the Hamiltonian system (2.2) with the following initial conditions

{
d
ds
xm =

∑3
j=1 g

mjξj,
d
ds
ξm = −1

2

∑3
i,j=1

∂gij

∂xm
ξiξj , m = 1, 2, 3,

x|s=−ρ = (−ρ, z), ξ|s=−ρ = (1, 0, 0).
(2.4)

Here z ∈ R2, ρ > 0 is such that g = e for |x| > ρ and the solution x = x(s, z), ξ = ξ(s, z)
depends on the parameter z. If g = e, then x = (s, z) = (s, z1, z2). As in [S-U2], from
estimate (2.1) we get.

Lemma 2.2 Let g satisfy (2.1). For the solution x = x(s, z), ξ = ξ(s, z) of (2.4) we have

‖x− (s, z)‖Ck−1 + ‖ξ − (1, 0, 0)‖Ck−1 ≤ Cε

with C > 0 uniform in any compact set.

Introduce new coordinates y = (s, z). Then the map Ω 3 x 7→ y is close to Id in the
Ck−1 topology for small ε > 0 and therefore is a diffeomorphism. In the new coordinates
g−1 = (gij) will have the form

(gij) =




1 0 0
0 g22 g23

0 g23 g33


 . (2.5)

Notice that g would have a similar form, too.
Denote by ψ1, ψ2 the maps x 7→ y related to g1, g2, respectively. Instead of g1, g2, consider

g̃1 = ψ∗
1g1 and g̃2 = ψ∗

2g2, respectively. It is easy to see that s is the length parameter in
(2.4) and therefore (1.1) implies ψ1(Γ) = ψ2(Γ). So, both ψ1 and ψ2 map Ω to a new domain
Ω̃. By (2.3), ψ1 = ψ2 outside Ω. Therefore, (1.1) remains true for g̃1, g̃2 in Ω̃ and instead of
(2.1) we have

g̃1 − g̃2 ∈ Ck−2
(0) (Ω̃), ‖g̃m − e‖Ck−2(Ω̄) < Cε, m = 1, 2 (2.6)

with some C > 0. We aim to prove that g̃1 = g̃2. This would prove the main theorem,
because it would imply ψ∗g1 = g2 where ψ := ψ−1

2 ψ1 would be a diffeomorphism in Ω fixing
the boundary. For the sake of simplicity of notation, let us denote the new metrics again by
g1, g2 and Ω̃ by Ω.

Denote the solution of (2.2) by x = x(s, x(0), ξ(0)), ξ = ξ(s, x(0), ξ(0)). Let us introduce
new notation

X := (x, ξ).

The solution to (2.2) related to g1 and g2, respectively, can therefore be written down as
Xgj = Xgj (s,X

(0)) = Xgj(s, x
(0), ξ(0)).
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Set F (s) := Xg2(t−s,Xg1(s,X
(0))). Here t = t(X(0)) is the length of the geodesics issued

from X(0) with endpoint on Γ and t is independent of g = g1 or g = g2. Notice that the
x-component of F (s) may not be in Ω but belongs to a neighborhood of Γ small with ε. By
(2.3), F (0) = Xg2(t,X

(0)) = Xg1(t,X
(0)) = F (t). Thus

∫ t

0
F ′(s) ds = 0. (2.7)

Denote Vgj := (∂Hgj/∂ξ,−∂Hgj/∂x), j = 1, 2. Then

F ′(s) = −Vg2(Xg2(t− s,Xg1(s,X
(0)))) +

∂Xg2

∂X(0)
(t− s,Xg1(s,X

(0)))Vg1(Xg1(s,X
(0))). (2.8)

We claim that

Vg2(Xg2(t− s,Xg1(s,X
(0)))) =

∂Xg2

∂X(0)
(t− s,Xg1(s,X

(0)))Vg2(Xg1(s,X
(0))). (2.9)

Indeed, (2.9) follows from

0 =
d

ds

∣∣∣∣∣
s=0

X(T − s,X(s,X(0))) = −V (X(T,X(0))) +
∂X

∂X(0)
(T,X(0))V (X(0)), ∀T

after setting T = t− s. Therefore, (2.7), (2.8) and (2.9) combined together imply

∫ t

0

∂Xg2

∂X(0)
(t− s,Xg1(s,X

(0))) (Vg1 − Vg2) (Xg1(s,X
(0))) ds = 0. (2.10)

Relation (2.10) is our basic equality from which we will derive g1 = g2. If we assume in (2.2)
that the initial condition is given at t = t0, then (2.10) remains true with the integral taken
over (t0, t1), where t1 − t0 is the length of the corresponding geodesic.

To make our approach more clear, we will consider a formal linearization of (2.10). In
other words, we will formally replace Xg1 and Xg2 by Xe, where e is the euclidian metric,
but we will keep Vg1 and Vg2 .

Suppose g = e. Then Xe = (xe, ξe) solves x′e = ξe, ξ
′
e = 0, therefore Ve = (ξ, 0). It is easy

to see that in this case

Xe =

(
1 s
0 1

)
X(0),

∂Xe

∂X(0)
=

(
1 s
0 1

)
. (2.11)

Since V = (g−1ξ,−1
2
∇x(g

−1ξ) · ξ) (recall that g−1 = {gij}), we get the following formal
linearization formula for (2.10)

∫ t

0

(
mξ − 1

2
(t− s)∇x(mξ) · ξ, −

1

2
∇x(mξ) · ξ

)
(x(0) + sξ) ds = 0, (2.12)
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where {mij} := {gij1 } − {gij2 }, x(0) ∈ Γ, ξ = ξ(0) ∈ S2 and ξ(0) · ν(x(0)) < 0. By (2.5), m has
the form

m =




0 0 0
0 m22 m23

0 m23 m33


 . (2.13)

Equating the second components of both sides in (2.12), we get

∫ t

0

3∑

i,j=2

∇xmij(x
(0) + sξ)ξiξj ds = 0 (2.14)

for x(0) and ξ as above. This equation easily implies

3∑

i,j=2

ηm̂ij(η)ξiξj = 0 for ξ · η = 0, (2.15)

where m̂(η) is the Fourier transform of m(x) extended as 0 outside Ω. Let p = (0, p2, p3) ∈ S2

be a parameter. Picking

ξ = ξp(η) =
η × p

|η × p| =
(p3η2 − p2η3,−p3η1, p2η1)√

η2
1 + (p3η2 − p2η3)2

, (2.16)

we get

η
p2

2η
2
1m̂33(η) + p2

3η
2
1m̂22(η) − 2p2p3η

2
1m̂23(η)

η2
1 + (p3η2 − p2η3)2

= 0. (2.17)

Choosing p = (0, 1, 0) yields

η
η2

1

η2
1 + η2

3

m̂33(η) = 0, (2.18)

therefore m33 = 0. Next, setting p = (0, 0, 1) in (2.17) leads to

η
η2

1

η2
1 + η2

2

m̂22(η) = 0, (2.19)

so m22 = 0. And finally, choosing p = (0, 1, 1)/
√

2, we obtain

η
η2

1m̂33(η) + η2
1m̂22(η) − 2η2

1m̂23(η)

η2
1 + (η3 − η2)2/2

= 0, (2.20)

thus m23 = 0.
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3 Proof of the main result

In this section we prove Theorem 1.1.
Let ρ > 0 be such that Ω̄ ⊂ Bρ := {x; |x| < ρ} and assume that g1 and g2 are

the transformed metrics of the form (2.5) satisfying (2.6), (1.1). Let us extend g1 and g2

Ck−2-smoothly in Bρ \ Ω such that for the so extended gj we have g1 = g2 in Bρ \ Ω,
gj− e ∈ Ck−2

(0) (Bρ), j = 1, 2 and g1, g2 satisfy (2.6), (1.1) with Ω replaced by Bρ. We can also
assume that the first row and the first column of those metrics remain unchanged, so the
extended metrics remain of the form (2.5). In other words, we reduce the problem to two
new metrics g1 and g2 in Bρ which satisfy conditions similar to those satisfied by the original
g1, g2 in Ω but have special form. Notice that Bρ is strictly convex with respect to g1, g2

and for ε > 0 small enough there is a unique geodesics (with respect to either metric) joining
any two points in Bρ. We can further extend those two metrics as e outside Bρ. Notice that
after those extensions m = g−1

1 − g−1
2 extends as zero outside Ω. Instead of solving (2.2), we

will solve the same Hamiltonian system for g = g1 with modified initial conditions. Assume
now that

z ∈ {x; x · ξ(0) = 0}, ξ(0) ∈ S2, (3.1)

and solve




d
ds
xm =

∑3
j=1 g

mjξj,
d
ds
ξm = −1

2

∑3
i,j=1

∂gij

∂xm
ξiξj , m = 1, 2, 3,

x|s=−ρ = x(0) := z − ρξ(0), ξ|s=−ρ = ξ(0) ∈ S2, x(0) · ξ(0) = −ρ,
(3.2)

where g is either g1 or g2. We will denote the solution of (3.2) by x = xg(s, z, ξ
(0)), ξ =

ξg(s, z, ξ
(0)). If g = e, then xe = z + sξ(0), ξe = ξ(0). For general g satisfying (2.6),

xg = z + sξ(0) +O(ε), ξ = ξ(0) +O(ε) in Ck−3 (3.3)

Here the Ck−3 norm is meant with respect to all variables s, z, ξ(0). Here and in what follows
O(ε) will denote various functions with norm bounded by Cε with a constant C > 0 uniform
in any fixed compact set. Estimate (3.3) follows from Lemma 2.2 for ξ(0) fixed parameter
and it is easy to see that it holds also for ξ(0) considered as a variable.

Clearly, for any ξ(0) ∈ S2, (s, z) are Euclidean coordinates in R3. The map

xe = z + sξ(0) 7→ x = xg(s, z, ξ
(0)) ∈ Bρ (3.4)

is a diffeomorphism for ε > 0 small enough, because it is close to Id in the Ck−3 topology.
Denote the Jacobian of this change of variables (related to g = g1) by J1(x, ξ

(0)).
With this choice of Xg1 , Xg2, consider (2.10) with X(0) = (x(0), ξ(0)) = (z − ρξ(0), ξ(0)).

By (3.3), ∥∥∥∥∥Xg2 −
(

1 s
0 1

)
X(0)

∥∥∥∥∥
Ck−3

= O(ε), (3.5)
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therefore, ∥∥∥∥∥
∂Xg2

∂X(0)
−
(

1 s
0 1

)∥∥∥∥∥
Ck−4

= O(ε). (3.6)

We thus get that in (2.10) we have

∂Xg2

∂X(0)

(
t− s,Xg1(s,X

(0))
)

=

(
1 t− s
0 1

)
+O(ε) in Ck−4

with respect to the variables s and X(0). Here t is such that t+ρ is the length of the geodesics
issued from X(0) = (x(0), ξ(0)) (with x(0) · ξ(0) = −ρ) with endpoint X(1) such that x(1) ∈ Bρ

and the geodesics X(0)X(1) crosses Bρ. So, (2.10) can be rewritten as

∫ t

−ρ

((
1 t− s
0 1

)
+B(s)

)
(Vg1 − Vg2)(Xg1(s,X

(0))) ds = 0, (3.7)

where

B(s) = B(s,X(0); g1, g2) =

(
B11 B12

B21 B22

)
= O(ε) in Ck−4.

Each block Bij here is a 3 × 3 matrix. Recall that Vg1 − Vg2 = (mξ,−1
2
∇x(mξ) · ξ). The

left-hand side of (3.7) is a 6-dimensional vector. Let us use the fact that its last 3 components
vanish: ∫ (

∂m

∂xj
ξ · ξ + 2B21mξ −

3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
ds = 0, j = 1, 2, 3. (3.8)

Here we used the fact that suppm ⊂ Bρ and therefore we can integrate with respect to s
over the whole real line.

Let us Fourier transform (3.8) with respect to z ∈ {z · ξ(0) = 0}. Then the dual variable
will belong to the same plane

∫

z·ξ(0)=0

∫
e−iη·z

(
∂m

∂xj
ξ · ξ + 2B21mξ −

3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
ds dSz = 0, η · ξ(0) = 0, (3.9)

j = 1, 2, 3. Recall that here ξ(0) ∈ S2 is a parameter and m = m(x), x = xg1(s, z, ξ
(0)),

ξ = ξg1(s, z, ξ
(0)). In the integral above we can replace the phase function η · z by η · xe =

η · (z + sξ(0)). Let us make the change of variables (3.4) in (3.9)

∫
e−iη·xe

(
∂m

∂xj
ξ · ξ + 2B21mξ −

3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
J−1

1 dx = 0, η · ξ(0) = 0, (3.10)

j = 1, 2, 3. Here m = m(x), ξ = ξ(x, ξ(0)) and xe = xe(x, ξ
(0)) is the function inverse to (3.4)

with g = g1.
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Let p = (0, p2, p3) ∈ S2 be a parameter as in (2.16). Choose ξ(0) = ξp(η) as in (2.16) and
let us plug this into (3.10). Clearly, ξ(0) · η = 0 and |ξ(0)| = 1. Next, ξ(0) is singular on the
line η = sp, s ∈ R. To avoid this singularity, choose a cut-off function χp(η) ∈ C∞(R3\{0}),
that vanishes for η near that line, i.e.

χp(η) =

{
0, if 1 − |p · η|/|η| < δ/2,
1, if 1 − |p · η|/|η| > δ.

(3.11)

Here δ > 0 is a small parameter and we assume also that χp is homogeneous of order 0.
After multiplying (3.10) by χp(η) we obtain

χp(η)
∫
e−iϕp(x,η)

(
∂m

∂xj
ξ · ξ + 2B21mξ −

3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

)
J−1

1 dx = 0, ∀η 6= 0, (3.12)

j = 1, 2, 3. Here m = m(x), ξ = ξ(x, ξp(η)), ϕp(x, η) = η · xe(x, ξp(η)) and ξ, ϕp depend
smoothly on η ∈ suppχp \ {0}. Moreover, by (3.3), (3.4), for such η and x in a compact set,

ϕp(x, η) = x · η +O(ε) in S1
k−3, ξ = ξp(η) +O(ε) in S0

k−3. (3.13)

Here and in what follows we denote by Smk the following class of functions. We say that
a = a(x, y, ξ) ∈ Ck(B2

ρ ×R3 \{0}) belongs to Smk iff there exists a constant C ≥ 0, such that

∣∣∣∂αx∂
β
y ∂

γ
ξ a(x, y, ξ)

∣∣∣ ≤ C|ξ|m−|γ| for (x, y) ∈ B2
ρ, ξ ∈ R3 \ {0}, |α|+ |β|+ |γ| ≤ k. (3.14)

The optimal constant in (3.14) defines a norm in Smk . We say that a = O(ε) in Smk iff a ∈ Smk
and the Smk -norm of a is O(ε), in other words (3.14) holds with C replaced by Cε. We are
going to use later [S-U1, Theorem A.1] and [S-U2, Proposition 4.1] about boundedness of
FIOs and ΨDOs with amplitudes and phase function of finite smoothness belonging to the
class introduced above.

Recall that ξ(x, ξp(η)) is defined by ξ(x, ξp(η)) = ξg1(s, z, ξp(η)), where z = z(x), s = s(x)
are determined by x = xg1(s, z, ξ

(0)) (see (3.4)). Assume that ξ(0) = ±e1. It is easy to see
then that xg1(s, z,±e1) = z ± se1, ξg1(s, z,±e1) = ±e1. Since η1 = 0 implies ξp(η) = ±e1,
for η1 = 0 the remainder in (3.13) therefore vanishes and we actually have

ξ = ξp(η) +
η1

|η|O(ε) =
η1√

η2
1 + (p3η2 − p2η3)2

[(
p3η2 − p2η3

η1
,−p3, p2

)
+O1(ε)

]
,

where O(ε) and O1(ε) are in S0
k−4. Similarly, B21 := (∂ξg2/∂x

(0))(t − s,Xg1(s,X
(0))) (see

(3.7)) vanishes for ξ(0) = ±e1, so after the substitution ξ(0) = ξp(η) we get B21 = η1
|η|B̃21 with

B̃21 = O(ε) in S0
k−5. Note that m1j = mj1 = 0, j = 1, 2, 3, so the first component of ξ plays
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no role in (3.12). Therefore, the expression in the parentheses in (3.12) can be rewritten as

∂m

∂xj
ξ · ξ + 2B21mξ −

3∑

i=1

(B22)ji
∂m

∂xi
ξ · ξ

=
η2

1

η2
1 + (p3η2 − p2η3)2

(
p2

2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj

+
3∑

α,β=2

C
(j)
αβmαβ +

3∑

i=1

3∑

α,β=2

E
(j)
αβi

∂mαβ

∂xi

)
, (3.15)

where C
(j)
αβ = O(ε), E

(j)
αβi = O(ε) in S0

k−5 for η ∈ suppχp. Therefore, in (3.12) we can cancel
out the factor η2

1/(η
2
1 + (p3η2 − p2η3)

2) to get

χp(η)
∫
e−iϕp(x,η)

(
p2

2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj

+
3∑

α,β=2

C
(j)
αβmαβ +

3∑

i=1

3∑

α,β=2

E
(j)
αβi

∂mαβ

∂xi

)
J−1

1 dx = 0, ∀η 6= 0. (3.16)

Relations (3.13) and the estimates we have on C
(j)
αβ , E

(j)
αβi allows us to apply Proposition 4.1

in [S-U2] to get

χp(η)
∫
e−iϕp(x,η)

(
3∑

α,β=2

C
(j)
αβmαβ +

3∑

i=1

3∑

α,β=2

E
(j)
αβi

∂mαβ

∂xi

)
J−1

1 dx = O(ε‖∇m‖) in L2(R3
η),

provided that k − 5 = 7. Here ‖∇m‖2 :=
∑3
i=1 ‖∂m/∂xi‖2

L2 and we have used the Poincaré

inequality ‖m‖ = ‖m‖L2(Bρ) ≤ C‖∇m‖ to estimate the term involving C
(j)
αβmαβ. Hence,

χp(η)
∫
e−iϕp(x,η)

(
p2

2

∂m33

∂xj
+p2

3

∂m22

∂xj
−2p2p3

∂m23

∂xj

)
J−1

1 dx = O(ε‖∇m‖) in L2(R3
η). (3.17)

Let us multiply (3.17) by exp{iϕp(y, η)} and integrate in η. Since by [S-U2], Proposition 4.1,
this is a continuous operation from L2 into L2(Bρ), we obtain

∫ ∫
ei(ϕp(y,η)−ϕp(x,η))χp(η)

(
p2

2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj

)
J−1

1 dx dη = O(ε‖∇m‖)

(3.18)
in L2((Bρ)y), j = 1, 2, 3. Next, as in [S-U2], introduce the function θ(x, y, η) by

θ(x, y, η) =
∫ 1

0
(∇xϕp)(x+ t(y − x), η) dt. (3.19)

With this choice of θ,

ϕp(y, η)− ϕp(x, η) = (y − x) · θ(x, y, η).
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The function θ is homogeneous of order 1 in η ∈ suppχp and for such η we have θ = η+O(ε)
in S1

k−4. The equation θ = θ(x, y, η) can be solved for η for ε small enough and η ∈ suppχp,
(x, y) ∈ Bρ. The solution η = η(x, y, θ) satisfies η = θ + O(ε) in S1

k−4 for θ away from some
conic neighborhood of the line θ = sp, s ∈ R. Next, for the Jacobian J2 := det(dθ/dη) we
have J2 = 1 +O(ε) in S0

k−5. After the change η 7→ θ in (3.18) we get

∫ ∫
ei(y−x)·θχp(η(x, y, θ))Mp(x)J

−1
1 J−1

2 dx dθ = O(ε‖∇m‖) in L2(Bρ), (3.20)

j = 1, 2, 3, where

Mp := p2
2

∂m33

∂xj
+ p2

3

∂m22

∂xj
− 2p2p3

∂m23

∂xj
.

Here ξ = ξ(x, ξp(η(θ))) = ξp(θ) + O(ε) in S1
k−4 for θ away for a small (with ε) conic neigh-

borhood of the line θ = sp, s ∈ R. Next, J−1
1 J−1

2 = 1 +O(ε) in S0
k−5 for such θ. Let a(x) be

a smooth cut-off function supported in Bρ such that a = 1 on suppm. Then we can rewrite
(3.20) as

∫ ∫
ei(y−x)·θa(y)χ(η(x, y, θ))a(x)Mp(x)J

−1
1 J−1

2 dx dθ = O(ε‖∇m‖), (3.21)

j = 1, 2, 3. For the amplitude in this oscillating integral we have

a(y)χp(η(x, y, θ))a(x)J
−1
1 J−1

2 = a(y)χp(θ)a(x) +O(ε) in S0
k−5.

Moreover, for ε > 0 sufficiently small, supp θη(x, y, θ) is away from the singular line θ = sp for
(x, y) ∈ B2

ρ. According to Theorem A.1 in [S-U1], if k−5 = 7, this is enough to conclude that
we can replace the amplitude in (3.21) by a(y)χp(θ)a(x) and this will result in a remainder
term O(ε‖∇m‖), i.e.,

a(y)
∫ ∫

ei(y−x)·θχp(θ)Mp(x) dx dθ = O(ε‖∇m‖) in L2(R3
y), (3.22)

j = 1, 2, 3. Multiply (3.22) by Mp(y) and integrate in y to get (M̂p, χpM̂p) = O(ε‖∇m‖2).
This yields

θ
(
p2

2m̂33(θ) + p2
3m̂22(θ) − 2p2p3m̂23(θ)

)
= O(

√
ε‖∇m‖) in L2

({
1 − |p·θ|

|θ| > δ
})

(3.23)

(compare with (2.17)). Recall that δ > 0 was a small parameter.
Choose first p = (0, p2, p3) = (0, 1, 0). Then

θm̂33(θ) = O(
√
ε‖∇m‖) in L2

({
|θ2|
|θ| < 1 − δ

})
. (3.24)

Next, setting p = (0, 0, 1) yields

θm̂22(θ) = O(
√
ε‖∇m‖) in L2

({
|θ3|
|θ| < 1 − δ

})
. (3.25)
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Let us now set p = (0, 1, 2)/
√

5 and next p = (0, 2, 1)
√

5. We get

θ (m̂33(θ) + 4m̂22(θ) − 4m̂23(θ)) = O(
√
ε‖∇m‖) in L2

({
|θ2+2θ3 |√

5|θ| < 1 − δ
})

, (3.26)

θ (4m̂33(θ) + m̂22(θ) − 4m̂23(θ)) = O(
√
ε‖∇m‖) in L2

({
|2θ2+θ3 |√

5|θ| < 1 − δ
})

, (3.27)

We will prove now that (3.24) holds in the whole L2. Indeed, for |θ2|/|θ| > 1 − δ we
can use (3.25), (3.26) and (3.27) together provided that δ > 0 is sufficiently small to get
θm̂33 = O(‖∇m‖) for such θ. Therefore,

θm̂33(θ) = O(
√
ε‖∇m‖) in L2(R3

θ). (3.28)

In the same way we get

θm̂22(θ) = O(
√
ε‖∇m‖) in L2(R3

θ). (3.29)

Now, (3.26) and (3.27) combined yield

θm̂23(θ) = O(
√
ε‖∇m‖) in L2(R3

θ). (3.30)

Consequently, by (3.28), (3.29) and (3.30)

θm̂(θ) = O(
√
ε‖∇m‖) in L2(R3

θ),

thus
‖∇m‖ ≤ C

√
ε‖∇m‖

with C independent of ε, m provided that ε is small enough. Therefore, choosing ε < 1/C2,
we get m = 0 and Theorem 1.1 is proved.
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