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1 Introduction and statement of the results

Consider the acoustic wave equation

(∂2
t − c2(x)∆)u = 0, (t, x) ∈ R × R3 (1.1)

which describes the propagation of sound waves in an inhomogeneous medium with sound
speed c(x). We assume throughout the paper that 0 < c(x), x ∈ R3 and that for some ρ > 0
we have

c(x) = 1 for |x| ≥ ρ. (1.2)

The scattering kernel measures, roughly speaking, the effect of the inhomogeneity on an
incident plane wave of the form δ(t − x · θ) with θ ∈ S2. More precisely, assume that
c ∈ C2(R3) and let u(t, x, θ) be the solution of the Cauchy problem

{
(∂2

t − c2(x)∆)u = 0, (t, x) ∈ R × R3,
u|t�0 = δ(t− x · θ). (1.3)

We have that
u = ∂3

t w,

where w(t, x, θ) solves

{
(∂2

t − c2(x)∆)w = 0, (t, x) ∈ R × R3,
w|t�0 = h2(t − x · θ),

with h2(s) = s2/2 for s ≥ 0 and h2(s) = 0 otherwise. We write

w = h2(t− x · θ) + wsc.
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In the Lax-Phillips theory of scattering [L-P] (see also [C-S], [P]) the asymptotic wave profile
w#

sc of wsc is defined by

w#
sc(s, ω, θ) = lim

t→∞
(t + s)∂twsc(t, (t + s)ω, θ),

where the limit exists in L2(Rs ×S2
ω) for any θ ∈ S2. Then the scattering kernel is given by

S(s, ω, θ) = − 1

2π
∂3

sw
#
sc(s, ω, θ).

We note that the scattering kernel S is closely connected with the Schwartz kernel of the
scattering operator S. In fact, S(s′ − s, ω′, ω) is the Schwartz kernel of R(S − I)R−1, R
being the Lax-Phillips translation representation [L-P] (see section 2).

The inverse backscattering problem consists in the determination of c(x) from S(s,−θ, θ).
That is, roughly speaking, whether we can determine the sound speed by measuring the
echoes produced by an incident plane wave in the direction θ. In this paper we show that
measuring the echoes is enough to recover the sound speed if it is a priori close to a constant.

Theorem 1.1 Let Sj be the scattering kernel associated to the sound speed cj, j = 1, 2
satisfying (1.2). Assume further that cj ∈ W 9,∞(R3). There exists ε > 0 such that if

S1(s,−θ, θ) = S2(s,−θ, θ) for all s ∈ R, θ ∈ S2

and if
‖cj − 1‖W 9,∞(R3) < ε, j = 1, 2,

then we have c1 = c2.

Guillemin proved in [G] that for the case considered here (and in more general situa-
tions) S is a Fourier integral operator and computed its symbol and canonical relation. In
particular, S(s,−θ, θ) makes sense and is a smooth function of θ with distributional values
in the s-variable.

In the stationary approach to scattering one considers the formal Fourier transform of
(1.1): (

−∆ + λ2(1 − c−2(x))− λ2
)
v(x, λ) = 0. (1.4)

Notice that one can consider (1.4) as a Schrödinger equation with potential

q(x) = λ2(1 − c−2(x)).

However this is not very useful for the study of the inverse backscattering problem since we
must consider high frequencies as well. The inverse scattering problem at a fixed energy has
been solved in dimension n ≥ 3 by Novikov [N]. This problem is in fact closely related to the
inverse problem of determining a potential q from its associated Dirichlet to Neumann map.
The latter problem was solved in [S-U]. For an account of this relationship see for instance
[U].
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Given any θ ∈ S2 there are solutions of (1.4) of the form

v(x, θ, λ) = eiλx·θ +
eiλ|x|

|x| a(λ, ω, θ) + o(|x|−1), as |x| → ∞, (1.5)

where ω = x/|x|. The function a is called the scattering amplitude. The relation between a
and S is very simple

iλ

2π
a(λ, ω, θ) =

∫
e−isλS(s, ω, θ) ds.

Theorem 1.1 has therefore as immediate corollary:

Theorem 1.2 Let cj, j = 1, 2 be as in Theorem 1.1. Let aj denote the scattering amplitude
associated to cj , j = 1, 2. There exists ε > 0 such that if

a1(λ,−θ, θ) = a2(λ,−θ, θ)

and if
‖cj − 1‖W 9,∞(R3) < ε, j = 1, 2,

then c1 = c2.

The high frequency asymptotics of the scattering amplitude has been considered in [G]
and [V]. We do not know of any result for the inverse backscattering problem for the acoustic
equation. The inverse backscattering problem for the Schrödinger equation has been studied
in the papers [E-R], [St II].

The structure of the paper is as follows. In section 2 we consider some preliminaries and
prove Proposition 2.1 which gives a relation between S1 −S2 and c−2

1 − c−2
2 . In section 3 we

construct the singular solution of (1.3). In section 4 we prove Theorem 1.1 by combining the
results of section 3 and inverting a generalized Radon transform.

2 Preliminaries

In this section we introduce the scattering kernel S(s, ω, θ) and in Proposition 2.1 we prove a
formula for the difference S1−S2, where Sj, j = 1, 2 are related to two sound speeds cj ∈ C2

satisfying (1.2). A formula of a similar type related to a potential perturbation of the wave
equation was first obtained in [St I].

The natural energy space for equation (1.1) is the completion H of C∞
0 (R3) × C∞

0 (R3)
with respect to the energy norm

‖f‖2
H =

1

2

∫ (
|∇f1|2 + c−2(x)|f2|2

)
dx, f = [f1, f2].

Throughout this paper we will denote two-dimensional vector functions t(f1, f2) by [f1, f2].
Then H is a Hilbert space and equation (1.1) is equivalent to

∂tu = −iAu, with u = [u1, u2], A = i

(
0 I

c2∆ 0

)
, (2.1)
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i.e. if u solves (2.1), then u2 = ∂tu1, (∂2
t − c2∆)u1 = 0. Here I stands for the identity map.

It is easy to see that A extends to a self-adjoint operator in H, therefore the solution to
(2.1) is given by u = e−itAf =: U(t)f , where f = u|t=0. By Stone’s theorem U(t) forms a
strongly continuous group of unitary operators in H. Setting c = 1, we get the unperturbed
group U0(t) in H0 related to the unperturbed wave equation (∂2

t − ∆)u = 0. The scattering
operator S is then defined by S = W−1

− W+, where the wave operators W± are defined as the
strong limits W± = s-limt→±U(t)U0(−t). It is well known that the wave operators exist as
bounded operators and moreover, S is also well defined as a bounded operator in H0 [L-P],
[R-S].

As in the Introduction, we consider the scattering solution u(t, x, θ) as the solution to
the following Cauchy problem

{
(∂2

t − c2∆)u = 0 in Rt × R3
x,

u|t�0 = δ(t− x · θ). (2.2)

Here θ ∈ S2 is a parameter giving the direction of the incident plane wave in (2.2). The
initial condition above can be replaced by u|t=−ρ = δ(−ρ − x · θ), ut|t=−ρ = δ′(−ρ − x · θ).
The standard way of constructing a solution of (2.2) is the following. Set hj(t) = tj/j! for
t ≥ 0 and hj(t) = 0 otherwise. Then h′

j = hj−1, j ≥ 1 and h0 is the Heaviside function. If we
replace the Dirac delta function δ in (2.2) by h2, we get initial data [h2(−ρ−x·θ), h1(−ρ−x·θ)]
for t = −ρ, that belong locally to H and even to D(A). As in the Introduction, consider the
problem {

(∂2
t − c2∆)w = 0 in Rt ×R3

x,
w|t�0 = h2(t − x · θ). (2.3)

Then w = h2(t− x · θ) + wsc, where (∂2
t − c2∆)wsc = −(1 − c2)h0(t− x · θ) and wsc|t�0 = 0.

Therefore,

[wsc, ∂twsc] = −
∫ t

−∞
U(t − s)(1 − c2)[0, h0(s − x · θ)] ds. (2.4)

Here 1 − c2 has compact support thus (1 − c2)[0, h0(s − x · θ)] ∈ H. Having constructed a
solution to (2.3) we can now solve (2.2) by setting

u(t, x, θ) = ∂3
t w(t, x, θ). (2.5)

Following Lax-Phillips [L-P] (see also [C-S]), as in the Introduction we define the asymptotic
wave profile w#

sc of wsc by

w#
sc(s, ω, θ) = lim

t→∞
(t + s)∂twsc(t, (t + s)ω, θ). (2.6)

The limit exists in L2(Rs × S2
ω) for any θ [L-P], [C-S]. Then we define the scattering kernel

S by

S(s, ω, θ) = − 1

2π
∂3

sw
#
sc(s, ω, θ). (2.7)

In some sense S satisfies the asymptotics

∂tu(t, x, θ) = δ′(t− x · θ) − 2π

|x|S
(
|x| − t,

x

|x| , θ
)

+ o
(

1

|x|

)
, as t, |x| → ∞.
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The formula above is a time-dependent analogue of the definition (1.5) of the scattering
amplitude via the asymptotics of the solution v of the Lipmann-Schwinger equation for large
x.

It turns out that S is closely related to the distribution kernel of the scattering operator
S. Denote by (Rf)(s, ω) =

∫
f(x)δ(s − x · ω)dx the Radon transform of f and consider

the operator R (the Lax and Phillips translation representation) defined by R[f1, f2] =
1
4π

(−∂2
sRf1 + ∂sRf2). Then R is a unitary map R : H0 → L2(R × S2). A well known fact

form the Lax and Phillips theory is that S(s′−s,w′, w) is the Schwartz kernel of R(S−I)R−1

(see [L-P], [C-S], [P]), i.e. in distribution sense we have

(
R(S − I)R−1k

)
(s′, ω′) =

∫

R×S2
S(s′ − s, ω′, ω)k(s, ω) ds dω. (2.8)

Next we will derive a formula for S1 − S2, where Sj is related to cj, j = 1, 2. Let
us first notice that (2π)−1[u(±t ± s, x,±θ), ∂tu(±t ± s, x,±θ)] is the distribution kernel of
U(t)W±R−1, i.e. for any k ∈ C∞

0 (R× S2) in distribution sense we have

U(t)W±R−1k =
1

2π

∫

R×S2

[
u(±t± s, x,±θ), ∂tu(±t± s, x,±θ)

]
k(s, θ) ds dθ. (2.9)

Indeed, denote f = R−1k and consider W+. Then U(t)W+R−1k = U(t + T )U0(−T )f for
some fixed T > 0 depending on supp k. Denote [v, ∂tv] = U(t + T )U0(−T )f and denote also
the right-hand side of (2.9) by [ṽ, ∂tṽ]. Both v and ṽ solve (1.1). Next, for t < −T we have
[v, ∂tv] = U0(t)f . On the other hand, for t � 0 we get for ṽ

[ṽ, ∂tṽ] =
1

2π

∫

R×S2

[
δ(t + s − x · θ), δ′(t + s − x · θ)

]
k(s, θ) ds dθ = U0(t)f

by the inversion formula for R (see [L-P]). Therefore, v and ṽ have the same initial data
and must coincide. This proves (2.9) for W+. The proof for W− is similar.

Proposition 2.1 Let Sj(s, ω, θ) be the scattering kernel related to cj(x) ∈ C2, j = 1, 2.
Then

(S1 − S2)(s, ω, θ) =
1

8π2
∂3

s

∫ ∫
(c−2

1 − c−2
2 )u1(t, x, θ)u2(−s − t, x,−ω) dt dx,

where uj are the scattering solutions related to cj, j = 1, 2 and the integral is to be considered
in distribution sense.

Proof. Denote by Uj(t), j = 1, 2 the propagators related to cj. Consider the function F (t) =
U2(T + t)U1(−t+T )f , f ∈ D(A1) = D(A2). Then F ′(t) = −iU2(T + t)(A2 −A1)U1(−t+ T )
and from F (T )− F (−T ) =

∫ T
−T F ′(t)dt we get

(U2(2T )− U1(2T ))f =
∫ T

−T
U2(T + t)QU1(−t + T )f dt, (2.10)

where

Q =

(
0 0

(c2
2 − c2

1)∆ 0

)
.
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Next, choose two functions k, l ∈ C∞
0 (R × S2) and set f = R−1k, g = R−1l. Then by using

standard arguments from the Lax-Phillips theory we get that

(Sjf, g)H0 =
(
U0(−T )Uj(2T )U0(−T )f, g

)
H0

with some large T > 0 depending on supp k, supp l. Therefore, by (2.10)

((S2 − S1)f, g)H0 =
∫ T

−T

(
U0(−T )U2(T + t)QU1(−t + T )U0(−T )f, g

)
H0

dt

=
∫ T

−T

(
QU1(−t + T )U0(−T )f, U2(−t − T )U0(T )g

)
H2

dt. (2.11)

Here Hj, j = 0, 1, 2 are related to c0 = 1, c1, and c2 respectively. Next, note that

U1(−t + T )U0(−T )f = U1(−t)W
(1)
+ f = U1(−t)W

(1)
+ R−1k. Similarly, U2(−t − T )U0(T )g =

U2(−t)W
(2)
− R−1l. Using (2.9), we get from (2.11)

((S2 − S1)f, g)H0 =
1

8π2

∫ T

−T

∫
. . .
∫

(c2
2 − c2

1)(∆u1)(−t + s1, x, θ1)∂tu2(t − s2, x,−θ2)

×k(s1, θ1)l(s2, θ2)c
−2
2 ds1dθ1ds2dθ2dx dt

=
1

8π2

∫ T

−T

∫
. . .
∫

(c−2
1 − c−2

2 )∂2
s1

u1(−t + s1, x, θ1)∂tu2(t − s2, x,−θ2)

×k(s1, θ1)l(s2, θ2) ds1dθ1ds2dθ2dx dt. (2.12)

Clearly, the integrand above vanishes for |t| > T , so we may integrate in t over the whole
real line. According to (2.8),

((S2 − S1)f, g)H0 =
∫

[R×S2 ]2
(S2 − S1)(s2 − s1, θ2, θ1)k(s1, θ1)l(s2, θ2) ds1dθ1ds2dθ2. (2.13)

Comparing (2.12) and (2.13), we conclude that

(S1 − S2)(s2 − s1, θ2, θ1) =
1

8π2

∫ ∫
(c−2

1 − c−2
2 )∂2

s1
u1(−t + s1, x, θ1)∂tu2(t − s2, x,−θ2) dx dt.

The right-hand side above as a function of s1, s2 depends merely on s2 − s1 and setting

s = s2 − s1, t̃ = −t + s1 we complete the proof of the proposition. 2

3 Singular decomposition of the scattering solution

In this section we prove that the scattering solution u(t, x, θ) admits a singular decomposition
of the type u(t, x, θ) = α(x, θ)δ(t − φ(x, θ)) + β(x, θ)h0(t − φ(x, θ)) + r(t, x, θ), where φ is
a suitable phase function and the remainder r(t, ·, θ) belongs to H1 ∩ L∞, ∂tr ∈ L2. Such
decompositions are in principle known for that kind of problems (see e.g. [V] for a high
frequency asymptotics of the solution v of (1.4) given by (1.5)). Our goal here is to prove
estimates on the remainder which are uniform in c(x) under the assumption of a finite
smoothness of c. As in Theorem 1.1 we assume that c is close to c = 1 in the W m,∞ topology
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for some m. It turns out that in our proof we need estimates on the remainder for t belonging
to a finite interval only. This fact simplifies considerably our analysis. On the other hand, in
principle one could obtain estimates on the remainder for large t which are also uniform in
c. This is related to the problem of finding estimates of the remainder in the high-frequency
asymptotics of the solution v of (1.4) defined in (1.5) (see [V]) which are uniform in c or
finding estimates on the resolvent of c2∆ + λ2. The latter problems are more delicate ones.
In fact one of the main reasons for working with time dependent methods is the advantage
we get by dealing with bounded t’s only.

We start with analysis of the phase function φ related to (1.1). We define φ(x, θ) as the
solution to the eikonal equation

{
(∇φ)2 = c−2(x),
φ|x·θ�0 = x · θ. (3.1)

Throughout this section we assume that c satisfies (1.2) and that

‖c − 1‖W m,∞ < ε (3.2)

with some ε > 0 and m ≥ 2. We need to solve (3.1) in Bρ. Fix θ ∈ S2. We may assume that
θ = t(1, 0, 0). Then (3.1) can be rewritten as





(∇φ)2 = c−2(x),
φ|x1=−ρ = −ρ,

∂x1φ|x1=−ρ = 1.
(3.3)

The Hamiltonian system associated with (3.3) is

{
d
ds

x = 2ξ, d
ds

ξ = ∇c−2,
x|s=0 = t(−ρ, η), ξ|s=0 = t(1, 0, 0), η ∈ R2.

(3.4)

Notice that the solution to (3.4) in the case c = 1 is x = t(2s − ρ, η), ξ = t(1, 0, 0). On the
other hand, for general c(x) the solution of (3.4) exists for any s (see [V]).

Lemma 3.1 Fix a > 0. Then there exists C > 0 such that for the solution x = x(s, η),
ξ = ξ(s, η) of (3.4) we have

‖x − t(2s − ρ, η)‖W m,∞([0,a]×R2) + ‖ξ − t(1, 0, 0)‖W m,∞([0,a]×R2) ≤ Cε.

The proof of the lemma is based on a comparison theorem for ODE and will be omitted
here.

In particular, Lemma 3.1 implies that under the smallness assumption (3.2) the Hamil-
tonian flow is non-trapping for small ε, more precisely, x(s, η) 6∈ Bρ = {x; |x| < ρ} for s > a
with some a > 0. Moreover, the mapping t(s, η) 7→ x(s, η) is a W m,∞–diffeomorphism on
[0, a] × {η ∈ R2; |η| ≤ 2ρ} and its range covers Bρ provided that ε is small enough. We
will need in fact to work in a larger domain, so let us assume that ε and a are such that
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t(s, η) 7→ x(s, η) maps [0, a] × {η ∈ R2; |η| ≤ 5ρ} into a compact covering B4ρ. The phase
function φ solving (3.3) is defined in B4ρ by (see [V])

φ = −ρ + 2
∫

c−2(x) ds,

where the integration is taken over the shortest characteristics x = x(s, η) joining the plane
x1 = −ρ and x. The change of coordinates x 7→ t(s, η) is ε-close to x = t(2s − ρ, η) in
W m,∞, which easily implies that φ must be close to φ = x1. So far θ was fixed. One can also
examine easily the dependence of φ on θ ∈ S2. Thus we get

Lemma 3.2 Assume that (3.2) holds with ε > 0 sufficiently small. Then there exists C0 > 0
such that

‖φ(x, θ) − x · θ‖W m,∞(B4ρ×S2) ≤ C0ε.

Now we are ready to prove the principal result of this section about the scattering solution
u(t, x, θ) introduced in (2.2). Denote

T = ρ + C0ε, (3.5)

where C0 is the constant in Lemma 3.2. Note that max{|φ(x, θ)|; x ∈ Bρ, θ ∈ S2} ≤ T .

Proposition 3.1 Assume that (3.2) holds with m ≥ 9 and ε > 0 sufficiently small. Then
there exists a constant C > 0, such that for |t| < 3T , and for any θ ∈ S2 we have

u(t, x, θ) = α(x, θ)δ(t− φ(x, θ)) + β(x, θ)h0(t − φ(x, θ)) + r(t, x, θ),

where
‖α − 1‖W m−2,∞(B4ρ×S2) ≤ Cε, |β(x, θ)| ≤ Cε, (3.6)

and
‖r(t, ·, θ)‖L∞ + ‖∂tr(t, ·, θ)‖L2 ≤ Cε. (3.7)

Proof. Let us look for u of the form

u(t, x, θ) = α(x, θ)δ(t− φ(x, θ)) + β(x, θ)h0(t − φ(x, θ)) + γ(x, θ)h1(t − φ(x, θ)) + r̃(t, x, θ).

Then α = 1 + α̃, β, γ solve the transport equations

(2∇φ · ∇ + ∆φ)α̃ = −∆φ, α̃|x·θ=−ρ = 0, (3.8)

(2∇φ · ∇ + ∆φ)β = ∆α, β|x·θ=−ρ = 0, (3.9)

(2∇φ · ∇ + ∆φ)γ = ∆β, γ|x·θ=−ρ = 0, (3.10)

while r̃ solves
(c−2∂2

t − ∆)r̃ = (∆γ)h1(t − φ), r̃|t�0 = 0. (3.11)

Note that we need to solve (3.8) — (3.10) in the compact x · θ ≥ −ρ, φ(x, θ) ≤ 3T , |η| < ρ
(η = η(x) is determined by x = x(s, η)) and for ε sufficiently small this compact is contained
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in B4ρ, where φ is well defined. The first equation (3.8) can be solved in B4ρ and (3.6)
follows directly from Lemma 3.2. The estimate (3.6) for α follows easily from Lemma 3.1
and Lemma 3.2. Next, since ∆α = O(ε), we get (if m ≥ 4) (3.6) for β as well. Similarly, if
m ≥ 6, then |γ| = O(ε) as well. Finally, for r̃ we get by (3.11)

[r̃, ∂tr̃] =
∫ t

−ρ
U(t − s)[0, (∆γ)h1(s − φ)] ds.

We get as above that (∆γ)h1(s − φ) is supported in B4ρ for −ρ ≤ s ≤ t, |t| < 3T and
moreover ‖[0, (∆γ)h1(s−φ)]‖H ≤ Cε (if m ≥ 8). Note that the norm in H depends on c(x),
but is uniformly bounded when c satisfies (3.2) with ε < 1. So we get

‖[r̃, ∂tr̃]‖H ≤ C(t + ρ)ε, −ρ ≤ t ≤ T (3.12)

(and r̃ = 0 for t < −ρ). Next, [r̃, ∂tr̃] ∈ D(A) and

A[r̃, ∂tr̃] = [∂tr̃, c
2∆r̃] =

∫ t

−ρ
U(t − s)A[0, (∆γ)h1(s − φ)] ds

=
∫ t

−ρ
U(t − s)[(∆γ)h1(s − φ), 0] ds.

Since ‖[(∆γ)h1(s − φ), 0]‖H = O(ε) (here we need m = 9), we get as above that

∥∥∥[∂tr̃, c
2∆r̃]

∥∥∥
H
≤ C(t + ρ)ε, −ρ ≤ t ≤ T. (3.13)

By (3.12) and (3.13),
‖∇r̃‖ + ‖∆r̃‖ + ‖∂tr̃‖ + ‖∇∂tr̃‖ ≤ Cε,

where ‖ · ‖ = ‖ · ‖L2 . Moreover, r̃ is compactly supported (uniformly in ε < 1, |t| < 3T )
because of the finite speed of propagation for (1.1). Therefore, by the Poincaré inequality
(see e.g. [L-P]), we get ‖r̃‖ = O(ε) as well. Thus,

‖r̃‖H2 + ‖∂tr̃‖H1 ≤ Cε.

By the Sobolev embedding theorem this yields ‖r̃‖L∞ + ‖∂tr̃‖L2 = O(ε) and combining this

with (3.6), we get (3.7) for r = γh1(t − φ) + r̃. 2

4 Proof of Theorem 1.1

Assume that the hypotheses of Theorem 1.1 are fulfilled and denote by uj the scattering
solutions related to cj, j = 1, 2. Then, by Proposition 2.1

∫ ∫
q(x)u1(t, x, θ)u2(s − t, x, θ) dx dt = 0, q := c−2

1 − c−2
2 . (4.1)
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for any s ∈ R, θ ∈ S2. Let us apply now Proposition 3.1 and substitute uj, j = 1, 2 in (4.1)
by its singular expansion. We get

−
∫

qα1α2δ(s − φ1 − φ2) dx

=
∫

q
[
α2β1h0(s − φ1 − φ2) + α1β2h0(s − φ1 − φ2) + α2r1(s − φ2) + α1r2(s − φ1)

]
dx

+
∫ ∫

q
[
β1β2h0(t− φ1)h0(s − t − φ2) + r1(t)r2(s − t)

+ β1h0(t− φ1)r2(s − t) + β2h0(s − t − φ2)r1(t)
]
dx dt. (4.2)

Here r1(t) = r1(t, x, θ), φ1 = φ1(x, θ) etc. Denote φ(x, θ) = φ1(x, θ) + φ2(x, θ), a(x, θ) =
α1(x, θ) + α2(x, θ). Since by Lemma 3.2, φ(x, θ) is close to 2x · θ and a(x, θ) is close to 1,
the left-hand side of (4.2) reminds us of the Radon transform Rq of q. Let us recall, that we
have the following Parseval’s equality for the Radon transform ‖∂sRf‖L2(R×S2) = 4π‖f‖L2.
Bearing this in mind, let us differentiate (4.2) with respect to s.

−∂s

∫
qaδ(s− φ) dx = I1 + I2 + I3 + I4, (4.3)

where

I1 =
∫

q(α2β1 + α1β2)δ(s− φ) dx,

I2 =
∫

q[α2∂sr1(s − φ2) + α1∂sr2(s − φ1)] dx

I3 =
∫

q[β1β2h0(s − φ) + β1r2(s − φ1) + β2r1(s − φ2)] dx

I4 =
∫ ∫

qr1(t)∂sr2(s − t) dx dt.

The left-hand side of (4.3) vanishes for |s| > 2T (see Lemma 3.2 and (3.5)). Therefore, so
does the right-hand side above, but this is not necessarily true for each term Ij. Let us
estimate the norm in L2([−2T, 2T ]×S2) of each term in (4.3). For the left-hand side in (4.3)
we have

‖∂s

∫
q(x)a(x, θ)δ(s− φ(x, θ)) dx‖L2([−2T,2T ]×S2)

= (2π)−1/2‖k
∫

eikφ(x,θ)a(x, θ)q(x) dx‖L2(Rk×S2
θ ). (4.4)

Let us extend φ(x, ξ), a(x, θ) for ξ 6∈ S2 by φ(x, ξ) = |ξ|φ(x, ξ/|ξ|), a(x, ξ) = a(x, ξ/|ξ|).
Then Lemma 3.2 implies

∣∣∣∂α
x ∂β

ξ (φ(x, ξ) − 2x · ξ)
∣∣∣ ≤ C1ε|ξ|1−|β| for |α| + |β| ≤ m, x ∈ B4ρ, ξ 6= 0. (4.5)

Similarly, (3.6) implies

∣∣∣∂α
x ∂β

ξ (a(x, ξ) − 1)
∣∣∣ ≤ C1ε|ξ|−|β| for |α| + |β| ≤ m− 2, x ∈ B4ρ, ξ 6= 0. (4.6)
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Since q is real-valued, the square integral of the expression in the right-hand side of (4.4)
over Rk × S2 equals twice the square integral over R+

k × S2
θ . Setting ξ = kθ, k > 0, θ ∈ S2,

we obtain from (4.4)

‖∂s

∫
q(x)a(x, θ)δ(s− φ(x, θ)) dx‖L2([−2T,2T ]×S2) =

√
2(2π)−1/2‖Pq‖L2(R3

ξ
), (4.7)

where
(Pq)(ξ) =

∫
eiφ(x,ξ)a(x, ξ)q(x) dx. (4.8)

Our plan is the following. First we will show that C1‖q‖ ≤ ‖Pq‖ ≤ C2‖q‖ with some C1 > 0,
C2 > 0 independent of ε. Next we are going to estimate the norms in L2([−2T, 2T ]×S2) of
each term Ij = Ij(s, θ) in (4.3) and will show that Ij = O(ε‖q‖), j = 1, 2, 3, 4. Then (4.3),
(4.7) would imply that C1‖q‖ ≤ ‖Pq‖ ≤ Cε‖q‖, hence q = 0.

Proposition 4.1 If cj, j = 1, 2 satisfy (3.2) with m = 9 and if ε > 0 is sufficiently small,
then P : L2(Bρ) → L2(R3

ξ) is a bounded operator. Moreover there exist two constants C1 > 0,
C2 > 0 independent of ε (small enough), c1, c2, such that

C1‖f‖ ≤ ‖Pf‖ ≤ C2‖f‖ for any f ∈ L2(Bρ).

Proof. We will show that the estimate above follows from the fact that φ = φ1 + φ2 is close
to 2x · θ (see Lemma 3.2) and a is close to 1 (see 4.6). This does not necessarily implies that
P (see (4.8)) is close to the Fourier transfotm, but one can expect that P ∗P is close to cI
with some constant c. We have

(P ∗Pf) (x) =
∫ ∫

e−i(φ(x,ξ)−φ(y,ξ))a(x, ξ)a(y, ξ)f(y) dy dξ. (4.9)

The phase function above admits the representation

φ(x, ξ) − φ(y, ξ) = 2(x − y) · η(x, y, ξ),

where

η(x, y, ξ) =
1

2

∫ 1

0
(∇xφ)(x + t(x− y), ξ) dt. (4.10)

To prove (4.10) it is enough to apply the identity g(1) − g(0) =
∫ 1
0 g′(t)dt to the function

g(t) = φ(x + t(x − y)). By Lemma 3.2, η(x, y, ξ) belongs to W m−1,∞ and is homogeneous
with respect to ξ of order one. Moreover,
∣∣∣∂α

x ∂β
y ∂γ

ξ (η(x, y, ξ) − ξ)
∣∣∣ ≤ Cε|ξ|1−|γ| for |α| + |β|+ |γ| ≤ m − 1, x ∈ B4ρ, y ∈ B4ρ, ξ 6= 0.

The equation η = η(x, y, ξ) can be solved for ξ provided that ε is sufficiently small. The
Jacobian J := |Dη/Dξ| satisfies the estimates

∣∣∣∂α
x ∂β

y ∂γ
ξ (J(x, y, ξ)− 1)

∣∣∣ ≤ Cε|ξ|−|γ| for |α| + |β|+ |γ| ≤ m− 2, x ∈ B4ρ, y ∈ B4ρ, ξ 6= 0.

(4.11)
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Let us perform the change of variables ξ → η in (4.9).

P ∗Pf =
∫ ∫

e−2i(x−y)·ηb(x, y, η)f(y)J̃(x, y, η) dy dη, (4.12)

where J̃(x, y, η) = J−1(x, y, ξ)|ξ=ξ(x,y,η), b(x, y, η) = a(x, ξ)a(y, ξ)|ξ=ξ(x,y,η). The principal
part of the integral above is

∫ ∫
e−2i(x−y)·ηf(y) dy dη = π3f,

so from (4.12) we get

(
P ∗P − π3I

)
f =

∫ ∫
e−2i(x−y)·ηf(y)

(
(bJ̃)(x, y, η)− 1

)
dy dη. (4.13)

We are going to apply Theorem A.1 (see the Appendix below) to (4.13). By (4.11), (3.6),

∣∣∣∂α
x ∂β

y

(
(bJ̃)(x, y, η)− 1

)∣∣∣ ≤ Cε for |α| + |β| ≤ m− 2, x ∈ B4ρ, y ∈ B4ρ, η 6= 0. (4.14)

Let us extend the operator P ∗P −π3I, defined a priori on L2(Bρ) to an operator Q in L2(R3)
by (4.13) with J̃ − 1 replaced by χ(x)(J̃ − 1)χ(y), where χ ∈ C∞

0 , supp χ ⊂ B2ρ, χ = 1 on
Bρ. Then if m − 2 = 7, Theorem A.1 yields ‖Q‖L(L2(R3)) ≤ Cε, which implies

‖P ∗P − π3I‖L(L2(Bρ)) ≤ Cε.

Thus, for any f ∈ L2(Bρ) we have

∣∣∣‖Pf‖2 − π3‖f‖2
∣∣∣ =

∣∣∣
(
P ∗Pf − π3f, f

)∣∣∣ ≤ Cε‖f‖2,

and this completes the proof of Proposition 4.1 for ε small enough. 2

We proceed now with estimating the norms of Ij, j = 1, 2, 3, 4 in L2([−2T, 2T ]×S2). By
(3.6) and (4.7) we get for I1

‖I1‖L2([−2T,2T ]×S2) ≤ Cε‖
∫
|q|δ(s− φ) dx‖L2(R×S2)

≤ C ′ε‖∂s

∫
|q|δ(s− φ) dx‖L2(R×S2)

≤ C ′′‖P0|q|‖ ≤ C ′′′‖q‖. (4.15)

Here P0 is the operator (4.8) with a = 1. In order to prove (4.15), we have approximated |q|
with smooth functions and have used the fact that for any f ∈ C1(R) with f = 0 outside
some finite interval [−a, a], we have ‖f‖L2 ≤ C(a)‖f ′‖L2.

To estimate I2, I3 and I4, observe that

I2 + I3 + I4 =
∫

K(s, θ, x)q(x) dx (4.16)
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with

K = α2∂sr1(s − φ2) + α1∂sr2(s − φ1) + β1β2h0(s − φ)

+ β1r2(s − φ1) + β2r1(s − φ2) +
∫ ρ+2T

−ρ
r1(t)∂sr2(s − t) dt. (4.17)

When |s| < 2T and x ∈ Bρ, we have |s−φ2| ≤ 3T , |s−φ1| ≤ 3T . Next, in the integral term
in (4.17) we have |T | < 3T , −ρ ≤ s − t ≤ ρ + 2T < 3T . Therefore, in (4.17) the argument
of rj(t), j = 1, 2 always belongs to the interval |t| ≤ 3T thus we can apply Proposition 3.1
to get ∫

Bρ

∫

S2

∫ 2T

−2T
|K(s, θ, x)|2ds dθ dx ≤ (Cε)2.

Therefore, by (4.16) we have

‖I2 + I3 + I4‖L2([−2T,2T ]×S2) ≤ Cε‖q‖. (4.18)

Combining (4.3), (4.7), (4.15) and (4.18), we get

‖Pq‖ ≤ Cε‖q‖. (4.19)

On the other hand, by Proposition 4.1 we conclude that

C1‖q‖ ≤ ‖Pq‖. (4.20)

For ε small enough (4.19) and (4.20) imply q = 0. The proof of Theorem 1.1 is complete.

A Appendix

We prove here a theorem for the boundedness of a(x, y,D) in L2(Rn) if a is smooth of finite
order. Under the assumption that a = a(x, ξ) is independent of y, Theorem 18.1.11′ in [H]
says that if

∫
|∂α

x a(x, ξ)|dx ≤ M for all ξ ∈ Rn and for |α| ≤ n+1, then ‖a(x,D)‖L(L2) ≤ CM
with C > 0 an absolute constant. Following the proof of that theorem in [H], we obtain a
generalization for amplitudes a depending on y as well.

Theorem A.1 Let A be the operator

Af = (2π)−n
∫ ∫

ei(x−y)·ξa(x, y, ξ)f(y) dy dξ.

If ∫ ∣∣∣∂α
x ∂β

y a(x, y, ξ)
∣∣∣ dx dy ≤ M for |α| + |β| ≤ 2n + 1, ξ ∈ Rn,

then ‖A‖L(L2) ≤ CM with C > 0 an absolute constant.
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Proof. We have
Af = (2π)−2n

∫ ∫
eix·ξã(x, ξ − ζ, ξ)f̂ (ζ) dζ dξ,

where ã(x, ζ, ξ) =
∫

e−iζ·ya(x, y, ξ)dy. Thus

Âf(η) :=
∫

e−iη·x(Af)(x) dx = (2π)−2n
∫ ∫ ∫

e−ix·(η−ξ)ã(x, ξ − ζ, ξ)f̂ (ζ) dζ dξ dx

= (2π)−2n
∫ ∫

˜̃a(η − ξ, ξ − ζ, ξ)f̂ (ζ) dζ dξ,

where ˜̃a(η, ζ, ξ) =
∫

e−iη·xã(x, ζ, ξ) =
∫

e−i(η·x+ζ·y)a(x, y, ξ)dxdy. Therefore, Âf = Bf̂, where
B is an integral operator with kernel

b(η, ζ) = (2π)−2n
∫

˜̃a(η − ξ, ξ − ζ, ξ) dξ.

We claim that
∫
|b(η, ζ)|dη ≤ CM ,

∫
|b(η, ζ)|dζ ≤ CM . It is well known that this implies

that B is bounded with norm not exceeding CM .

∫
|b(η, ζ)| dη ≤ (2π)−2n

∫ ∫
|˜̃a(η − ξ, ξ − ζ, ξ)| dξ dη.

The assumptions of the theorem imply |˜̃a(η, ζ, ξ)| ≤ CM(1 + |η|+ |ζ|)−2n−1. Hence

∫
|b(η, ζ)| dη ≤ C ′M

∫ ∫
(1 + |η − ξ| + |ξ − ζ|)−2n−1dη dξ

= C ′M
∫ ∫

(1 + |η| + |ξ − ζ|)−2n−1dη dξ

= C ′M
∫ ∫

(1 + |η| + |ξ|)−2n−1dη dξ

= C ′′M < ∞.

In the same way we treat
∫
|b(η, ζ)|dζ. 2
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