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BOUNDARY RIGIDITY WITH PARTIAL DATA

PLAMEN STEFANOV, GUNTHER UHLMANN, AND ANDRAS VASY

1. Introduction and main results

Travel time tomography deals with the problem of determining the sound speed
or index of refraction of a medium by measuring the travel times of waves going
through the medium. This type of inverse problem, also called the inverse kinematic
problem, arose in geophysics in an attempt to determine the substructure of the
Earth by measuring the travel times of seismic waves at the surface. We consider
an anisotropic index of refraction, i.e., a sound speed depending on the direction.
The Earth is generally isotropic. However, more recently it has been realized, by
measuring these travel times, that the inner core of the Earth exhibits anisotropic
behavior with the fast direction parallel to the Earth’s spin axis; see [5]. In the
human body, muscle tissue is anisotropic. As a model of anisotropy, we consider
a Riemannian metric g = (gij). The problem is to determine the metric from the
lengths of geodesics joining points on the boundary.

This leads to the general question of whether given a compact Riemannian mani-
fold with boundary (M, g) one can determine the Riemannian metric in the interior
knowing the boundary distance function joining points on the boundary dg(x, y),
with x, y ∈ ∂M . This is known as the boundary rigidity problem. Of course,
isometries preserve distance, so that the boundary rigidity problem is whether two
metrics that have the same boundary distance function are the same up to isometry
fixing the boundary. Examples can be given of manifolds that are not boundary
rigid. Such examples show that the boundary rigidity problem should be consid-
ered under some restrictions on the geometry of the manifold. The most usual of
such restrictions is simplicity of the metric. A Riemannian manifold (M, g) (or the
metric g) is called simple if the boundary ∂M is strictly convex (positive second
fundamental form) and any two points x, y ∈ M are joined by a unique minimizing
geodesic. Michel conjectured [21] that every simple compact Riemannian manifold
with boundary is boundary rigid.

Simple surfaces with boundary are boundary rigid [29]. In higher dimensions,
simple Riemannian manifolds with boundary are boundary rigid under some a
priori constant curvature on the manifold or special symmetries [2, 13]. Several
local results near the Euclidean metric are known [3, 19, 39]. The most general
result in this direction is the generic local (with respect to the metric) one proven
in [41]. Surveys of some of the results can be found in [8, 16, 42].
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In this paper, we consider the boundary rigidity problem in the class of met-
rics conformal to a given one and with partial (local) data; that is, we know the
boundary distance function for points on the boundary near a given point. Partial
data problems arise naturally in applications since in many cases one does not have
access to the whole boundary. We prove the first result on the determination of
the conformal factor locally near the boundary from partial data without assuming
analyticity. We develop a novel method to attack partial data nonlinear problems
that will likely have other applications.

We now describe the known results with full data on the boundary. Let us fix
the metric g0 and let c be a positive smooth function on the compact manifold with
boundary M . The problem is whether we can determine c from dc−2g0(x, y), x, y ∈
∂M. Notice that in this case the problem is not invariant under changes of variables
that are the identity at the boundary so that we expect to be able to recover c under
appropriate a priori conditions. This was proven by Mukhometov in two dimensions
[23], and in [24] in higher dimensions for the case of simple metrics. Of particular
importance in applications is the case of an isotropic sound speed that is when we
are in a bounded domain of Euclidean space and g0 is the Euclidean metric. This
is the isotropic case. This problem was considered by Herglotz [14] and Wieckert
and Zoeppritz [51] for the case of a spherical symmetric sound speed. They found a
formula to recover the sound speed from the boundary distance function assuming
d
dr (

r
c(r) ) > 0. Notice that this condition is equivalent to the existence of a strictly

convex foliation and is more general than simplicity; see Section 6.
From now on we will call d the function dc−2g0 . Below, d̃ is related to dc̃−2g0 .
The partial data problem, which we will also call the local boundary rigidity

problem,1 in this case is whether knowledge of the distance function on part of the
boundary determines the sound speed c locally. Given another smooth c̃, here and
below we define L̃, �̃, and d̃ in the same way but related to c̃. We prove the following
uniqueness result.

Theorem 1.1. Let n = dimM ≥ 3, let c > 0, c̃ > 0 be smooth, and let ∂M be
strictly convex with respect to both g = c−2g0 and g̃ = c̃−2g0 near a fixed p ∈ ∂M .
Let d(p1, p2) = d̃(p1, p2) for p1, p2 on ∂M near p. Then c = c̃ in M near p.

As mentioned earlier, this is the only known result for the boundary rigidity
problem with partial data except in the case that the metrics are assumed to be
real-analytic [19]. The latter follows from determination of the jet of the metric at
a convex point from the distance function known near p.

The boundary rigidity problem is closely connected to the lens rigidity one. To
define the latter, we first introduce the manifolds ∂±SM , defined as the sets of all
vectors (x, v) with x ∈ ∂M , v unit in the metric g, and pointing outside/inside M .
We define the scattering relation

(1.1) L : ∂−SM −→ ∂+SM

in the following way: for each (x, v) ∈ ∂−SM , L(x, v) = (y, w), where (y, w) are
the exit point and direction, if they exist, of the maximal unit speed geodesic γx,v
in the metric g, issued from (x, v). Let

� : ∂−SM −→ R ∪∞
1It is local in the sense that d(x, y) is known locally and depends on c locally; the term local

has been used before to indicate that the metric is a priori close to a fixed one.
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BOUNDARY RIGIDITY WITH PARTIAL DATA 301

be its length, possibly infinite. If � < ∞, we call M non-trapping. The maps (L, �)
together are called lens relation (or lens data).

The lens rigidity problem is whether the scattering relation L (and possibly, �)
determine g (and the topology of M) up to an isometry as above. The lens rigidity
problem with partial data for a sound speed is whether we can determine the speed
near some p from L known near the unit sphere Sp∂M considered as a subset of
∂−SM , i.e., for vectors with base points close to p and directions pointing into M
close to ones tangent to ∂M . For general metrics, we want to recover isometric
copies of the metrics locally, as above.

We assume that ∂M is strictly convex at p ∈ ∂M with respect to (w.r.t.) g.
Then the boundary rigidity and the lens rigidity problems with partial data are
equivalent: knowing d near (p, p) is equivalent to knowing L in some neighborhood
of Sp∂M . The size of that neighborhood, however, depends on a priori bounds
of the derivatives of the metrics with which we work. This equivalence was first
noted by Michel [21], since the tangential gradients of d(x, y) on ∂M × ∂M give
us the tangential projections of −v and w; see also [38, Section 2]. Note that local
knowledge of � is not needed for the lens rigidity problem,2 and in fact, � can be
recovered locally from either d or L; see, for example, the proof of Theorem 5.2.

Vargo [50] proved that real-analytic manifolds satisfying an additional mild con-
dition are lens rigid. Croke has shown that if a manifold is lens rigid, a finite
quotient of it is also lens rigid [8]. He has also shown that the torus is lens rigid
[4]. Uhlmann and Stefanov have shown lens rigidity locally near a generic class of
non-simple manifolds [44]. In a recent work, Guillarmou [12] proved that in two di-
mensions, one can determine from the lens relation the conformal class of the metric
if the trapped set is hyperbolic and there are no conjugate points. He also proved
deformation lens rigidity in higher dimensions under the same assumptions. The
only result we know for the lens rigidity problem with incomplete (but not local)
data is for real-analytic metric and metric close to them satisfying the micolocal
condition in the next sentence [44]. While in [44], the lens relation is assumed to
be known on a subset only, the geodesics issued from that subset cover the whole
manifold, and their conormal bundle is required to cover N∗M . In contrast, in this
paper, we have localized information.

We state below an immediate corollary of our main result for this problem. For
the partial data problem instead of assuming d = d̃ locally, we can assume that
L = L̃ in a neighborhood of Sp∂M . To reduce this problem to Theorem 1.1 directly,
we need to assume first that c = c̃ on ∂M near p to make the definition of ∂±SM
independent of the choice of the speed but, in fact, one can redefine the lens relation
in a way to remove that assumption; see [44].

Theorem 1.2. Let M , c, c̃ be as in Theorem 1.1 with c = c̃ on ∂M near p. Let
L = L̃ near Sp∂M . Then c = c̃ in M near p.

Remark 1.3. The theorem or its corollary does not preclude the existence of an
infinite set of speeds cj all having the same boundary distance function (or lens
data) in U×U , where U ⊂ ∂M is some fixed small set but not coinciding in any fixed
neighborhood of p. In principle, this may happen when the maximal neighborhood
of U , which can be covered with strictly convex surfaces, which continuously deform
U , shrinks when j → ∞. Then the theorem does not imply existence of a fixed

2If only L is given, then the problem is called scattering rigidity in some works
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neighborhood of p, where all speeds are equal. If one assumes that a priori, the
sound speeds have uniformly bounded derivatives of some finite order near p, this
situation does not arise, and this case is covered by Theorem 5.2 below.

The linearization of the boundary rigidity and lens rigidity problem is the tensor
tomography problem, i.e., recovery of a tensor field up to “potential fields” from
integrals along geodesics joining points on the boundary. It has been extensively
studied in the literature for both simple and non-simple manifolds [1,11,22,26–28,
30, 32, 34, 36, 40, 43, 46]. See the book [33] and [28] for a recent survey. The local
tensor tomography problem has been considered in [17] for functions and real-
analytic metrics and in [18] for tensors of order two and real-analytic metrics. Those
results can also be thought of as support theorems of Helgason type. The only
known results for the local problem for smooth metrics and integrals of functions
is [49].

Now we use a layer stripping type argument to obtain a global result which is
different from Mukhometov’s for simple manifolds.

Definition 1.1. Let (M, g) be a compact Riemannian manifold with boundary. We
say that M satisfies the foliation condition by strictly convex hypersurfaces if M is
equipped with a smooth function ρ : M → [0,∞) with level sets Σt = ρ−1(t), t < T
with some T > 0 are strictly convex viewed from ρ−1((0, t)) for g, dρ is non-zero
on these level sets, and Σ0 = ∂M and M \ ∪t∈[0,T )Σt has an empty interior.

The statement of the global result on lens rigidity is as follows.

Theorem 1.4. Let n = dimM ≥ 3, let c > 0, c̃ > 0 be smooth and equal on ∂M ,
let ∂M be strictly convex with respect to both g = c−2g0 and g̃ = c̃−2g0. Assume
that M can be foliated by strictly convex hypersurfaces for g. Then if L = L̃ on
∂−SM , we have c = c̃ in M .

A more general foliation condition under which the theorem would still hold is
formulated in [45]; see also Definition 5.1 below. In particular, Σ0 does not need to
be ∂M , and one can have several such foliations with the property that the closure
of their union is M . If we can foliate only some connected neighborhood of ∂M , we
would get c = c̃ there. Next, it is enough to require that M \ ∪t∈[0,T )Σt is simple
(or that it is included in a simple submanifold; see the proof of Theorem 1.4 and
Figure 2 in Section 4) to prove c = c̃ in ∪t∈[0,T )Σt first, and then use Mukhometov’s
results to complete the proof. The class of manifolds we get in this way is larger
than the simple ones and can have conjugate points.

Speeds not necessarily radial (with g0 the Euclidean metric) under the condition
considered by Herglotz and Wieckert and Zoeppritz satisfy the foliation condition
of the theorem; see also Section 6. Other examples of non-simple metrics that
satisfy the condition are the tubular neighborhood of a closed geodesic in negative
curvature. These have trapped geodesics. It follows from the result of [31], that
manifolds with no focal points satisfy the foliation condition. It would be interesting
to know whether this is also the case for simple manifolds. As it was mentioned
earlier, manifolds satisfying the foliation condition are not necessarily simple.

The linearization of the non-linear problem with partial data considered in The-
orem 1.1 was considered in [49], where uniqueness and stability were shown. This
corresponds to integrating functions along geodesics joining points in a neighbor-
hood of p. The method of proof of Theorem 1.1 relies on using an identity proven
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in [39] to reduce the problem to a “pseudo-linear” one: to show uniqueness when
one integrates the function f = c2 − c̃2 and its derivatives on the geodesics for the
metric g joining points near p, with weight depending non-linearly on both g and
g̃. Notice that this is not a proof by linearization, and unlike the problem with full
data, an attempt to do such a proof by linearization is connected with essential
difficulties. The proof of uniqueness for this linear transform follows the method of
[49] introducing an artificial boundary and using Melrose’s scattering calculus. In
Section 2, we do the reduction to a “pseudo-linear problem,” and in Section 3, we
show uniqueness for the pseudo-linear problem. In Section 4, we finish the proofs
of the main theorems.

We also prove Hölder conditional stability estimates related to the uniqueness
theorems above. In the case of data on the whole boundary, such an estimate was
proved in [41, Section 7] for simple manifolds and metrics not necessarily conformal
to each other. Below, the Ck norm is defined in a fixed coordinate system. The
next theorem is a local stability result, corresponding to the local uniqueness result
in Theorem 1.1.

Theorem 1.5. There exists k > 0 and 0 < μ < 1 with the following property. For
any 0 < c0 ∈ Ck(M), p ∈ ∂M , and A > 0, there exists ε0 > 0 and C > 0 with the
property that for any two positive c, c̃ with

(1.2) ‖c− c0‖C2 + ‖c̃− c0‖C2 ≤ ε0, and ‖c‖Ck + ‖c̃‖Ck ≤ A,

and for any neighborhood Γ of p on ∂M , we have the stability estimate

(1.3) ‖c− c̃‖C2(U) ≤ C‖d− d̃‖μC(Γ×Γ)

for some neighborhood U of p in M .

In Theorem 5.2, we prove Hölder conditional stability estimates of global type
as well, which can be considered as a “stable version” of Theorem 1.4.

The plan of the paper is as follows. The reduction to a pseudo-linear problem
is done in Section 2. In Section 3, we present linear analysis using the scattering
calculus. The main result there is Proposition 3.3, which is of its own interest as
well. The proofs of the three uniqueness theorems are in Section 4. In Section 5, we
prove the local stability result in Theorem 1.5 and the global Theorem 5.2. As an
application of our results, we revisit the class of speeds studied by Herglotz [14] and
Wieckert and Zoeppritz [51] in Section 6 without assuming that they are radial,
and we prove that they are lens rigid. In particular, we show that their condition
(6.1) is equivalent to the requirement that the Euclidean spheres are strictly convex
for the metric c−2dx2; therefore, it is a foliation condition.

2. Reducing the non-linear problem to a pseudo-linear one

We recall the known fact [19] that one can determine the jet of c at any boundary
point p at which ∂M is convex (not necessarily strictly) from the distance function
d known near (p, p). For a more general result not requiring convexity, see [44].
Since the result in [19] is formulated for general metrics, and the reconstruction
of the jet is in boundary normal coordinates, we repeat the proof in this (simpler)
situation of recovery of a conformal factor. As in [19], we say that ∂M is convex
near p ∈ ∂M , if for any two distinct points p1, p2 ∈ ∂M , close enough to p, there
exists a geodesic γ : [0, 1] → M joining them such that its length is d(p1, p2) and all
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the interior of γ belongs to the interior of M . Of course, strict convexity (positive
second fundamental form at p) implies convexity.

Lemma 2.1. Let c and c̃ be smooth and let ∂M be convex at p with respect to g
and g̃. Let d = d̃ near (p, p). Then ∂αc = ∂αc̃ on ∂M near p for any multi-index
α.

Proof. Let V ⊂ ∂M be a neighborhood of p on ∂M such that for any p1, p2 ∈ V ,
we have the property guaranteeing convexity at p. Let xn be a boundary normal
coordinate related to g; i.e., xn(q) = dist(q, ∂M), and xn ≥ 0 in M . We can
complete xn to a local coordinate system (x′, xn), where x′ parameterizes ∂M near
p.

It is enough to prove

(2.1) ∂k
xnc = ∂k

xn c̃ in V , k = 0, 1, . . . .

For k = 0, this follows easily by taking the limit in d(p, q) = d̃(p, q), ∂M 
 q → p;
and this can be done for any p ∈ V . Let l be the first value of k for which (2.1) fails.
Without loss of generality, we may assume that it fails at p, and ∂l

xn(c− c̃) > 0 at
p. Then ∂k

xn(c − c̃) = 0 in V , k = 0, . . . , l − 1. Consider the Taylor expansion of
c− c̃ w.r.t. xn with x′ close enough to x′(p). We get c− c̃ > 0 in some neighborhood
of p in M minus the boundary.

Now, let γ(p, q) be a minimizing geodesic in the metric g connecting p and q
when q ∈ ∂M as well, close enough to p; see also [19]. Let If(p, q) be the geodesic
ray transform of the tensor field f defined as an integral of fij γ̇

iγ̇j along γ(p, q).
All geodesics here are parameterized by a parameter in [0, 1] rather than being unit
speed, and therefore the transform I is parameterized differently than the usual
one. Then I(g − g̃) > 0 by what we proved above. On the other hand,

0 < I(g − g̃) = d2(p, q)− Ig̃ ≤ d2(p, q)− Ĩ g̃ = d2(p, q)− d̃2(p, q) = 0

because γ̃(p, q) minimizes integrals of g along curves connecting p and q. This is a
contradiction. �

The starting point is an identity in [39]. We will repeat the proof.

Let V , Ṽ be two vector fields on a manifold M (which will be replaced later

with S∗M). Denote by X(s,X(0)) the solution of Ẋ = V (X), X(0) = X(0), and

we use the same notation for Ṽ where the corresponding solutions are denoted by
X̃. Then we have the following simple statement.

Lemma 2.2. For any t > 0 and any initial condition X(0), if X̃
(
·, X(0)

)
and

X
(
·, X(0)

)
exist on the interval [0, t], then

X̃
(
t,X(0)

)
−X

(
t,X(0)

)
=

∫ t

0

∂X̃

∂X(0)

(
t− s,X(s,X(0))

)(
Ṽ − V

)(
X(s,X(0))

)
ds.

(2.2)

Proof. Set

F (s) = X̃
(
t− s,X(s,X(0))

)
.
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Then

F ′(s) =− Ṽ
(
X̃(t− s,X(s,X(0)))

)
+

∂X̃

∂X(0)

(
t− s,X(s,X(0))

)
V
(
X(s,X(0))

)
.

The proof of the lemma would be complete by the fundamental theorem of calculus

F (t)− F (0) =

∫ t

0

F ′(s) ds

if we show the following

(2.3) Ṽ
(
X̃(t− s,X(s,X(0)))

)
=

∂X̃

∂X(0)

(
t− s,X(s,X(0))

)
Ṽ
(
X(s,X(0))

)
.

Indeed, (2.3) follows from

0 =
d

dτ

∣∣∣∣
τ=0

X(T − τ,X(τ, Z)) = −V (X(T, Z)) +
∂X

∂X(0)
(T, Z)V (Z), ∀ T,

after setting T = t− s, Z = X(s,X(0)). �

Let c, c̃ be two speeds. Then the corresponding metrics are g = c−2dx2, and
g̃ = c̃−2dx2. The corresponding Hamiltonians and Hamiltonian vector fields are

H =
1

2
c2gij0 ξiξj , V =

(
c2g−1

0 ξ,−1

2
∂x

(
c2|ξ|2g0

))
,

and the same ones related to c̃. We used the notation |ξ|2g0 := gij0 ξiξj .
We change the notation at this point. We denote points in the phase space T ∗M ,

in a fixed coordinate system, by z = (x, ξ). We denote the bicharacteristic with
initial point z by Z(t, z) = (X(t, z),Ξ(t, z)).

Then we get the identity already used in [39]

(2.4) Z̃(t, z)− Z(t, z) =

∫ t

0

∂Z̃

∂z
(t− s, Z(s, z))

(
Ṽ − V

)
(Z(s, z)) ds.

We can naturally think of the scattering relation L and the travel time � as
functions on the cotangent bundle instead of the tangent one. Then we get the
following.

Proposition 2.1. Assume

(2.5) L(x0, ξ
0) = L̃(x0, ξ

0), �(x0, ξ
0) = �̃(x0, ξ

0)

for some z0 = (x0, ξ
0) ∈ ∂−S

∗M . Then∫ �(z0)

0

∂Z̃

∂z
(�(z0)− s, Z(s, z0))

(
V − Ṽ

)
(Z(s, z0)) ds = 0.
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2.1. Linearization near c = 1 and g Euclidean. As a simple exercise, let c = 1,
gij = δij and linearize for c̃ near 1 first under the assumption that c̃ = 1 outside an
open region Ω ⊂ Rn. Then

(2.6) Z(s, z) =

(
1 s
0 1

)
z,

∂Z(s, z)

∂z
=

(
1 s
0 1

)
,

and we get the following formal linearization of (2.4)

(2.7)

∫ (
fξ − 1

2
(t− s)(∂xf), −

1

2
∂xf

)
(x+ sξ, ξ) ds = 0,

where

(2.8) f := c2 − c̃2.

Notice that we would get the same thing if we replace ∂Z̃/∂z in (2.4) by ∂Z/∂z.
We integrate over the whole line s ∈ R because the integrand vanishes outside the
interval [0, �(x, ξ)]. The last n components of (2.7) imply

(2.9)

∫
∂xf(x+ sξ) ds = 0.

Now, assume that this holds for all (x, ξ). Then ∂xf = 0, and since f = 0 on ∂M ,
we get f = 0.

2.2. The general case. We take the second n-dimensional component on (2.4)
and use the fact that c2|ξ|2g0 = 1 on the bicharacteristics related to c. We assume
that both geodesics extend to t ∈ [0, �(x, ξ)]. We want to emphasize that the
bicharacteristics on the energy level H = 1/2, related to c, do not necessarily stay

on the same energy level for the Hamiltonian H̃ . We get∫
∂Ξ̃

∂x
(�(z)− s, Z(s, z))(fg−1

0 ξ)(Z(s, z)) ds

− 1

2

∫
∂Ξ̃

∂ξ
(�(z)− s, Z(s, z))(∂x(fg

−1
0 )ξ · ξ)(Z(s, z)) ds = 0

(2.10)

for any z ∈ ∂−SM for which (2.5) holds. As before, we integrate over s ∈ R because
the support of the integrand vanishes for s �∈ [0, �(x, ξ)] (for that, we extend the
bicharacteristics formally outside so that they do not come back). Write

∂x(fg
−1
0 ) = g−1

0 ∂xf + (∂xg
−1
0 )f

to get

0 =

∫
∂Ξ̃

∂x
(�(z)− s, Z(s, z))(fg−1

0 ξ)(Z(s, z)) ds

−1

2

∫
∂Ξ̃

∂ξ
(�(z)−s, Z(s, z))

((
g−1
0 ∂xf + f(∂xg

−1
0

))
ξ · ξ)(Z(s, z)) ds.

(2.11)

One of the terms on the right-hand side (r.h.s.) above involves g−1
0 ξ ·ξ which equals

c−2 on the bicharacteristics of H on the level 1/2.
Introduce the exit times τ (x, ξ) defined as the minimal (and the only) t > 0 so

that X(t, x, ξ) ∈ ∂M . They are well defined near Sp∂M , if ∂M is strictly convex
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at p. We need to write ∂Z̃
∂z (�(z) − s, Z(s, z)) as a function of (x, ξ) = Z(s, z). We

have
∂Z̃

∂z
(�(z)− s, Z(s, z)) =

∂Z̃

∂z
(τ (x, ξ), (x, ξ)).

Then we get, with f as in (2.8),

(2.12) Jif(γ) :=

∫ (
Aj

i (X(t),Ξ(t))(∂xjf)(X(t)) +Bi(X(t),Ξ(t))f(X(t))
)
dt = 0

for any bicharacteristic γ = (X(t),Ξ(t)) (related to the speed c) in our set, where

Aj
i (x, ξ) =− 1

2

∂Ξ̃i

∂ξj
(τ (x, ξ), (x, ξ))c−2(x),

Bi (x, ξ) =
∂Ξ̃i

∂xj
(τ (x, ξ), (x, ξ))gik0 (x)ξk

− 1

2

∂Ξ̃i

∂ξj
(τ (x, ξ), (x, ξ))(∂xjg−1

0 (x))ξ · ξ.

(2.13)

A major inconvenience with this representation is that the exit time function
τ (x, ξ) (recall that we assume strong convexity) becomes singular at (x, ξ) ∈ T ∗∂M .
More precisely, the normal derivative w.r.t. x when ξ is tangent to ∂M has a square
root type of singularity. On the other hand, we have some freedom to extend the
flow outside M since we know that the jets of c and c̃ at ∂M are the same near p:
therefore, any smooth local extension of c is also a smooth extension of c̃. Then for
any (x, ξ) ∈ ∂−S

∗M close enough to S∗
x0
M , the bicharacteristics originating from

it will be identical once they exit T ∗M but are still close enough to it. Similarly,
instead of starting from T ∗∂M , we could start at points and codirections close to
it, but away from M̄ .

With this in mind, we push the boundary away a bit. Let x0 represent the point
p near which we work, in a fixed coordinate system. Extend g0 smoothly near
x0. Let S(x0, r) be the sphere in the metric c−2dx2 centered at x0 with radius
0 < r  1. For (x, ξ) with x in the geodesic ball B(x0, r), redefine τ (x, ξ) to be the
travel time from (x, ξ) to S(x0, r). Let U− ⊂ ∂−SB(x0, r) be the set of all points
on S(x0, r) and incoming unit directions so that the corresponding geodesic in the
metric g is close enough to one tangent to ∂M at x0. Similarly, let U+ be the set of
such pairs with outgoing directions. Redefine the scattering relation L locally to act
from U− to U+, and redefine � similarly; see Figure 1. Then under the assumptions

of Theorem 1.2, L = L̃ and � = �̃ on U−. We can apply the construction above
by replacing ∂±SM locally by U±. The advantage we have now is that on U−, the
travel time τ is nonsingular. Equalities (2.12) and (2.13) are preserved then.

We now have

Aj
i (x0, ξ) = −1

2

∂Ξ̃i

∂ξj
(r, (x0, ξ))c

−2(x0),

Bi(x0, ξ) =
∂Ξ̃i

∂xj
(r, (x0, ξ))g

ik
0 (x0)ξk −

1

2

∂Ξ̃i

∂ξj
(r, (x, ξ))(∂xjg−1

0 (x0))ξ · ξ.
(2.14)

Then by the strict convexity,

(2.15) Aj
i (x, ξ) = −1

2
c−2(x)δji +O(r), for (x, ξ) ∈ S∗M near S∗

p∂M.
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∂M

S(x0, r) S(x0, r)

p = x0

x−

y+

ξ−

η+

x
y

x̃ = −c

Figure 1. The redefined scattering relation (x−, ξ−) �→ (y+, η+).

2.3. A new linear problem. The arguments above lead to the following linear
problem.

Problem. Assume (2.12) holds with some f supported in M , for all geodesics
close to the ones originating from S∗

x0
∂M (i.e., initial point x0 and all unit initial

codirections tangent to ∂M). Assume that ∂M is strictly convex at x0 w.r.t. the
speed c. Assume (2.15). Is it true that f = 0 near x0?

We show below in Proposition 3.3 that the answer is affirmative. Note that this
reduces the original non-linear problem to a linear one, but this is not a lineariza-
tion. Then Theorem 1.2 follows from it. On the other hand, Theorem 1.2 is not
equivalent to that problem because the weight there has a specific structure, and
thus Proposition 3.3 is a more general statement.

3. Linear analysis

We first recall the setting introduced in [49] in our current notation. There the
scalar x-ray transform along geodesics was considered, namely for β ∈ SM ,

(If)(β) =

∫
R

f(γβ(t)) dt,

where γβ is the geodesic with lift to SM having starting point β ∈ SM . Here M is
assumed to have a strictly convex boundary, which can be phrased as the statement

that if ρ is a defining function for ∂M , then − d2

dt2 (ρ ◦ γβ)|t=0 ≥ C > 0 whenever
β ∈ S∂M . One then considers a point p ∈ ∂M , and another function x̃, denoted
in [49] by x̃, such that x̃(p) = 0, dx̃(p) = −dρ(p), and the level sets of x̃ near the
0 are strictly concave when viewed from the superlevel sets (which are on the side

of p when talking about the c-level set with c < 0), i.e., d2

dt2 (x̃ ◦ γβ)|t=0 ≥ C > 0 if

β ∈ S{x̃ = c}, namely if d
dt (x̃ ◦ γβ)|t=0 = 0. For c > 0, we denote M ∩ {x̃ > −c}

by Ωc; we assume that c0 > 0 is such that Ωc0 is compact on M , and the concavity
assumption holds on Ωc0 . Then it was shown that the x-ray transform I restricted
to β ∈ SΩc such that γβ leaves Ωc with both end points on ∂M (i.e., at ρ = 0) is
injective if c > 0 is sufficiently small, and indeed one has a stability estimate for f
in terms of If on exponentially weighted spaces.

To explain this in detail, let x = xc = x̃+ c be the boundary defining function of
the artificial boundary, x̃ = −c, that we introduced; indeed, it is convenient to work
in M̃ , a C∞ manifold extendingM across the boundary, extending x̃ to M̃ smoothly,
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and defining Ω̂ = Ω̂c = {xc > 0} as the extension of Ω, so Ω̂ is a smooth manifold
with boundary, with only the artificial boundary being a boundary face. Then
one writes β = (λ, ω) = λ∂x + ω∂y ∈ Sx,yM̃ relative to a product decomposition

(−c0, c0)x × Uy of M̃ near p. The concavity condition becomes that for β whose
λ-component vanishes,

2α(x, y, 0, ω) =
d2

dt2
(x ◦ γβ)|t=0 ≥ 2C > 0,

with a new C > 0; see the discussion preceding Equation (3.1) in [49]. For χ ∈
C∞

0 (R), χ ≥ 0, χ(0) > 0, one considers the map

L0v(x, y) =

∫
R

∫
Sn−2

x−2χ(λ/x)v(x, y, λ, ω) dλ dω

defined for v a function on S
Ω̂
M̃ . This differs from [49] in that the weight x−2

differs by 1 from the weight x−1 used in [49]; this simply has the effect of removing
an x−1 in [49, Proposition 3.3], as compared to the proposition stated below. If c is
sufficiently small, or instead χ has sufficiently small support, for (x, y) ∈ Ω, I only

integrates over points in β ∈ SΩ̂ such that γβ leaves Ωc with both end points on
∂M , i.e., over β corresponding to Ωc-local geodesics—the set of the latter is denoted
by Mc. We refer to the discussion around [49, Equation (3.1)] for more detail, but
roughly speaking the concavity of the level sets of x means that the geodesics that
are close to being tangent to the foliation, with “close” measured by the distance
from the artificial boundary, x = 0, then they cannot reach x = 0 (or reach again,
in case they start there) without reaching x = c′ for some fixed c′ > 0; notice that
the geodesics involved in the integration through a point on the level set x = c̃
make an angle � c̃ with the tangent space of the level set due to the compact
support of χ. Then we consider the map P = L0 ◦ I. The main technical result

of [49], whose notation involving the so-called scattering Sobolev spaces Hs,r
sc (Ω̂)

and scattering pseudo-differential operators Ψs,r
sc (Ω̂) is explained below, was the

following proposition.

Proposition 3.1 (See [49, Proposition 3.3 and Lemma 3.6]). For � > 0 let

P� = e−�/xPe�/x : C∞
0 (Ω̂) → C∞(Ω̂).

Then P� ∈ Ψ−1,0
sc (Ω̂).

Further, if c > 0 is sufficiently small, then for a suitable choice of χ ∈ C∞
0 (R)

with χ(0) = 1, χ ≥ 0, P is elliptic in Ψ−1,0
sc (Ω̂) on a neighborhood of Ω.

Shrinking c further if needed, P� satisfies the estimate

(3.1) ‖v‖
Hs,r

sc (Ω̂)
≤ C‖P�v‖Hs+1,r

sc (Ω̂)

for v supported in M ∩ Ω̂.

We now briefly explain the role of the so-called scattering pseudo-differential
operators and the corresponding Sobolev spaces (which are typically used to study
phenomena “at infinity”) in our problem (where there is no obvious “infinity”);
we refer to [49, Section 2] for a more thorough exposition. These concepts were
introduced by Melrose [20], in a general geometric setting, but on Rn these opera-
tors actually correspond to a special case of Hörmander’s Weyl calculus [15], also
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studied earlier by Šubin [37] and Parenti [25]. So consider the reciprocal spherical
coordinate map, (0, ε)x × S

n−1
θ → Rn, with Sn−1 ⊂ Rn (unit sphere), and map

(x, θ) �→ x−1θ ∈ Rn. This map is a diffeomorphism onto its range, and it pro-
vides a compactification of Rn (the so-called radial or geodesic compactification)
by adding {0}x × S

n−1
θ as infinity to Rn, to obtain Rn, which is now diffeomorphic

to a ball. Now for general Uy above, we may regard, at least locally3 Uy also as

a coordinate chart in Sn−1, and thus obtain an identification of Ω with a region
intersection Rn; thus our artificial boundary x = 0 corresponds to infinity at Rn.
In particular, notions from Rn can now be transferred to a neighborhood of our
artificial boundary. Since the relevant vector fields on Rn are generated by trans-
lation invariant vector fields, which are complete under the exponential map, the
transferred analysis replaces the incomplete geometry of standard vector fields on

Ω̂ by a complete one. Concretely, these vector fields, when transferred, become
linear combinations of x2∂x and x∂yj , with smooth coefficients. In particular, these
are the vector fields with respect to which Sobolev regularity is measured. Thus,

Hs,r
sc (Ω̂) is the so-called scattering Sobolev space, which is locally, under the above

identification, just the standard weighted Sobolev space Hs,r(Rn) (see [49, Sec-

tion 2]), while Ψs,r
sc (Ω̂) is Melrose’s scattering pseudo-differential algebra, which

locally, again under this identification, simply corresponds to quantizing symbols a

with |Dα
z D

β
ζ a| ≤ C〈z〉r−|α|〈ζ〉s−|β| on T ∗Rn = Rn

z × Rn
ζ (see again [49, Section 2]

for more detail). Note that ellipticity in this algebra, called full ellipticity, is in the
sense as both |z| → ∞ and |ζ| → ∞, i.e., modulo symbols one order lower and with
an extra order of decay as |z| → ∞.

Notice that (3.1) implies the estimate

‖f‖
e�/xHs,r

sc (Ω̂)
≤ C‖Pf‖

e�/xHs+1,r
sc (Ω̂)

for the unconjugated operator, valid when f is supported in M ∩ Ω̂. Rewriting P
as L0 ◦ I, this gives that for δ > 0, s ≥ −1,

‖f‖
e(�+δ)/xHs(Ω̂)

≤ C‖If‖e�/xHs+1(Mc);

see the discussion in [49] after Lemma 3.6.
After this recollection, we continue by generalizing (2.12) to regard the func-

tions ∂xj
f and f entering into it as independent unknowns, while restricting the

transform to the region of interest Ω = Ωc. So let J̃i be defined by

J̃i(u0, u1, . . . , un)(β)

:=

∫
γβ

(
Aj

i (X(t),Ξ(t))uj(X(t)) +Bi(X(t),Ξ(t))u0(X(t))
)
dt,

where γβ is the geodesic with lift to SΩ having starting point β ∈ SΩ. Let

J̃ = (J̃1, . . . , J̃n). This is a vector valued version of the geodesic x-ray trans-
form considered in [49], and described above, sending functions on Ω with values in

3That is, possibly at the cost of shrinking it; in fact, all concepts below are essentially local
within Sn−1; thus even in full generality one can reduce scattering objects to (conic regions near
infinity in) Rn this way, much as standard Sobolev spaces and pseudo-differential operators are
so reducible to subsets of Rn with compact closure.
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Cn+1 to functions with values in Cn. We then define L as a map from Cn-valued
functions on SΩ to Cn valued functions on Ω by

Lv(x, y) =

∫
R

∫
Sn−2

x−2χ(λ/x)v(x, y, λ, ω) dλ dω

as in [49]; this is a diagonal operator: L = L0 ⊗ Id. Then we consider the map

P = L ◦ J̃ , and in addition to the properties mentioned above in the scalar setting,
we are also interested in continuity properties in terms of the background data,
such as in the background metric as well as the function x. Recall that the map

(3.2) Γ+ : SM̃ × [0,∞) → [M̃ × M̃ ; diag], Γ+(x, y, λ, ω, t) = ((x, y), γx,y,λ,ω(t))

is a local diffeomorphism, and similarly for Γ− in which (−∞, 0] takes the place of
[0,∞) (see the discussion around [49, Equations (3.2) and (3.3)]); indeed, this is

true for more general curve families. Here [M̃ × M̃ ; diag] is the blowup of M̃ at the
diagonal z = z′, which essentially means the introduction of spherical/polar coor-
dinates, or often more conveniently projective coordinates, about it. Concretely,
writing the (local) coordinates from the two factors of M̃ as (z, z′),

(3.3) z, |z − z′|, z − z′

|z − z′| ,

give (local) coordinates on this space. Note that when Γ± are given by geodesics
of a metric g just C1-near a fixed background metric g0, as C

∞ maps, Γ± depend
continuously on g in the C∞ topology.

In order to consider continuity properties in x̃ in a C1-neighborhood of a fixed
function x̃0, it is convenient to use the map (x̃, y) to identify a neighborhood of p with
a neighborhoodO of the origin in R×U . Thus, for c fixed, but x̃ being C1-close to x̃0,
on this fixed background O ⊂ R×U , the pulled back metrics g depend continuously

on (x̃, g) as maps C∞(M̃) × C∞(M̃ ;S2M̃) → C∞(O); this normalizes x̃ to be
simply the first coordinate function x̃ on O. Correspondingly, below, the continuous
dependence, of all objects discussed, on x̃ (in the C∞ topology) is automatic: what
is meant always is that by pullback to O the resulting objects, living on fixed
domains such as {x̃ + c > 0}, depend continuously on g and x̃, which follows
from the continuous dependence of these objects on g. Since we do not want to
overburden the notation, we do not write this pullback explicitly.

The main technical result here is the following proposition.

Proposition 3.2. For � > 0, let

P� = e−�/xPe�/x : C∞
0 (Ω̂;Cn+1) → C∞(Ω̂;Cn).

Then P� ∈ Ψ−1,0
sc (Ω̂;Cn+1,Cn), and the map Γ± �→ P� is continuous from the C∞

topology to the Fréchet topology of Ψ−1,0
sc (Ω̂;Cn+1,Cn).

Further, if c is sufficiently small and ( 2.15) holds, then for a suitable choice of

χ ∈ C∞
0 (R) with χ(0) = 1, χ ≥ 0, if we write P� = (P0, P̃ ), with P0 corresponding

to the first component, P̃ the last n components, in the domain space, then P̃ is

elliptic in Ψ−1,0
sc (Ω̂;Cn,Cn) in a neighborhood of Ω.

Remark 3.1. Notice that ellipticity being an open condition, this means that there
exists c0 > 0 such that if c < c0, then the same χ works for all g C∞-close to g0.
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Further, in view of the paragraph preceding the proposition, the map (x̃,Γ±) �→
P� is continuous from the C∞ topology to the Fréchet topology of Ψ−1,0

sc (Ω̂;Cn+1,
Cn), where the latter is understood to actually stand for Ψ−1,0

sc ({x̃+c ≥ 0};Cn+1,Cn)
via the identifications discussed above.

Proof. This is simply a vector valued version of [49, Proposition 3.3] and [49,

Lemma 3.6], recalled above in Proposition 3.1. In particular, to show P ∈ Ψ−1,0
sc (Ω̂;

Cn+1,Cn), it suffices to show that P is a matrix of pseudo-differential operators

Pij ∈ Ψ−1,0
sc (Ω̂), i = 1, 2, . . . , n, j = 0, 1, 2, . . . , n, depending continuously on Γ±.

But for j > 0, with j = 0 being completely analogous, Pijw has the form∫
R

∫
Sn−2

x−2χ(λ/x)

∫
Aj

i (Xx,y,λ,ω(t),Ξx,y,λ,ω(t))w(Xx,y,λ,ω(t)) dt dλ dω.

The only difference from [49, Proposition 3.3] then is the presence of the weight
factor

Aj
i (Xx,y,λ,ω(t),Ξx,y,λ,ω(t)).

It is convenient to rewrite this via the metric identification, say by g0, in terms of
tangent vectors. Changing the notation for the flow, in our coordinates (x, y, λ, ω),
writing now

(γx,y,λ,ω(t), γ
′
x,y,λ,ω(t)) = (Xx,y,λ,ω(t),Yx,y,λ,ω(t),Λx,y,λ,ω(t),Ωx,y,λ,ω(t))

for the lifted geodesic γx,y,λ,ω(t),

Ãj
i (Xx,y,λ,ω(t),Yx,y,λ,ω(t),Λx,y,λ,ω(t),Ωx,y,λ,ω(t))

replaces Aj
i (Xx,y,λ,ω(t),Ξx,y,λ,ω(t)). As in [49, Proposition 3.3] one rewrites the in-

tegral in terms of coordinates (x, y, x′, y′) on the left and right factors of Ω̂ (i.e.,
one explicitly expresses the Schwartz kernel), using that the map Γ+ of (3.2) is a
local diffeomorphism, and similarly for Γ−; we again refer to the discussion around
[49, Equations (3.2) and (3.3)]. Further,

(x, y, λ, ω, t) �→ γ′
x,y,λ,ω(t)

is a smooth map SM × R → Rn (depending continuously on Γ± in the respective
C∞ topologies) so composing it with Γ−1

± from the right, one can re-express the
integral giving Pijw away from the boundary as∫

w(z′)|z − z′|−n+1b
(
z,

z − z′

|z − z′| , |z − z′|
)
dz′

as in [49, Equation (3.7)], with b a smooth function of the indicated variables (thus

smooth on [M̃ × M̃ ; diag]), depending continuously on Γ± in the respective C∞

topologies, and with

b
(
z,

z − z′

|z − z′| , 0
)
= χ̃

(
z,

z′ − z

|z′ − z|
)
Ãj

i

(
z,

z′ − z

|z′ − z|
)
σ
(
z,

z′ − z

|z′ − z|
)

with σ > 0, bounded below by a positive constant, by a weight factor, and where
χ(λ/x) is written as χ̃(x, y, λ, ω). Recall from [49, Section 2] that coordinates on
Melrose’s scattering double space, on which the Schwartz kernels of elements of

Ψs,r
sc (Ω̂) are conormal to the diagonal, near the lifted scattering diagonal, are (with

x ≥ 0)

x, y, X =
x− x′

x2
, Y =

y− y′

x
.
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Further, it is convenient to write coordinates on [M̃ × M̃ ; diag] in the region of
interest (see the beginning of the paragraph of Equation (3.10) in [49]), namely
(the lift of) |x− x′| < C|y− y′|, as

x, y, |y− y′|, x− x′

|y − y′| ,
y − y′

|y − y′| ,

with the norms being Euclidean norms,4 instead of (3.3); we write Γ± in terms of

these. Note that these are x, y, x|Y |, x|X|
|Y | , Ŷ . Then, similarly, near the boundary as

in [49, Equation (3.13)], one obtains the Schwartz kernel

(3.4)

K�(x,y, X, Y )

=
∑
±

e−�X/(1+xX)χ
( X

|Y | + |Y |Λ̃±
(
x, y, x|Y |, x|X|

|Y | , Ŷ
))

× Ãj
i

(
Γ−1
±

(
x, y, x|Y |, xX|Y | , Ŷ

))
|Y |−n+1J±

(
x, y,

X

|Y | , |Y |, Ŷ
)
,

with the density factor J smooth, positive, depending continuously on Γ± in the
respective C∞ topologies, = 1 at x = 0. Here

x, y, |Y |, X

|Y | , Ŷ

are valid coordinates on the blowup of the scattering diagonal in5 |Y | > ε|X|, ε > 0,
which is the case automatically on the support of the kernel due to the argument
of χ; cf. the discussion after [49, Equation (3.12)], so the argument of Ãj

i ◦ Γ−1
± is

smooth on this blown-up space still depending continuously on Γ± in the respective
C∞ topologies. We can evaluate this argument: for instance, by [49, Equation
(3.10)],

(Λ ◦ Γ−1
± )

(
x, y, x|Y |, xX|Y | , Ŷ

)
= x

X

|Y | + x|Y |Λ̃±
(
x, y, x|Y |, xX|Y | , Ŷ

)
with Λ̃± smooth, while the subsequent equation in the same location gives

(Ω ◦ Γ−1
± )

(
x, y, x|Y |, xX|Y | , Ŷ

)
= Ŷ + x|Y |Ω̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)
with Ω̃± smooth; here, both Λ̃± and Ω̃± depend continuously on Γ± in the respec-
tive C∞ topologies. This proves the first part of the proposition as in [49, Propo-
sition 3.3].

To prove the second part, note that in view of (3.4) (which just needs to be
evaluated at x = 0), [49, Lemma 3.5] is replaced by the statement that the boundary

principal symbol of Pij in Ψ−1,0
sc (Ω̂) is twice the (X,Y )-Fourier transform of

(3.5) e−�Xχ
(X − α(0, y, 0, Ŷ )|Y |2

|Y |
)
Ãj

i

(
0, y, 0, 0, Ŷ

)
|Y |−n+1,

while for Pi0 it is twice the (X,Y )-Fourier transform of

e−�Xχ
(X − α(0, y, 0, Ŷ )|Y |2

|Y |
)
B̃i

(
0, y, 0, 0, Ŷ

)
|Y |−n+1,

4This is an example of partial projective coordinates for a blowup.
5This is another example of partial projective coordinates for a blowup.
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with B̃i defined analogously to Ãj
i . (Recall that 2α(x, y, λ, ω) is the x component

of γ′′
x,y,λ,ω(0), and the convexity assumption on x is that α is positive; see [49]

above Equation (3.1).) For Aj
i = − 1

2c
−2(x0)δ

j
i (see (2.15)), the invertibility of the

principal symbol, with values in n×n matrices, of the principal symbol of P̃ follows
when χ is chosen as in [49, Lemma 3.6], for it is − 1

2c
−2(x0) times the boundary

symbol in [49, Lemma 3.6] times the n × n identity matrix. In general, due to
the perturbation stability of the property of invertibility, the same follows for c
sufficiently small. �

Corollary 3.1. With the notation of Proposition 3.2, there is c̃ > 0 such that if
0 < c < c̃, then P� satisfies the estimate

(3.6) ‖u‖
Hs,r

sc (Ω̂)
≤ C‖P�u‖Hs+1,r

sc (Ω̂)
+ C‖u0‖Hs,r

sc (Ω̂)

for u supported in M ∩ Ω̂, with the constant C uniform in c. Further, fixing s, r,
there exist k, ε > 0, and ρ0 < 0 such that C can be taken uniform for Γ± ε-close
to a reference Γ0

± in Ck, and the estimate holds even for u supported in ρ ≥ ρ0 (in
place of ρ ≥ 0).

Remark 3.2. As in the case of the preceding proposition, the dependence on x̃ is also
continuous; i.e., by possibly increasing k, C can be taken uniform for Γ± Ck-close
to a reference Γ0

± and x̃ Ck-close to a reference x̃0.

Proof. By the density of elements of Ċ∞(M ∩ Ω̂) in Hs,r
sc (Ω̂) supported in M ∩ Ω̂,

it suffices to consider u ∈ Ċ∞(M ∩ Ω̂) to prove (3.6).

Consider s = 0, r = 0. Let Λ ∈ Ψ1,0
sc (Ω̂) be elliptic and invertible (one

can, e.g., locally identify Ω with Rn; then on the Fourier transform side multi-

plication by 〈ξ〉 works). Thus, ΛP�, with Λ acting diagonally on Ċ∞(Ω̂;Cn), is

in Ψ0,0
sc (Ω̂;Cn+1,Cn), depending continuously, in the Fréchet topology of pseudo-

differential operators, on Γ± in C∞, and ΛP̃ ∈ Ψ0,0
sc (Ω̂;Cn,Cn) is elliptic in Ψ0,0

sc (Ω̂;
Cn,Cn) locally in a neighborhood of Ω. This implies, as presented in [49] after
Lemma 3.6 (without the uniform discussion on Γ±), relying on the arguments at
the end of Section 2 there, that there exist k and ε > 0 such that if Γ± is ε-close to

Γ0
± in Ck, then, if c > 0 is sufficiently small, ΛP̃ satisfies

(3.7) ‖w‖
L2

sc(Ω̂)
≤ C0‖ΛP̃w‖

L2
sc(Ω̂)

for w supported in Ω. Here L2
sc(Ω̂) = H0,0

sc (Ω̂) is the L2 space relative to a non-
degenerate scattering density—the latter are equivalent to the lifted Lebesgue mea-
sure from Rn, and thus are bounded multiples of dx dy

xn+1 .
We recall the essential part of this argument briefly. One considers the whole

family of domains Ω̂c, which can be identified with each other locally in the re-
gion of interest by the maps Φc(x̃, y) = (x̃ + c, y), i.e., simply translation in the
x̃-coordinate, so instead of considering a family of spaces with an operator on each

of them, one can consider a fixed space, denote this by Ω̂0, with a continuous (in

c) family of operators, Tc, namely Tc = (Φ−1
c )∗ΛP̃Φ∗

c ; these depend continuously
on Γ± in the Fréchet sense discussed above. Notice that we are interested in the
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region6 Ωc, and that there is a continuous function f on R with f(0) = 0 and
xc ≤ f(c) on Ωc. Correspondingly, in the translated space, x̃ ≤ f(c) on the image
of Ωc; notice that this region shrinks as c > 0 goes to 0. On the other hand, there

is a fixed open set O ⊂ Ω̂, a neighborhood of x0, on which the operators Tc are

elliptic in Ψ0,0
sc (Ω̂) for 0 ≤ |c| < c0. Let K0 be a compact subset of O, still includ-

ing a neighborhood of x0, φ ∈ C∞
0 (O) be identically 1 on a neighborhood of K.

Then the elliptic parametrix construction (which is local, and uniform in c by the

continuity) produces a parametrix family Gc ∈ Ψ0,0
sc (Ω̂;Cn,Cn), GcTc = Id + Ec,

where Ec ∈ Ψ0,0
sc (Ω̂;Cn,Cn) only, but φEcφΨ

−∞,−∞
sc (Ω̂;Cn,Cn), uniformly in c,

depending continuously on Γ± in the Fréchet topologies. Then (multiplying the
parametrix identity by φ from left and right and applying to v) for v supported
in K, (Id + φEcφ)v = φGcTcv. Now, the Schwartz kernel of φEcφ is Schwartz,
i.e., is bounded by CN (xx′)N for any N , uniformly in c. (Here we write, say, the
Schwartz kernel relative to scattering densities, but as N is arbitrary, this makes
little difference.) For c > 0, let φc be supported, say in x̃ ≤ 2f(c), identically 1
near the region x̃ ≤ f(c); one may assume that φ ≡ 1 on suppφc by making c > 0

small. Then, by Schur’s lemma, φcφEcφφc, acting say on L2
sc(Ω̂) (i.e., the L2-space

relative to scattering densities) is bounded by C ′
Nf(c)N for any N . Thus, there

is c1 > 0 such that Id + φcφEcφφc = Id + φcEcφc is invertible for 0 < c < c1 on

L2
sc(Ω̂). (Notice here that this requires the smallness of a seminorm of φcφEcφφc

in the Fréchet topology of pseudo-differential operators; the continuity discussed
above means that that this requires the Ck-closeness of Γ± to Γ0

± for some k.) In
particular, for v supported in x̃ ≤ f(c), so φcv = v, (Id + φcEcφc)v = φcGcTcv, so
inverting the factor on the left and then undoing the transformation Φc gives the
desired conclusion (3.7).

Thus, with u = (u0, ũ), we have, with all norms being L2
sc(Ω̂)-norms,

‖ΛP�u‖2 = ‖ΛP0u0 + ΛP̃ ũ‖2

= ‖ΛP̃ ũ‖2 + 〈ΛP̃ ũ,ΛP0u0〉+ 〈ΛP0u0,ΛP̃ ũ〉+ 〈ΛP0u0,ΛP0u0〉.

By (3.7), ‖ΛP̃ ũ‖ ≥ C0‖ũ‖, C0 > 0. On the other hand, ‖ΛP0u0‖ ≤ C1‖u0‖,
‖ΛP̃ ũ‖ ≤ C1‖ũ‖ as elements of Ψ0,0

sc (Ω) are L2-bounded. (By the continuity of
the map from Γ± to ΛP0 in the appropriate Fréchet topologies, again there is k
such that C1 is uniform when Γ± is Ck-close to Γ0

±.) Using the Cauchy-Schwartz
inequality, for δ > 0,

|〈ΛP0u0,ΛP̃ ũ〉| ≤ δ

2
‖ũ‖2 + C2

1

2δ
‖u0‖2.

Thus, the last three terms are bounded by δ‖ũ‖2 + (1 + δ−1)C2
1‖u0‖2 in absolute

value, so we conclude that, with δ = C2
0/2,

(3.8)
C2

0

2
‖ũ‖2 ≤ ‖ΛP�u‖2 + C2

1 (1 + 2C−2
0 )‖u0‖2,

completing the proof of the corollary if s = r = 0.

6If we are interested in the region ρ ≥ ρ0, ρ0 < 0, within Ω̂, with ρ0 to be specified, we take,

e.g., ρ0 = −c in the discussion below, and the desired continuous f with f(0) = 0, and in this

case with xc ≤ f(c) on Ω̂c ∩ {ρ ≥ ρ0}, still exists.
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The general case follows via conjugating P� by an elliptic, invertible, element of

Ψs,r
sc (Ω̂), which is thus an isomorphism from Hs,r

sc (Ω̂) to L2 = H0,0
sc (Ω̂). Note that

such a conjugation does not change the principal symbol, and thus the ellipticity.
�

We now remark that the even simpler setting of the scalar transform with a
positive weight A on S∗M , IA, which was not considered in [49], and which can

be considered a special case of J̃ with (u0, u1, . . . , un), is simply replaced by u.

Thus, for consistency with the above notation, let Ã(x, y, λ, ω) be the weight on
SM induced by the metric identification, and let

(IAf)(β) =

∫
R

Ã(γβ(t), γ
′
β(t))f(γβ(t)) dt, β ∈ SM.

Then the above argument gives that P� ∈ Ψ−1,0
sc (Ω̂). If at S∂MM , the weight A

is independent of the momentum variable ξ, it further gives that P� is elliptic in
a neighborhood of Ω. More generally, a modification of the argument of [49] due
to Zhou [52] allows one to show that the principal symbol is fully elliptic in Ω in
the scattering sense merely assuming that A is positive (but not the independence
condition just mentioned). To see this, one has to Fourier transform (3.5) in (X,Y )

with Ãj
i replaced by Ã. The X-Fourier transform is unaffected by the presence of

Ã and gives, as in [49, Equation (3.16)],

|Y |2−ne−α(�+iξ)|Y |2 χ̂(ξ − i�)Ã(0, y, 0, Ŷ ).

Replacing χ with a Gaussian, χ(s) = e−s2/(2ν), ν = �−1α, which does not have
compact support, but an approximation argument (in symbols of order −1) will give
this desired property, and one can compute that this is, up to a constant factor,

�
−1/2α1/2|Y |2−ne−�

−1(ξ2+�
2)α|Y |2/2Ã(0, y, 0, Ŷ ).

We need to compute the Fourier transform in Y . Following [52], one expresses this
in polar coordinates in Y ,

�
−1/2

∫
Sn−2

∫ ∞

0

e−i|Y |Ŷ ·ηα1/2e−�
−1(ξ2+�

2)α|Y |2/2Ã(0, y, 0, Ŷ ) d|Y | dŶ

=
1

2
�

−1/2

∫
Sn−2

∫
R

e−itŶ ·ηα1/2e−�
−1(ξ2+�

2)αt2/2Ã(0, y, 0, Ŷ ) dt dŶ ,

which in turn becomes, up to a constant factor,

(ξ2 +�
2)−1/2

∫
Sn−2

e−�|Ŷ ·η|2/(2(ξ2+�
2)α)Ã(0, y, 0, Ŷ ) dŶ .

The integrand is now positive, which gives the desired ellipticity at x = 0. (One
also needs to check the ellipticity as (ξ, η) → ∞; this is standard, see [49,52].) One
proceeds with an approximation argument as in [49, 52] to complete the proof of
the ellipticity. Thus, the above argument gives the estimate

‖f‖
Hs,r

sc (Ω̂)
≤ C‖P�f‖Hs+1,r

sc (Ω̂)
.

As discussed in [49] after Lemma 3.6, this yields the following corollary.
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Corollary 3.2. The weighted scalar transform with a positive weight A on S∗M ,
with Ã the associated weight on SM ,

(IAf)(β) =

∫
R

Ã(γβ(t), γ
′
β(t))f(γβ(t)) dt,

satisfies that for � > 0 there is c0 > 0 such that for δ > 0, 0 < c < c0, s ≥ −1, we
have

‖f‖e(�+δ)/xHs(Ωc) ≤ C‖IAf‖e�/xHs+1(Mc).

We now return to the actual case of interest and apply Corollary 3.1 with u0 =
e−�/xf , uj = e−�/x∂jf . If we show that (uniformly in Γ±, which are indeed

irrelevant for this argument) given δ̃ > 0, there is c0 > 0 such that ‖u0‖L2 ≤ δ̃‖ũ‖L2 ;
i.e., e−�/xf is bounded by a small multiple of a derivative of f times e−�/x in L2,
when f is supported in Ωc, 0 < c < c0, and then for δ̃ > 0 sufficiently small (3.6)
proves that if P�u vanishes, then so does u. That is, in this case so does f , for the
u0 term can then be absorbed into the left-hand side of (3.6),

(3.9) (1− δ̃C)‖u‖
H0,0

sc (Ω̂)
≤ C‖P�u‖H1,0

sc (Ω̂)
.

Further, rewriting this by removing the weights e−�/x, and estimating the norms
in terms of the standard L2-based space (cf. the discussion after [49, Lemma 3.6]
already referenced above),7 gives, for δ > 0,

(3.10) ‖f‖e(�+δ)/xH1(Ωc) ≤ C‖J̃(f, ∂1f, . . . , ∂nf)‖e�/xH1(Mc),

with C uniform for Γ± Ck-close to Γ0
±.

But this can now easily be done: let V be a smooth vector field with V x = 0,
so V is tangent to the boundary of Ωc for every c, and make the non-degeneracy
assumption that, for some c1 > 0, there is a continuous T : [0, c1) → R such that
T (0) = 0 and the V -flow takes every point in Ωc to ∂M in time ≤ T (c) (i.e., outside
the original manifold). Then the Poincaré inequality for V gives8

(3.11) ‖v‖L2
sc
≤ C2T (c)‖V v‖L2

sc
,

for v vanishing outside M ; hence the constant is small if T (c) > 0 is small. (Here
the L2 space we need is the scattering L2-space, L2

sc, which is x(n+1)/2 times the
standard L2-space, but the extra weight does not affect the argument, since V
commutes with multiplication by powers of x.)

To see (3.11), we recall a standard proof of the local Poincaré inequality: in order
to reduce confusion with the notation, let (z1, . . . , zn) = (z′, zn) be the coordinates,
z1 = 0 being the boundary of Ω (so x would be z1), and assume that the flow of
∂zn flows from every point in Ω to outside the region in “time” ≤ δ. To normalize
the argument, assume that zn ≥ 0 in Ω, and we want to estimate v in zn ≤ δ. We
assume that the L2 space is given by a density F (z′) |dz|. Then, for v ∈ C∞(Rn

+),
Rn

+ = [0,∞)z1 × Rn−1, with support in zn ≥ 0, by the fundamental theorem of

7The δ loss is actually just the loss of a power of x, due to the change of the measure.
8Notice that our treatment of the x̃-dependence of the problem relies on reducing to a model,

where x̃ is replaced by a fixed function x̃, so the following argument is, in fact, uniform in x̃.
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calculus and the Cauchy-Schwartz inequality,

|v(z′, zn)| =
∣∣∣ ∫ zn

0

∂nv(z
′, t) dt

∣∣∣ ≤ (∫ zn

0

1 dt
)1/2(∫ zn

0

|∂nv(z′, t)|2 dt
)1/2

≤ δ1/2
(∫ δ

0

|∂nv(z′, t)|2 dt
)1/2

.

Squaring both sides, multiplying by F (z′), and integrating in z′, zn (to zn = δ)
gives ∫

zn≤δ

|v(z′, zn)|2 F (z′) dz ≤ δ2
∫
t≤δ

|∂nv(z′, t)|2 dt F (z′) dz′.

This says that actually

‖v‖L2(Rn
+;F (z′) |dz|) ≤ δ‖∂nv‖L2(Rn

+;F (z′) |dz|),

proving the claim (using F (z′) = z−n−1
1 ) in view of the quasi-isometry invariance

(which gives a constant factor) of the bound (3.11). Even if there is more com-
plicated topology, so there are no global coordinates and vector fields as stated,
dividing up the problem into local pieces and adding them together gives the de-
sired result: taking steps of size δ, one needs T/δ steps to cover the set, using cutoff
functions to localize is easily seen to give a bound proportional to T .

On the other hand, in view of the strict convexity of the boundary, one can
construct such a V and T . With v = e−�/xf , this is exactly the desired conclusion
since V (e−�/xf) = e−�/xV f , namely (3.9), and thus (3.10), hold.

In fact, we can prove the analogue of (3.9) on stronger spaces,

(3.12) ‖u‖
Hs,0

sc (Ω̂)
≤ C‖P�u‖Hs+1,0

sc (Ω̂)
, s ≥ 0,

which in turn gives, for s ≥ 0,

(3.13) ‖f‖e(�+δ)/xHs+1(Ωc) ≤ C‖J̃(f, ∂1f, . . . , ∂nf)‖e�/xHs+1(Mc),

with C uniform for Γ± Ck-close to Γ0
±. To see this, notice that (3.6) is an elliptic

estimate when we have u0 = e−�/xf , uj = e−�/x∂jf , for

‖u‖
Hs,r

sc (Ω̂)
≤ C‖P�u‖Hs+1,r

sc (Ω̂)
+ C‖u0‖Hs,r

sc (Ω̂)

implies that9

‖e−�/xf‖
Hs+1,r

sc (Ω̂)
≤ C‖P�e

−�/x(f, df)‖
Hs+1,r

sc (Ω̂)
+ C‖e−�/xf‖

Hs,r
sc (Ω̂)

.

For s = 1, r = 0, we have the second term on the right-hand side controlled
by P�e

−�/x(f, df) in H1,0
sc in view of (3.9), so the H2,0

sc -norm of e−�/xf is, in
fact, controlled by ‖P�e

−�/x(f, df)‖
H2,0

sc (Ω̂)
, which we can iterate further10 to prove

(3.12).
In summary we have proved that with L2(Ω) = L2(Ωc) the standard L2-space

now follows (as the exponential weight e−�/x maps such f to L2
sc(Ω̂); see also the

discussion after Lemma 3.6 in [49]).

9Notice that the scattering derivatives are actually weaker than the derivatives ∂j entering u,

and one can absorb the term given by commuting a scattering derivative through e−�/x into the
last term on the right-hand side.

10We can easily allow s ≥ 0 non-integer by slightly modifying the argument here.
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Proposition 3.3. There is c0 > 0 such that for 0 < c < c0, if f ∈ H1(Ωc) and

J̃(f, ∂1f, . . . , ∂nf) = 0, then f = 0.
In fact, for � > 0, s ≥ 1, there exist c0 > 0, k and ε > 0 such that the following

holds. For δ > 0 there is C > 0 such that if 0 < c < c0, Γ± is ε-close to Γ0
± in Ck,

x̃ is ε-close to x̃0 in Ck, then

‖f‖e(�+δ)/xHs(Ωc) ≤ C‖J̃(f, ∂1f, . . . , ∂nf)‖e�/xHs(Mc).

Moreover, with Ωc,ρ0
= Ω̂c ∩ {ρ ≥ ρ0}, and Mc,ρ0

being defined analogously to
Mc with ∂M = {ρ = 0} being replaced by {ρ = ρ0}, we have the following: for
� > 0 and s ≥ 1 there exist c0 > 0, ρ0 < 0, k, and ε > 0 such that the following
holds. For δ > 0 there is C > 0 such that if 0 < c < c0, Γ± is ε-close to Γ0

± in Ck,

x̃ is ε-close to x̃0 in Ck, then f ∈ Hs+1(Ωc,ρ0
) implies that

‖f‖e(�+δ)/xHs(Ωc,ρ0
) ≤ C‖J̃(f, ∂1f, . . . , ∂nf)‖e�/xHs(Mc,ρ0

).

4. Proofs of Theorems 1.1–1.4

Proof of Theorem 1.2. Let c and c̃ be as in the theorem. Redefine the scattering
relation L as in Figure 1. By Proposition 2.1, we get Jjf(γ) = 0; see (2.12) for
all geodesics close enough to the ones tangent to ∂M at p. The weights are given
by (2.14), in the new parameterization, with the ellipticity condition satisfied by
(2.15). Then Proposition 3.3 implies f = 0 in a neighborhood of p, where f = c2−c̃2

as in (2.8). �

Proof of Theorem 1.1. Note first that we can complete (M, c−2
0 ), and similarly

(M, c̃−2g0) to compact Riemannian manifolds without boundary. Then we can
choose a neighborhood of p small enough so that the exponential map based on
any point of that neighborhood is a local diffeomorphism for short enough vectors,
both for c and for c̃. This implies that there is a neighborhood U of p so that the
distance d(p1, p2) between any two points p1, p2 in U is realized by | exp−1

p1
(p2)|,

related to the first and the second metrics, respectively, where exp is the localized
exponential map as above. We can easily recover c and c̃ on ∂M ∩U by taking the
limit p1 → p2. As Michel proved [21], for simple manifolds, the scattering elation
can be recovered by differentiating the distance function; see also [38, Section 2].
This applies to our case as well because U is small enough. Then the proof follows
from Theorem 1.2. �

Proof of Theorem 1.4. Theorem 1.4 is now an easy consequence of Theorem 1.1
using a layer stripping argument. Let f = c2 − c̃2. Assume f �= 0, then supp f has
a non-empty interior. On the other hand, let τ = infsupp f ρ; if τ = T , we are done,
for then supp f ⊂ M \ ∪t∈[0,T )Σt. Thus, suppose τ < T , so f ≡ 0 on Σt for t < τ ,
but there exists x ∈ Στ ∩ supp f (since supp f is closed). We will show below how
to use Theorem 1.2 on Mτ := ρ−1(τ,∞) to conclude that a neighborhood of x is
disjoint from supp f to obtain a contradiction.

All we need to show is that the scattering relations Lτ and L̃τ on Στ coincide.
Note that Στ = ∂Mτ is strictly convex for g̃ as well because the second fundamental
form for g̃ can be computed by taking derivatives from the exterior ρ < τ , where
g = g̃. Fix (xτ , vτ ) ∈ ∂−SMτ ; see Figure 2. The geodesic γxτ ,vτ (s) cannot hit
Στ again for negative “times” s because, otherwise, we would get a contradiction
with the strict convexity at Σt, where t corresponds to the smallest value of ρ on
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that geodesic between two contacts with Στ . Since c = c̃ outside Mτ , γxτ ,vτ (s)
and γ̃xτ ,vτ (s) coincide outside Mτ for s < 0. Proposition 5.1 below shows that
this negative geodesic ray must be non-trapping; i.e., γxτ ,vτ would hit ∂M for a
finite negative time s at some point and direction (x, v) ∈ ∂−SM . In the same
way, we show that the same holds for the positive part, s > 0, of a geodesic
issued from Lτ (xτ , yτ ) =: (yτ , wτ ) ∈ ∂+SMτ ; and the corresponding point on
∂+SM will be denoted by (y, w). Then, since L(x, v) = (y, w), we would also get

Lτ (xτ , vτ ) = (yτ , wτ ) = L̃τ (xτ , vτ ). �

M \Mτ
Mτ

Στ

x

v

y

w

xτ

yτ
vτ

wτ

Figure 2. One can recover the scattering relation on Στ knowing
that on ∂M .

5. Stability analysis

In this section, we prove the stability estimate in Theorem 1.5 and a global
stability estimate, see Theorem 5.2 below. We follow some of the ideas in [41,
section 7].

5.1. Boundary stability. We start with stability at the boundary.

Theorem 5.1. Let c and c̃ be such that ∂M is strictly convex w.r.t. both c−2g0
and c̃−2g0, and let Γ ⊂⊂ Γ′ ⊂ ∂M be two sufficiently small open subsets of the
boundary. Then

(5.1)
∥∥∂k

xn(c− c̃)
∥∥
Cm(Γ̄)

≤ Ck,m

∥∥d2 − d̃2
∥∥
Cm+2k+2

(
Γ′×Γ′

),
where Ck,m depends only on Ω and on an upper bound of c, c−1, c̃, c̃−1 in
Cm+2k+5(M).

Proof. We know from [41, Section 7] that it is true for the metrics in boundary
normal coordinates. More precisely, let (x′, xn) be boundary local coordinates for
g, i.e., locally,

c−2g0 = hαβdx
αdxβ + (dxn)2 =: hijdx

idxj .

Note that the notational convention is different than the one in Section 3; (x, y) is
now replaced by (x′, xn), and x and y are generic points in (the local chart) in Rn.
We use the convention that Greek indices run from 1 to n − 1, while Latin ones
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run from 1 to n. Let ψ be the diffeomorpishm fixing the boundary pointwise near
p, i.e., ψ(x′, 0) = (x′, 0), so that

(5.2) ψ∗(c̃−2g0) = h̃αβdx
αdxβ + (dxn)2

near p. Then (5.1) holds for h− h̃.
We have, with y = ψ(x),

(5.3) ψ∗(c̃−2g0)(x) = (c2c̃−2)(y(x))hi′j′(y(x))
∂yi

′

∂xi

∂yj
′

∂xj
dxidxj .

In particular, by (5.2) and (5.3),

(5.4) (c2c̃−2)(y(x))hi′j′(y(x))
∂yi

′

∂xα

∂yj
′

∂xβ
= h̃αβ(x),

which can be written as

(5.5)
(
(c2c̃−2)(y(x))− 1

)
hi′j′(y(x))

∂yi
′

∂xα

∂yj
′

∂xβ
= h̃αβ(x)− hi′j′(y(x))

∂yi
′

∂xα

∂yj
′

∂xβ
.

We have

∂yi/∂xβ = δiβ for xn = 0,

which, of course, can be further differentiated w.r.t. tangential variables xα. There-
fore,

(5.6)
(
c̃−2c2 − 1

)
hαβ|xn=0 =

(
h̃αβ − hαβ

)
|xn=0.

Since {hαβ} is invertible (at least for one multi-index is enough), we get (5.1) for
c̃−2c2 − 1, and therefore for c̃− c for k = 0.

In order to do the same for k = 1, we need to estimate ∂(y − x)/∂xn at xn = 0
first. The diffeomorphism ψ identifies boundary normal coordinates for g and g̃.
The normal ν = (0, 1) (here, 0 is n− 1 dimensional) is the unit for g = c−2g0, but
it has length c̃−1c in the metric g̃. The inner unit vector in the metric g̃ is therefore
ν̃ = c̃c−1(0, 1); hence

(5.7) y = γ̃(x′,0),(0,c̃c−1)(x
n).

Differentiate this at xn = 0 to get that it depends only on c̃c−1 on xn = 0 but not
on its derivatives; in fact,

(5.8)
∂y

∂xn

∣∣∣∣
xn=0

= (0, c̃c−1),

and this can be differentiated w.r.t. x′. Note that we can get the same result by
comparing the αn metric elements in (5.2) and (5.3). Then ∂(y − x)/∂xn|xn=0 =
(0, c̃c−1 − 1). By what we proved, the latter satisfies (5.1).

Differentiate (5.5) with respect to xn at xn = 0. Using (5.8), we get

c̃c−1hαβ
∂(c2c̃−2 − 1)

∂xn

∣∣∣
xn=0

=−
(
c2c̃−2(x′, 0)− 1

) ∂

∂xn

∣∣∣
xn=0

(
hi′j′(y(x))

∂yi
′

∂xα

∂yj
′

∂xβ

)

+
∂

∂xn

∣∣∣
xn=0

(
h̃αβ(x)− hi′j′(y(x))

∂yi
′

∂xα

∂yj
′

∂xβ

)
.

(5.9)
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To estimate the last derivative, notice that by (5.8),

∂2y

∂xn∂xα

∣∣∣∣
xn=0

=
∂

∂xα

∣∣∣∣
xn=0

(0, c̃c−1),

and we proved the estimate for the tangential derivatives of c̃c−1 (same as the
tangential derivatives of c̃c−1 − 1) already. Therefore, the second summand on the
r.h.s. of (5.9) can be written as a sum of a term involving the normal derivative of

h− h̃, which estimate is known, plus terms involving the first tangential derivatives
of c̃c−1 − 1, which we estimated already. We can now deduce the desired estimate
for ∂(c2c̃−2 − 1)/∂xn at xn = 0. Differentiate again (5.5) and (5.7) with respect to
xn at xn = 0, to prove the estimate for k = 2, etc. �

5.2. Local interior stability, proof of Theorem 1.5. Set

(5.10) δ := ‖d2 − d̃2‖
C
(
Γ′×Γ′

).
We use below interpolation estimates in the Ck spaces; see, e.g., [48]. If m < k (see
(1.2)), we have

(5.11) ‖c− c̃‖Cm(U) ≤ Cεμ0 ,

with some 0 < μ = μ(m) ≤ 1. Also, by Theorem 5.1, for any m,

(5.12) ‖d2 − d̃2‖
Cm

(
Γ′×Γ′

) ≤ Cδμ,

with another 0 < μ = μ(m) ≤ 1, if k � 1, under the a priori estimate (1.2) of the
theorem. We will use the smallest μ above, and in the proof below, we will not
specify the values of k and μ which are guaranteed to work, even though this can
be done. In principle, increasing k in the theorem (assuming a stronger a priori
bound) increases μ (makes the Hölder stability estimate stronger), and vice versa.

We extend c and c̃ outside M by preserving the δμ-closeness on Γ. Extend c in
a smooth way first. As above, let (x′, xn) be boundary normal coordinates so that
xn is the distance in the metric g0 to ∂M , positive outside M . Given an integer k,
let Ek(c̃ − c) be the truncated Taylor series of c̃ − c w.r.t. xn at xn = 0 of degree
m, for xn > 0.

Let 0 < −ρ0  1, c > 0 be such that the estimate in Proposition 3.3 holds
in Ωc,ρ0

, with the choice of a boundary defining function ρ = −xn. We can also
assume that Proposition 3.3 holds for all sound speeds c as in (1.2), with A fixed,
and ε0  1. Set

c̃1 =

{
c̃, xn < 0,
c+ χ(xn/|ρ0|)Ek(c̃− c), xn > 0,

where χ(t) = 1 for t < 1/4, and χ(t) = 0 for t ≥ 1/2. Then c̃1 = c̃ in M , and
c̃1(x) = c(x) when d(x,M) > |ρ0|/2. Moreover, for any small enough neighborhood
U of p,

(5.13) ‖c− c̃1‖Cm(U\M) ≤ C‖c− c̃‖Cm(∂M) ≤ Cδμ.

We drop the subscript 1 and denote the c̃1 by c̃ below.
Next, we compare L and L̃ pushed to ∂SB(x0, r); see the Figure 1. Recall that in

Section 2.2, we redefined L and L̃ to act from U− to U+, where U± ⊂ ∂±SB(x0, r).
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It is easy to see that for x, y near x0, d(x, y)/C ≤ d̃(x, y) ≤ Cd(x, y) with C

depending on A in (1.2) only. Then writing d− d̃ = (d2 − d̃2)/(d+ d̃), we get from
(5.12),

(5.14) |∂α
x′,y′(d(x, y)− d̃(x, y))| ≤ Cδμ/d(x, y)|α|+1 on Γ′ × Γ′.

We are only going to need this for |α| ≤ 1. Set

ξ(x, y) = −dxd(x, y), η(x, y) = dyd(x, y),

which are just the tangent unit codirections at x and y of the geodesic connecting
those two points. We define ξ̃(x, y) and η̃(x, y) in a similar way. By the strict
convexity,

|ξn| ≥ d(x, y)/C.

Since ξ and ξ̃ are units,

ξn(x, y) = −
√

c−2(x)− gαβ0 (x)ξαξβ, ξ̃n(x, y) = −
√
c̃−2(x)− gαβ0 (x)ξ̃αξ̃β.

Then, using (5.14) with |α| = 1, we get

|ξn(x, y)− ξ̃n(x, y)| ≤ Cδμ/d(x, y)2.

This, combined with (5.14) for α = 0, yields

(5.15) |ξ(x, y)− ξ̃(x, y)| ≤ Cδμ/d(x, y)2.

In the same way, we get

(5.16) ‖η(x, y)− η̃(x, y)‖Ck−1 ≤ Cδμ/d(x, y)2.

For every (x, y) ∈ ∂M × ∂M , both close to x0, consider the shortest geodesics
γ[x,y] and γ̃[x,y] connecting them, in the metrics g and g̃, respectively. By the a priori
estimate (1.2), those two geodesics lie in a neighborhood of x0 of size which shrinks
to zero, as d(x, x0) and d(y, x0) tend to zero, uniformly for all c and c̃ satisfying
(1.2). Next, we extend each one of them, lifted to the cotangent bundle (i.e., to the
bicharacteristics, called “rays” below), in both directions until they hit ∂SB(x0, r).

We denote by z− = (x−, ξ−) (respectively, z̃− = (x̃−, ξ̃−)) the common point with
∂−SB(x0, r), and by z+ = (y+, η+) (respectively, z̃+ = (ỹ+, η̃+)) the common point
with ∂+SB(x0, r); see Figure 3.

Let Σ− be the submanifold of ∂−SB(x0, r) consisting of all z there such that the
bicharacteristic Z(t, z) through it, in the metric g, is tangent to ∂M at some point
close enough to x0. Let U0 be the connected neighborhood of it consisting of those
points staying at distance (with respect to fixed coordinates) at most O(δμ

′
) with

0 < μ′ < μ which we chose below. Then the small but δ-independent neighborhood
U− of Σ− admits the decomposition U− = U0 +Uin +Uout, where Uin and Uout are
disconnected components, such that the rays from Uin in the metric g hit ∂M , and
the rays from Uout do not. All of them are extended until they hit ∂+SB(x0, r).
We denote the corresponding travel times by �(z), as in Section 2.2, but now ∂M
is replaced by the geodesic sphere ∂B(x0, r).

The rays issued from Uout would hit ∂+SB(x0, r) and miss ∂M by definition.

They will stay at a distance at least δμ
′
/C from ∂M . The same is true for the rays

issued from Uout related to the metric g̃ = c̃−2g0 for δ  1, because by (5.13) the
Hamiltonian vector fields of g and g̃ are O(δμ) close, and μ′ < μ. In particular, the
rays related to g̃ will not hit ∂M for δ  1. Then

(5.17) |Z(z, t)− Z̃(z, t)| ≤ Cδμ, z ∈ Uout,
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∂M

S(x0, r) S(x0, r)

z−

z̃+

x
y

z̃−
z+

Figure 3. Illustration to the proof of Theorem 1.5. Here, z± and
z̃± are actually points and codirections.

for t over a compact interval. Recall that Z(z, t) is the bicharacteristic issued
from z.

The rays issued from Uin will hit ∂M at an angle at least δμ
′/2/C, by the strict

convexity. This is true, for δ  1, for the rays related to g̃ as well by the closeness
of the Hamiltonians (outside M) argument. The travel times �̃(z) of the rays in

the metric g̃ are in general different from �(z), but the points Z̃(�(z), z) lie at a
distance from Z(t, �(z)) ∈ ∂+SM which decreases with ε in (1.2). Therefore, for

0 < ε  1, Z̃(t, z) with z ∈ Uin would enter M and leave it for t = �(z), and it will
also leave the O(δμ) neighborhood of M where we modified c̃. This is needed for
the argument below.

By (5.15) and (5.16),

(5.18) |z− − z̃−| ≤ Cδμ/d2, |z+ − z̃+| ≤ Cδμ/d2, z ∈ Uin.

Here, d = d(x, y) with (x, y) uniquely determined as the contacts of the ray trough
z with ∂M . Also, by the closeness of the Hamiltonians outside M , and by (5.16),

the lengths of the segments of Z(z, t) and Z̃(z̃, t) from z− and z̃−, respectively,
to their common point x, differ by O(δμ/d2); see Figure 3. The segments in M
differ by O(δμ/d); see (5.14). The remaining segments, after they exit M and hit
S(x0, r), differ by O(δμ/d2) by the above argument. Therefore,

(5.19) |�(z)− �̃(z̃)| ≤ Cδμ/d2, z ∈ Uin.

By (2.4),

Z̃(�(z−), z−)− Z(�(z−), z−)

=

∫ �(z−)

0

∂Z̃

∂z
(t− s, Z(s, z−))

(
Ṽ − V

)
(Z(s, z−)) ds.

(5.20)

We replace next Z̃(�(z−), z−) by Z̃
(
�̃(z̃−), z̃−

)
= z̃+ modulo errors controlled by

(5.18) and (5.19), so that we can get z+ − z− on the left and use the fact that the
latter satisfies (5.18). This would allow us to conclude that the integral is “small” in
Uin. Indeed, since Z(z, t) is a smooth function with uniformly bounded derivatives
for z and t bounded, we get by (5.18) and (5.19)

(5.21)
∣∣∣Z̃(�(z−), z−)− Z̃

(
�̃(z̃−), z̃−

)∣∣∣ ≤ Cδμ/d2, z ∈ Uin.
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This and (5.20) yield∫ �(z−)

0

∂Z̃

∂z
(t− s, Z(s, z−))

(
Ṽ − V

)
(Z(s, z−)) ds

= z̃+ − z+ +O(δμ/d2) = O(δμ/d2), z ∈ Uin,

(5.22)

where, in the last step, we used the second inequality in (5.18). The factor d(x, y)
can be replaced by the square root of the distance between Uin and the tangent
manifold Σ−, and that root is δμ

′/2 by construction. We choose μ′ so that μ −
2μ′/2 > μ/2 to obtain O(δμ/2) in (5.22).

In Uout, the even better estimate O(δμ) holds, without the d−2 term, by (5.17).
In U0, we used the argument explained before to extend the estimate from Uout to
get an O(δμ) +O(δμ

′
) = O(δμ

′
) estimate there. By interpolation, we get

(5.23)

∫ �(z−)

0

∂Z̃

∂z
(t− s, Z(s, z−))

(
Ṽ − V

)
(Z(s, z−)) ds = O(δμ/2) in C1(U).

Now, by (2.4), (2.11), and (2.12) we can write the left-hand side of (5.23) in the

form J̃(f, ∂f) and complete the proof of Theorem 5.1 by applying Proposition 3.3.

5.3. Global stability. For the purpose of the next theorem, we will extend and
slightly generalize the foliation condition to compact submanifolds M0 of M . Let,
as before, M̃ be a neighborhood of M , and extend c smoothly there. Note that the
tilde over M is not an indication that it is related to c̃.

Definition 5.1. Let M0 ⊂ M be compact. We say that M0 can be foliated by
strictly convex hypersurfaces if there exists a smooth function ρ : M̃ → [0,∞)
which level sets Σt = ρ−1(t), t ≤ T with some T > 0, restricted to M0, are strictly
convex viewed from ρ−1((0, t)) for g; dρ is non-zero on these level sets, Σ0 ∩M = ∅
and M0 ⊂ ρ−1([0, T ]).

Note that this definition is not equivalent to Definition 1.1 when M0 = M
because in Definition 1.1, we allow M \ ρ−1([0, T ]) to be non-empty (but with an
empty interior). Indeed, for uniqueness, proving c = c̃ outside such a set suffices
since c and c̃ are at least continuous. For stability, however, it is convenient to
assume that this set is empty.

We show next that the foliation condition implies non-trapping.

Proposition 5.1. If M0 can be foliated by strictly convex hypersurfaces, then any
maximal geodesic in M0 is of finite length.

Proof. Assume that s �→ γ(s) exists for s ∈ (0,∞) and stays in M0; and in particu-
lar, it never reaches ∂M0 for s > 0. The function f(s) := ρ◦γ(s) cannot have more
than one critical point as a consequence of the implication f ′(s) = 0 =⇒ f ′′(s) < 0.
By shifting the s variable, we can always assume that the possible critical point is
negative. Then f is a strictly decreasing function for s > 0. On the other hand, it is
bounded by below, so it has a limit τ̂ ≥ 0, as s → ∞, which is also its infimum. By
compactness, there exists a sequence sj → ∞ (we can start with sj = j and take a
subsequence) so that (xj , vj) := (γ(s), γ̇(s)) converges to some (x̂, v̂) ∈ SM0. Next,
ρ(xj) ↘ τ̂ . The limit v̂ must be tangent to Στ̂ at x̂, because we can easily obtain
a contradiction with the strict convexity if it is not. Now, by the strict convexity
of Στ̂ again, there exists δ > 0 so that γx̂,v̂(s) would hit Στ̂−δ for some positive

Licensed to Purdue Univ. Prepared on Sun Aug 21 16:36:59 EDT 2016 for download from IP 128.210.126.199.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



326 PLAMEN STEFANOV, GUNTHER UHLMANN, AND ANDRAS VASY

time. This property is preserved under a small perturbation of (x̂, v̂) and therefore
applies to (xj , vj) for j � 1. This, however, contradicts the choice of τ̂ . �

In particular, we get the following.

Corollary 5.1. Assume that M = M0 ∪M1, where M0 can be foliated by strictly
convex hypersurfaces, and M1 is non-trapping. Then M is non-trapping as well.

Note that M1 can be a point, or a small neighborhood of a point, which happens
if the level surfaces of ρ = c > 0 are diffeomorphic to spheres but ρ = 0 degenerates
into a point. Another example is when M1 is simple; see also the remarks following
Theorem 1.4.

The Ck norm below is defined in a fixed finite atlas of local coordinate charts.
In the same way we define dist(L, L̃) and its C(D) norm: in any coordinate system

we can just take the supremum of L − L̃ and then the maximum over all charts.
They can be defined in an invariant way, in principle but we do not do that for the
sake of simplicity.

Theorem 5.2. Assume that M0 ⊂ M can be foliated by strictly convex hypersur-
faces for g = c−2g0. Let D ⊂ ∂−SM be a neighborhood of the compact set of all
β ∈ ∂−SM ∩ ∂−SM0 consisting of the initial points of all geodesics γβ tangent to
the intersections of the strictly convex hypersurfaces with M0. Then with k, μ, c0,
c, c̃, ε0, and A as in Theorem 1.5, we have the stability estimate

(5.24) ‖c− c̃‖C2(M0) ≤ C‖ dist(L, L̃)‖μC(D)

for c, c̃ satisfying ( 1.2).

Proof. We will show first that the estimate in Theorem 1.5, near a boundary point
p, can be written in the form (5.24). For x and y on ∂M , both close to the fixed
point p, let γ0 : [0, 1] �→ ∂M be the boundary geodesic connecting x (for t = 0) and
y (for t = 1). Set v(s) = exp−1

x γ0(s), where exp is the interior exponential map.

Then (y, w) = L(x, v(1)/|v(1)|g); set (ỹ, w̃) = L̃(x, v(1)/|v(1)|g̃). Set

(5.25) δ = ‖ dist(L, L̃)‖C(D).

Then |y − ỹ| ≤ δ. On the other hand, in the notation following (1.1), given by
L(x, v) = (y, w),

(5.26)
d

ds
d(x, γ0(s)) = 〈w′(s), γ̇0(s)〉g,

where w′(s) is the tangential component of w(s), the second component of
L(x, v(s)/|v(s)|g). We also have

(5.27)
d

ds
d̃(x, γ0(s)) = 〈w̃′(s), γ̇0(s)〉g̃,

where w̃(s) is the second component of L̃(x, v(s)/|v(s)|g̃). Integrate the difference
of (5.26) and (5.27) w.r.t. s from 0 to 1, and use (5.25) and the fact that c =

c̃ on ∂M near x to get d(x, y) − d̃(x, ỹ) = O(δ) (actually, we get O(δ)d(x, y)).

Note that this also proves that � − �̃ = O(δ) near Sx0
M . We remark that in the

inductive step below, we will only have that c and c̃ are O(δμ) close on ∂M near x,
instead of being equal. Then we would get O(δμ) instead of O(δ). So we get now
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d2(x, y)− d̃2(x, ỹ) = O(δ) as well. Since d2 and d̃2 are smooth and |y − ỹ| ≤ δ, we
get

d2(x, y)− d̃2(x, y) = O(δ).

The constant in this estimate depends on the a priori bound A in (1.2). We can
therefore apply Theorem 5.1 to estimate the jet of c− c̃ at ∂M of any finite order.
We then extend c and c̃ in a neighborhood of ∂M0 ∩ ∂M so that c and c̃ are O(δμ)
there, as in (5.13).

For any geodesic in M0 issued from D, we extend it to M̃ and push the scattering
relations L and L̃ to ∂M̃ . We show below that we have dist(L, L̃) = O(δμ) for the

so extended lens relations, and a similar estimate for �− �̃. We choose U0, Uin, and
Uout as the proof of Theorem 5.1 but this time U0 is an O(δμ) neighborhood of Σ

(rather than O(δμ
′
), because the singular factor 1/d2 is not present anymore). For

any (x, v) ∈ Uin, let z−, z̃− be the points (in the phase space) of contact with the

geodesic issued from (x, v) for negative “times” with ∂M̃ w.r.t. the metrics g and
g̃, respectively. We define z+, z̃+ in a similar way (see Figure 4), where, in this
case, Σi = ∂M and Ωi = M0. Then z− − z̃− = O(δμ) (the difference makes sense
in local coordinates only) because we have the same for c − c̃ in C2. We have an
O(δ) bound of y− ỹ, and of the difference of the corresponding directions there, by
the closeness of the scattering relations. Next, z+− z̃+ = O(δμ) as well. Therefore,

dist(L(z−), L̃(z̃−)) = O(δμ). Since L and L̃ are smooth with uniformly bounded

first derivatives, we also get dist(L(z−), L̃(z−)) = O(δμ), for all z− ∈ Uin. We also

have �(z−) − �̃(z−) = O(δμ) as shown in the paragraph following (5.27). In this
step, we are no longer working near a fixed point on ∂M , and for almost tangential
directions, the requirement for Uin is that the geodesic issued from it are in the set
required by the theorem but that set is a distance at least δμ from the tangential
set Σ. In Uout and U0, we argue as above.

Therefore, we have now that ‖ dist(L, L̃)‖C(D0) = O(δμ), where L, L̃, and D0

are defined as L, L̃, and D but with ∂M replaced by ∂M̃ . We have the same for
� − �̃ as well. The advantage of this is that the geodesics issued from D0 hitting
supp(c− c̃) are never tangent to ∂M̃ , and we actually have a uniform lower bound

on the angle they make with ∂M̃ . Thus we reduced the analysis to the case when
c− c̃ is a priori known to be supported in the interior of M .

Σt

z−

x

y

z̃−

ỹ

z+

z̃+

M̃

Figure 4. Illustration to the proof of Theorem 5.2.

We then apply a layer stripping argument finite number of times; see also the
introduction in [49]. For each Σt, assuming the estimate outside Σt, we can choose
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an appropriate lens shaped domain near each point on Σt and the artificial boundary
close enough to it; see Figure 4. The O(δμ) closeness of L and L̃, and � and �̃, implies
the same for c and c̃ by the arguments using (5.23). We do this for a finite number
of points on Σt by a compactness argument to prove the estimate in ρ−1(0, t+ε) for
some ε > 0. We then cover M0 with a finite set Σi := ρ−1(ti), Mi := ρ−1(−∞, ti),
and finish the proof with finitely many steps. �

6. Herglotz and Wieckert and Zoeppritz speeds are lens rigid

We revisit the Herglotz [14] and Wieckert and Zoeppritz [51] class of speeds.
Let M = B(0, R), R > 0, be the ball in Rn, n ≥ 3, centered at the origin with
radius R > 0. The background metric g0 in this section is the Euclidean one. Let
0 < c(x) be smooth in B(0, R). Assume that c satisfies the Herglotz and Wieckert
and Zoeppritz condition

(6.1)
∂

∂r

r

c(r)
> 0, for 0 < r = |x| ≤ R,

where ∂
∂r = x

|x| · ∂x is the radial derivative. We do not assume that c is radial, i.e.,

that it depends on r = |x| only. We show below that (6.1) is, in fact a foliation
condition.

Proposition 6.1. The Herglotz and Wieckert and Zoeppritz condition ( 6.1) is
equivalent to the condition that the Euclidean spheres Sr = {|x| = r} are strictly
convex in the metric c−2dx2 for 0 < r ≤ R.

Proof. This proposition is essentially proved in [47, Proposition 7.1]. We will show
first that the strict convexity condition of an oriented hypersurface S (positive
second fundamental form) is equivalent to the following: (A) if G is the generator
of the geodesic flow, and if ρ is a defining function of S positive on the “positive” side
of S, then G2ρ > 0 when Gρ = ρ = 0 on a non-zero energy level. In semigeodesic
coordinates (x′, xn) with xn > 0 on the “positive” side of S, we have ρ = xnρ′ with
ρ′ > 0 on S. Since

G = ξj∂xj − Γk
ijξ

iξj∂ξk ,

we have Gρ = ξn + xnGρ′. On S, Gρ = ξn; therefore, (A) can be reformulated
as follows: xn = ξn = 0 and ξ �= 0 imply G2ρ > 0. Differentiating Gρ again, we
see that under those conditions, G2ρ = −Γn

αβξ
αξβ, where the Greek indices run

from 1 to n − 1. This is well known and follows directly from the definition to be
the second fundamental form corresponding to the orientation xn > 0. Then strict
convexity, viewed from ρ > 0 is equivalent to a negative second fundamental form.
For manifolds with a boundary we study ρ > 0 in the interior of M , and therefore
convexity viewed from the exterior means a positive second fundamental form.

We can take ρ = r2/2− r20/2 = |x|2/2− r20/2 as a defining function of the sphere
Sr0 for x �= 0. Then Gρ = ξ · x. Next, G2ρ = |ξ|2 − Γk

ijξ
iξjxk and on the energy

level c−2|ξ|2 = 1, we have G2ρ = c2 − Γk
ijξ

iξjxk. Here and below, we still have
summation w.r.t. k even though both indices are upper. A direct computation
shows that

Γk
ij =

1

2
c2

(
δkj ∂xi + δki ∂xj − δij∂xk

)
c−2,
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with c = c(|x|), and therefore,

Γk
ijξ

iξjxk = −c−1
(
2ξkxkξi∂xi − |ξ|2xk∂xk

)
c

= −c−1
(
2(ξ · x)ξ · ∂x − |ξ|2x · ∂x

)
c.

Therefore, on the unit energy level and for Gρ = 0, strict convexity is equivalent to

c− x · ∂xc > 0,

i.e., r∂rc < c, which is equivalent to (6.1). Note that the computations in [47,
Proposition 7.1] are done in the cotangent bundle and are somewhat shorter. �

Corollary 6.1. Speeds satisfying (6.1) are lens rigid in B(0, R) in the sense of
Theorem 1.4.

Note that we only require c in Theorem 1.4 to satisfy (6.1). Then any other speed
c̃ for which ∂B(0, R) is still strictly convex and c̃ = c on ∂B(0, R) with the same
scattering relation is equal to c. This extends the Herglotz [14] and the Wieckert
and Zoeppritz [51] results to not necessarily radial speeds c satisfying (6.1).

If (6.1) holds in the shell R0 < |x| < R only, with some 0 < R0 < R, then we
get lens rigidity in the shell and we only need to use the scattering relation for
geodesics staying in it. The speed c does not even need to be defined in |x| < R0.
We will skip the details.
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65 (1981/82), no. 1, 71–83, DOI 10.1007/BF01389295. MR636880 (83d:58021)

[22] R. G. Muhometov, The reconstruction problem of a two-dimensional Riemannian metric,
and integral geometry (Russian), Dokl. Akad. Nauk 232 (1977), no. 1, 32–35. MR0431074
(55 #4076)

[23] R. G. Muhometov, On a problem of reconstructing Riemannian metrics (Russian), Sibirsk.
Mat. Zh. 22 (1981), no. 3, 119–135, 237. MR621466 (82m:53071)

[24] R. G. Muhometov and V. G. Romanov, On the problem of finding an isotropic Riemannian
metric in an n-dimensional space (Russian), Dokl. Akad. Nauk 243 (1978), no. 1, 41–44.
MR511273 (81a:53059)

[25] Cesare Parenti, Operatori pseudo-differenziali in Rn e applicazioni, Ann. Mat. Pura Appl.
(4) 93 (1972), 359–389. MR0437917 (55 #10838)

[26] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, Tensor tomography on surfaces,

Invent. Math. 193 (2013), no. 1, 229–247, DOI 10.1007/s00222-012-0432-1. MR3069117
[27] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, The attenuated ray transform

for connections and Higgs fields, Geom. Funct. Anal. 22 (2012), no. 5, 1460–1489, DOI
10.1007/s00039-012-0183-6. MR2989440

[28] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, Tensor tomography: progress and
challenges, Chin. Ann. Math. Ser. B 35 (2014), no. 3, 399–428, DOI 10.1007/s11401-014-
0834-z. MR3200025

[29] Leonid Pestov and Gunther Uhlmann, Two dimensional compact simple Riemannian man-
ifolds are boundary distance rigid, Ann. of Math. (2) 161 (2005), no. 2, 1093–1110, DOI
10.4007/annals.2005.161.1093. MR2153407 (2006c:53038)

[30] L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a mani-
fold of negative curvature (Russian), Sibirsk. Mat. Zh. 29 (1988), no. 3, 114–130, 221,
DOI 10.1007/BF00969652; English transl., Sib. Math. J. 29 (1988), no. 3, 427–441 (1989).
MR953028 (89k:53066)

Licensed to Purdue Univ. Prepared on Sun Aug 21 16:36:59 EDT 2016 for download from IP 128.210.126.199.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2097355
http://www.ams.org/mathscinet-getitem?mr=2097355
http://www.ams.org/mathscinet-getitem?mr=1274134
http://www.ams.org/mathscinet-getitem?mr=1274134
http://www.ams.org/mathscinet-getitem?mr=2216407
http://www.ams.org/mathscinet-getitem?mr=2216407
arXiv:1412.1760
arXiv:1412.1760
http://www.ams.org/mathscinet-getitem?mr=697984
http://www.ams.org/mathscinet-getitem?mr=697984
http://www.ams.org/mathscinet-getitem?mr=2827818
http://www.ams.org/mathscinet-getitem?mr=2827818
http://www.ams.org/mathscinet-getitem?mr=2549942
http://www.ams.org/mathscinet-getitem?mr=2549942
http://www.ams.org/mathscinet-getitem?mr=2557914
http://www.ams.org/mathscinet-getitem?mr=2557914
http://www.ams.org/mathscinet-getitem?mr=1974568
http://www.ams.org/mathscinet-getitem?mr=1974568
http://www.ams.org/mathscinet-getitem?mr=1291640
http://www.ams.org/mathscinet-getitem?mr=1291640
http://www.ams.org/mathscinet-getitem?mr=636880
http://www.ams.org/mathscinet-getitem?mr=636880
http://www.ams.org/mathscinet-getitem?mr=0431074
http://www.ams.org/mathscinet-getitem?mr=0431074
http://www.ams.org/mathscinet-getitem?mr=621466
http://www.ams.org/mathscinet-getitem?mr=621466
http://www.ams.org/mathscinet-getitem?mr=511273
http://www.ams.org/mathscinet-getitem?mr=511273
http://www.ams.org/mathscinet-getitem?mr=0437917
http://www.ams.org/mathscinet-getitem?mr=0437917
http://www.ams.org/mathscinet-getitem?mr=3069117
http://www.ams.org/mathscinet-getitem?mr=2989440
http://www.ams.org/mathscinet-getitem?mr=3200025
http://www.ams.org/mathscinet-getitem?mr=2153407
http://www.ams.org/mathscinet-getitem?mr=2153407
http://www.ams.org/mathscinet-getitem?mr=953028
http://www.ams.org/mathscinet-getitem?mr=953028


BOUNDARY RIGIDITY WITH PARTIAL DATA 331

[31] Akhil Ranjan and Hemangi Shah, Convexity of spheres in a manifold without con-
jugate points, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), no. 4, 595–599, DOI
10.1007/BF02829692. MR1941895 (2003h:53047)

[32] Vladimir Sharafutdinov, Michal Skokan, and Gunther Uhlmann, Regularity of ghosts in
tensor tomography, J. Geom. Anal. 15 (2005), no. 3, 499–542, DOI 10.1007/BF02930983.
MR2190243 (2006m:58034)

[33] V. A. Sharafutdinov, Integral geometry of tensor fields, Inverse and Ill-posed Problems Series,

VSP, Utrecht, 1994. MR1374572 (97h:53077)
[34] V. A. Sharafutdinov, Integral geometry of a tensor field on a surface of revolution

(Russian, with Russian summary), Sibirsk. Mat. Zh. 38 (1997), no. 3, 697–714, iv, DOI
10.1007/BF02683847; English transl., Sib. Math. J. 38 (1997), no. 3, 603–620. MR1457488
(98f:53067)

[35] V. A. Sharafutdinov, A problem in integral geometry in a nonconvex domain (Russian,
with Russian summary), Sibirsk. Mat. Zh. 43 (2002), no. 6, 1430–1442, DOI
10.1023/A:1021189922555; English transl., Sib. Math. J. 43 (2002), no. 6, 1159–1168.
MR1946241 (2003i:53112)

[36] Vladimir Sharafutdinov, Variations of Dirichlet-to-Neumann map and deformation bound-
ary rigidity of simple 2-manifolds, J. Geom. Anal. 17 (2007), no. 1, 147–187, DOI
10.1007/BF02922087. MR2302878 (2008f:58024)
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