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Abstract

For a compact Riemannian manifold with boundary, endowed with a magnetic potential α, we consider
the problem of restoring the metric g and the magnetic potential α from the values of the Mañé action po-
tential between boundary points and the associated linearized problem. We study simple magnetic systems.
In this case, knowledge of the Mañé action potential is equivalent to knowledge of the scattering relation
on the boundary which maps a starting point and a direction of a magnetic geodesic into its end point and
direction. This problem can only be solved up to an isometry and a gauge transformation of α.

For the linearized problem, we show injectivity, up to the natural obstruction, under explicit bounds on
the curvature and on α. We also show injectivity and stability for g and α in a generic class G including real
analytic ones.

For the nonlinear problem, we show rigidity for real analytic simple (g,α), rigidity for metrics in a
given conformal class, and locally, near any (g,α) ∈ G. We also show that simple magnetic systems on
two-dimensional manifolds are always rigid.
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1. Introduction

1.1. Statement of the problem

Let M be a compact manifold with boundary, endowed with a Riemannian metric g, and let
π :TM →M denote the canonical projection, π : (x, ξ) �→ x, x ∈M , ξ ∈ TxM .

Denote by ω0 the canonical symplectic form on TM , which is obtained by pulling back the
canonical symplectic form of T ∗M via the Riemannian metric. Let H :TM →R be defined by

H(v)= 1

2
|v|2g, v ∈ TM.

The Hamiltonian flow of H w.r.t. ω0 gives rise to the geodesic flow of M . Let Ω be a closed
2-form on M and consider the new symplectic form ω defined as

ω= ω0 + π∗Ω.

The Hamiltonian flow of H w.r.t. ω gives rise to the magnetic (or twisted geodesic) flow
ψt :TM → TM . This flow models the motion of a unit charge of unit mass in a magnetic field
whose Lorentz force Y :TM → TM is the bundle map uniquely determined by

Ωx(ξ, η)=
〈
Yx(ξ), η

〉
(1.1)

for all x ∈M and ξ, η ∈ TxM .
Magnetic flows were first considered by V. I. Arnold in [4] and by D.V. Anosov and Y.G. Sinai

in [3]. As shown in [5,18,25–28], they are closely related to other problems of classical mechan-
ics, mathematical physics, symplectic geometry, and dynamical systems.

It is not hard to show that the generator Gμ of the magnetic flow is

Gμ(x, ξ)=G(x, ξ)+ Y
j
i (x)ξ

i ∂

∂ξj
,

where G is the generator of the geodesic flow, and that every trajectory of the magnetic flow is a
curve of the form t �→ (γ (t), γ̇ (t)), where γ is a curve on M which satisfies the equation

∇γ̇ γ̇ = Y(γ̇ ), (1.2)

which is nothing but Newton’s law of motion. Such a curve γ is called a magnetic geodesic.
Note that time is not reversible on the magnetic geodesics, unless Ω = 0. If Ω = 0 we recover
the ordinary geodesic flow and ordinary geodesics.

When Ω is exact, i.e. Ω = dα for some magnetic potential α, the magnetic flow also arises
as the Hamiltonian flow of H(x,p) = 1

2 (p + α)2
g with respect to the standard symplectic form

of T ∗M . The function H is the symbol of the semiclassical magnetic Schrödinger operator.
Since the magnetic flow preserves the level sets of the Hamiltonian function H , every mag-

netic geodesic has constant speed.
Unlike the geodesic flow, where the flow is the same (up to time scale) on all energy levels,

the magnetic flow depends essentially on the choice of the energy level. We fix the energy level
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H−1(1/2), thus considering the magnetic flow on the unit sphere bundle SM of M , in conse-
quence we consider only the unit speed magnetic geodesics. Note that fixing the energy level to
be SM is no restriction at all, since one can obtain the behavior in any energy level by considering
the flow on SM upon changing Ω by λΩ , where λ ∈R.

We define the action A(x, y) between boundary points as a minimizer of the appropriate action
functional, see (1.6) and Appendix A. In the case Ω = 0, A(x, y) coincides with the boundary
distance function dg(x, y). In this case, we cannot recover g from dg up to isometry, unless some
additional assumptions are imposed on g, see, e.g., [9]. One such assumption is the simplicity
of the metric, see, e.g., [22,34,37,38]. We consider below the analog of simplicity for magnetic
systems.

Let Λ stand for the second fundamental form of ∂M and ν(x) for the inward unit normal to
∂M at x. We say that ∂M is strictly magnetic convex if

Λ(x, ξ) >
〈
Yx(ξ), ν(x)

〉
(1.3)

for all (x, ξ) ∈ S(∂M) (see Appendix A for an explanation). Note that if we replace ξ by −ξ ,
we can put an absolute value in the right-hand side of (1.3). In particular, magnetic convexity is
stronger than Riemannian one.

For x ∈M , we define the magnetic exponential map at x to be the partial map expμ
x :TxM →

M given by

expμ
x (tξ)= π ◦ψt(ξ), t � 0, ξ ∈ SxM.

It is not hard to show that, for every x ∈M , expμ
x is a C1-smooth partial map on TxM which is

C∞-smooth on TxM \ {0} (see Appendix A).

Definition 1.1. We say that M is simple (w.r.t. (g,Ω)) if ∂M is strictly magnetic convex and
the magnetic exponential map expμ

x : (expμ
x )
−1(M)→M is a diffeomorphism for every x ∈M

(cf. the definition of a simple Riemannian manifold [32]).

In this case, M is diffeomorphic to the unit ball of R
n (so we can assume that M is this ball);

therefore, Ω is exact, and we let α be a magnetic potential, i.e., α is a 1-form on M such that

dα =Ω. (1.4)

Henceforth we call (g,α) a simple magnetic system on M . We will also say that (M,g,α) is
a simple magnetic system.

Given x, y ∈M , let

C(x, y)= {
γ : [0, T ]→M: T > 0, γ (0)= x, γ (T )= y, γ is absolutely continuous

}
.

The time-free action of a curve γ ∈ C(x, y) w.r.t. (g,α) is defined as

A(γ )=Ag,α(γ )= 1

2

T∫ ∣∣γ̇ (t)
∣∣2
g
dt + 1

2
T −

∫
α. (1.5)
0 γ
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For a simple magnetic system, unit speed magnetic geodesics minimize the time-free action
(Lemma A.5 in Appendix A). More precisely,

A(x, y) := inf
γ∈C(x,y)

A(γ )=A(γx,y)= Tx,y −
∫

γx,y

α, (1.6)

where γx,y : [0, Tx,y]→M is the unique unit speed magnetic geodesic from x to y.
The function A(x, y) is referred to as Mañé’s action potential (of energy 1/2), and we call the

restriction A|∂M×∂M the boundary action function.
Now, we state the boundary rigidity problem in the presence of a magnetic field as follows:

To which extent is a magnetic system (g,α) determined by the boundary action function?
To be more precise, we say that two simple magnetic systems (g,α) and (g′, α′) are gauge

equivalent if there are a diffeomorphism f :M → M , which is the identity on the boundary,
and a function ϕ :M → R, vanishing on the boundary, such that g′ = f ∗g and α′ = f ∗α + dϕ.
Observe that gauge equivalent magnetic systems have the same boundary action function.

Now, we rephrase the above problem as follows: Given a simple magnetic system, is any other
simple magnetic system on the same manifold gauge equivalent to the former as soon as it has
the same boundary action function? If so, we call the given magnetic system magnetic boundary
rigid.

Surely, this problem can be considered under various natural restrictions. For example, we
can consider it for a fixed Riemannian metric and try to restore a magnetic potential, or, vice
versa, fix a magnetic potential and try to restore a metric, or consider the problem for metrics in a
fixed conformal class, etc. In particular, for the zero magnetic potentials we recover the ordinary
boundary rigidity problem for Riemannian metrics (see recent surveys of the latter in [10,39]).

For simple magnetic systems, knowledge of the action A(x, y) between boundary points
is equivalent to knowing the scattering relation, see Section 2.2. For non-simple systems, the
problem of recovering (g,Ω) from the scattering relation is the natural problem to study. The
scattering relation appears naturally in the study of the scattering operator in R

n with g Euclid-
ean outside a ball, and α compactly supported. Namely, for non-trapping metrics, the scattering
operator associated to the semi-classical magnetic Schrödinger operator is a Fourier integral op-
erator with canonical relation that determines the scattering relation on a large sphere, [1,2,15].
(It should be noted that for magnetic Schrödinger operators the resolvent is also a Fourier integral
operator.)

1.2. Description of the results

In Section 2, we show that for simple magnetic systems, the action determines the jets of g

and α in boundary normal coordinates. We define the scattering relation and show that for simple
magnetic systems, it determines A(x, y) on the boundary, and vice versa. We also show that one
can recover the volume from A(x, y).

In Section 3, we study the linearized problem. This reduces to the magnetic ray transform I .
We show that potential pairs (see Definition 3.5) belong to the kernel of I . We say that I is
s-injective, if the kernel of I consists only of potential pairs.

In Section 4, we show that the normal operator N = I ∗I is a pseudo-differential operator in
the interior of M , elliptic on solenoidal pairs that are an orthogonal complement of the potential
pairs. We construct a parametrix of N ; near the boundary, additional arguments are needed. This
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parametrix recovers the solenoidal projection fs given N f, up to a smoothing term. We show
that s-injectivity implies a stability estimate, uniform near any (g,α), in appropriate spaces, see
Theorem 4.3. We consider in this section and in Appendix B real analytic (g,α) and show that
then I is s-injective. A crucial element of the proof is that N is an analytic pseudo-differential
operator in the interior of M . This is delicate since the magnetic exponential map is only C1

smooth when Ω 
= 0, even in the analytic case. To handle this, the analysis is done in polar co-
ordinates. The s-injectivity for real analytic magnetic systems and the uniform stability estimate
imply s-injectivity of the magnetic ray transform for generic (g,α).

In Section 5, we show that I is s-injective for simple magnetic systems with an explicit bound
on the curvature and Ω . This relies on an analog of Pestov’s identity for our case, see [30,34]
that goes back to [23,24], see also the references there.

In Section 6, we consider the non-linear magnetic rigidity problem. We prove rigidity in a
given conformal class and rigidity within real analytic systems. We also show that if a simple
Riemannian manifold (M,g) is boundary rigid (within the class of Riemannian metrics), then it
is also magnetic boundary rigid. In this section we also study the local problem. We show rigidity
near any (g,α) in the generic class G using the analysis of the linear problem. This does not di-
rectly follow from the implicit function theorem, and the stability estimate in Theorem 4.3 plays
a crucial role. There is an essential difficulty compared to the Riemannian case α = 0 [37,38],
since we cannot decouple g and α in the linearization argument. This difficulty is resolved by
Lemma 6.7.

Section 7 is devoted to two-dimensional systems. Here we prove that two-dimensional simple
magnetic systems are magnetic boundary rigidity. This generalizes the boundary rigidity theorem
of [32]. Our proof essentially resembles that in [32], establishing a connection between the scat-
tering relation of a magnetic system and the Dirichlet-to-Neumann map of the Laplace–Beltrami
operator of the underlying Riemannian manifold.

2. Boundary determination, scattering relation, and volume

2.1. Boundary jets of the metric and magnetic potential

Here we show that up to gauge equivalence the boundary action function completely deter-
mines the Riemannian metric and magnetic potential on the boundary of the manifold under
study.

Lemma 2.1. If (g,α) and (g′, α′) are simple magnetic systems on M with the same boundary
action function, then

i∗g = i∗g′, i∗α = i∗α′, (2.1)

where i : ∂M →M is the embedding map.

Proof. Given x ∈ ∂M and ξ ∈ Tx(∂M), let τ(s), −ε < s < ε, be a curve on ∂M with τ(0)= x

and τ̇ (0)= ξ . It is easy to see that

lim
A(x, τ (s)) = |ξ |g − α(ξ).
s→0 s
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A similar equality holds for the magnetic system (g′, α′). Therefore,

|ξ |g − α(ξ)= |ξ |g′ − α′(ξ).

Changing ξ to −ξ , we get

|ξ |g + α(ξ)= |ξ |g′ + α′(ξ),

whence we infer (2.1). �
Now, we prove that the boundary action function determines the full jets of the metric and

magnetic potential on the boundary. This generalizes the corresponding results of [20,22].

Theorem 2.2. If (g,α) and (g′, α′) are simple magnetic systems on M with the same boundary
action function, then (g′, α′) is gauge equivalent to some (ḡ, ᾱ) such that in any local coordinate
system we have ∂mg|∂M = ∂mḡ|∂M and ∂mα|∂M = ∂mᾱ|∂M for every multi-index m.

Proof. Denote by ν the inward unit normal to ∂M w.r.t. g. The “usual” boundary exponential
map exp∂M(p, t)= expp(tν(p)), p ∈ ∂M , t � 0, takes a sufficiently small neighborhood of the
set ∂M × {0} in ∂M ×R+ diffeomorphically onto some neighborhood of ∂M in M .

Let ν′ and exp′ denote the corresponding objects for the metric g′.
The map exp∂M ◦(exp′∂M)−1 is well defined in some neighborhood of ∂M in M and is the

identity when restricted to ∂M . We extend this map from a neighborhood of ∂M in M to a
diffeomorphism f :M →M and put ḡ = f ∗g′ and α′′ = f ∗α′. By Lemma 2.1, g and ḡ induce
the same Riemannian metric on ∂M and, by construction, at each point of ∂M the inward unit
normal w.r.t. ḡ coincides with the one w.r.t. g. Therefore, ḡ|∂M = g|∂M .

Next, by Lemma 2.1, α and α′′ induce the same 1-form on ∂M . Applying Lemma 2.2 of [35]
to the form ω= α − α′′ we find a function ϕ ∈ C∞0 (M) such that ω− dϕ induces the zero form
on every sufficiently short geodesic of ḡ starting from ∂M in the normal direction. We now put
ᾱ = α′′ + dϕ.

Let us prove the equality of derivatives on the boundary. We will use the same argument as
in [20]. We fix x0 ∈ ∂M and introduce boundary normal coordinates (x′, xn) w.r.t. g near x0.
By construction, the same coordinates are boundary normal coordinates w.r.t. ḡ. Thus, the line
elements ds2 and ds̄2 of these metrics are given by

ds2 = gικ dx
′
ι dx

′
κ + dx2

n,

ds̄2 = ḡικ dx
′
ι dx

′
κ + dx2

n,

where ι, κ vary from 1 to n− 1. Therefore, for h= g− ḡ we have hin = 0 for i = 1, . . . , n. Also,
by the construction of ᾱ, for β = α − ᾱ we have βn = 0.

It now suffices to prove that

∂m
n hικ |x=x0 = 0, ∂m

n βι|x=x0 = 0 for m= 0,1, . . . ; ι, κ = 1, . . . , n− 1. (2.2)
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The case of m = 0 is granted. Assume that there is a least m � 1 such that (2.2) is not true.
The Taylor expansion of h and β then implies that there is a unit vector ξ0 ∈ Tx0(∂M) such that

1

2
hικ(x)ξ

ιξκ − βι(x)ξ
ι > 0 (or < 0) (2.3)

for xn > 0 and x′ both sufficiently small and ξ close to ξ0. (Here ι and κ vary from 1 to n− 1
because h1n = hn1 = 0 and βn = 0.)

For arbitrary x, y ∈ ∂M , let γ = γx,y : [0, T ]→M (γ̄ = γ̄x,y : [0, T̄ ]→M) be the unit speed
magnetic geodesic of the system (g,α) (system (ḡ, ᾱ)) from x to y.

On the one hand, since γ̄ minimizes the time-free action w.r.t. (ḡ, ᾱ), we have

A(x, y) � 1

2

T∫
0

ḡij
(
γ (t)

)
γ̇ i (t)γ̇ j (t) dt + 1

2
T −

T∫
0

ᾱi

(
γ (t)

)
γ̇ i (t) dt.

On the other hand, since γ minimizes the time-free action w.r.t. (g,α),

A(x, y)= 1

2

T∫
0

[
gij

(
γ (t)

)
γ̇ i (t)γ̇ j (t) dt + 1

2
T −

T∫
0

αi

(
γ (t)

)
γ̇ i (t)

]
dt.

Therefore,

T∫
0

[
1

2
hij

(
γ (t)

)
γ̇ i (t)γ̇ j (t)− βi

(
γ (t)

)
γ̇ i (t)

]
dt � 0. (2.4)

Similarly, we derive the inequality

T̄∫
0

[
1

2
hij

(
γ̄ (t)

) ˙̄γ i
(t) ˙̄γ j

(t)− βi

(
γ̄ (t)

) ˙̄γ i
(t)

]
dt � 0. (2.5)

Continuing the proof of the theorem, we now choose x = x0 and choose y = δ(s), where
δ : (−ε, ε)→ ∂M is a smooth curve with δ(0) = x0 and δ̇(0) = ξ0. Then for s > 0 sufficiently
small we see that, in view of (2.3), we cannot simultaneously have (2.4) and (2.5). This contra-
diction concludes the proof of the theorem. �
2.2. Scattering relation

Now, we define a scattering relation and restate our problem in terms of the scattering relation.
For (x, ξ) ∈ SM , let γx,ξ : [�−(x, ξ), �(x, ξ)] → M be a magnetic geodesic such that

γx,ξ (0)= x, γ̇x,ξ (0)= ξ , and γx,ξ (�
−(x, ξ)), γx,ξ (�(x, ξ)) ∈ ∂M . Clearly, the functions �−(x, ξ)

and �(x, ξ) are continuous and, on using the implicit function theorem, they are easily seen to
be smooth near a point (x, ξ) such that the magnetic geodesic γx,ξ (t) meets ∂M transversally
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at t = �−(x, ξ) and t = �(x, ξ) respectively. By (1.3) and Lemma A.6 in Appendix A, the last
condition holds everywhere on SM \ S(∂M). Thus, �− and � are smooth on SM \ S(∂M).

Let ∂+SM and ∂−SM denote the bundles of inward and outward unit vectors over ∂M :

∂+SM = {
(x, ξ) ∈ SM: x ∈ ∂M,

〈
ξ, ν(x)

〉
� 0

}
,

∂−SM = {
(x, ξ) ∈ SM: x ∈ ∂M,

〈
ξ, ν(x)

〉
� 0

}
,

where ν is the inward unit normal to ∂M . Note that ∂(SM) = ∂+SM ∪ ∂−SM and ∂+SM ∩
∂−SM = S(∂M).

Lemma 2.3. (Cf. [33, Lemmas 3.2.1, 3.2.2].) For a simple magnetic system, the function
L : ∂(SM)→R, defined by

L(x, ξ) :=
{
�(x, ξ) if (x, ξ) ∈ ∂+SM,

�−(x, ξ) if (x, ξ) ∈ ∂−SM,

is smooth. In particular, � : ∂+SM → R is smooth. The ratio L(x,ξ)
〈ν(x),ξ〉 is uniformly bounded on

∂(SM) \ S(∂M).

Proof. Let ρ be a smooth nonnegative function on M such that ∂M = ρ−1(0) and |gradρ| = 1
in some neighborhood of ∂M . Put h(x, ξ, t)= ρ(γx,ξ (t)) for (x, ξ) ∈ ∂(SM). Then

h(x, ξ,0)= 0,

∂h

∂t
(x, ξ,0)= 〈

ν(x), ξ
〉
,

∂2h

∂t2
(x, ξ,0)=Hessx ρ(ξ, ξ)+

〈
ν(x),Y (ξ)

〉
.

Therefore, for some smooth function R(x, ξ, t),

h(x, ξ, t)= 〈
ν(x), ξ

〉
t + 1

2

(
Hessx ρ(ξ, ξ)+

〈
ν(x),Y (ξ)

〉)
t2 +R(x, ξ, t)t3.

Since h(x, ξ,L(x, ξ))= 0, it follows that L= L(x, ξ) is a solution of the equation

F(x, ξ,L) := 〈
ν(x), ξ

〉+ 1

2

(
Hessx ρ(ξ, ξ)+

〈
ν(x),Y (ξ)

〉)
L+R(x, ξ, t)L2 = 0. (2.6)

By (1.3), for (x, ξ) ∈ S(∂M)

∂F

∂L
(x, ξ,0)= 1

2

(
Hessx ρ(ξ, ξ)+

〈
ν(x),Y (ξ)

〉)
= 1

2

(−Λ(x, ξ)+ 〈
ν(x),Y (ξ)

〉)
< 0.

Now, the implicit function theorem yields smoothness of L(x, ξ) in a neighborhood of S(∂M).
Since L is also smooth on ∂(SM) \ S(∂M), we conclude that L is smooth on ∂(SM).
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Next, from (2.6) we get for (x, ξ) ∈ ∂(SM) \ S(∂M)

[
1

2

(
Hessx ρ(ξ, ξ)+

〈
ν(x),Y (ξ)

〉)+R(x, ξ, t)L(x, ξ)

]
L(x, ξ)

〈ν(x), ξ 〉 = −1.

Again by (1.3) this yields boundedness of the ratio L(x,ξ)
〈ν(x),ξ〉 for (x, ξ) sufficiently close to S(∂M)

(where L is sufficiently small), and clearly implies boundedness of the ratio on the whole set
∂(SM) \ S(∂M). �
Definition 2.4. The scattering relation S : ∂+SM → ∂−SM of a magnetic system (M,g,α) is
defined as follows:

S(x, ξ)= (
γx,ξ

(
�(x, ξ)

)
, γ̇x,ξ

(
�(x, ξ)

))
.

The restricted scattering relation s : ∂+SM →M is defined to be the postcomposition of the
scattering relation with the natural projection of ∂−SM to M , i.e.,

s(x, ξ)= γx,ξ
(
�(x, ξ)

)
.

By the preceding lemma, S and s are smooth maps.
The next lemma generalizes the well-known assertion of [22].

Lemma 2.5. Suppose that (g,α) and (g′, α′) are simple magnetic systems on M such that g|∂M =
g′|∂M . If the boundary action functions A|∂M×∂M and A

′|∂M×∂M of both the systems coincide,
then the scattering relations S and S ′ of these systems coincide, S = S ′.

In the opposite direction, we have the following:

Lemma 2.6. Suppose that (g,α) and (g′, α′) are simple magnetic systems on M such that g|∂M =
g′|∂M and i∗α = i∗α′. If the restricted scattering relations s and s′ of the systems coincide, s= s′,
then the boundary action functions of these systems coincide, A|∂M×∂M =A

′|∂M×∂M .

To prove these lemmas, we need one fruitful result.

Lemma 2.7. If (M,g,α) is a simple magnetic system, then for x, y ∈ ∂M

∂A(x, y)

∂ξ
=−〈

γ̇x,y(0), ξ
〉+ α(ξ) for ξ ∈ Tx(∂M),

∂A(x, y)

∂η
= 〈

γ̇x,y(T ), η
〉− α(η) for η ∈ Ty(∂M),

where γx,y : [0, T ]→M is the unit speed magnetic geodesic from x to y.
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Proof. Fix x, y ∈ ∂M , x 
= y, and ξ ∈ Tx(∂M). Let τ(s), −ε < s < ε, be a curve on ∂M with
τ(0) = x and τ̇ (0) = ξ . For every s, put γ (t, s) = γτ(s),y(t), 0 � t � Ts , denoting γ = γ (t,0)
and T = T0, and consider

c(t, s)= γ

(
Ts

T
t, s

)
, 0 � t � T .

Each curve c(·, s) is defined on the interval [0, T ] and its length is exactly Ts . We have

∂A(x, y)

∂ξ
= dTs

ds
(0)− d

ds

{∫
γs

α

}∣∣∣∣
s=0

.

Using the first variation formula for length and the fact that c(t,0)= γ (t), we have

dTs

ds
(0)=−〈

γ̇ (0), ξ
〉−

T∫
0

〈∇γ̇ γ̇ , V
〉
dt,

where V (t)= ∂c
∂s
(t,0) is the variation field of c(t, s). Using the equation of magnetic geodesics

(1.2) and the definition (1.1) of Y , we obtain

dTs

ds
(0)=−〈

γ̇ (0), ξ
〉−

T∫
0

Ω(γ̇ ,V )dt.

On the other hand, it is easy to see that

d

ds

{∫
γs

α

}
=−α(ξ)+

T∫
0

Ω(V, γ̇ ) dt.

This gives the first formula of the lemma. A similar calculation gives the second formula. �
Proof of Lemma 2.5. By Lemma 2.1, α(v)= α′(v) for all v ∈ T (∂M). Using Lemma 2.7 and
the fact that both metrics are the same on the boundary, we easily conclude that the scattering
relations are the same. �
Proof of Lemma 2.6. Take x ∈ ∂M and define sx : ∂+SM \ S(∂M)→ ∂M \ {x} by sx(ξ) =
s(x, ξ). This map is a diffeomorphism. Consider its inverse s−1

x : ∂M \ {x} → ∂+SM . By
Lemma 2.7, for every y ∈ ∂M , y 
= x, we have for all ξ ∈ Tx(∂M)

∂A(x, y)

∂ξ
=−〈

s−1
x (y), ξ

〉
g
+ α(ξ). (2.7)

The assumptions of the lemma imply that the right-hand side of (2.7) is the same for the second
magnetic system; therefore, so does the left-hand side. Now, the claim of the lemma is immedi-
ate. �
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Thus, for simple magnetic systems, the boundary rigidity problem is essentially equivalent
to the problem of restoring a Riemannian metric and a magnetic potential from the restricted
scattering relation.

2.3. Determination of volume

Here we show that the boundary action function determines the volume of the manifold. This
generalizes the well-known assertion of [22, Proposition 2.13].

Theorem 2.8. If (g,α) and (g′, α′) are simple magnetic systems on M with the same boundary
action function, then the volume Volg M of M w.r.t. g equals the volume Volg′ M of M w.r.t. g′.

Proof. By Santaló’s formula (see (A.4) in Appendix A) we have

Volg M = 1

wn−1

∫
∂+SM

�(x, ξ) dμ(x, ξ).

Using

∫
SM

α(x, ξ) dΣ2n−1(x, ξ)= 0 (2.8)

and Santaló’s formula again, we obtain

Volg M = 1

wn−1

∫
∂+SM

A(γx,ξ ) dμ(x, ξ). (2.9)

In view of Theorem 2.2 and Lemma 2.5, we may assume that the right-hand side of this equal-
ity is the same for the magnetic system (g′, α′). This yields the sought equality of volumes. �
3. Magnetic ray transform

3.1. Derivatives of the action function

Let (g,α) be a simple magnetic system on M . It is easy to see that there is an ε > 0 so that
every magnetic system (g + h,α + β), satisfying

‖h‖C2 � ε, ‖β‖C1 � ε, (3.1)

is simple.
Given h and β satisfying (3.1), consider the 1-parameter family (gs, αs) with

gs = g + sh, αs = α + sβ, s ∈ [0,1].

Clearly, each of these systems is simple.
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Lemma 3.1. For x, y ∈ ∂M ,

dAgs,αs (x, y)

ds
= 1

2

∫
γs

〈
h, γ̇ 2

s

〉− ∫
γs

β, (3.2)

where γs is the unit speed magnetic geodesic from x to y w.r.t. (gs, αs).
If

h|∂M = 0, β|∂M = 0, (3.3)

then

∣∣∣∣d2
Ags,αs (x, y)

ds2

∣∣∣∣ � C
(‖h‖2

C1 + ‖β‖2
C1

)
, (3.4)

with a constant C independent of h and β and C2 locally uniform in (g,α).

Proof. Define

ϕ(s, τ ) :=Agτ ,ατ (γs)= 1

2

Ts∫
0

∣∣γ̇s(t)∣∣2
gτ dt + 1

2
Ts −

∫
γs

ατ .

Then

dAgs,αs (x, y)

ds
= ∂ϕ

∂s
(s, s)+ ∂ϕ

∂τ
(s, s). (3.5)

By Lemma A.5, unit speed magnetic geodesics minimize the time-free action; therefore, for
a fixed τ , Agτ ,ατ (γs) has a minimum at s = τ , which yields

∂ϕ

∂s
(τ, τ )= 0. (3.6)

Next,

∂ϕ

∂τ
= 1

2

Ts∫
0

(
∂

∂τ

∣∣γ̇s(t)∣∣2
gτ

)
dt −

∫
γs

d

dτ
ατ = 1

2

∫
γs

〈
h, γ̇ 2

s

〉− ∫
γs

β. (3.7)

Combining (3.5)–(3.7) gives (3.2).
Differentiating (3.2) and using (3.3), we obtain

d2
Ags,αs (x, y)

ds2
=

Ts∫ {
1

2
(∇γ ′s hij )γ̇

i
s γ̇

j
s + hij γ̇

i
s

(∇γ ′s γ̇
j
s

)− (∇γ ′s βi)γ̇
i
s − βi

(∇γ ′s γ̇
i
s

)}
dt,
0
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where γ ′s = ∂γs/∂s. Whence

∣∣∣∣d2
Ags,αs (x, y)

ds2

∣∣∣∣ � C
(‖h‖C1 + ‖β‖C1

)(‖γ ′s‖C + ‖∇γ ′s γ̇s‖C
)
. (3.8)

By the equation of magnetic geodesics, we have

s∇ γ̇s γ̇s =
s

Y(γ̇s), (3.9)

where
s∇ stands for the covariant derivative related to gs , and

s

Y is the Lorentz force associated
with gs , αs . The initial conditions are given by

γs(0)= x, γ̇s(0)=
( s
expμ

x

)−1
(y), (3.10)

where
s

expμ
x stands for the magnetic exponential map associated with gs , αs . From (3.9) and

(3.10) we easily infer that

‖γ ′s‖C + ‖∇γ ′s γ̇s‖C � C
(‖h‖C1 + ‖β‖C1

)
. (3.11)

Combining (3.8) and (3.11) leads to (3.4). �
3.2. Magnetic ray transform

Let (M,g,α) be a simple magnetic system and φ :SM → R a smooth function on the unit
sphere bundle. We define the magnetic ray transform of φ to be the following function on the
space of unit speed magnetic geodesics going from a boundary point to a boundary point:

Iφ(γ )=
∫
γ

φ :=
T∫

0

φ
(
γ (t), γ̇ (t)

)
dt,

where γ : [0, T ] →M is any unit speed magnetic geodesic such that γ (0) ∈ ∂M and γ (T ) ∈
∂M . Assuming that the magnetic geodesics are parametrized by ∂+SM , we obtain a map
I :C∞(SM)→ C(∂+SM),

Iφ(x, ξ)=
�(x,ξ)∫
0

φ
(
ψt(x, ξ)

)
dt, (x, ξ) ∈ ∂+SM. (3.12)

In the space of real-valued functions on ∂+SM define the norm

‖φ‖2 =
∫

∂+SM

φ2 dμ

and the corresponding inner product. Here dμ(x, ξ) = 〈ξ, ν(x)〉dΣ2n−2 (see A.4 in Appen-
dix A). Denote the corresponding Hilbert space by L2

μ(∂+SM).
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Lemma 3.2. The operator I extends to a bounded operator

I :L2(SM)→ L2
μ(∂+SM).

Proof. Indeed, it is easy to see that (Iφ)2 � CIφ2, with some constant C independent of φ.
Therefore,

∫
∂+SM

(Iφ)2 dμ � C

∫
∂+SM

Iφ2 dμ= C

∫
SM

φ2 dΣ2n−1

by the Santaló formula (A.4). �
3.3. Solenoidal and potential pairs

For a decomposition of a symmetric tensor field into a potential and a solenoidal part (relevant
when Ω = 0), we refer to [33,34].

In view of the linearization formula (3.2), we are mainly interested in I applied to functions
φ that are of the form

φ(x, ξ)= hij (x)ξ
iξ j + βj (x)ξ

j (3.13)

(and, more generally, that are polynomials in ξ ). Then, given a symmetric 2-tensor h and a 1-
form β , we set for (x, ξ) ∈ ∂+SM

I [h,β](x, ξ)=
T∫

0

hij

(
γ (t)

)
γ̇ i (t)γ̇ j (t) dt +

T∫
0

βj

(
γ (t)

)
γ̇ j (t) dt, (3.14)

where γ = γx,ξ , T = �(x, ξ).
If F is a notation for a function space (Ck , Lp , Hk , etc.), then we will denote by F(M) the

corresponding space of pairs f= [h,β], with h a symmetric covariant 2-tensor and β a 1-form,
and denote by F(M) the corresponding space of pairs w = [v,ϕ], with v a 1-form and ϕ a
function on M . In particular, L2(M) is the space of square integrable pairs f = [h,β], and we
endow this space with the norm

‖f‖2 =
∫
M

{
|h|2g +

n− 1

2
|β|2g

}
d Vol, (3.15)

with the corresponding inner product. (The choice of the factor (n− 1)/2 will play its role in the
proof of Theorem 5.4.) In the space L2(M) we will consider the norm

‖w‖2 =
∫ (|v|2g + ϕ2)d Vol . (3.16)
M
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Clearly, the norm of a pair [h,β] in L2(M) is equivalent to the norm of the corresponding
polynomial (3.13) in L2(SM). Therefore, Lemma 3.2 implies that

I : L2(M)→ L2
μ(∂+SM)

and it is bounded.
Define Y :T ∗M → T ∗M by

Y(η)=−(
Y

j
i ηj

)
, η= (ηj ) ∈ T ∗M.

Note that this definition agrees with the map Y :TM → TM and the isomorphism between the
tangent and cotangent bundles via the Riemannian metric.

Clearly, I vanishes on functions φ(x, ξ) = Gμψ(x, ξ) if ψ vanishes for x ∈ ∂M . To find a
class of such functions that are polynomials of ξ of degree at most 2, assume that

Gμ

[
vi(x)ξ

i + ϕ(x)
]= hij (x)ξ

iξ j + βj (x)ξ
j .

Since

Gμ

(
vi(x)ξ

i + ϕ(x)
)= ξj

[
vi,j ξ

i + viY
i
j + ϕ,j

]= (
dsv

)
ij
ξ iξ j + (

ϕ,j − Y(v)j
)
ξj , (3.17)

we get

h= dsv, β = dϕ − Y(v), (3.18)

where dsv is the symmetric differential of v. We used here the fact that the even part of (3.17)
w.r.t. ξ ∈ SxM determines the quadratic form (dsv)ij ξ

iξ j , while the odd part determines β(ξ).
Next, knowing (dsv)ij ξ

iξ j for n(n + 1)/2 generic ξ ∈ SxM is enough to recover v; similarly
knowing β(ξ) for n linear independent ξ ∈ SxM is enough to recover β . We have the following
stronger statement.

Lemma 3.3. Fix x ∈M . Given any open subset V of SxM , there exist N = n(n+ 1)/2+ n vec-
tors ξm ∈ V , m= 1, . . . ,N , such that [h,β] is uniquely determined by the values of ψ(x, ξ) :=
hij (x)ξ

iξ j + βj (x)ξ
j at ξ = ξm, m= 1, . . . ,N .

Proof. Since x is fixed, we denote ψ(ξ) = ψ(x, ξ). We show first that ψ(ξ), known for all
ξ ∈ SxM , determines [h,β]. Since ψ(ξ) is a linear functional of [h,β], and the latter belongs to
a linear space that can be identified with R

N , it is enough to show that ψ(ξ)= 0 implies h= 0,
β = 0. By replacing ξ by −ξ , we get that hij ξ

iξ j = 0, βj ξ
j = 0. The second relation easily

implies that β = 0. The first one implies h= 0 easily as well (see, e.g., [33], where also a sharp
estimate is established).

Next, assume that ψ(ξ) = 0 in V . Then ψ(ξ) = 0 on SxM by analytic continuation, thus
[h,β] = 0. Finally, since for any fixed ξ , ψ(ξ) is a linear functional belonging to (RN)′ ∼= R

N ,
and {ψ(ξ); ξ ∈ V } is a complete set, there exists a basis ψ(ξk), k = 1, . . . ,N , in it. �
Remark 3.4. We can say a bit more. Since the determination of [h,β] is done by inverting a linear
transform, one can choose ξm continuously depending on x, if x belongs to a small enough set X,
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such that the map {ψ(x, ξm(x)), m= 1, . . . ,N} �→ [h,β] is invertible with a uniform bound on
the inverse. Then this can be extended to compact sets X.

Definition 3.5. We call a pair [h,β] ∈ L2(M) potential if Eqs. (3.18) hold with [v,ϕ] ∈H1
0(M).

This can be written as follows:(
h

β

)
= d

(
v

ϕ

)
, d :=

(
ds 0
−Y d

)
,

where ds stands for the symmetric derivative acting on covector fields and d is the usual differ-
ential acting on functions (which coincides with the symmetric differential on functions).

Clearly, potential pairs satisfy

I
(
d[v,ϕ])= 0. (3.19)

This follows from (3.17) if v, ϕ are smooth, and follows by continuity for general v, ϕ, once we
establish the mapping properties of N = I ∗I below.

We will relate potential pairs to the non-linear problem. Let (g,α) and (g′, α′) be two gauge
equivalent pairs, i.e., g′ = f ∗g and α′ = f ∗α + dϕ with some diffeomorphism f :M → M ,
fixing ∂M , and some function ϕ vanishing on ∂M . Linearize this near f = Id and ϕ = 0. In other
words, let fτ be a smooth family of such diffeomorphisms with f0 = Id and let ϕτ be a smooth
family of such functions with ϕ0 = 0. Let gτ = f ∗τ g, ατ = f ∗τ α+ dϕτ , and we will compute the
derivatives at τ = 0. It is well known [33, (3.1.5)] and is easy to calculate that dgτ /dτ |τ=0 =
2dsv, where v = dfτ /dτ |τ=0. Let dϕτ /dτ |τ=0 = ψ . Since ατ

i = (αj ◦ fτ )∂f
j
τ /∂x

i + ∂ϕτ /∂xi ,
we get

βi := d

dτ

∣∣∣∣
τ=0

ατ
i = vj ∂jαi + αj∂iv

j +ψ,i

= vjαi,j + αjv
j
,i +ψ,i

= vjαi,j +
(
αjv

j
)
,i
− vjαj,i +ψ,i

=−(dα)ij v
j + (

αjv
j +ψ

)
,i
.

Using (1.4), (1.1), and treating v as a 1-form (by lowering the index), we obtain

β = Y(v)+ d
(〈α,v〉 +ψ

)
.

This shows that

d

dτ

∣∣∣∣
τ=0

[
1

2
gτ ,−ατ

]
= d

[
v,−〈α,v〉 −ψ

]
, where v = dfτ

dτ

∣∣∣∣
τ=0

, ψ = dϕτ

dτ

∣∣∣∣
τ=0

. (3.20)

Since ψ can be arbitrary (as long as it vanishes on ∂M), we see that the linearization of (g′, α′)
near f = Id, ϕ = 0 is given by d[v,ψ] with v, ψ that can be arbitrary.
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For future references, let us mention that by (3.17)

Gμ〈w, ξ 〉 = 〈dw, ξ 〉 �⇒ d

dt

〈
w(γ ), γ̇

〉= 〈
dw(γ ), γ̇

〉
(3.21)

for any unit speed magnetic geodesic γ (t), where w= [v,ϕ], and we used the notation 〈f, ξ 〉 =
〈h, ξ2〉 + 〈β, ξ 〉, where f= [h,β], and similarly 〈w, ξ 〉 = 〈v, ξ 〉 + ϕ.

Definition 3.6. We say that I is s-injective if I [h,β] = 0 with [h,β] ∈ L2(M) implies that [h,β]
is potential, i.e.,

h= dsv, β =−Y(v)+ dϕ (3.22)

with [v,ϕ] ∈H1
0(M).

Let [h,β] be orthogonal to all potential pairs. Then

∫
M

{(
h,dsv

)+ n− 1

2

(
β,−Y(v)+ dϕ

)}
d Vol= 0

for all v,ϕ vanishing on ∂M . Then

−
∫
M

{(
δh− n− 1

2
Y(β), v

)
+ n− 1

2
(δβ)ϕ

}
d Vol= 0,

where δ is the divergence. Therefore,

δh− n− 1

2
Y(β)= 0, δβ = 0. (3.23)

Definition 3.7. We call a pair [h,β] solenoidal if Eqs. (3.23) hold.

This can be written as

δ

(
h

β

)
= 0, δ :=

(
δ −n−1

2 Y

0 δ

)
.

Then d=−δ∗.
In terms of the operators δ, d, the solenoidal pairs are defined as the ones in Ker δ, and the

orthogonal complement of Ker δ is Ran d, consisting of potential pairs. Next, we will describe
the projections to solenoidal pairs.

We will show first that the operator −δd is an elliptic second order (and clearly, a formally
self-adjoint) operator, acting on pairs w= [v,ϕ], where v is a 1-form and ϕ is a function on M .
First, notice that

(−δdw,w)= ‖dw‖2, w ∈ C∞0
(
M int); (3.24)
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thus,−δd is a non-negative operator. Let σp(P ) stand for the principal symbol of P . Then (3.24)
implies that for any such w and a fixed x

(−σp(δd)w,w
)= ∥∥σp(d)w

∥∥2
, (3.25)

where the inner product and the norm are in the finite dimensional space to which w belongs,
i.e., they are as in (3.16) before the integration. We will show that −σp(δd) is in fact a positive
matrix-valued symbol for ξ 
= 0. Since it is homogeneous in the dual variable ξ , it is enough to
show that −σp(δd)w = 0 implies w = 0 for ξ 
= 0. In view of (3.25), if −σp(δd)w = 0, then
σp(d)w= 0. Then σp(d

s)v = 0 (see (4.6)), ξϕ = 0, where [v,ϕ] = w. It is well known [33,34],
and easy to see directly, that ds is elliptic, therefore v = 0. Next, ξϕ = 0 implies ϕ = 0 as well.

Note that the Dirichlet boundary conditions are coercive for δd, because the latter is positive
elliptic. We will show that the kernel and the cokernel of this elliptic problem are trivial. If w
belongs to the kernel of δd, and satisfies Dirichlet boundary conditions, it has to be smooth and
then (3.24) holds for it as well. Then dw = 0 and w = 0 on ∂M . This easily implies w = 0 in
M by integrating (3.21) along magnetic geodesics connecting boundary and interior points, and
using Lemma 3.3. Using standard arguments, one easily checks that the cokernel of δd equipped
with Dirichlet boundary conditions, is trivial as well. Indeed, fix u in the cokernel. Since u
is orthogonal to δdw for all w ∈ C∞0 (M int), we get that δdu = 0. This in particular implies
that u has a trace on ∂M , and choosing w’s with a dense set of normal derivatives on ∂M , we
show that this trace vanishes. Therefore, u= 0 by what we proved above. Denote by (δd)D the
Dirichlet realization of δd on M . The arguments above show that (δd)D is an invertible self-
adjoint operator.

We define the following projections

P = d(δd)−1
D δ, S = Id−P . (3.26)

Then fs = Sf is solenoidal, Pf= dw is potential, and we have the orthogonal decomposition

f= fs + dw

into the solenoidal and potential parts.
Since I vanishes on PL2(M), the s-injectivity of I is then equivalent to the following: I is

injective on SL2(M).

3.4. Adjoint of I

For a fixed simple (g,α), consider

I : L2(M)→ L2
μ(∂+SM)

and consider its dual

I ∗ :L2
μ(∂+SM)→ L2(M).

We will now find an expression for I ∗. Let f= [h,β] and φ(x, ξ) be as in (3.13). Let ψ(x, ξ) ∈
C(∂+SM). Then
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(I f,ψ)=
∫

∂+SM

ψ(x, ξ) dμ(x, ξ)

�(x,ξ)∫
0

[
hij

(
γx,ξ (t)

)
γ̇ i
x,ξ (t)γ̇

j
x,ξ (t)+ βi

(
γx,ξ (t)

)
γ̇ i
x,ξ (t)

]
dt.

By Santaló’s formula (A.4) of Appendix A, we get

(I f,ψ)=
∫
SM

[
hij (x)ξ

iξ j + βi(x)ξ
i
]
ψ�(x, ξ) dΣ2n−1(x, ξ),

where ψ�(x, ξ) is defined as the function that is constant along the orbits of the magnetic flow
and that equals ψ(x, ξ) on ∂+SM . Let dσx(ξ) be the measure on SxM . Then

(I f,ψ)=
∫
M

hij (x)

∫
SxM

ξ iξ jψ�(x, ξ) dσx(ξ) d Vol(x)

+
∫
M

βi(x)

∫
SxM

ξ iψ�(x, ξ) dσx(ξ) d Vol(x).

Therefore, see also [35],

I ∗ψ =
[ ∫
SxM

ξ iξ jψ�(x, ξ) dσx(ξ),
2

n− 1

∫
SxM

ξ iψ�(x, ξ) dσx(ξ)

]
. (3.27)

3.5. Integral representation for the normal operator

Let M1 ⊃ M be another manifold with boundary (a domain in R
n, actually) such that

M int
1 ⊃M . Extend g, α to M1. Then (M1, g,α) is still simple if M1 is close enough to M .
Choose x0 ∈M1 \M , and consider the map

(
expμ

x0

)−1 :M1 →
(
expμ

x0

)−1
(M1).

It is C∞ away from x = x0, therefore it is a C∞ diffeomorphism to its image, if we restrict it to
any compact submanifold M1/2 of M int

1 . We can assume that M1/2 has a smooth boundary, and
that M int

1/2 ⊃M . We denote M1/2 by M1 again, and the map above gives us global coordinates in
a neighborhood of M1 that can be identified with a subset of R

n with a smooth boundary. So in
this section, M1 is considered as a subset of R

n. If g, α are analytic, and M is analytic, then we
will also assume that ∂M1 is analytic.

Denote by I1 the magnetic ray transform on L2(M1),

I1 : L2(M1)→ L2
μ(∂+SM1),

and denote by I ∗1 its dual. Set

N = I ∗1 I1. (3.28)
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Extending all tensors as 0 on M1, we consider L2(M) as a subspace of L2(M1). In this way
we may consider N as the operator

N : L2(M)→ L2(M1).

We then define s-injectivity of N as in Definition 3.6.

Lemma 3.8. N : L2(M)→ L2(M1) is s-injective if and only if I is s-injective.

Proof. Let N be s-injective. Assume that I f = 0 with f ∈ L2(M). Then I1f = 0 on ∂+SM1 as
well, therefore N f= 0, which implies that f is potential.

Now, assume that I is s-injective and let N f= 0. Then

0= (N f, f)L2(M1)
= ‖I1f‖2

L2
μ(∂+SM1)

,

therefore, I f= 0 as an element of L2
μ(∂+SM) as well, hence f is potential. �

We will find an integral representation of N and will show that it is a Ψ DO in a neighborhood
of M , following [36–38].

Using (3.27), and replacing ξ by v, we get the following.

Proposition 3.9.

N f=
[
N22h+N21β,

2

n− 1
(N12h+N11β)

]
, (3.29)

where

(N11β)
i′(x)=

∫
SxM1

vi
′
dσx(v)

∫
βi

(
γx,v(t)

)
γ̇ i
x,v(t) dt,

(N12h)
i′(x)=

∫
SxM1

vi
′
dσx(v)

∫
hij

(
γx,v(t)

)
γ̇ i
x,v(t)γ̇

j
x,v(t) dt,

(N21β)
i′j ′(x)=

∫
SxM1

vi
′
vj

′
dσx(v)

∫
βi

(
γx,v(t)

)
γ̇ i
x,v(t) dt,

(N22h)
i′j ′(x)=

∫
SxM1

vi
′
vj

′
dσx(v)

∫
hij

(
γx,v(t)

)
γ̇ i
x,v(t)γ̇

j
x,v(t) dt. (3.30)

In each of the integrals above, split the t-integral into two parts: I+ corresponding to t > 0,
and I−, corresponding to t < 0. In I+, make the change of variables y = γx,v(t) = expμ

x (tv).
Then tv = (expμ

x )
−1(y), and t, v are C∞ functions of x, y away from the diagonal x = y. We

treat I− in a similar way by making the substitution t ′ = −t , v′ = −v. To this end, note that the
simplicity assumption implies that the map

expμ,−
x (tv)= π ◦ψ−t (−v), t � 0, v ∈ SxM1, (3.31)

is also a C1 diffeomorphism for every x ∈M1.



556 N.S. Dairbekov et al. / Advances in Mathematics 216 (2007) 535–609
We analyze the Schwartz kernel of N near the diagonal below, but at this point we just want to
emphasize that it is smooth away from the diagonal and therefore N has the pseudolocal property.

4. Analysis of the operator N . Generic s-injectivity

In this section, we analyze N and prove s-injectivity for analytic (g,α), and for generic ones.
Here we first assume that [g,α] ∈ Ck(M). As a result, various objects related to g, α will

have smoothness l(k) such that l(k)→∞ as k→∞. To simplify the exposition, we will not try
to estimate l(k) (actually, l(k)= k − k0 with k0 depending on n only). We will say that a given
function (or tensor field) f is smooth, or that f ∈ Cl , if such an l = l(k) exists, and l may vary
from line to line. In particular, if k =∞, then l =∞.

At the end of the section we analyze the case in which (g,α) is an analytic magnetic system.

4.1. More about the magnetic exponential map at the origin

In order to study the singularities of the kernel of N near x = y, we need more precise infor-
mation about the exponential map at the origin. One of the interesting features of the magnetic
problem is that the magnetic exponential map is not C2 unless Ω = 0 by Lemma A.7. On the
other hand, in polar coordinates, it is a smooth map. We are therefore forced to work in polar
coordinates.

Consider y = expμ
x (tv) = γx,v(t), where v ∈ SxM1, and t � 0 are such that y ∈M1. Recall

that M1 now is a subdomain of R
n. We are interested in the behavior of y for small |t | near a

fixed x0, therefore, we can assume that we work in U = {x; |y − x0|� ε} with 0 � ε� 1 such
that U is strictly convex w.r.t. the magnetic geodesics as well as w.r.t. the Euclidean metric.

By Lemma A.7, the map tv = ξ �→ y is not C2 in general. On the other hand, the map (t, v) �→
y is smooth, and respectively analytic, if g is analytic, and in fact extends as a smooth/analytic
map for small negative t as well, by the formula y = γx,v(t). Similarly, the function m(t, v;x)=
(γx,v(t)− x)/t has the same smoothness, therefore

γx,v(t)− x = tm(t, v;x), m(0, v;x)= v. (4.1)

We introduce the new variables (r,ω) ∈R× SxU by

r = t
∣∣m(t, v;x)∣∣

g
, ω=m(t, v;x)/∣∣m(t, v;x)∣∣

g
. (4.2)

Then (r,ω) are polar coordinates for y − x = rω in which we allow r to be negative. Clearly,
(r,ω) are smooth/analytic at least for ε small enough, if g is smooth/analytic. Consider the Jaco-
bian of this change of variables

J := det
∂(r,ω)

∂(t, v)
.

It is not hard to see that J |t=0 = 1, therefore the map R× SxU � (t, v) �→ (r,ω) ∈R× SxU is a
local Cl , respectively analytic, diffeomorphism from (a neighborhood of 0)× SxU to its image.
We can decrease ε if needed to ensure that it is a (global) diffeomorphism on its domain because
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then it is clearly injective. We denote the inverse functions by t = t (r,ω), v = v(r,ω). Note that
in the (r,ω) variables

t = r +O
(|r|), v = ω+O

(|r|), γ̇x,v(t)= ω+O
(|r|). (4.3)

Another representation of the new coordinates can be given by writing

Expμ
x (t, v)= γx,v(t).

Then

r = sign(t)
∣∣Expμ

x (t, v)− x
∣∣
g
, ω= sign(t)

Expμ
x (t, v)− x

|Expμ
x (t, v)− x|g ,

and

(t, v)= (
Expμ

x

)−1
(x + rω)

with the additional condition that r and t have the same sign (or are both zero).

4.2. Principal symbol of N

Since we showed that the Schwartz kernel is smooth away from the diagonal, and we want to
prove eventually that N is a Ψ DO, it is enough to study the restriction of N on a small enough
set U as above. We analyze N22, for example. Perform the change of variables (t, v) �→ (r,ω) in
(3.30), to get

(N22h)
i′j ′(x)=

∫
SxU

∫
R

vi
′
(r,ω;x)vj ′(r,ω;x)hij (x + rω)wi(r,ω;x)wj (r,ω;x)

× J−1(r,ω;x)dr dσx(ω), (4.4)

where w(r,ω, x)= γ̇x,v(t), and supph⊂U .
This type of integral operators is studied in Appendix B. Applying Lemma B.1 and the remark

after it to N22, see (4.4), and proceeding similarly for the other operators Nkl , we get

Proposition 4.1. Nkl , k, l = 1,2, are Ψ DOs in M int
1 with principal symbols

σp(N11)
i′i (x, ξ)= 2π

∫
SxU

ωi′ωiδ(ω · ξ) dσx(ω),

σp(N12)
i′ij (x, ξ)= 2π

∫
SxU

ωi′ωiωj δ(ω · ξ) dσx(ω)= 0,

σp(N21)
i′j ′i (x, ξ)= 2π

∫
SxU

ωi′ωj ′ωiδ(ω · ξ) dσx(ω)= 0,

σp(N22)
i′j ′ij (x, ξ)= 2π

∫
ωi′ωj ′ωiωj δ(ω · ξ) dσx(ω). (4.5)
SxU
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Here ω · ξ = ωjξj . The reason for σp(N12)= 0, σp(N21)= 0 is that they are integrals of odd
functions. We therefore get that, as a Ψ DO of order −1, σp(N)= diag(σp(N22),

−2
n−1σp(N11)).

Note that the principal symbols of N11, N22 are the same as in the case of “ordinary” geodesics,
i.e., they do not depend on Y . Explicit formulas for σp(N11), σp(N22) can be found in [36,37]
and they are based on the analysis of the Euclidean case in [34]. Similarly, the principal symbols
of d and δ are independent of Y and are given by

σp(d)[v,φ] = diag

(
1

2
(ξivj + ξj vi), ξiφ

)
, σp(δ)[h,β] =

(
ξjhij , ξ

jβj

)
. (4.6)

It is well known [37,38], and follows immediately from Proposition 4.1, that N22 is elliptic on
solenoidal tensors, i.e., σp(N22)[h,β] = 0 and σp(δ)[h,β] = 0 imply [h,β] = 0. Similarly, N11
is elliptic on solenoidal (divergence free) 1-forms. As a result, N is elliptic on solenoidal pairs.

We want to emphasize here that pairs solenoidal in M and extended as zero to M1 \M (that
we always assume), may fail to be solenoidal in M1 due to possible jumps at ∂M .

4.3. Parametrix of N

We proceed as in [37,38]. We will define the Hilbert space H̃ 2(M1) as in [37,38]. Let x =
(x′, xn) be local coordinates in a neighborhood U of a point on ∂M such that xn = 0 defines ∂M .
Then we set

‖f ‖2
H̃ 1(U)

=
∫
U

(
n−1∑
j=1

|∂xj f |2 + ∣∣xn∂xnf
∣∣2 + |f |2

)
d Vol(x).

This can be extended to a small enough neighborhood V of ∂M contained in M1. Then we set

‖f ‖
H̃ 2(M1)

=
n∑

j=1

‖∂xj f ‖H̃ 1(V )
+ ‖f ‖

H̃ 1(M1)
. (4.7)

We also define the H̃ 2(M1) space of symmetric 2-tensors and 1-forms, and also the H̃ 2(M1)

space of pairs f= [h,β] which we denote by H̃2(M1). Clearly, the latter is a Hilbert space and
H2(M1)⊂ H̃2(M1)⊂H1(M1).

The space H̃2(M1) has the property that for each f ∈ H1(M) (extended as zero outside M),
we have N f ∈ H̃2(M1). This is not true if we replace H̃2(M1) by H2(M1).

Lemma 4.2. For any t = 1,2, . . . ,∞, there exists k > 0 and a bounded linear operator

Q : H̃2(M1)→ SL2(M) (4.8)

such that

QN f= fs +Kf for all f ∈H1(M), (4.9)

where K : H1(M) → SH1+t (M) extends to K : L2(M) → SHt (M). If t = ∞, then k = ∞.
Moreover, Q can be constructed so that K depends continuously on g in a small neighborhood
of a fixed g0 ∈ Ck(M).
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Proof. We will first reconstruct the solenoidal projection fsM1
from N f modulo smooth terms.

Recall that we extend f as zero outside M , and fsM1
is the solenoidal projection of the so-extended

f in M1. Next, we will reconstruct fs from fsM1
. We follow [37,38].

As in [37,38], we will work with Ψ DOs with symbols of finite smoothness k � 1. All op-
erations we are going to perform would require finitely many derivatives of the amplitude and
finitely many seminorm estimates. In turn, this would be achieved if g ∈ Ck , Y ∈ Ck , k� 1, and
the corresponding Ψ DOs will depends continuously on g, Y .

Since N is elliptic on solenoidal pairs, we get that

W :=N +N0PM1 : C∞(M)→Cl(M1)

is an elliptic Ψ DO of order −1 in M int, where N0 is any properly supported parametrix of
(−Δ)1/2 (having principal symbol |ξ |−1

g ). Next, W f, restricted to a small neighborhood of ∂M1
in M1, is smooth because supp f⊂M . Therefore, there exists a left parametrix P to W such that
PW − Id : L2(M)→Ht (M1) with t � 1, if k� 1. Then SM1(PW − Id)SM1 has the same prop-
erty, therefore P1 := SM1P satisfies P1N = SM1 +K2, where K2 has the smoothing properties
above, therefore,

P1N f= fsM1
+K2f. (4.10)

The next step is to compare fs and fsM1
. We have fs = fsM1

+ du, where u = wM1 − w, and
the latter are the potentials related to f in M1 and M , respectively. Notice that d commutes with
the extension as zero when applied to w because the latter vanishes on ∂M . Then u solves the
boundary value problem

(δd)u= 0 in M, u|∂M =wM1 |∂M. (4.11)

We need to express wM1 |∂M in terms of N f. Since f= 0 outside M , relation (4.10) implies that

−dwM1 = P1N f−K2f in M1 \M . (4.12)

Let (x, ξ) ∈ S(M int
1 \M int) be such that the magnetic geodesic γx,ξ (t), t � 0, can be extended

in M int
1 \M int for t ∈ [0, �1(x, ξ)) and γx,ξ (�1(x, ξ)) ∈ ∂M1; and moreover, γx,ξ is transversal

to ∂M1. Such (x, ξ) clearly exist if M1 is close enough to M and if γx,ξ is close to the outgoing
magnetic geodesic normal to ∂M . Using (3.21), integrate (4.12) along such γx,ξ to get

〈
wM1(x), ξ

〉=
�1(x,ξ)∫

0

〈
(P1N f−K2f)(γx,ξ ), γ̇x,ξ

〉
dt. (4.13)

Here we denote 〈w, ξ 〉 = vj ξ
j + ϕ, where w = [v(x),ϕ(x)] with a 1-form v and a function ϕ,

see also (3.21). Similarly we define 〈f, ξ 〉. By Lemma 3.3, for a fixed x, one can reconstruct
v(x), ϕ from 〈w, ξ 〉 known for finitely many ξ ’s in any neighborhood of a fixed ξ , and this is
done by inverting a matrix. Moreover, one can do this near any fixed x, and the norm of the
solution operator is uniformly bounded in x, see the remark after Lemma 3.3. By a compactness
argument, one can construct an operator P2 such that

wM1(x)|∂M = P2(P1N −K2)f. (4.14)
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Arguing as in [37], we see that

P2P1 : H̃2(M1)→H1/2(∂M) (4.15)

is bounded. Let R :Ht−1/2(M)→Ht (M) be the solution operator u=Rh of the boundary value
problem δdu= 0 in M , u= h on ∂M . Then (4.10), (4.11), (4.14), and (4.15) imply (see also [37])

fs = (Id+dRP2)P1N f+Kf,

where K has the required smoothing properties. We apply S to the identity above and set Q :=
S(Id+dRP2)P1.

To prove the last statement of the lemma, we note that all Ψ DOs we work with depend con-
tinuously on g, α if k� 1. The same applies to S , R and P2. �
4.4. Main results for Ck coefficients

Theorem 4.3. Let (g,α) be a simple Ck magnetic system on M extended to a simple magnetic
system on M1. Then, for k� 1,

(a) Ker I ∩ SL2(M) is finitely dimensional and included in Cl (M), where l→∞ as k→∞.
(b) Assume that I is s-injective for the pair (g,α). Then∥∥fs

∥∥
L2(M)

� C‖N f‖H̃2(M1)
(4.16)

with a constant C > 0 that can be chosen to be uniform in (g,α) under a small enough Ck

perturbation.

Proof. This theorem is an analog of [37, Theorem 2] except for the uniformity statement which
is similar to an analogous result in [38]. Part (a) follows directly from Lemma 4.2. Part (b),
without the last statement, can be deduced from Lemma 4.2 as well, as in [37]. Finally, the proof
of the statement about the uniformity of C is identical to that of [38, Theorem 2]. �

Without the assumption that I is s-injective, one has a hypoelliptic a priori estimate that
can be obtained from (4.16) by adding Cs‖f ‖H−s (M1), ∀s > 0, to its right-hand side, see [37,
Theorem 2(a)].

Corollary 4.4. The set of simple Ck magnetic systems (g,α) with s-injective magnetic ray trans-
form I is open in the Ck topology, if k� 1.

The next lemma is a linear version of Theorem 2.2, see also [38, Lemma 4].

Lemma 4.5. Let (g,α) be a simple Ck magnetic system on M . Let f ∈ L2(M) be such that I f= 0.
Then there exists a Cl pair w, with l→∞ as k→∞, vanishing on ∂M , such that for f̃ := f−dw
we have

∂m f̃|∂M = 0, |m|� l, (4.17)

and if f̃= [h̃, β̃], then in semigeodesic boundary normal coordinates,
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h̃in = β̃n = 0 for all i. (4.18)

If k =∞, then l =∞ and, in particular, (4.17) holds for all m.

Proof. In view of Theorem 4.3(a), we may assume without loss of generality that f ∈Cl(M).
We now show how to construct f̃ satisfying (4.18). We refer to [13,35] for similar arguments.

Let (x′, xn) be semigeodesic boundary normal coordinates. Then gin = δin, Γ i
nn = Γ n

in = 0 for
all i. Let f= [h,β], w= [v,ϕ]. Condition (4.18) is equivalent to

∇ivn +∇nvi = 2hin, ∂nϕ − Y ι
nvι = βn. (4.19)

The first system can be solved by setting first i = n and solving ∂nvn = hnn, vn = 0 for xn = 0
by integration. Then we solve the remaining system of n− 1 ODEs of the form

∂nvι − 2Γ κ
ιnvκ = 2hιn − ∂ιvn, ι= 1, . . . , n− 1, (4.20)

with initial conditions vι = 0 for xn = 0. Finally, we solve the second equation in (4.19) with the
same zero initial condition. This defines w near ∂M . To define w in the whole M , we replace w
by χw, where χ is an appropriate smooth cut-off function equal to 1 near ∂M and supported in
a larger neighborhood of ∂M .

To prove (4.17), we argue as in Theorem 2.2, following [20]. Assume that (4.17) is not true at
some x0 ∈ ∂M . Then by studying the Taylor expansion of 〈f̃, ξ 〉 = h̃ικ ξ

ιξ κ + β̃ιξ
ι near x = x0,

we see that there is ξ0 ∈ T (∂M) such that 〈f̃, ξ 〉 is either strictly negative or strictly positive for
ξ lying in some neighborhood of ξ0. This contradicts the fact that I f̃ = 0 if we integrate over
magnetic geodesics originating from x0 with directions close to ξ0. �
4.5. Analytic magnetic systems

Assume that M is an analytic manifold with smooth boundary ∂M that does not need to be
analytic (that can always be achieved by choosing an analytic atlas; and in case we have a simple
system, we can start with a fixed global coordinate system and do only analytic changes of
variables). We will show that then I is s-injective, if (g,α) are analytic. By “analytic,” we mean
real analytic, and we say that f is analytic in the set X, not necessarily open, if f is analytic in
a neighborhood of X. Then we write f ∈A(X). Notice that one can construct an analytic M1 as
before.

The central result of this section is the following.

Theorem 4.6. If (g,α) is an analytic magnetic system on M , then I is s-injective.

We will give a proof at the end of this section.

Theorem 4.7. Let g, α be analytic in M1. Then Nkl , k, l = 1,2, are analytic Ψ DOs in M int
1 with

principal symbols as in Proposition 4.1.

Proof. Notice first that by (3.30) and the simplicity assumption, Nkl have Schwartz kernels
that are analytic away from the diagonal. Therefore, it is enough to prove the theorem for
N1,2 restricted to an arbitrary small open subset of M1. This, however, follows from (4.4) and
Lemma B.3 of Appendix B. �
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Lemma 4.8. Let g, α be analytic in M1 and assume that I f= 0, f ∈ L2(M). Then fs ∈A(M).

Proof. Consider the solenoidal projection fsM1
= f− dwM1 of f (extended as 0 outside M) on M1.

Since δfsM1
= 0 and N fsM1

= 0 in M int
1 , and since δ and N together form an elliptic system of

analytic Ψ DOs (we can apply an elliptic Ψ DO of order 2 to the left of N to make the new
operator and δ of the same order, see also [37,38]), we get that fsM1

∈A(M int
1 ). On the other

hand, wM1 solves δdwM1 = 0 in M int
1 \M , wM1 = 0 on ∂M1, and by elliptic boundary regularity,

see [38, Lemma 3] and references therein, we have that wM1 is analytic up to ∂M1, therefore
fsM1

∈A(M1).
Next, we have fs = fsM1

+ du, where u=wM1 −w, see also the proof of Lemma 4.2. Then u
solves the boundary value problem (4.11), and all we need is to prove that wM1 |∂M is analytic.
Note that in general, wM1 is not analytic across ∂M , because dwM1 may have a jump there but it
belongs to H 1 because d is elliptic; therefore the trace on ∂M is well defined. Since dwM1 = fsM1
in M int

1 \M , and it is analytic in its closure, in the notation of (4.13), we have

〈
wM1(x), ξ

〉=
�1(x,ξ)∫

0

〈
fsM1

(γx,ξ ), γ̇x,ξ
〉
dt

for x ∈ ∂M and ξ in a small neighborhood of the unit exterior normal to ∂M . This, combined
with Lemma 3.3 and the remark after it, shows that wM1 |∂M is analytic. �
Lemma 4.9. Under the assumptions of Lemma 4.5, assume that g and α are analytic in a neigh-
borhood of ∂M . Then f̃= 0 in a neighborhood of ∂M .

Proof. It is enough to notice that near ∂M , w in the proof of Lemma 4.5 is obtained by solving
ODEs with analytic coefficients. Therefore, f̃ is analytic in a neighborhood of ∂M , and it must
vanish there by (4.17). �
Proof of Theorem 4.6. We first find w as in Lemmas 4.5 and 4.9 such that f̃= fs −dw vanishes
near ∂M , i.e.,

fs = dw near ∂M . (4.21)

Our next goal is to show that one can extend w= [v,ϕ] to the whole M analytically; then (4.21)
would be preserved by analytic continuation (recall that fs is analytic by Lemma 4.8), and this
would imply fs = 0.

Let u±(x, ξ) be the solution of the kinetic equation Gμu = 〈fs , ξ 〉 with u = 0 on ∂±SM .
Integrate to get

u±(x, ξ)=∓
�±(x,ξ)∫

0

〈
fs(γx,ξ ), γ̇x,ξ

〉
dt,

where �+ stands for �. Since I f = 0, we have u+ + u− = 0. For (x, ξ) such that x is close
enough to ∂M and ξ close enough to−en (in boundary normal coordinates), we have u+(x, ξ)=
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〈dw, ξ 〉 = 〈v(x), ξ 〉+ϕ(x) by (4.21) and (3.21). This also implies−u−(x, ξ)= 〈v(x), ξ 〉+ϕ(x).
If we replace ξ by −ξ , since −ξ is close to en, we get by (4.21), −u−(x,−ξ)= −〈v(x), ξ 〉 +
ϕ(x); therefore, u+(x,−ξ)=−〈v(x), ξ 〉 + ϕ(x).

In particular, for x close enough to ∂M and ξ ∈ SxM close enough to either en or −en,

ϕ(x)= u+,even(x, ξ), vj (x)= ∂ηj |η|gu+,odd
(
x,η/|η|g

)∣∣|η|g=1, (4.22)

where u+,odd/even stands for the odd/even part of u+ w.r.t. ξ . The derivative on the right-hand
side of (4.22) can be written as Pu+,odd, where P is a first order differential operator on SxM

with coefficients analytically depending on x and ξ . A direct differentiation shows that (Pu)j =
∂ξj u− ξj ξ

i∂ξ i u+ ξju, and the first order part is clearly tangent to SxM .
We define ϕ(x, ξ) and v(x, ξ) by (4.22) on the whole SM . Since u+(x, ξ) is analytic

on SM , so are ϕ(x, ξ) and v(x, ξ). By (4.22), in some open set they are independent of ξ ,
i.e., gradξ φ(x, ξ) = 0, gradξ v(x, ξ) = 0 there, where gradξ stands for the gradient on SxM .
Those equalities extend to the whole SM by analytic continuation; therefore, (4.22) defines ξ -
independent ϕ and v in the whole M , and they are analytic functions of x. �

We are ready now to state the generic s-injectivity result.

Definition 4.10. For a fixed manifold M , we define Gk to be the set of simple Ck pairs (g,α)

with s-injective magnetic ray transform I = Ig,α .

Theorem 4.11. There exists k0 > 0, such that for k � k0, the set Gk is open and dense in the set
of all simple Ck pairs (g,α) and contains all real analytic simple pairs.

Proof. By Corollary 4.4, Gk is open. By Theorem 4.6, it is dense. �
5. Energy estimates method

It is easy to see that if (M,g,α) is a simple smooth magnetic system and the magnetic ray
transform of a smooth function φ :SM → R vanishes, then φ is the flow derivative of a unique
function u which is continuous on SM , smooth on SM \ S(∂M), and vanishes on ∂(SM):

Gμu= φ, u|∂(SM) = 0. (5.1)

Indeed, u is defined by the formula

u(x, ξ)=−
�(x,ξ)∫
0

φ
(
ψt(x, ξ)

)
dt, (x, ξ) ∈ SM. (5.2)

In this section we will analyze the linear problem (5.1) for φ(x, ξ) of degree at most 1 in ξ

(the linear problem for 1-tensors) and for φ(x, ξ) of degree at most 2 in ξ (the linear problem for
2-tensors).
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5.1. Semibasic tensor fields

We recall the notion of semibasic tensor field and its derivatives (we prefer to adhere to the
notations of [12]).

Let π : TM \ {0} →M be the natural projection, and let βr
sM := π∗τ r

s M denote the bundle
of semibasic tensors of degree (r, s), where τ r

s M is the bundle of tensors of degree (r, s) over M .
Sections of the bundles βr

sM are called semibasic tensor fields, and we denote the space of
smooth sections by C∞(βr

sM) (in particular, C∞(β0
0M)= C∞(TM \ {0})). For such a field T ,

the coordinate representation

T = (
T

i1...ir
j1...js

)
(x, ξ)

holds in the domain of a standard local coordinate system (xi, ξ i) on TM \ {0} associated with a
local coordinate system (xi) in M . Under a change of a local coordinate system, the components
of a semibasic tensor field are transformed by the same formula as those of an ordinary tensor
field on M .

Every “ordinary” tensor field on M defines a semibasic tensor field by the rule T �→ T ◦π , so
that the space of tensor fields on M can be treated as embedded in the space of semibasic tensor
fields.

For a semibasic tensor field (T
i1...ir
j1...js

)(x, ξ), the horizontal derivative is defined by

T
i1...ir
j1...js |k =

∂

∂xk
T

i1...ir
j1...js

− Γ
p
kqξ

q ∂

∂ξp
T

i1...ir
j1...js

+
r∑

m=1

Γ
im
kp T

i1...im−1pim+1...ir
j1...js

−
r∑

m=1

Γ
p
kjm

T
i1...ir
j1...jm−1pjm+1...js

,

the vertical derivative by

T
i1...ir
j1...js ·k =

∂

∂ξk
T

i1...ir
j1...js

,

and the modified horizontal derivative by

T
i1...ir
j1...js :k = T

i1...ir
j1...js |k + |ξ |Y

j
k T

i1...ir
j1...js ·j .

The operators

∇| :C∞
(
βr
sM

)→ C∞
(
βr
s+1M

)
, ∇· :C∞

(
βr
sM

)→ C∞
(
βr
s+1M

)
,

and

∇: :C∞
(
βr
sM

)→ C∞
(
βr
s+1M

)
,

are defined as
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(∇|T )
i1...ir
j1...jsk

=∇|kT i1...ir
j1...js

:= T
i1...ir
j1...js |k,

(∇·T )
i1...ir
j1...jsk

=∇·kT i1...ir
j1...js

= T
i1...ir
j1...js ·k

and

(∇:T )
i1...ir
j1...jsk

=∇:kT i1...ir
j1...js

:= T
i1...ir
j1...js :k.

For convenience, we also define ∇|, ∇·, and ∇: as

∇|i = gij∇|j , ∇·i = gij∇·j , ∇:i = gij∇:j .

In [30,34], the operators ∇| and ∇· were denoted by
h∇ and

v∇ respectively.
Given u ∈ C∞(TM \ {0}), we define

Xu(x, ξ)= ξ iu:i = ξ i
(
u|i + |ξ |Y j

i u·j
)
.

Note that X restricted to SM coincides with Gμ.
For V = (V i) ∈ C∞(β1

0M), we set

h

div V := V i
|i ,

m

div V := V i
:i ,

v

div V := V i
·i , (XV )i = ξkV i

:k.

Note if γ is a magnetic geodesic, then

(XV )
(
γ (t), γ̇ (t)

)=∇γ̇ V
(
γ (t), γ̇ (t)

)
.

Given a function u :SM → R, we will also denote by u its extension to a positively homo-
geneous function of degree 0 on TM \ {0} (hoping that this will not yield any confusion). For
a smooth φ the smoothness properties of u defined by (5.2) are determined by those of �(x, ξ).
As mentioned in the beginning of Section 2.2, the latter function is smooth on SM \ S(∂M). All
points of S(∂M) are singular for � as some derivatives of � are unbounded in a neighborhood of
such a point. Nonetheless, some derivatives are bounded. Let ρ be a smooth function on M such
that ∂M = ρ−1(0) and |gradρ| = 1 in some neighborhood of ∂M . Define

∇:ρu(x, ξ)=∇:u(x, ξ)−
〈∇:u(x, ξ),gradρ(x)

〉
gradρ(x).

Note that ∇:ρu(x, ξ) is completely determined by the restriction of u to the level set of ρ that
contains (x, ξ).

Lemma 5.1. (Cf. [33, Lemma 3.2.3].) The semibasic vector fields ∇:ρ� and ∇·� are bounded on
SM \ S(∂M).

Proof. Clearly, ∇:ρρ = 0. Let h(x, ξ, t) = ρ(γx,ξ (t)). Since h(x, ξ,0) = ρ(x), it follows that
∇:ρh(x, ξ,0)= 0 and therefore

∇:ρh(x, ξ, t)= a(x, ξ, t)t
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for some smooth field a. Differentiating the equality h(x, ξ, �(x, ξ)) = 0 for (x, ξ) ∈ SM \
S(∂M), we obtain

∇:ρh
(
x, ξ, �(x, ξ)

)+ ∂ρ

∂t

(
x, ξ, �(x, ξ)

)∇:ρ�(x, ξ)
=∇:ρh

(
x, ξ, �(x, ξ)

)+ 〈
gradρ(y), η

〉∇:ρ�(x, ξ)= 0,

where (y, η)=ψ�(x,ξ)(x, ξ) ∈ ∂−SM . Hence,

∇:ρ�(x, ξ)=−
�(x, ξ)

〈gradρ(y), η〉a
(
x, ξ, �(x, ξ)

)
.

Since �(x, ξ) � |L(y, η)|, boundedness of ∇:ρ�(x, ξ) now follows from Lemma 2.3.
Boundedness of ∇·� is established similarly. �

5.2. Identities

The next identities are particular cases of those in [12, Lemmas 4.6 and 4.7]. For (x, ξ) ∈ SM :

2
〈∇:u,∇·(Xu)

〉= |∇:u|2 +X
(〈∇:u,∇·u〉)− m

div
(
(Xu)∇·u)

+ v

div
(
(Xu)∇:u)− 〈

R̃ξ (∇·u),∇·u
〉+ 〈

Y(∇·u),∇:u〉
, (5.3)

2
〈∇:u,∇·(Xu)

〉= |∇:u|2 + ∣∣∇·(Xu)
∣∣2 + 〈

Y(ξ),∇·u〉2 − ∣∣X(∇·u)∣∣2
, (5.4)

where R̃ξ (Z)= (R̃i
jklξ

j ξ lZk),

R̃i
jkl =Ri

jkl + ξj
(
Y i
k|l − Y i

l|k
)+ gjs

(
Y s
l Y

i
k − Y s

k Y
i
l

)
,

and (Ri
jkl) is the Riemann curvature tensor.

For a unit speed magnetic geodesic γ , the operator C on smooth vector fields along γ is
defined by (see [12, (45)])

C(Z)=R(γ̇ ,Z)γ̇ − Y(Ż)− (∇ZY )(γ̇ ),

where Ż stands for the covariant derivative along γ , Ż =∇γ̇ Z.
The operator C̃ on smooth semibasic vector fields on TM \ {0} is defined by (see [12, Sec-

tion 4.6])

C̃(Z)(x, ξ)=Rξ (Z)− Y(XZ)− (∇|ZY )(ξ),

where Rξ (Z)= (Ri
jklξ

j ξ lZk) is the curvature operator.
Notice that

C̃(Z)
(
γ (t), γ̇ (t)

)= C
(
Z

(
γ (t), γ̇ (t)

))
.

In view of this identity, we henceforth omit the tilde in the notation of C̃, hoping that no confusion
will arise.
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Lemma 5.2. The following hold for (x, ξ) ∈ SM :

∣∣X(∇·u)∣∣2 − 〈
C(∇·u),∇·u〉− 〈

Y(ξ),∇·u〉2
= ∣∣∇·(Xu)

∣∣2− v

div
(
(Xu)∇:u)

− h

div
(〈∇:u,∇·u〉ξ − (Xu)∇·u)+ v

div
(〈∇:u,∇·u〉Y(ξ)

)
, (5.5)∣∣X(∇·u)∣∣2 − 2

〈
C(∇·u),∇·u〉− 〈

Y(ξ),∇·u〉2
= ∣∣∇·(Xu)

∣∣2 − 2
v

div
(
(Xu)∇:u)− |∇:u|2 + 2

〈∇:u,∇·(Xu)
〉

− 2
h

div
(〈∇:u,∇·u〉ξ − (Xu)∇·u)+ v

div
(〈∇:u,∇·u〉Y(ξ)

)
. (5.6)

Proof. Note that

X
(〈∇:u,∇·u〉)(x, ξ)= ξj

(〈∇:u,∇·u〉):j = (〈∇:u,∇·u〉ξj
)
:j − 〈∇:u,∇·u〉ξj

:j

= m

div
(〈∇:u,∇·u〉ξ)− 〈∇:u,∇·u〉Y j

j =
m

div
(〈∇:u,∇·u〉ξ)

, (5.7)

because Y
j
j = 0 by the skew-symmetry of Y .

Using (5.7), we first change (5.3) to

2
〈∇:u,∇·(Xu)

〉= |∇:u|2+ m

div V + v

div
(
(Xu)∇:u)

− 〈
R̃ξ (∇·u),∇·u

〉+ 〈
Y(∇·u),∇:u〉

, (5.8)

with

V = 〈∇:u,∇·u〉ξ − (Xu)∇·u.

Next,

m

div V = V i
:i = V i

|i + Y
j
i V

i
·j =

h

div V + v

div
(
Y(V )

)
= h

div V + v

div
(〈∇:u,∇·u〉Y(ξ)

)− v

div
(
(Xu)Y (∇·u))

and

v

div
(
(Xu)Y (∇·u))= (

(Xu)Y
j
i g

iku·k
)
·j = (Xu)·j Y j

i g
iku·k + (Xu)gkiY

j
i u·k·j

= 〈∇·(Xu),Y (∇·u)〉,
because gkiY

j
u·k·j = 0 by the skew-symmetry of Y and symmetry of mixed derivatives of u.
i
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Then (5.8) takes the form

2
〈∇:u,∇·(Xu)

〉= |∇:u|2+ h

div V+ v

div
(〈∇:u,∇·u〉Y(ξ)

)− 〈∇·(Xu),Y (∇·u)〉
+ v

div
(
(Xu)∇:u)− 〈

R̃ξ (∇·u),∇·u
〉+ 〈

Y(∇·u),∇:u〉
. (5.9)

We have (see [12, Section 4.6]):

〈
C(∇·u),∇·u〉= 〈

Rξ (∇·u),∇·u
〉+ 〈∇·(Xu),Y (∇·u)〉− 〈∇:u,Y (∇·u)〉

+ 〈
Y(ξ),∇·u〉2 − 〈

(∇|(∇·u)Y )(ξ),∇·u〉
.

Also,

〈
R̃ξ (∇·u),∇·u

〉= (
Ri

jkl + ξj
(
Y i
k|l − Y i

l|k
)+ gjs

(
Y s
l Y

i
k − Y s

k Y
i
l

))
u·kvlvju·i

= 〈
R(∇·u, ξ)ξ,∇·u〉+ 〈∇ξ Y (∇·u),∇·u〉− 〈∇(∇·u)Y (ξ),∇·u〉
+ 〈

Y(ξ), ξ
〉〈
Y(∇·u),∇·u〉− 〈

Y(∇·u), ξ 〉〈
Y(ξ),∇·u〉

= 〈
Rξ (∇·u),∇·u

〉− 〈
(∇(∇·u)Y )(ξ),∇·u〉+ 〈

Y(ξ),∇·u〉2
.

Therefore,

〈
R̃ξ (∇·u),∇·u

〉= 〈
C(∇·u),∇·u〉− 〈∇·(Xu),Y (∇·u)〉+ 〈∇:u,Y (∇·u)〉. (5.10)

Using (5.10) in (5.9), we get

2
〈∇:u,∇·(Xu)

〉= |∇:u|2+ h

div V + v

div
(〈∇:u,∇·u〉Y(ξ)

)+ v

div
(
(Xu)∇:u)

− 〈
C(∇·u),∇·u〉

. (5.11)

Subtracting (5.11) from (5.4), we arrive at (5.5). Multiplying (5.11) by 2 and subtracting the
result from (5.4), we arrive at (5.6). �
5.3. Linear problem for 1-tensors

Theorem 5.3. Let (M,g,α) be a simple magnetic system, v a square integrable 1-form, and
ϕ a square integrable function on M . If the magnetic ray transform of the function φ(x, ξ) =
vi(x)ξ

i + ϕ(x) vanishes, then ϕ = 0 and v = dh for some function h ∈H 1
0 (M).

Proof. Recall that the space L2(M) consists of the pairs [v,ϕ], where v is a square integrable 1-
form and ϕ is a square integrable function on M , furnished with the norm (3.16) (see Section 3.3).
In L2(M), we consider the subspace SL2(M) of solenoidal pairs [v,ϕ], defined by the condition
δv = 0, and the subspace PL2(M) of potential pairs [dh,0], where h ∈ H 1

0 (M). Then L2(M)

decomposes as the orthogonal direct sum of SL2(M) and PL2(M).
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Associating each pair [v,ϕ] ∈ L2(M) with the function φ(x, ξ)= vi(x)ξ
i + ϕ(x), define

I[v,ϕ] = Iφ.

Clearly, I vanishes on PL2(M) and, to prove the theorem, it suffices to show that kerI ∩
SL2(M)= 0.

By considerations similar to those in Section 4, one can prove, as in part (a) of Theorem 4.3,
that KerI ∩ SL2(M)⊂ Cl (M).

Thus, we may assume under assumptions of the theorem that [v,ϕ] ∈ Cl (M).
Define u :SM →R by means of (5.2). Then u satisfies the boundary value problem (5.1). As

before, we preserve the notation u for the extension of u to a positively homogeneous function
of degree 0 on TM \ {0}. Then for (x, ξ) ∈ TM \ {0} we have

Xu(x, ξ)= vi(x)ξ
i + |ξ |ϕ(x).

Now, we wish to integrate identity (5.5) over SM . However, u has singularities on T (∂M),
and we need some precautions against them. We proceed in the same way as in the proof of
Theorem 3.4.3 in [33]. Let ρ :M →R be a nonnegative smooth function such that ∂M = ρ−1(0)
and |gradρ| = 1 near ∂M . For ε > 0, let Mε = {x ∈M: ρ(x) � ε}. Then u is smooth on SMε .
Integrating (5.5) over SMε , we get

∫
SMε

{∣∣X(∇·u)∣∣2 − 〈
C(∇·u),∇·u〉− 〈

Y(ξ),∇·u〉2}
dΣ2n−1(x, ξ)

=
∫

SMε

∣∣∇·(Xu)
∣∣2

dΣ2n−1 −
∫

SMε

v

div
(
(Xu)∇:u)

dΣ2n−1

−
∫

SMε

h

div
(〈∇:u,∇·u〉ξ − (Xu)∇·u)

dΣ2n−1

+
∫

SMε

v

div
(〈∇:u,∇·u〉Y(ξ)

)
dΣ2n−1(x, ξ). (5.12)

Now, we transform the last three integrals on the right-hand side by using the Gauss–
Ostrogradskiı̆ formulas of [33, Theorem 2.7.1]. They give:

∫
SMε

v

div
(
(Xu)∇:u)

dΣ2n−1 = n

∫
SMε

〈
(Xu)∇:u, ξ 〉

dΣ2n−1(x, ξ)

= n

∫
SMε

(Xu)2 dΣ2n−1

because 〈∇:u, ξ 〉 =Xu,
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∫
SMε

h

div
(〈∇:u,∇·u〉ξ − (Xu)∇·u)

dΣ2n−1

= (−1)n−1
∫

∂(SMε)

〈〈∇:u,∇·u〉ξ − (Xu)∇·u,gradρ(x)
〉
dΣ2n−2(x, ξ)

= (−1)n−1
∫

∂(SMε)

(〈∇:ρu,∇·u〉〈ξ,gradρ〉 − 〈∇:ρu, ξ 〉〈∇·u,gradρ〉)dΣ2n−2

because a straightforward calculation gives

〈〈∇:u,∇·u〉ξ − (Xu)∇·u,gradρ(x)
〉= 〈∇:ρu,∇·u〉〈ξ,gradρ〉 − 〈∇:ρu, ξ 〉〈∇·u,gradρ〉,

and ∫
SMε

v

div
(〈∇:u,∇·u〉Y(ξ)

)
dΣ2n−1(x, ξ)

= (n− 1)
∫

SMε

〈〈∇:u,∇·u〉Y(ξ), ξ
〉
dΣ2n−1(x, ξ)= 0

because 〈Y(ξ), ξ 〉 = 0.
Hence, (5.12) takes the form

∫
SMε

{∣∣X(∇·u)∣∣2 − 〈
C(∇·u),∇·u〉− 〈

Y(ξ),∇·u〉2}
dΣ2n−1(x, ξ)

=
∫

SMε

∣∣∇·(Xu)
∣∣2

dΣ2n−1 − n

∫
SMε

(Xu)2 dΣ2n−1

+ (−1)n
∫

∂(SMε)

(〈∇:ρu,∇·u〉〈ξ,gradρ〉 − 〈∇:ρu, ξ 〉〈∇·u,gradρ〉)dΣ2n−2. (5.13)

Observe that by Lemma 5.1 and (5.2), the derivatives ∇:ρu and ∇·u are bounded in SM \
S(∂M). This fact allows us to pass to the limit in (5.13), arriving at the identity

∫
SM

{∣∣X(∇·u)∣∣2 − 〈
C(∇·u),∇·u〉− 〈

Y(ξ),∇·u〉2}
dΣ2n−1(x, ξ)

=
∫
SM

∣∣∇·(Xu)
∣∣2

dΣ2n−1 − n

∫
SM

(Xu)2 dΣ2n−1

+ (−1)n
∫ (〈∇:ρu,∇·u〉〈ξ,gradρ〉 − 〈∇:ρu, ξ 〉〈∇·u,gradρ〉)dΣ2n−2.
∂(SM)
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Note that the last integral on the right-hand side vanishes, because u|∂(SM) = 0 and hence
∇·u|∂(SM) = 0.

For (x, ξ) ∈ SM , Xu(x, ξ) = vi(x)ξ
i + ϕ(x). As follows from Lemma 4.5.3 of [34] (and is

easy to check directly),

∫
SM

∣∣∇·(vi(x)ξ i + ϕ(x)
)∣∣2

dΣ2n−1 � n

∫
SM

(
vi(x)ξ

i + ϕ(x)
)2

dΣ2n−1.

Setting Z =∇·u, we thus have

∫
SM

{|XZ|2 − 〈
C(Z),Z

〉− 〈
Y(ξ),Z

〉2}
dΣ2n−1 � 0.

By Santaló’s formula (A.4) and the Index Lemma A.10 of Appendix A, this is possible if and
only if Z = 0. So u(x, ξ) is independent of ξ , which clearly implies the sought conclusion. �
5.4. Linear problem for 2-tensors

For a magnetic system (M,g,α) and (x, ξ) ∈ SM , put

kμ(x, ξ)= sup
η

{
2K(x,σξ,η)+

〈
Y(η), ξ

〉2 + (n+ 3)
∣∣Y(η)

∣∣2 − 2
〈
(∇ηY )(ξ), η

〉}
,

where the supremum is taken over all unit vectors η ∈ TxM orthogonal to ξ , and K(x,σξ,η) is
the sectional curvature of the 2-plane σξ,η spanned by ξ and η.

Define

k+μ (x, ξ)=max
{
0, k(x, ξ)

}
and

k(M,g,α)= sup
γ

Tγ

Tγ∫
0

k+μ
(
γ (t), γ̇ (t)

)
dt,

where the supremum is taken over all unit speed magnetic geodesics γ : [0, Tγ ] →M running
between boundary points.

Theorem 5.4. If (M,g,α) be a simple magnetic system with k(M,g,α) � 4, then I is s-injective.

Remark 5.5. Note that the condition k(M,g,α) � 4 holds if (M,g) is negatively curved and
the C1-norm of Y is small enough. Also, it is easy to see that this conditions is valid for every
sufficiently small simple piece of any magnetic system.

Proof. Assume that [h,β] ∈ ker I ∩SL2(M). Then, by Theorem 4.3(a), the pair [h,β] is smooth.
Define u :SM → R by means of (5.2). Then u satisfies the boundary value problem (5.1). As
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before, we preserve the notation u for the extension of u to a positively homogeneous function
of degree 0 on TM \ {0}. Then for (x, ξ) ∈ TM \ {0} we have

Xu= |ξ |−1hij (x)ξ
iξ j + βj (x)ξ

j . (5.14)

Now, we wish to integrate identity (5.6) over SM . Again u has singularities on T (∂M). We
overcome this obstacle in the same way as in the proof of the previous theorem. Thus, we deduce

∫
SM

{∣∣X(∇·u)∣∣2 − 2
〈
C(∇·u),∇·u〉− 〈

Y(ξ),∇·u〉2}
dΣ2n−1(x, ξ)

=
∫
SM

∣∣∇·(Xu)
∣∣2

dΣ2n−1 − 2
∫

SM

v

div
(
(Xu)∇:u)

dΣ2n−1 −
∫

SM

|∇:u|2 dΣ2n−1

+ 2
∫

SM

〈∇:u,∇·(Xu)
〉
dΣ2n−1 − 2

∫
SM

h

div
(〈∇:u,∇·u〉ξ − (Xu)∇·u)

dΣ2n−1

+
∫

SM

v

div
(〈∇:u,∇·u〉Y(ξ)

)
dΣ2n−1.

Again we use the Gauss–Ostrogradskiı̆ formulas to transform integrals of divergent form.
Denoting the leftmost side of the above formula by A, we obtain

A=
∫

SM

∣∣∇·(Xu)
∣∣2

dΣ2n−1 −
∫

SM

{
2n(Xu)2 + |∇:u|2}dΣ2n−1

+ 2
∫

SM

〈∇:u,∇·(Xu)
〉
dΣ2n−1

�
∫

SM

∣∣∇·(Xu)
∣∣2

dΣ2n−1 − (2n+ 1)
∫

SM

(Xu)2 dΣ2n−1

+ 2
∫

SM

〈∇:u,∇·(Xu)
〉
dΣ2n−1, (5.15)

where we have used the inequality |Xu| = |〈∇:u, ξ 〉|� |∇:u|.
From (5.14) we have for (x, ξ) ∈ SM

(Xu)·l = 2hlj ξ
j − ξlhij ξ

iξ j + βl.

Therefore,

∫ ∣∣∇·(Xu)
∣∣2

dΣ2n−1 =
∫ ∣∣2h(ξ)− 〈

h, ξ2〉ξ + β
∣∣2

dΣ2n−1
SM SM
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=
∫

SM

{
4
∣∣h(ξ)∣∣2 − 3

〈
h, ξ2〉2 + |β|2 + 4

〈
h(ξ),β

〉− 〈
h, ξ2〉〈β, ξ 〉}dΣ2n−1

=
∫

SM

{
4
∣∣h(ξ)∣∣2 − 3

〈
h, ξ2〉2 + |β|2}dΣ2n−1, (5.16)

∫
SM

(Xu)2 dΣ2n−1 =
∫

SM

{〈
h, ξ2〉2 + 〈β, ξ 〉2}dΣ2n−1. (5.17)

Now, we transform the last integral in (5.15). Once

∇:u=∇|u− Y(∇·u),

it follows that 〈∇:u,∇·(Xu)
〉= 〈∇|u,∇·(Xu)

〉− 〈
Y(∇·u),∇·(Xu)

〉
. (5.18)

Observe that〈∇|u,∇·(Xu)
〉= gklu|k

(
2hlj ξ

j − ξlhij ξ
iξ j + βl

)
= 2

(
ugklhlj ξ

j
)
|k − 2ugklhlj,kξ

j − (
uξkhij ξ

iξ j
)
|k

+ uξk
(
hij ξ

iξ j
)
|k +

(
uβk

)
|k − uβk

,k

= h

div(W)− 2u(δh)j ξ
j + uG

(
hij ξ

iξ j
)− uδ(β)

= h

div(W)− (n− 1)
〈
uY(β), ξ

〉+ uG
(〈
h, ξ2〉), (5.19)

with

Wk = 2ugklhlj ξ
j − uξkhij ξ

iξ j + uβk.

Here we have used Eqs. (3.23) for solenoidal pairs.
Integrating (5.19) and transforming integrals by means of Gauss–Ostrogradskiı̆ formulas, we

get ∫
SM

〈∇|u,∇·(Xu)
〉
dΣ2n−1

=−(n− 1)
∫

SM

〈
uY(β), ξ

〉
dΣ2n−1 +

∫
SM

uG
(〈
h, ξ2〉)dΣ2n−1

=−
∫

SM

v

div
(
uY(β)

)
dΣ2n−1 −

∫
SM

G(u)
〈
h, ξ2〉dΣ2n−1

=−
∫ 〈

Y(β),∇·u〉
dΣ2n−1 −

∫
Gμ(u)

〈
h, ξ2〉dΣ2n−1
SM SM
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+
∫

SM

(
ξ iY

j
i u·j

)〈
h, ξ2〉dΣ2n−1

=
∫
SM

〈
Y(∇·u),β〉

dΣ2n−1 −
∫

SM

〈
h, ξ2〉2 dΣ2n−1

+
∫

SM

〈∇·u,Y (ξ)
〉〈
h, ξ2〉dΣ2n−1. (5.20)

Next, ∫
SM

〈
Y(∇·u),∇·(Xu)

〉
dΣ2n−1

=
∫
SM

〈
Y(∇·u),

(
2hlj ξ

j − ξlhij ξ
iξ j + βl

)〉
dΣ2n−1

= 2
∫

SM

〈
Y(∇·u),h(ξ)〉dΣ2n−1 +

∫
SM

〈∇·u,Y (ξ)
〉〈
h, ξ2〉dΣ2n−1

+
∫

SM

〈
Y(∇·u),β〉

dΣ2n−1, (5.21)

where h(ξ)= (gkihij ξ
j ).

From (5.18), (5.20), and (5.21) we get∫
SM

〈∇:u,∇·(Xu)
〉
dΣ2n−1

=−
∫

SM

〈
h, ξ2〉2 dΣ2n−1 − 2

∫
SM

〈
Y(∇·u),h(ξ)〉dΣ2n−1

�−
∫

SM

〈
h, ξ2〉2 dΣ2n−1 + 2

n+ 2

∫
SM

∣∣h(ξ)∣∣2
dΣ2n−1

+ n+ 2

2

∫
SM

∣∣Y(∇·u)∣∣2
dΣ2n−1. (5.22)

Using (5.16), (5.17), and (5.22) in (5.15), we find that

A �
∫

SM

{
4
∣∣h(ξ)∣∣2 − 3

〈
h, ξ2〉2 + |β|2}dΣ2n−1

− (2n+ 1)
∫ {〈

h, ξ2〉2 + 〈β, ξ 〉2}dΣ2n−1 − 2
∫ 〈

h, ξ2〉2 dΣ2n−1
SM SM
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+ 4

n+ 2

∫
SM

∣∣h(ξ)∣∣2
dΣ2n−1 + (n+ 2)

∫
SM

∣∣Y(∇·u)∣∣2
dΣ2n−1

= 4(n+ 3)

n+ 2

∫
SM

∣∣h(ξ)∣∣2
dΣ2n−1 − 2(n+ 3)

∫
SM

〈
h, ξ2〉2 dΣ2n−1

+
∫

SM

|β|2 dΣ2n−1 − (2n+ 1)
∫

SM

〈β, ξ 〉2 dΣ2n−1

+ (n+ 2)
∫

SM

∣∣Y(∇·u)∣∣2
dΣ2n−1.

As follows from Lemma 4.5.3 of [34] (and is easy to check directly),∫
SM

∣∣h(ξ)∣∣2
dΣ2n−1 � n+ 2

2

∫
SM

〈
h, ξ2〉2 dΣ2n−1,

∫
SM

|β|2 dΣ2n−1 � n

∫
SM

〈β, ξ 〉2 dΣ2n−1.

Therefore,

A � (n+ 2)
∫

SM

∣∣Y(∇·u)∣∣2
dΣ2n−1.

Setting Z =∇·u, we rewrite this as follows:∫
SM

{∣∣X(Z)
∣∣2 − 2

〈
C(Z),Z

〉− 〈
Y(Z), ξ

〉2 − (n+ 2)
∣∣Y(Z)

∣∣2}
dΣ2n−1 � 0. (5.23)

We need the following lemma whose proof is given below.

Lemma 5.6. Let γ : [0, T ]→M be a unit speed magnetic geodesic. If

T∫
0

k+μ
(
γ (t), γ̇ (t)

)
dt � 4/T ,

then for every smooth vector field Z along γ vanishing at the endpoints of γ and orthogonal to γ̇

we have

T∫
0

{|Ż|2 − 2
〈
C(Z),Z

〉− 〈
Y(Z), γ̇

〉2 − (n+ 2)
∣∣Y(Z)

∣∣2}
dt � 0 (5.24)

with equality if and only if Z = 0.
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Continuing the proof of the theorem, observe that, by Santaló’s formula (A.4) and Lemma 5.6,
inequality (5.23) may hold if and only if Z = 0. So ∇·u= 0, which means that u(x, ξ) is inde-
pendent of ξ . Since the pair [h,β] is solenoidal, this readily yields the sought conclusion. �
Proof of Lemma 5.6. Denote the left-hand side of (5.24) by B . Since

C(Z)=Rγ̇ (Z)− Y(Ż)− (∇ZY )(γ̇ ),

we have

B =
T∫

0

{|Ż|2 − 2
〈
Rγ̇ (Z),Z

〉+ 2
〈
Y(Ż),Z

〉+ 2
〈
(∇ZY )(γ̇ ),Z

〉

− 〈
Y(Z), γ̇

〉2 − (n+ 2)
∣∣Y(Z)

∣∣2}
dt.

Let ei , i = 1, . . . , n, be an orthonormal frame at γ (0), with en = γ̇ (0). Let Ei(t), 0 � t � T ,
be a vector field along γ satisfying the equation

Ėi = Y(Ei)

with the initial condition Ei(0)= ei . Surely, En = γ̇ . Since

d

dt
〈Ei,Ej 〉 = 〈Ėi ,Ej 〉 + 〈Ei, Ėj 〉 =

〈
Y(Ei),Ej

〉+ 〈
Ei,Y (Ej )

〉= 0,

we see that E1(t), . . . ,En(t) is an orthonormal frame for each t .
Consider the expansion of Z in this frame:

Z(t)= zκ(t)Eκ(t), κ ∈ {1, . . . , n− 1}.

Then

Ż = żκEκ + zκĖκ = żκEκ + zκY (Eκ)= żκEκ + Y(Z),

|Ż|2 =
∑
κ

żκ żκ + 2Yκλz
κ żλ + ∣∣Y(Z)

∣∣2
,

〈
Y(Ż),Z

〉= 〈
żκY (Eκ)+ Y 2(Z), zλEλ

〉=−Yκλz
κ żλ − ∣∣Y(Z)

∣∣2

with

Yκλ =
〈
Y(Eκ),Eλ

〉
.

Therefore,
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B =
T∫

0

{∑
κ

żκ żκ − [
2K(σγ̇ ,Z)|Z|2 +

〈
Y(Z), γ̇

〉2

+ (n+ 3)
∣∣Y(Z)

∣∣2 − 2
〈
(∇ZY )(γ̇ ),Z

〉]}
dt

�
T∫

0

{∑
κ

żκ żκ − kμ|Z|2
}
dt =

T∫
0

∑
κ

{
żκ żκ − kμz

κzκ
}
dt.

Now, the claim follows from Lyapunov’s inequality [16, p. 346]. �
6. General rigidity theorems

6.1. Rigidity in a given conformal class

We first state a rigidity theorem, fixing the conformal class of a metric. The theorem below
generalizes the corresponding well-known result for the ordinary boundary rigidity problem, see
[9,23,24].

Theorem 6.1. Let (g,α) and (g′, α′) be simple magnetic systems on M whose boundary ac-
tion functions A|∂M×∂M and A

′|∂M×∂M coincide. If g′ is conformal to g, i.e., g′ = ω2(x)g for
a smooth positive function ω on M , then ω≡ 1 and α′ = α + dh for some smooth function h on
M vanishing on ∂M , hence (g′, α′) is gauge equivalent to (g,α).

Proof. In view of Lemma 2.1, ω= 1 on the boundary of M . Next, using Lemma 2.5, we see that
the scattering relations S and S ′ of both magnetic systems coincide.

Let us show that ω= 1 on the whole of M . Note that for (x, ξ) ∈ ∂+SM

A
′(γ ′x,ξ ) � A

′(γx,ξ )= 1

2

�(x,ξ)∫
0

ω2(γx,ξ (t))dt + 1

2
�(x, ξ)−

∫
γx,ξ

α′. (6.1)

Using (2.9) and (2.8), whence we obtain

Volg′(M)= 1

ωn−1

∫
∂+SM

A
′(γ ′x,ξ ) dμ(x, ξ)

� 1

2ωn−1

∫
∂+SM

{ �(x,ξ)∫
0

ω2(γx,ξ (t))dt + �(x, ξ)

}
dμ(x, ξ)

= 1

2

∫
ω2 d Vol+1

2
Volg(M).
M
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On the one hand, by Hölder’s inequality

∫
M

ω2 d Vol �
{∫
M

ωn d Vol

} 2
n
{∫
M

d Vol

} n−2
n =Volg′(M)

2
n Volg(M)

n−2
n , (6.2)

with equality if and only if ω≡ 1.
It follows that

Volg′(M) � 1

2
Volg′(M)

2
n Volg(M)

n−2
n + 1

2
Volg(M). (6.3)

However, by Theorem 2.8, Volg′(M)=Volg(M), which implies that (6.3) holds with the equality
sign. This means that (6.2) holds with the equality sign. Thus, ω≡ 1.

Now, (6.1) and the equality A
′(γ ′x,ξ )=A(γx,ξ ) yield

∫
γx,ξ

α �
∫

γx,ξ

α′.

In view of (A.4) and (2.8), we conclude now that

∫
γx,ξ

(α′ − α)= 0

for all (x, ξ) ∈ ∂+SM . By Theorem 5.3, we see that α′ − α = dh for some function h on M

vanishing on ∂M . This completes the proof of the theorem. �
6.2. Rigidity of analytic systems

Theorem 6.2. If M is a real-analytic compact manifold with boundary, and (g,α) and (g′, α′)
are simple real-analytic magnetic systems on M with the same boundary action function, then
these systems are gauge equivalent.

Proof. Consider the diffeomorphism f :M →M constructed in the proof of Theorem 2.2. Re-
call that in a neighborhood of ∂M , f coincides with the map exp∂M ◦ (exp′∂M)−1, which is
obviously analytic for analytic systems.

As shown in that proof, g and f ∗g′ have the same jets on ∂M . Hence, by analyticity, g and
f ∗g′ coincide in some connected neighborhood of ∂M , and f is thus an analytic isometry of a
neighborhood of ∂M of the analytic Riemannian manifold (M,g) onto a neighborhood of ∂M of
the analytic Riemannian manifold (M,g′), which is moreover the identity when restricted to ∂M .
Now, the same arguments as in the proof of [21, Theorem C(a)] show that f extends from a neigh-
borhood of ∂M to an analytic isometry f̃ of (M,g) onto (M,g′). Now, the sought conclusion
follows from Theorem 6.1 applied to the magnetic systems (M,g,α) and (M, f̃ ∗g′, f̃ ∗α′). �
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6.3. Rigidity of reversible systems

A magnetic system (M,g,α) is said to be reversible if the flip (x, ξ) �→ (x,−ξ) conjugates
ψt with ψ−t . It is easy to see that a system is reversible if and only if dα = 0, i.e., if and only
if the Lorentz force Y of the system vanishes. In this case magnetic geodesics are nothing but
the ordinary geodesics of the Riemannian manifold (M,g); moreover, simplicity of a reversible
magnetic system (M,g,α) is equivalent to simplicity of the Riemannian manifold (M,g).

It is interesting to know whether reversibility of a magnetic system can be established by
boundary measurements. Observe that if a system is reversible then

S
(−S(x, ξ)

)= (x,−ξ) (6.4)

for all (x, ξ) ∈ ∂+SM . Let us call the systems satisfying (6.4) boundary reversible.

Theorem 6.3. A simple magnetic system is boundary reversible if and only if it is reversible.

Proof. Let (M,g,α) be a boundary reversible simple magnetic system. Consider the magnetic
system (g,−α) on M . Note that if γ : [0, T ]→M is a unit speed magnetic geodesic of the system
(g,α), then the curve γ̄ : [0, T ] → M , defined as γ̄ (t) = γ (T − t), is a unit speed magnetic
geodesic of the system (g,−α).

For x, y ∈M , let γx,y : [0, Tx,y]→M denote the unit speed magnetic geodesic of the system
(g,α) from x to y. By Lemma A.5,

A(γx,y) � A(γ̄y,x),

i.e.,

Tx,y −
∫

γx,y

α � Ty,x +
∫

γy,x

α. (6.5)

Interchanging x and y, we receive

Ty,x −
∫

γy,x

α � Tx,y +
∫

γx,y

α. (6.6)

From (6.5) and (6.6) we get

∫
γx,y

α +
∫

γy,x

α � 0. (6.7)

For (x, ξ) ∈ ∂+SM and y = γx,ξ (�(x, ξ)), we have in view of (6.4)

γx,y = γx,ξ , γ̄y,x = γ̃x,ξ ,
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where γ̃x,ξ : [0, �̃(x, ξ)] → M is the unit speed magnetic geodesic of the magnetic system
(M,g,−α) with initial conditions γ̃x,ξ (0)= x, ˙̃γ x,ξ (0)= ξ , and with γ̃x,ξ (�̃(x, ξ))= y. There-
fore, (6.7) yields

∫
γx,ξ

α −
∫

γ̃x,ξ

α � 0. (6.8)

By Santaló’s formula (A.4) and (2.8), we have

∫
∂+SM

{ ∫
γx,ξ

α −
∫

γ̃x,ξ

α

}
dμ(x, ξ)= 0. (6.9)

Combining (6.9) and (6.8) yields

∫
γx,ξ

α =
∫

γ̃x,ξ

α (6.10)

for all (x, ξ) ∈ ∂+SM . From (6.5) we then obtain

�(x, ξ) � �̃(x, ξ),

and from (6.6),

�̃(x, ξ) � �(x, ξ).

Thus,

�̃(x, ξ)= �(x, ξ). (6.11)

Now, by (6.10) and (6.11)

A(γ̃x,ξ )=A(γx,ξ )=A(x, y).

This implies that γ̃x,ξ is a unit speed magnetic geodesic of the system (g,α) which joins x to y.
By simplicity, we then have

γ̃x,ξ = γx,ξ .

Valid for all (x, ξ) ∈ ∂+SM , this equality means clearly that the magnetic system (M,g,α) is
reversible. �
Theorem 6.4. A simple reversible magnetic system (M,g,α) is magnetic boundary rigid if and
only if the simple Riemannian manifold (M,g) is boundary rigid.
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Proof. Suppose that a simple reversible magnetic system (g,α) on M is magnetic boundary
rigid. Let g′ be a simple Riemannian metric on M whose boundary distance function equals the
boundary distance function of g. We must prove that g′ is isometric to g by an isometry which
is the identity on the boundary.

Without loss of generality we may assume (see, e.g., [20, Theorem 2.1]) that

g′|∂M = g|∂M. (6.12)

Then equality of the boundary distance functions of g and g′ and (6.12) are well known to imply
equality of the scattering relations of the Riemannian manifolds (M,g) and (M,g′) (see, e.g.,
[22]).

Consider the magnetic system (g′, α) on M . Since dα = 0, this system is reversible as well. It
is trivial that for a reversible system, the scattering relation of the magnetic system coincides with
the scattering relation of the underlying Riemannian metric. Therefore, the magnetic systems
(g,α) and (g′, α) on M have the same scattering relations. In view of (6.12) and Lemma 2.6, the
boundary actions functions of these systems coincide. From the magnetic boundary rigidity of
(M,g,α) we infer that the metric g′ is isometric to g by an isometry which is the identity on the
boundary, as required.

Now, let (M,g,α) be a simple reversible magnetic system such that the simple Riemannian
manifold (M,g) is boundary rigid. Let (g′, α′) be a simple magnetic system on M whose bound-
ary action function A

′|∂M×∂M equals the boundary action function A|∂M×∂M of the magnetic
system (g,α). By Theorem 2.2, we may assume that g′|∂M = g|∂M and α′|∂M = α|∂M . Now,
Lemma 2.5 implies that the scattering relations of the magnetic systems (M,g,α) and (M,g′, α′)
are the same. Since (M,g,α) is reversible and hence boundary reversible, (M,g′, α′) too is
boundary reversible and hence, by Theorem 6.3, it is also reversible. This implies readily that
the scattering relations of the Riemannian manifolds (M,g) and (M,g′) are the same. Applying
Lemma 2.6 to the magnetic systems (M,g,0) and (M,g′,0), we see that the boundary distance
functions of the metrics g and g′ are the same. Hence, by the boundary rigidity of the Riemannian
manifold (M,g), there is a diffeomorphism f :M →M , f |∂M = identity, such that g′ = f ∗g.
Then Theorem 6.1, applied to the magnetic systems (M,g,α) and (M,f ∗g′, f ∗α′), gives the
gauge equivalence of the magnetic systems (g,α) and (g′, α′), as required. �
6.4. Generic local boundary rigidity

We will prove that near each (g0, α0) in the generic set Gk of Definition 4.10, the action on the
boundary determines (g,α). Note that, by Theorem 5.4, this generic set Gk contains the magnetic
systems (g,α) with k(M,g,α) � 4, in particular magnetic systems in which the underlying
Riemannian metric is negatively curved and the magnetic field is sufficiently small.

Theorem 6.5. Let k0 be as in Theorem 4.11. There exists k � k0 such that for every (g0, α0) ∈ Gk ,
there is ε > 0 such that for any two magnetic systems (g,α), (g′, α′) with

‖g − g0‖Ck(M) + ‖α− α0‖Ck(M) � ε, ‖g′ − g0‖Ck(M) + ‖α′ − α0‖Ck(M) � ε

we have the following:

Ag,α =Ag′,α′ on ∂M × ∂M (6.13)
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implies that (g,α) and (g′, α′) are gauge equivalent, i.e., g′ = ψ∗g, α′ = ψ∗α + dφ with some
Ck+1(M)-diffeomorphism ψ :M →M , fixing the boundary, and some Ck+1 function φ vanish-
ing on ∂M .

Observe that g is solenoidal (with respect to itself), and if we replace α by its solenoidal pro-
jection αs := α − dφ, where Δgφ = δα, φ|∂M = 0, then δαs = 0 as well. Therefore, [ 1

2g,−αs]
is not necessarily a solenoidal pair in the sense of Definition 3.7, instead

δ

[
1

2
g,−αs

]
=

[
n− 1

2
Y

(
αs

)
,0

]
. (6.14)

We will prove an analogue of [11, Theorem 2.1].

Lemma 6.6. Let (g,α) ∈ Ck,μ, 0 <μ< 1, k � 2, be a simple magnetic system on M with δα = 0.
Then for any other (g′, α′) close enough to (g,α), there exists a magnetic system (g̃′, α̃′) gauge
equivalent to (g′, α′) and satisfying (6.14), i.e.,

δ

[
1

2
g̃′,−α̃′

]
=

[
n− 1

2
Y(α),0

]
, (6.15)

where δ and Y are related to (g,α).
Moreover, if ‖(g′, α′) − (g,α)‖Ck,μ � ε with ε� 1, then ‖(g̃′, α̃′) − (g,α)‖Ck,μ � ε1, with

ε1 = ε1(ε)→ 0 as ε→ 0.

Proof. Our argument is much the same as that in the proof of [11, Theorem 2.1]. So we merely
sketch it.

We have to show that there exist a diffeomorphism f of M , fixing ∂M , and a function ϕ,
vanishing on ∂M , such that g̃′ = f ∗g′, α̃′ = f ∗α′ + dϕ, and (6.15) holds. If f is close enough
to the identity, we can identify f with a certain vector field v as follows. If v is a vector field
vanishing on ∂M and |∇v|g < 1, the map

ev(x)= expx

(
v(x)

)
is well defined on M , with image in M again, and it is a diffeomorphism for ‖v‖Ck,μ small
enough. Then v �→ ev has an inverse defined as follows. If f is a diffeomorphism close enough
to the identity, set vf (x) = exp−1

x (f (x)), i.e., vf (x) = γ̇ (0), where γ : [0,1] →M is the geo-
desic such that γ (0)= x, γ (1)= f (x). The existence of such a geodesic follows from the strict
convexity of the boundary, following in turn from the simplicity assumption. Clearly, the differ-
ential of the map v �→ ev at v = 0 is the identity transformation.

Let h= 1
2 (g

′ − g), β =−(α′ − α). Condition (6.15) then takes the form

δ
(
e∗v(g/2+ h)

)+ n− 1

2
Y

(
e∗v(α + β)+ dϕ

)= n− 1

2
Y(α), (6.16)

−δ
(
e∗v(α + β)+ dϕ

)= 0. (6.17)

We define the map (recall that (g,α) is fixed)
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F
([v,ϕ], [h,β])
=

[
δ
(
e∗v(g/2+ h)

)+ n− 1

2
Y

(
e∗v(α + β)+ dϕ

)
,−δ

(
e∗v(α + β)+ dϕ

)]
.

Then (6.16), (6.17) can be rewritten as

F
([v,ϕ], [h,β])= [

n− 1

2
Y(α),0

]
. (6.18)

We want to solve this equation for [v,ϕ] if [h,β] are small enough and g, α are fixed. If [h,β] =
[0,0], then [v,ϕ] = [0,0] is a solution by (6.14). To show solvability for [h,β] small enough,
we apply an implicit function theorem in Banach spaces as in [11]. For this purpose, we need to
compute the derivative F ′[v,ϕ]([0,0], [0,0]).

Set [h,β] = 0 in (6.18) and use (3.20) to deduce

F ′[v,ϕ]
([0,0], [0,0])[v,ϕ]

=
[
δdsv+ n− 1

2
Y

(
Y(v)+ d〈v,α〉 + dϕ

)
,−δ

(
Y(v)+ d〈v,α〉 + dϕ

)]

= δd
[
v,−〈v,α〉 − ϕ

]
,

where v is considered as a 1-form by lowering the index. Thus, the derivative above is the su-
perposition of the map [v,ϕ] �→ [v,−〈v,α〉 − ϕ], which is an isomorphism (and this map and
its inverse preserve the zero boundary conditions), and δd with Dirichlet boundary conditions,
which is also invertible in appropriate spaces. We refer to [11] for more technical details. �

The next lemma states, loosely speaking, that gauge equivalent pairs differ by a potential one,
modulo a quadratic term.

Lemma 6.7. Let (g′, α′) and (g,α) be in Ck , k � 2, and gauge equivalent, i.e.,

g′ =ψ∗g, α′ =ψ∗α + dϕ

for some diffeomorphism ψ fixing ∂M and some function ϕ be vanishing on ∂M . Set f =
[ 1

2 (g
′ − g),−(α′ − α)]. Then there exists w, vanishing on ∂M , such that

f= dw+ f2,

and for (g,α) belonging to any bounded set U in Ck , there exists C(U) > 0 such that

‖f2‖Ck−2 � C(U)‖ψ − Id‖2
Ck−1 , ‖w‖Ck−1 � C(U)‖ψ − Id‖Ck−1 .

Proof. As in the proof above, set v(x)= exp−1
x (ψ(x)), which is a well defined vector field if ψ

is close enough to the identity in C2 (it is enough to prove the claim in this case only) and v = 0
on ∂M . Set ψτ (x)= expx(τv(x)), 0 � τ � 1. Let gτ =ψ∗

τ g. Then the Taylor formula implies

g′ = g+ d

dτ

∣∣∣∣ gτ + h= g + 2dsv+ h,

τ=0
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where

|h|� 1

2
max

τ∈[0,1]

∣∣∣∣d2gτ

dτ 2

∣∣∣∣,
and 2dsv is the linearization of gτ at τ = 0. To estimate h, write

gτ
ij = gkl ◦ψτ

∂ψk
τ

∂xi

∂ψl
τ

∂xj
,

and differentiate twice w.r.t. τ . Notice that∣∣∣∣∂2ψτ

∂τ 2

∣∣∣∣ � C‖v‖2
L∞,

∣∣∣∣∂2∇ψτ

∂τ 2

∣∣∣∣ � C‖v‖2
C1 .

This yields the stated estimate for the first component of f2 for k = 2. The estimates for k > 2
go along similar lines by expressing the remainder h in its Lagrange form and estimating the
derivatives of h.

The analysis of the second component is similar, using (3.20). In particular, we get that w=
[v,−α(v)− φ] which corresponds well with the linearization formula (3.20). �
Proof of Theorem 6.5. We can assume that (g′, α′) is replaced by its gauge equivalent pair
that satisfies the assumptions of Lemma 6.6 (where δ and Y are related to (g,α)). Set f= [(g′ −
g)/2,−(α′ −α)]. Then δf= 0. We assume that (g,α) belongs to a small enough neighborhood of
(g0, α0), so that (g,α) ∈ Gk , and the constant C in Theorem 4.3 is uniform in that neighborhood.
By the second statement of Lemma 6.6 and the assumptions of Theorem 6.5,

‖f‖Ck � ε1(ε), (6.19)

where ε1 → 0 as ε→ 0, and k� 1 is fixed (this requires the original (g′, α′) to be in Gk+1 if
we want to avoid the Ck,μ spaces). Moreover, ‖g‖Ck + ‖α‖Ck � A, where A > 0 depends on
(g0, α0) and on an upper bound ε0 of ε. All constants C below will depend only on A and will
be uniform in ε � ε0.

Let ψ be a diffeomorphism in M that maps boundary normal coordinates w.r.t. g into bound-
ary normal coordinates w.r.t. g′ near ∂M , then extended to the whole M . In other words, if ψ1
that maps a neighborhood of ∂M into ∂M × [0, δ] defines the semigeodesic normal coordinates
related to g and if ψ2 is defined in the same way corresponding to g′, then ψ =ψ2 ◦ψ−1

1 . Clearly,

‖ψ − Id‖Ck−1 � C‖g′ − g‖Ck � C′‖f‖Ck . (6.20)

Set g̃′ = ψ∗g′, α̃′ = ψ∗α′ + dϕ, where ϕ is such that in boundary normal coordinates α̃′n = 0,
see Lemma 4.5. Set f̃= [g̃′/2,−α̃′] − [g/2,−α]. By Lemma 6.7 and (6.20),

f̃= f+ dw+ h, ‖h‖Ck−2 � C‖f‖2
Ck , (6.21)

with w|∂M = 0; so, roughly speaking, f̃ and f differ, up to a quadratic term, only by a potential
term. By Theorem 2.2, f̃ vanishes on ∂M together with its derivatives up to any fixed order m,
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if k� 1. We will choose m below. We are going to prove that f = 0, and this would prove the
theorem.

Since Ag,α =Ag′,α′ =Ag̃′,α̃′ on ∂M × ∂M , by the linearization Lemma 3.1

‖I f̃‖L∞ � C‖f̃‖2
C1 .

By (3.27), ‖N f̃‖L∞(M1) � C‖I f̃‖L∞ ; therefore,

‖N f̃‖L∞(M1) � C‖f̃‖2
C1 . (6.22)

We apply Theorem 4.3 to get

∥∥f̃s
∥∥
L2(M)

� C‖N f̃‖H 2(M1)
, (6.23)

where we estimated the H̃ 2 norm by the H 2 norm, which is finite for f̃. Note that for the
solenoidal projection f̃s of f̃ we have, by (6.21),

f̃s = f+ hs; (6.24)

in particular,

∥∥f̃s
∥∥
L2(M)

� ‖f‖L2(M) −
∥∥hs

∥∥
L2(M)

� ‖f‖L2(M) −C‖f‖2
C2 . (6.25)

Using interpolation estimates in Hs(M1), see [41, Theorem 4.3.1/1], and (6.22), we get

‖N f̃‖H 2(M1)
� C‖N f̃‖2/s

Hs(M1)
‖N f̃‖1−2/s

L2(M1)
� C′‖f̃‖2−4/s

C1 , s > 2. (6.26)

To estimate the first factor in the middle term, we used the fact that ∂α f̃|∂M = 0 for |α|� m and
therefore, if m � s − 2,

‖N f̃‖Hs(M1) � C‖f̃‖Hs−1(M) � C′‖f‖Cs+1(M) � C′′

if k � s + 1. The last inequality follows by comparing f, f̃ using (6.21) and the estimate on w in
Lemma 6.7, combined with (6.20). Combine (6.23), (6.25), and (6.26) to get

‖f‖L2(M) � C
(‖f‖2−4/s

C1 + ‖f‖2
C2

)
.

Using again the fact that ‖f‖Ck(M) � C (k� 1), Sobolev embedding estimates, and interpolation
estimates in Hs(M), one gets

‖f‖L2(M) � C‖f‖(2−4/s)μ
L2(M)

with 0 <μ< 1 that can be chosen as close to 1 as needed, provided that k� 1. It is enough now
to choose s > 2 and μ so that (2− 4/s)μ > 1 to deduce that f= 0 if ε� 1, see (6.19). �
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7. Rigidity of two-dimensional systems

The main result of this section is the following rigidity theorem for two-dimensional systems:

Theorem 7.1. If dimM = 2 and (g,α) and (g′, α′) are simple magnetic systems on M with the
same boundary action function, then these systems are gauge equivalent.

This theorem generalizes the boundary rigidity theorem for simple Riemannian surfaces
which was established in [32]. Our proof of Theorem 7.1 mimics that of the mentioned theo-
rem in [32].

First of all, by Theorem 2.2 and Lemma 2.5 we may assume that g′ coincides with g on ∂M ,

g′|∂M = g|∂M,

and that the scattering relations of the magnetic systems (M,g,α) and (M,g′α′) coincide:

S ′ = S. (7.1)

The crucial step then consists in establishing that the scattering relation of a two-dimensional
magnetic system (M,g,α) determines the Dirichlet-to-Neumann (DN) map associated to the
Laplace–Beltrami operator of the Riemannian manifold (M,g).

It is proved in [19,21] for two-dimensional manifolds that the DN map determines the confor-
mal class of the Riemannian metric up to an isometry that is the identity on the boundary.

Afterwards, the proof of Theorem 7.1 is finished by applying Theorem 6.1 which claims
magnetic boundary rigidity within a given conformal class.

Derivation of the connection between the scattering relation and the DN map is based on the
properties of the magnetic ray transform and the commutation formula between the magnetic
flow and the fiberwise Hilbert transform.

We proceed with describing the needed properties of the magnetic ray transform.

7.1. More about the magnetic ray transform

We recall that, given a notation F for a function space (Ck , Lp , Hk , etc.), we denote by F(M)

the corresponding space of pairs [v,ϕ], with v a 1-form and ϕ a function on M . Also, recall that
in the space L2(M) we consider the norm (3.16) defined as

‖w‖2 =
∫
M

(|v|2g + ϕ2)d Vol .

Associating each pair [v,ϕ] ∈ L2(M) with the function φ(x, ξ) = vi(x)ξ
i + ϕ(x), we may

consider L2(M) as a subspace of L2(SM).
Consider the restriction I of the magnetic ray transform I to L2(M):

I[v,ϕ](x, ξ)=
�(x,ξ)∫
0

vi
(
γx,ξ (t)

)
γ̇ i
x,ξ (t) dt +

�(x,ξ)∫
0

ϕ
(
γx,ξ (t)

)
dt

= I1v(x, ξ)+ I0ϕ(x, ξ), (x, ξ) ∈ ∂+SM.
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By Lemma 3.2, we receive an operator

I :L2(M)→ L2
μ(∂+SM).

Let

I∗ :L2
μ(∂+SM)→ L2(M)

be its dual. The same calculations as in Section 3.4 show that

I∗w = [
I∗1w,I∗0w

]
with

I∗1w =
( ∫

SxM

ξ iw�(x, ξ) dσx(ξ)

)
, I∗0w =

∫
SxM

w�(x, ξ) dσx(ξ).

The following holds:

kerI =PL2(M), (7.2)

ImI∗ ⊂ SL2(M). (7.3)

Equality (7.2) is just the claim of Theorem 5.3. Equality (7.3) follows, as soon as ImI∗ is in the
orthogonal complement to kerI and the orthogonal complement to PL2(M) is SL2(M).

Consider the operator

N = I∗I :L2(M)→ L2(M),

which can be written down as

N [v,ϕ] = [N11v+N10ϕ,N01v +N00ϕ].

Considerations similar to those in the proof of 4.1 show the following:

Proposition 7.2. N is a Ψ DO in M int of order −1 with principal symbol

σp(N )= diag
(
σp(N11), σp(N00)

)
,

σp(N11)
j
i (x, ξ)= cn|ξ |−1(δji − ξj ξi/|ξ |2

)
,

σp(N00)(x, ξ)= cn|ξ |−1,

where |ξ |2 = gij (x)ξiξj and ξj = gji(x)ξi .



588 N.S. Dairbekov et al. / Advances in Mathematics 216 (2007) 535–609
Define

C∞α (∂+SM)= {
w ∈ C∞(∂+SM): w� ∈ C∞(SM)

}
,

where w� is the function that is constant along the orbits of the magnetic flow and equals w on
∂+SM . This space can be described in terms of the scattering relation S alone; by the forthcom-
ing Lemma 7.6

C∞α (∂+SM)= {
w ∈ C∞(∂+SM): Aw ∈ C∞

(
∂(SM)

)}
, (7.4)

where

Aw(x, ξ)=
{
w(x, ξ), (x, ξ) ∈ ∂+SM,

w ◦ S−1(x, ξ), (x, ξ) ∈ ∂−SM.

The following is an analog of [29, Theorems 3.3.3, 3.3.4] (see also [32, Theorem 1.4], [31,
Theorems 4.1, 4.2]).

Theorem 7.3. Let (M,g,α) be a simple magnetic system. Then, for every pair [v,ϕ] ∈ C∞(M),
there exist w ∈ C∞α (∂+SM) and f ∈ C∞(M) such that

[v +∇f,ϕ] = I∗w.

(Note that if v is solenoidal then, in view of (7.3), f is harmonic in M .)

Proof. Our argument is the same as in [29,31,32]. Embed M into a closed manifold M̃ and
extend g and α smoothly to a Riemannian metric g and a 1-form α on M̃ .

If U ⊂ M̃ is an open neighborhood of M with smooth boundary, then (Ū , g,α) is also a
simple magnetic system if ∂U is close enough to ∂M . Henceforth such an U is assumed to be
fixed.

Denote the magnetic ray transform for (Ū , g,α) by IU , and denote by rM the operator of
restriction to M . We have the following analog of [29, Theorems 3.3.1, 3.3.2] (see also [32,
Theorem 3.1], [31, Theorem 4.3]):

Lemma 7.4. For every pair [v,ϕ] ∈Hs+1(M), s � 0, there exists a pair [u,ψ] ∈Hs(U) and
f ∈Hs+2(U) such that

[v+∇f,ϕ] = rMI∗UIU [u,ψ].

Again, the proof is similar to the one in [29,31,32]; we will merely sketch it.
Cover M̃ by finitely many open sets Uk such that U = U1, Uk ∩ M = ∅ for k � 2, and

(Ūk, g,α) is a simple magnetic system for every k. Let {hk} be a subordinate partition of unity
such that h1|M = 1. Consider the operators I(k), I∗(k) for (Ūk, g,α), and define the following
operator on the bundle T M̃ ⊕ (M̃ ×R):

P [u,ψ] =
∑

hkI∗(k)I(k)

([u,ψ]|Uk

)
.

k
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In view of Proposition 7.2, P is a Ψ DO of order −1 with principal symbol

cn diag

(
δ
j
i

|ξ | −
ξj ξi

|ξ |3 ,
1

|ξ |
)
.

The operator Λ :C∞(T M̃)→ C∞(T M̃),

Λ=−cn∇(−Δ)−3/2δ,

is a Ψ DO of order −1 with principal symbol

cn
ξj ξi

|ξ |3 .

Therefore, the principal symbol of the operator

P + diag(Λ,0)

equals

cn diag
(
δ
j
i |ξ |−1, |ξ |−1),

which means that P + diag(Λ,0) is an elliptic Ψ DO of order −1.
Now, the same arguments as in [29,31,32] show that the operator

rM
(
P + diag(Λ,0)

)
:Hs(U)→Hs+1(M)

has closed range and finite codimension.
Since on Hs(U)

rMP = rMI∗UIU , (7.5)

(7.3) and the argument of [29,31,32] show that the equation

rM
(
P + diag(Λ,0)

)[u,ψ] = [v,ϕ]
has a solution [u,ψ] ∈Hs(U) for every pair [v,ϕ] ∈Hs+1(M). Then by (7.5)

[v,ϕ] + [∇f,0] = rMI∗UIU [u,ψ]

with f = cn(−Δ)−3/2δu, which proves the lemma.
Continuing the proof of Theorem 7.3, observe that by Lemma 7.4, for every pair [v,ϕ] ∈

C∞(M) there exist [u,ψ] ∈ C∞(U) and f ∈ C∞(M) such that

[v+∇f,ϕ] = rMI∗UIU [u,ψ]. (7.6)
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For (x, ξ) ∈ SU , define �±(x, ξ) by

π
(
ψ�±(x, ξ)

) ∈ ∂U, �− < 0, �+ > 0.

Define

w+(x, ξ)=
�+(x,ξ)∫

0

(
ui

(
γx,ξ (t)

)
γ̇ i
x,ξ (t)+ψ

(
γx,ξ (t)

))
dt,

w−(x, ξ)=
0∫

�−(x,ξ)

(
ui

(
γx,ξ (t)

)
γ̇ i
x,ξ (t)+ψ

(
γx,ξ (t)

))
dt.

These functions belong to C∞(SU). Let w = (w+ + w−)|∂+SM . It is easy to see that (w+ +
w−) is constant on the orbits of the magnetic flow; therefore, w� = (w+ + w−)|SM and w� ∈
C∞(SM). Since IU [u,ψ] = (w++w−)|∂+SU , we see from (7.6) that I∗w = [v+∇f,ϕ], which
completes the proof of the theorem. �
7.2. Scattering relation and folds

The main aim of this section is to prove the characterization (7.4) for the space C∞α (∂+SM)

(Lemma 7.6). We will proceed in the same way as in [32].
Preserving the notations of the previous section, define the map

Φ : ∂(SM)→ ∂−SU

by

Φ(x, ξ)=ψ�+(x,ξ)(x, ξ), (x, ξ) ∈ ∂(SM). (7.7)

Since �+ is smooth in SU , Φ is smooth as well.

Lemma 7.5. (Cf. [32, Theorem 4.1].) Φ is a fold map with fold S(∂M).

We recall that a smooth map f :M→N between two smooth manifolds M and N of the
same dimension is said to be a Whitney fold (with fold L) at a point m ∈ L if f drops rank by
one simply at m, so that {x: df (x) is singular} is a smooth hypersurface near m and ker(df (m))

is transverse to TmL.

Example. Let Σ be a manifold, R a smooth function on Σ having 0 as a regular value, and
M= {R−1(0)}. Let X be a nonzero vector field on Σ such that XR(m)= 0, and XXR(m) 
= 0
for a point m ∈M. Let N be a hypersurface in Σ transversal to X such that the projection
f :M→N along the integral curves of X is well defined. Then f is a Whitney fold at m with
fold M∩ {(XR)−1(0)}.
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Indeed, we may assume without loss of generality that Σ is a domain in R
n, X = ∂/∂xn,

and N is the hyperplane {xn = 0}. In this case, we easily verify the claim by straightforward
calculations.

Proof of Lemma 7.5. Let ρ be a defining function of M in U with gradρ(x)= ν(x) for x ∈ ∂M .
Then

Gμ(ρ ◦ π)(x, ξ)= 〈
ξ,gradρ(x)

〉
,

G2
μ(ρ ◦ π)(x, ξ)= 〈

ξ,∇ξ gradρ(x)
〉+ 〈

Yx(v),gradρ(x)
〉
.

Therefore, for (x, ξ) ∈ S(∂M) we have Gμ(ρ ◦ π)(x, ξ) = 0, while G2
μ(ρ ◦ π)(x, ξ) =

−Λ(x, ξ)+ 〈Yx(ξ), ν(x)〉 
= 0 by strict magnetic convexity of ∂M .
We arrive directly at the above example if we take Σ = SM̃ , R = ρ ◦ π , M = ∂(SM),

N = ∂(SŪ), and X =Gμ. This completes the proof of the lemma. �
Define the extension operator

A :C(∂+SM)→ C(SM)

by

Aw(x, ξ)=
{
w(x, ξ), (x, ξ) ∈ ∂+SM,

w ◦ S−1(x, ξ), (x, ξ) ∈ ∂−SM,

where S is the scattering relation.

Lemma 7.6. (Cf. [32, Lemma 1.1].) If (M,g,α) is a simple magnetic system, then

C∞α (∂+SM)= {
w ∈ C∞(∂+SM): Aw ∈ C∞

(
∂(SM)

)}
.

Proof. If w� ∈ C∞(SM), then Aw = w�|∂(SM) is smooth as well. Let us prove the converse. If
Aw ∈ C∞(∂(SM)), then from Lemma 7.5 and [17, Theorem C.4.4] we deduce the existence of
a smooth function v on a neighborhood of the range Φ(∂(SM)) such that w = v ◦Φ .

Let Ψ :SM → ∂−SM denote the map

Ψ (x, ξ)=ψ�(x,ξ)(x, ξ), (x, ξ) ∈ SM,

and ΨU :SŪ → ∂−SŪ the map

ΨU(x, ξ)=ψ�+(x,ξ)(x, ξ), (x, ξ) ∈ SŪ .

Note that w� = S−1 ◦ Ψ . Therefore, w� = v ◦ Φ ◦ S−1 ◦ Ψ . It is easy to see that Φ ◦
S−1 ◦ Ψ = ΨU |SM . Since ΨU is smooth on SM , we conclude that w� ∈ C∞(SM), i.e., w ∈
C∞α (∂+SM). �
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7.3. Hilbert transform

From now on, we let (M,g) be an oriented Riemannian surface. Given v ∈ TxM , we will
denote by v⊥ the vector obtained by rotating v by π/2 according to the orientation of M . In
coordinates (v⊥)i = εij v

j , where

ε =√
detg

(
0 1
−1 0

)
.

Consider the fiberwise Hilbert transform [32, (1.4)]

Hu(x, ξ)= 1

2π

∫
SxM

1+ (ξ, η)

(ξ⊥, η)
u(x, η) dσx(η), ξ ∈ SxM.

If we fix x ∈M and a reference point a ∈ SxM , any function on the fiber Sx can be treated as a
function of an angular variable. Then

Hu(x, θ)= 1

2π

2π∫
0

cot

(
ϕ − θ

2

)
u(x,ϕ)dϕ.

Define

(G⊥u)(x, ξ)= 〈ξ⊥,∇|u〉 = −〈ξ,∇⊥u〉,
where ∇⊥u= ε∇|u. The following commutation formula holds [32, Theorem 1.5]:

[H,G]u=G⊥(u0)+ (G⊥u)0, (7.8)

where

u0(x)= 1

2π

∫
SxM

u(x, ξ) dσx(ξ)

is the average value on a fiber.
Let V be the infinitesimal generator of the action of S1 on the fibers of the canonical projection

π : SM →M . Then the generator of the magnetic flow ψt is given by

Gμ =G+ λV,

where λ is a function on M such that Ω = λΩa , with Ωa the area form of g.
Since H commutes with λV , we get from (7.8)

[H,Gμ]u=G⊥(u0)+ (G⊥u)0. (7.9)

Substitute u=w�, w ∈ C∞α (∂+SM), into (7.9). This yields

GμHw� =−G⊥
(
w�

) − (
G⊥w�

)
. (7.10)
0 0
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Define the operator

B :C(SM)→ C(∂+SM)

by

Bu(x, ξ)= u(x, ξ)− u ◦ S(x, ξ), (x, ξ) ∈ ∂+SM.

Clearly,

IGμu=−Bu. (7.11)

Using (7.11), we deduce from (7.10) the identity

BHAw = I
(
G⊥

(
w�

)
0

)+ I
((

G⊥w�
)

0

)
, (7.12)

since w�|∂(SM) =Aw.
Note that

G⊥
(
w�

)
0 =−

1

2π

〈
ξ,∇⊥I∗0w

〉
and

(
G⊥w�

)
0 =−

1

2π
δ⊥I∗1w,

where

δ⊥v =−δv⊥.

Hence, we can rewrite (7.12) as

BHAw =− 1

2π
I
[∇⊥I∗0w,δ⊥I∗1w

]
. (7.13)

7.4. Dirichlet-to-Neumann map

Given a compact Riemannian manifold (M,g) with boundary, denote the Laplace–Beltrami
operator associated with g by Δg . Consider the Dirichlet problem

Δgu= 0 on M, u|∂M = f.

The DN map is defined by

Λg(f )= 〈ν,∇u|∂M 〉.
In the two-dimensional case, the DN map can also be described as follows. Let (h,h∗) be a

pair of conjugate harmonic functions on M ,

∇h=∇⊥h∗, ∇h∗ = −∇⊥h.
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Let h0 and h0∗ denote their traces on ∂M . Then

Λ
(
h0∗

)= 〈
ν,∇h0∗|∂M

〉=−〈
ν, (∇⊥h)|∂M

〉= 〈
ν⊥, (∇h)|∂M

〉= 〈
ν⊥,∇∂Mh0〉, (7.14)

where ∇∂M is the gradient w.r.t. the induced metric on ∂M .
The following theorem is an analog of [32, Theorem 1.3] and states that the scattering relation

of a simple magnetic surface (M,g,α) completely determines the DN map of the metric g.

Theorem 7.7. Let (g,α) and (g′, α′) be simple magnetic systems on a compact surface M with
boundary such that g|∂M = g′|∂M . Assume that the scattering relations S and S ′ of these systems
coincide. Then Λg =Λg′ .

Proof. Assume that h,h∗ is a pair of smooth conjugate harmonic functions on M . Then G⊥h=
Gh∗ =Gμh∗. By Theorem 7.3, there are w ∈ C∞α (∂+SM) and f ∈ C∞(M) satisfying I∗0w = h,
I∗1w =∇f . From (7.13) we then obtain

BHAw =− 1

2π
Bh0∗, (7.15)

since δ⊥∇f = 0. Hence, the following holds:

Lemma 7.8. (Cf. [32, Theorem 1.6].) If h,h∗ is a pair of smooth conjugate harmonic functions
on M , then there is w ∈ C∞α (∂+SM) such that h= I∗0w and Eq. (7.15) holds with h0∗ the trace
of h∗ on ∂M .

In the opposite direction we have:

Lemma 7.9. (Cf. [32, Theorem 1.6].) Suppose h0∗ ∈ C∞(∂M) and w ∈ C∞α (∂+SM) satisfy
Eq. (7.15). Define h := I∗0w and let h∗ be the harmonic continuation of h0∗ to M . Then h and h∗
are conjugate harmonic functions.

Proof. Let q be an arbitrary smooth extension of h0∗ to M . Note that

Gμq =Gq = 〈ξ,∇q〉.

Using (7.13), we can therefore rewrite (7.15) as

−I[∇⊥h,ϕ] = I[∇q,0],

with ϕ = δ⊥I∗1w.
Thus,

I[∇⊥h+∇q,ϕ] = 0.

By (7.2) we then have ϕ = 0 and ∇q +∇⊥h= ∇p for some smooth function p on M with
p|∂M = 0. Therefore, h and q−p are conjugate harmonic functions. Since (q−p)|∂M = h0∗, we
have q − p = h∗, which implies that h and h∗ are conjugate harmonic functions. �
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Continuing the proof of Theorem 7.7, we have the following procedure to obtain the DN
map from the scattering relation. For an arbitrary given smooth function h0∗ on ∂M we find a
function w ∈ C∞α (∂+SM) that solves Eq. (7.15). Then the functions h0 = 2π(Aw)0 (notice that
2π(Aw)0 = I∗0w|∂M ) and h0∗ are traces of conjugate harmonic functions. This gives the DN map
by means of (7.14). �
7.5. Proof of Theorem 7.1

We end up with the proof of this theorem in the same way as in [32]. If two simple magnetic
systems (g,α) and (g′, α′) on a compact surface with boundary have the same boundary action
functions, then by Theorem 2.2 we may assume that g|∂M = g′|∂M and, by Lemma 2.5, their
scattering relations coincide. Theorem 7.7 then tells us that the DN maps of the metrics g and
g′ coincide. Now, the result of [19,21] implies the existence of a diffeomorphism f :M →M ,
which is the identity on ∂M , and of a function ω such that g′ = ω2f ∗g. Next, Theorem 6.1
yields ω = 1 and α′ = f ∗α + dϕ for a smooth ϕ vanishing on ∂M . This concludes the proof of
the theorem.

Appendix A. Geometry of magnetic systems

A.1. Mañé’s critical value and simplicity

Here we adapt a certain part of the theory of convex superlinear Lagrangians to the case of
manifolds with boundary.

Let M be a compact Riemannian manifold with boundary and let L :TM → R be a C∞
Lagrangian satisfying the following hypotheses:

• Convexity: For all x ∈ M the restriction of L to TxM has everywhere positive definite
Hessian.

• Superlinear growth:

lim|v|→∞
L(x, v)

|v| = +∞

uniformly on x ∈M .

The action of L on an absolutely continuous curve γ : [a, b]→M is

AL(γ )=
b∫

a

L
(
γ (t), γ̇ (t)

)
dt.

For each k ∈R, the Mañé action potential Ak :M ×M →R∪ {−∞} is defined by

Ak(x, y)= inf
γ∈C(x,y)

AL+k(γ ),

where C(x, y)= {γ : [0, T ]→M: γ (0)= x, γ (T )= y, γ is absolutely continuous}.
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The critical level c= c(L) is defined as

c(L)= sup
{
k ∈R: AL+k(γ ) < 0 for some closed curve γ

}
= inf

{
k ∈R: AL+k(γ ) � 0 for every closed curve γ

}
.

Proposition A.1. For k < c(L), Ak(x, y) = −∞ for all x, y ∈M . For k � c(L), Ak(x, y) ∈ R

for all x, y ∈M .

Proof. The same as in [6, Proposition 2-1.1]. �
One more characterization of c(L) is useful. Recall that the Hamiltonian H :T ∗M →R asso-

ciated with L is defined by the Fenchel transform

H(x,p)= sup
{
p(v)−L(x, v): v ∈ TxM

}
,

and the supremum is achieved at v such that p = ∂L
∂v

(x, v).

Proposition A.2. If there exists a C1 function f :M →R such that H(df ) < k, then k � c(L).

Proof. The same as in [7, Lemma 5]. �
Recall that the energy function E :TM →R for L is defined by

E(x, v)= ∂L

∂v
(x, v) · v −L(x, v),

and that the energy function is constant on every solution x(t) of the Euler–Lagrange equation

d

dt

∂L

∂v

(
x(t), ẋ(t)

)= ∂L

∂x

(
x(t), ẋ(t)

)
. (A.1)

Let ψt :TM → TM be the Euler–Lagrange flow, defined by ψt(x, v)= (γ (t), γ̇ (t)), where
γ is the solution of (A.1) with γ (0) = x and γ̇ (0) = v. For x ∈M and k ∈ R, the exponential
map at x of energy k is defined to be the partial map expx :TxM →M given by

expk
x(tv)= π ◦ψt(v), t � 0, v ∈ TxM, E(x, v)= k.

Then expk
x is a C1-smooth partial map on TxM which is C∞-smooth on TxM \ {0}.

The next proposition is similar to [8, Theorem D] and has a similar proof.

Proposition A.3. If expk
x : (expk

x)
−1(M) → M is a diffeomorphism for every x ∈ M , then

k � c(L).

Proof. Fix q ∈M . Given x ∈M , let γq,x : [0, Tq,x] →M be a solution of the Euler–Lagrange
equation with energy k, joining q to x. Consider the function f (x)= Ak(γq,x). It is easy to see
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that the assumption of the lemma implies this function is smooth in M \ {q}. It follows from the
first variation formula of [8, Lemma 4] that for x ∈M \ {q}

dxf (w)= ∂L

∂v

(
x, γ̇q,x(Tq,x)

) ·w,

which implies

H(x,dxf )=E
(
x, γ̇q,x(Tq,x)

)= k.

This last equation also implies that |dxf | is uniformly bounded for all x ∈ M \ {q}. Thus f

is Lipschitz in M and a smoothing argument as in [7,14] shows that for any ε > 0 there exists
f̃ ∈ C∞(M) for which H(x,dxf̃ ) < k+ε for all x ∈M . Thus by Proposition A.2, k � c(L). �

The next proposition is an analog of [6, Proposition 3-5.1] and has the same proof.

Proposition A.4. If k > c(L) and x, y ∈M x 
= y, then there is γ ∈ C(x, y) such that

Ak(x, y)=AL+k(γ ).

Moreover, the energy of γ is E(γ, γ̇ )≡ k.

Now, we apply the above to the case of magnetic systems. For a simple magnetic system
(M,g,α), the magnetic flow can also obtained as the Euler–Lagrange flow with the correspond-
ing Lagrangian defined by

L(x, v)= 1

2
|v|2g − αx(v).

Lemma A.5. Let (g,α) be a simple magnetic system on M . For x, y ∈M , x 
= y,

A1/2(x, y)=AL+1/2(γx,y)= Tx,y −
∫

γx,y

α,

where γx,y : [0, Tx,y]→M is the unit speed magnetic geodesic from x to y.

Proof. It is easy to see that the simplicity assumption implies that for this Lagrangian the as-
sumptions of Proposition A.3 hold for all k sufficiently close to 1/2. Therefore, the proposition
gives 1/2 > c(L). Then Proposition A.4 shows that, given x 
= y in M , there is γ ∈ C(x, y) with
energy 1/2 (i.e., γ is parametrized by arc length) such that A(x, y) = A(γ ). Using simplicity,
one can then prove that γ is a unit speed magnetic geodesic, i.e., γ = γx,y . �
A.2. Magnetic convexity

Let M be a compact manifold with boundary, endowed with a Riemannian metric g and a
closed 2-form Ω . Consider a manifold M1 such that M int

1 ⊃M . Extend g and Ω to M1 smoothly,
preserving the former notation for extensions. We say that M is magnetic convex at x ∈ ∂M if
there is a neighborhood U of x in M1 such that all unit speed magnetic geodesics in U , passing
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through x and tangent to ∂M at x, lie in M1 \Mint. If, in addition, these geodesics do not
intersect M except for x, we say that M is strictly magnetic convex at x. It is not hard to show
that these definitions depend neither on the choice of M1 nor on the way we extend g and Ω

to M1.
As before, we let Λ denote the second fundamental form of ∂M and ν(x) the inward unit

normal to ∂M at x.

Lemma A.6. If M is magnetic convex at x ∈ ∂M , then

Λ(x, v) �
〈
Yx(v), ν(x)

〉
for all v ∈ Sx(∂M). (A.2)

If the inequality is strict, then M is strictly magnetic convex at x.

Proof. Suppose M is convex at x. Choosing a smaller U if necessary, we may assume that there
is a smooth function ρ on U such that |gradρ| = 1 and ∂M ∩ U = ρ−1(0). Further we may
assume that all the above geodesics lie in U− = {x: ρ(x) � 0}.

Let v ∈ Sx(∂M) and γ (t) be the magnetic geodesic with γ (0)= x, γ̇ (0)= v. By assumption,
ρ ◦ γ (t) � 0 for all small t . Therefore,

d2

dt2

[
ρ ◦ γ (t)

]∣∣
t=0 � 0.

Since

d2

dt2

[
ρ ◦ γ (t)

]= d

dt

〈
gradρ

(
γ (t)

)
, γ̇ (t)

〉
= 〈∇γ̇ (t) gradρ

(
γ (t)

)
, γ̇ (t)

〉+ 〈
gradρ

(
γ (t)

)
, γ̈ (t)

〉
=Hessγ (t) ρ

(
γ̇ (t), γ̇ (t)

)+ 〈
gradρ

(
γ (t)

)
, Y

(
γ̇ (t)

)〉
and since Λ(x, ξ) = −Hessx ρ(v, v) and gradρ(x) = ν(x) when (x, v) ∈ ∂(SM), we arrive
at (A.2).

Now, assume that (A.2) is strict. Then there is δ > 0 such that for every magnetic geodesic γ

in N with γ (0)= x and γ̇ (0)= v ∈ Sx(∂M),

d2

dt2

[
ρ ◦ γ (t)

]∣∣
t=0 �−δ.

Thus, there is a small ε > 0 such that

ρ ◦ γ (t) �−1

4
δt2 for all t ∈ (−ε, ε).

This implies the second statement. �
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A.3. Exponential map

Lemma A.7. The map expμ
x :TxM →M is C1 and C∞ on TxM \ {0}. This map is C2 if and only

if Ω = 0.

Proof. Recall that expμ
x (tv) = π ◦ ψt(x, v) := γ (t, x, v) where v has norm one and t � 0.

Clearly this implies that expμ
x is C∞ on TxM \ {0}. Since

d

dt

∣∣∣∣
t=0

π ◦ψt(x, v)= v

we see that the directional derivative of expμ
x at 0 in the direction of v exists and equals v. In a

coordinate system around x write

expμ,i
x (tv)= γ i(t, x, v) (A.3)

where γ i depends smoothly in (t, x, v). Differentiating with respect to v we obtain

∂ expμ,i
x

∂vj
(tv)t = ∂γ i

∂vj
(t, x, v).

Since γ i(0, x, v)= xi , ∂γ i

∂vj
(0, x, v)= 0. Therefore,

lim
t→0+

∂ expμ,i
x

∂vj
(tv)= lim

t→0+
1

t

∂γ i

∂vj
(t, x, v)

= ∂2γ i

∂t∂vj
(0, x, v)= ∂2γ i

∂vj ∂t
(0, x, v)= δij

since γ̇ i (0, x, v) = vi . Since SxM is compact, the above limit is uniform in v ∈ SxM and thus
expμ

x has continuous partial derivatives at 0, i.e., expμ
x is C1.

Suppose now that expμ
x is C2. Differentiate (A.3) twice with respect to t (v ∈ SxM)

vjvk
∂2 expμ,i

x

∂vj vk
(tv)= γ̈ i (t, x, v).

Using the equations of a magnetic geodesic

γ̈ i + γ̇ j γ̇ kΓ i
jk = Y i

k γ̇
k

we obtain

vjvk
∂2 expμ,i

x

∂vj vk
(tv)=−γ̇ j γ̇ kΓ i

jk + Y i
k γ̇

k.

Let t → 0+. Then

vjvk
(
∂2 expμ,i

x

j k
(0)+ Γ i

jk(x)

)
= Y i

k (x)v
k.
∂v v
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Since this holds for all v ∈ SxM we must have Y i
k (x)= 0, i.e., Ω = 0. �

A.4. Santaló’s formula

If (M,g) is a compact Riemannian manifold with boundary, we endow its unit sphere bundle
SM with its usual Liouville (local product) measure dΣ2n−1, and endow the bundle ∂+SM with
its standard measure dΣ2n−2 (again a local product measure where the measure on the fiber is
the measure of a hemisphere). Denote by dμ the measure on ∂+SM given by

dμ(x, ξ)= 〈
ξ, ν(x)

〉
dΣ2n−2(x, ξ),

where ν(x) is the inward unit normal of ∂M at a point x.
The following version of Santaló’s formula holds for magnetic flows.

Lemma A.8. Suppose that (M,g,α) is simple. Then for every continuous function ϕ :SM →R

we have

∫
SM

ϕ dΣ2n−1 =
∫

∂+SM

dμ(x, ξ)

�(x,ξ)∫
0

ϕ
(
γx,ξ (t), γ̇x,ξ (t)

)
dt. (A.4)

Proof. The argument we use is the same as in [33]. We give it for the sake of completeness.
First, we recall the well-known fact that the Liouville measure is invariant under the magnetic

flow (for example, because ω∧n0 = (ω0 + π∗Ω)∧n while ω0 + π∗Ω is flow invariant). Now, let
D = {(x, ξ ; t) ∈ ∂+SM: 0 � t � �(x, ξ)}, and define Ψ : D → SM by Ψ (x, ξ ; t) = ψt(x, ξ),
where ψt is the magnetic flow. Then

∫
SM

ϕ dΣ2n−1 =
∫
D

(ϕ ◦Ψ )Ψ ∗(dΣ2n−1). (A.5)

By construction, Ψ conjugates ψt with the flow generated by ∂/∂t on D. Since dΣ2n−1 is
invariant under ψt , Ψ ∗(dΣ2n−1) is invariant under the flow of ∂/∂t . Then

Ψ ∗(dΣ2n−1)(x, ξ ; t)= a(x, ξ) dΣ2n−2 ∧ dt

for some function a on ∂+SM , so that (A.5) takes the form

∫
SM

ϕ dΣ2n−1 =
∫

∂+SM

a(x, ξ) dΣ2n−2(x, ξ)

�(x,ξ)∫
0

ϕ
(
γx,ξ (t), γ̇x,ξ (t)

)
dt.

We are left with proving that a(x, ξ)= 〈ξ, ν(x)〉. To this end, it suffices to show that

Ψ ∗(dΣ2n−1)(x, ξ ;0)= 〈
ξ, ν(x)

〉
dΣ2n−2 ∧ dt.
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Note that dΣ2n−1 = −dΣ2n−2 ∧ dr on ∂(SM), where r(x) = dist(x, ∂M) is the distance
function from x to ∂M . Since the differential of Ψ is the identity on T(x,ξ)(∂+SM) and takes
∂/∂t to the generator Gμ of the flow ψt , we have

Ψ ∗(dΣ2n−1)(x, ξ ;0)= (Gμr) dΣ
2n−2(x, ξ)∧ dt.

As soon as Gμr = 〈ξ,∇r〉 = −〈ξ, ν(x)〉, we are done. �
A.5. Index form of a magnetic geodesic

Let (M,g,α) be a simple magnetic system. For every x ∈M , expμ
x :TxM →M is a diffeo-

morphism restricted to a suitable set in TxM which is diffeomorphic to a closed ball.
Let π :SM →M be the canonical projection and let for v ∈ SM ,

V (v) := kerdvπ,

which is an (n− 1)-dimensional subspace of TvSM , and

E(v) := V (v)⊕RGμ(v). (A.6)

Lemma A.9. If γ : [0, T ]→M is a unit speed magnetic geodesic, then

dγ̇ (0)ψ
t (E)∩ V

(
γ̇ (t)

)= {0}
for every t ∈ (0, T ].
Proof. Take v ∈ SM and t ∈ (0, T ]. From the definition of expμ

x one sees right away that

image
(
dtv expμ

x

)= dγ̇ (t)π
(
dγ̇ (0)ψ

t (E)
)
.

Since dw expμ
x is a linear isomorphism for every w ∈ TxM at which expμ

x is defined, the lemma
follows. �

Given a unit speed magnetic geodesic γ : [0, T ]→M , let A and C be the operators on smooth
vector fields along γ defined by

A(Z)= Z̈+R(γ̇ ,Z)γ̇ − Y(Ż)− (∇ZY )(γ̇ ),

C(Z)=R(γ̇ ,Z)γ̇ − Y(Ż)− (∇ZY )(γ̇ ).

A vector field J along γ is said to be a magnetic Jacobi field if it satisfies the equation

A(J )= 0. (A.7)

Let Λ denote the R-vector space of smooth vector fields Z along γ such that Z(0) =
Z(T )= 0. Define the quadratic form Ind :Λ→R by

Ind(Z,Z)=
T∫ {|Ż|2 − 〈

C(Z),Z
〉− 〈

Y(γ̇ ),Z
〉2}

dt.
0
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Note that

Ind(Z,Z)=−
T∫

0

{〈
A(Z),Z

〉+ 〈
Y(γ̇ ),Z

〉2}
dt.

Clearly, Ind(Z,Z) generalizes the index form of a geodesic in a Riemannian manifold. The
next lemma is an analog of a well-known assertion from Riemannian geometry.

Lemma A.10 (Index Lemma). If Z ∈Λ is orthogonal to γ̇ , then

Ind(Z,Z) � 0,

with equality if and only if Z vanishes.

Proof. Note that the subbundle E defined by (A.6) is Lagrangian.
If ξ ∈E(v), then Jξ (t)= dπ ◦ dψt (ξ) satisfies the Jacobi equation (A.7). Since

dγ̇ (t)π |E(γ̇ (t)) :E
(
γ̇ (t)

)→ Tγ (t)M

is an isomorphism for all t ∈ (0, T ], there exists a basis {ξ1, . . . , ξn} for E(v) such that
{Jξ1(t), . . . , Jξn(t)} is a basis of Tγ (t)M for all t ∈ (0, T ]. Without loss of generality we may
assume that ξ1 =Gμ(v), Jξ1 = γ̇ and Jξi (0)= 0 for i � 2.

Let us set for brevity Ji = Jξi . Then if Z is an element of Λ, we can write for t ∈ (0, T ]

Z(t)=
n∑

i=1

fi(t)Ji(t)

for some smooth functions f1, . . . , fn. The functions fi can in fact be smoothly extended to
t = 0. Indeed, for i � 2, we can write Ji(t)= tAi(t) where Ai is a smooth vector field such that
Ai(0)= J̇i (0). Since {γ̇ (t),A2(t), . . . ,An(t)} is now a basis for all t ∈ [0, T ], there exist smooth
functions gi such that for all t ∈ [0, T ]

Z(t)= g1(t)γ̇ (t)+
n∑

i=2

gi(t)Ai(t).

Therefore for t ∈ (0, T ], g1(t)= f1(t) and for i � 2, gi(t)= t fi(t). Since Z(0)= 0, gi(0)= 0
for all i and the fi ’s smoothly extend to t = 0.

Now we can write

Ind(Z,Z)=−
∑
i,j

T∫
0

〈
A(fiJi), fjJj

〉
dt −

T∫
0

〈
Y(γ̇ ),Z

〉2
dt. (A.8)

An easy computation shows that

A(fiJi)= f̈iJi + 2ḟi J̇i − ḟiY (Ji)+ fiA(Ji).
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Since Ji satisfies Eq. (A.7), then A(Ji)= 0 and hence,〈
A(fiJi), Jj

〉= f̈i〈Ji, Jj 〉 + 2ḟi〈J̇i , Jj 〉 − ḟi

〈
Y(Ji), Jj

〉
.

Observe that since E is a Lagrangian subspace,

〈Ji, J̇j 〉 − 〈J̇i , Jj 〉 +
〈
Y(Ji), Jj

〉= 0,

and then

〈
A(fiJi), Jj

〉= d

dt

(
ḟi〈Ji, Jj 〉

)
.

Now we can write

T∫
0

〈
A(fiJi), fjJj

〉
dt = 〈ḟiJi, fjJj 〉|T0 −

T∫
0

〈ḟiJi , ḟj Jj 〉dt.

Combining the last equality with (A.8) we obtain

Ind(Z,Z)=
T∫

0

∥∥∥∥∥
n∑

i=1

ḟiJi

∥∥∥∥∥
2

dt −
〈

n∑
i=1

ḟiJi,Z

〉∣∣∣∣∣
T

0

−
T∫

0

〈
Y(γ̇ ),Z

〉2
dt.

But Z(0)= Z(T )= 0, therefore

I (V,V )=
T∫

0

∥∥∥∥∥
n∑

i=1

ḟiJi

∥∥∥∥∥
2

dt −
T∫

0

〈
Y(γ̇ ),Z

〉2
dt. (A.9)

Now let

W :=
n∑

i=2

ḟiJi .

Since J1 = γ̇ we have:〈
n∑

i=1

ḟiJi,

n∑
i=1

ḟiJi

〉
= 〈ḟ1γ̇ +W, ḟ1γ̇ +W 〉 = ḟ 2

1 + 2ḟ1〈γ̇ ,W 〉 + 〈W,W 〉.

Differentiating 〈Z, γ̇ 〉 = 0 we get

〈Ż, γ̇ 〉 + 〈
Z,Y (γ̇ )

〉= 0.

But

〈Ż, γ̇ 〉 =
〈

n∑
ḟiJi , γ̇

〉
= ḟ1 + 〈W, γ̇ 〉
i=1
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since 〈J̇i , γ̇ 〉 = 0 for all i. Therefore

〈
Y(γ̇ ),Z

〉2 = ḟ 2
1 + 2ḟ1〈W, γ̇ 〉 + 〈W, γ̇ 〉2.

Thus 〈
n∑

i=1

ḟiJi ,

n∑
i=1

ḟiJi

〉
− 〈

Y(γ̇ ),Z
〉2 = 〈W,W 〉 − 〈W, γ̇ 〉2.

If we let W⊥ be the orthogonal projection of W to γ̇⊥, the last equation and (A.9) give:

Ind(Z,Z)=
T∫

0

∥∥W⊥∥∥2
dt � 0

with equality if and only if W⊥ vanishes identically. But if W⊥ vanishes, then

−〈W, γ̇ 〉γ̇ +
n∑

i=2

ḟiJi = 0

which implies that the functions fi are constant for i � 2. Thus Z is of the form f1γ̇ + J where
J is a magnetic Jacobi field. But Z(T ) = 0 implies J (T ) = 0. Since the J ′i s are linearly inde-
pendent at T , J must vanish identically and since Z is orthogonal to γ̇ , Z must also vanish. �
Appendix B. Study of a certain class of integral operators with singular kernels

As we mentioned before, the fact that the magnetic exponential map is smooth in polar coor-
dinates only forces us to work in polar coordinates as well. In this appendix we study a class of
operators that naturally arise in our analysis.

Let U ⊂R
n be open and g be a smooth Riemannian metric in a neighborhood of Ū .

Lemma B.1. Let A :C0(U)→ C(U) be the operator

Af (x)=
∫

SxU

∫
R

A(x, r,ω)f (x + rω)dr dσx(ω), (B.1)

with A ∈ C∞(U ×R× SxU). Then A is a classical Ψ DO of order −1 with full symbol

a(x, ξ)∼
∞∑
0

ak(x, ξ),

where

ak(x, ξ)= 2π
ik

k!
∫

SxU

∂k
r A(x,0,ω)δ(k)(ω · ξ) dσx(ω).
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Proof. Notice first that if A is an odd function of (r,ω), then Af = 0. Therefore, we can re-
place A above by Aeven(r,ω)= (A(r,ω)+A(−r,−ω))/2. Next, it is easy to check that we can
integrate over r � 0 only and double the result. Therefore,

Af (x)= 2
∫

SxM

∞∫
0

Aeven(x, r,ω)f (x + rω)dr dσx(ω). (B.2)

Consider now r , ω as polar coordinates for z = rω, and make also the change of variables y =
x + z to get

Af (x)= 2
(
detg(x)

)1/2
∫

Aeven

(
x, |y − x|g, y − x

|y − x|g
)

f (y)

|y − x|n−1
g

dy, (B.3)

where the subscript g refers to g(x). Let

Aeven(x, r,ω)=
N−1∑
k=0

Aeven,k(x,ω)rk + rNRN(x, r,ω) (B.4)

be a finite Taylor expansion of Aeven in r near r = 0 with N > 0. It follows easily that
2Aeven,k(x,ω) = Ak(x,ω) + (−1)kAk(x,−ω), where k!Ak = ∂k

r |r=0A, and in particular,
Aeven,k(x,ω)rk is even w.r.t. (r,ω). The remainder term contributes to (B.3) an operator that
maps L2

comp(U) into HN−N0(U) with some fixed N0. To study the contribution of the other
terms, write

Aeven,kf (x)= 2
(
detg(x)

)1/2
∫

Aeven,k

(
x,

y − x

|y − x|g
)
|y − x|k−n+1

g f (y) dy. (B.5)

The kernel of Aeven,k is therefore a function of x and z= y− x, with a polynomial singularity at
y − x = 0, and it is therefore a formal Ψ DO with symbol that can be obtained by taking Fourier
transform in the z variable. Motivated by this, apply the Plancherel theorem to the integral above
to get

Aeven,kf (x)= (2π)−n

∫
eix·ξ ak(x, ξ)f̂ (ξ) dξ,

where

ak(x, ξ)= 2
∫

e−iy·ξAeven,k

(
x,

y − x

|y − x|g
)
|y − x|k−n+1

g

(
detg(x)

)1/2
dy

= 2
∫

SxU

∞∫
0

e−irω·ξAeven,k(x,ω)rk dr dσx(ω)

=
∫ ∞∫

−∞
e−irω·ξAk(x,ω)rk dr dσx(ω)
SxU
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= 2πik
∫

SxU

Ak(x,ω)δ(k)(ω · ξ) dσx(ω). (B.6)

In the third line, we used the fact that Aeven,k(x,ω)rk is even. Note that ak(x, ξ) is homogeneous
in ξ of order −k − 1 and smooth away from ξ = 0 but a distribution (in S ′) near zero. To deal
with this, choose χ ∈ C∞0 supported in |ξ | � 1 and equal to 1 near ξ = 0. Write a(x, ξ) =
χ(ξ)a(x, ξ)+ (1− χ(ξ))a(x, ξ). The second term is a classical amplitude, while the first one
contributes the term

Aeven,k(χ̌ ∗ f ) (B.7)

to (B.5) that is smooth, as can be easily seen by making the change of variables z = y − x in
(B.5), see also (B.16). �
Remark B.2. If A(x, r,ω) and g are smooth of class Ck only, then A is an Ψ DO with an am-
plitude of finite smoothness l(k), admitting a finite expansion. If k� 1, then l� 1, and one can
still construct a finite order parametrix of an elliptic Ψ DO in this class and the usual Hs1 →Hs2

estimates still hold, if k� 1, depending on s1, s2. This has been used already in [37,38].

We return to the analysis of the singular operator A introduced in Lemma B.1 under the
assumption that A and g are analytic. Our reference for the calculus of analytic Ψ DOs is [40].

Lemma B.3. Let A :C0(U)→ C(U) be the operator (B.1) with A(x, r,ω) analytic for (x,ω) ∈
U × SxU , and r ∈ R such that x + rω ∈ U . Then A is an analytic Ψ DO of order −1 with a
symbol expansion as in Lemma B.1.

Proof. Notice first that A is analytic pseudolocal, see [40, Theorem V.2.1].
By performing the change of variables ω′ = g1/2(x)ω, we reduce the lemma to the case where

g is the Euclidean metric. Let U ′ � U .
Let us estimate ak(x, ξ), see Lemma B.1. Since A(x, r,ω) is analytic, and ak is homogeneous

of order −k− 1, we have ∣∣ak(x, ξ)∣∣ � Ck+1k!|ξ |−k−1

with some C > 0. Using the homogeneity, we get∣∣∂α
ξ ak(x, ξ)

∣∣ � Ck+|α|+1α!k!|ξ |−k−|α|−1 (B.8)

for ξ is in a complex neighborhood of R and x in a complex neighborhood of Ū ′. Therefore,
there exists a pseudoanalytic symbol a ∼∑

ak , see [40]. This symbol is defined by

a(x, ξ)=
∞∑
k=0

ϕk(ξ)ak(x, ξ), (B.9)

where ϕk have the properties (see [40, V.2]): 0 � ϕk � 1, ϕk(ξ) = 0 for |ξ | < 2R max(k,1),
ϕk(ξ) = 1 for |ξ | > 3R max(k,1), |Dαϕk| � (C/R)|α| for |α| � 2k, where R > 1 is a large
parameter. We will prove next that a(x,D) differs from A by an analytic regularizing operator.
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Let u ∈ E ′(U ′). Let s � 0 be such that u can be represented as a finite sum of derivatives of
continuous functions of order not exceeding s.

By (B.4), for any N � 1,

Au=
N−1∑
k=0

ak(x,D)u+ R̃Nu, (B.10)

where, despite the strong singularity of ak at ξ = 0, ak(x,D) have regular (integrable) Schwartz
kernels, and

R̃Nu(x)= 2
∫

Sn−1

∞∫
0

rNRN(x, r,ω)u(x + rω)dr dσ(ω)

= 2
∫
|x − y|N−n+1RN

(
x, |x − y|, x − y

|x − y|
)
u(y)dy. (B.11)

We express RN in its Cauchy form as

RN(x, r,ω)= 1

(N − 1)!
1∫

0

∂N
r Aeven,k(x, tr,ω)(1− t)N−1 dt.

We have

∣∣DαR̃Nu
∣∣ � CNα! in U ′ for |α|� N − s. (B.12)

Splitting the sum (B.9) into two parts, we write

a(x,D)=Op

(
N−1∑
k=0

ϕk(ξ)ak(x, ξ)

)
+Op

( ∞∑
k=N

ϕk(ξ)ak(x, ξ)

)
. (B.13)

For the second term we have (see (3.15) in Chapter V in [40])

∣∣∣∣∣DαOp

( ∞∑
k=N

ϕk(ξ)ak(x, ξ)

)
u

∣∣∣∣∣ � CNα! in U ′ for |α|� N − s. (B.14)

We are left to compare the first sum in (B.13) with the sum in (B.10):

BNu :=Op

(
N−1∑
k=0

(
1− ϕk(ξ)

)
ak(x, ξ)

)
u= B′Nu+B′′Nu,

where
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B′Nu=Op

(
N−1∑
k=0

(
ϕN(ξ)− ϕk(ξ)

)
ak(x, ξ)

)
u,

B′′Nu=Op

(
N−1∑
k=0

(
1− ϕN(ξ)

)
ak(x, ξ)

)
u.

On supp(ϕN − ϕk), we have 2Rk � |ξ |� 3RN provided that k < N and, as always, we assume
that R� 1. Using this and (B.8), we get

∣∣DαB′Nu
∣∣ � C(CRN)|α|−1+s in U ′ for |α|� N − 1, (B.15)

compare with (3.17) in Chapter V in [40].
We write B′′Nu in the form (see (B.7))

B′′Nu(x)= 2
N−1∑
k=0

∫
Aeven,k

(
x,

z

|z|
)
|z|k−n+1(1− ϕN )̌ ∗ f (z+ x)dz. (B.16)

This implies

∣∣DαB′′Nu
∣∣ � CN(CRN)|α|+s in U ′ for |α|� N − 1. (B.17)

Combining (B.12), (B.14), (B.15), and (B.17), we get

∣∣Dα
(
A− a(x,D)

)
u
∣∣ � CNN ! in U ′ for |α|� N − s.

For N � s, choose |α| =N − s to conclude that (A− a(x,D))u is analytic in U ′. �
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