
Stability estimates for the hyperbolic
Dirichlet to Neumann map in anisotropic media

Plamen Stefanov∗

Institute of Mathematics
Bulgarian Academy of Sciences

1113 Sofia, Bulgaria

Gunther Uhlmann†

Department of Mathematics
University of Washington

Seattle, WA 98195, USA

J. Funct. Anal. 154(2)(1998), 330–358.

1 Introduction and statement of the results

One of the basic inverse problems in anisotropic media is the determination of a Riemannian
metric in a domain by measuring the Dirichlet to Neumann map at the boundary of the
domain.

In this paper we consider the question of stability, that is, whether if two Dirichlet to
Neumann maps associated to two metrics are close enough in an appropriate topology then
the Riemannian metrics are close enough in an appropriate topology.

We now describe the problem and the main results.
Let Ω ⊂ R3 be a bounded domain with smooth boundary. Given a Riemannian metric

g(x) = (gij(x)) in Ω, consider the Laplace-Beltrami operator

∆g = (det g)−
1
2

3∑

i,j=1

∂

∂xi
(det g)

1
2 gij

∂

∂xj

in Ω. Here (gij) = (gij)
−1, det g = det(gij). Consider the following problem




(∂2
t −∆g)u = 0 in (0,∞) × Ω,

u|t=0 = ∂tu|t=0 = 0 in Ω,
u|(0,∞)×∂Ω = f,

(1.1)

where f ∈ H2
loc, f = 0 for t < 0. Denote by ν = ν(x) the outer normal to ∂Ω at x ∈ ∂Ω. We

define the hyperbolic Dirichlet-to-Neumann (DN) map Λg by

Λgf := (det g)
1
2

3∑

i,j=1

νig
ij ∂u

∂xj

∣∣∣∣
(0,∞)×∂Ω

.
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It is easy to see [S-U] that if
ψ : Ω → Ω

is a diffeomorphism with ψ|∂Ω = identity, then Λψ∗g = Λg, where ψ∗g denotes the pull back
of the metric g. Therefore the best one can do is determine the metric up to isometries that
leave the boundary fixed.

In this paper we prove that the hyperbolic DN map Λg determines in a stable way g
up to isometries that leave the boundary fixed, provided that g is sufficiently close to the
euclidean metric e.

Let ‖Λ‖∗ denote the norm of Λ considered as an operator

Λ : H1((0, T ) × ∂Ω) −→ L2((0, T )× ∂Ω)

with T large enough (see (4.14) for a more precise estimate of T depending on the metric
g). Next, let ‖Λ‖∗∗ denote the operator norm of

Λ : e
√
εtH2

0 (R+ × ∂Ω) −→ e
√
εtL2(R+ × ∂Ω).

It is easy to see that ‖Λg‖∗∗ is finite applying the trace theorem and standard energy esti-
mates. It follows from [CP] that ‖Λg‖∗ is finite as well.

Theorem 1.1 Let gk ∈ C10(Ω̄), k = 1, 2 be two Riemannian metrics and denote as above
by Λg1, Λg2 the corresponding DN maps. Then there exists ε > 0 such that if g1, g2 satisfy

‖gk − e‖C10,µ(Ω̄) < ε, k = 1, 2 (1.2)

with some µ > 0, one can find a C11 diffeomorphism ψ : Ω̄ → Ω̄ with ψ|∂Ω = Id, such that

‖ψ∗g1 − g2‖L2(Ω) ≤ C (‖Λg1 − Λg2‖σ∗ + ‖Λg1 − Λg2‖σ∗∗) (1.3)

for any σ < 1/5 with C = C(ε, σ).

Remark. We note that one can also obtain an L∞ estimate instead of L2 estimates with
σ < 1/6 by using interpolation techniques as in [Su].

Of course Theorem 1.1 implies identifiability of the metric from the hyperbolic DN map
up to isometries that leave the boundary fixed. We have

Corollary 1.1 Let gk ∈ C10(Ω̄), k = 1, 2 be two Riemannian metrics and denote by Λg1, Λg2

the corresponding DN maps. Then there exists a constant ε > 0, such that if g1, g2 satisfy
(1.2) with some µ > 0 and if

Λg1 = Λg2,

then there exists a C11-diffeomorphism ψ : Ω̄ → Ω̄ with ψ|∂Ω = Id, such that ψ∗g1 = g2.
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Corollary 1.1 is known under more general conditions. For smooth metrics (without a
smallness condition on the metric) it is a consequence of [B-K] and [T]. The paper [B-K]
uses the boundary control method introduced by Belishev [B]. This method requires that
the so-called observation operator is injective (see [B-K]). This, in turn, is a consequence
of the unique continuation theorem of Tataru [T] (see also [H II] and [R-Z]). Because of
the use of unique continuation in the proof, it seems unlikely that stable estimates of the
form (1.3) can be obtained using this method. We also mention that a linearized version of
Corollary 1.1 was discussed in [S-U] and [C-M]. See also the survey paper [U] for connections
between this problem and other inverse problems.

In this paper we give a proof of Corollary 1.1 first since the method used can be easily
extended to give the estimate (1.3). The Corollary is proven in Sections 2–4. The stability
estimate is proven in Section 5.

We remark that the condition that the metrics are close to the euclidean metric is used in
several places. First of all, to prove, say Corollary 1.1, we reduce the problem to an inversion
of a Fourier integral operator, similar to a generalized Radon transform, which we can invert
if the metric is close to the euclidean metric. Second, the diffeomorphism ψ is constructed
using harmonic coordinates, i.e. if g denotes a Riemannian metric we solve

∆gψ = 0, ψ|∂Ω = Id,

where Id denotes the identity. If g is close to the euclidean metric, then ψ is a diffeomor-
phism. Moreover one can use the condition that the hyperbolic Dirichlet to Neumann maps
associated to two metrics are the same to conclude that the harmonic coordinates can be
extended to be equal outside the domain.

We also mention that stability estimates for the Dirichlet to Neumann map associated
to the wave equation plus potential were proven in [A-S], [I-S], [Su].

2 Construction of the singular solution

Proposition 2.1 Let u1, u2 solve the following problems in (0, T ) ×Ω with some T > 0:





(∂2
t − ∆g1)u1 = 0,

u1|t=0 = ∂tu1|t=0 = 0,
u1|(0,T )×∂Ω = f1,





(∂2
t −∆g2)u2 = 0,

u2|t=T = ∂tu2|t=T = 0,
u2|(0,T )×∂Ω = f2,

(2.1)

where fj ∈ H2, j = 1, 2. Then

∫ T

0

∫

∂Ω
f2(Λg1 − Λg2)f1 dSx dt =

∫ T

0

∫

Ω

3∑

i,j=1

[
(det g1)

1
2 gij1 − (det g2)

1
2 gij2

] ∂u1

∂xi

∂u2

∂xj
dx dt

−
∫ T

0

∫

Ω

[
(det g1)

1
2 − (det g2)

1
2

] ∂u1

∂t

∂u2

∂t
dx dt.
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Proof. We have

0 =
∫ T

0

∫

Ω

(
(∂2
t −∆g1)u1

)
(det g1)

1
2u2 dx dt

=
∫ T

0

∫

Ω
(∂2
t u1)u2(det g1)

1
2 dx dt−

∫ T

0

∫

Ω

3∑

i,j=1

(
∂

∂xi
(det g1)

1
2 gij1

∂

∂xj
u1

)
u2 dx dt

= −
∫ T

0

∫

Ω
(∂tu1)(∂tu2)(det g1)

1
2 dx dt+

∫ T

0

∫

Ω

3∑

i,j=1

(det g1)
1
2 gij1

∂u1

∂xj

∂u2

∂xi
dx dt

−
∫ T

0

∫

∂Ω
(Λg1f1)f2 dSx dt. (2.2)

In the same way we get

0 = −
∫ T

0

∫

Ω
(∂tu2)(∂tu1)(det g2)

1
2 dx dt +

∫ T

0

∫

Ω

3∑

i,j=1

(det g2)
1
2 gij2

∂u2

∂xj

∂u1

∂xi
dx dt

−
∫ T

0

∫

∂Ω
f1(Λ

∗
g2
f2) dSx dt. (2.3)

Here Λ∗
g is defined by the same formula as Λg the only difference being that u|t=0 = ∂tu|t=0 = 0

is replaced by u|t=T = ∂tu|t=T = 0. By (2.2), (2.3) for g = g1 = g2 we see that Λ∗
g is

the adjoint to Λg (in fact, the adjoint to its restriction to t ∈ (0, T )), in other words,∫ T
0

∫
∂Ω f1(Λ

∗
g2
f2) dSx dt =

∫ T
0

∫
∂Ω(Λg2f1)f2 dSx dt. After subtracting (2.2), (2.3), we complete

the proof of the proposition. 2

Assume that we are given a Riemannian metric g ∈ Ck+1(Ω̄) satisfying

‖g − e‖Ck+1(Ω̄) < ε (2.4)

with some k ≥ 2 (compare with (1.2)). Let us extend it to a Ck-metric in the whole R3

(which we will continue to denote by g) such that g = e outside Bρ. One can arrange that
the extended metric satisfies

‖g − e‖Ck+1(R3) < Cε (2.5)

with C > 0 depending on Ω, ρ and dist(Ω, ∂Bρ). We construct a phase function φ(x, θ),
θ ∈ S2 associated to g as the solution to the following eikonal equation

{ ∑3
i,j=1 g

ij ∂φ
∂xi

∂φ
∂xj

= 1,

φ|x·θ≤−ρ = x · θ.
(2.6)

The Hamiltonian related to (2.6) is H =
∑3
i,j=1 g

ij(x)ξiξj −1. Let θ ∈ S2 be fixed. Then one
can assume that θ = (1, 0, 0). Therefore, we get the following Hamiltonian system

{
d
ds
xm = 2

∑3
j=1 g

mjξj ,
d
ds
ξm = −∑3

i,j=1
∂gij

∂xm
ξiξj, m = 1, 2, 3,

x|s=0 = (−ρ, η), ξ|s=0 = (1, 0, 0),
(2.7)
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where η ∈ R2 parameterizes the plane x3 = −ρ. If g = e, then the solution to (2.7) is given
by x = (2s− ρ, η), ξ = (1, 0, 0). It is easy to see that for general g the solution exists for all
s. Estimate (2.5) implies immediately the following.

Lemma 2.1 Fix a > 0. Then there exists C > 0 such that for the solution x = x(s, η),
ξ = ξ(s, η) of (2.7) we have

‖x− (2s − ρ, η)‖Ck([0,a]×R2) + ‖ξ − (1, 0, 0)‖Ck([0,a]×R2) ≤ Cε.

In particular, Lemma 2.1 implies that under the smallness assumption (4.6) the Hamil-
tonian flow is non-trapping for small ε, more precisely, x(s, η) 6∈ Bρ = {x; |x| < ρ} for
s > a with some a > 0. Moreover, the mapping (s, η) 7→ x(s, η) is a Ck–diffeomorphism on
[0, a]×{η ∈ R2; |η| ≤ 2ρ} and its range covers Bρ provided that ε is small enough. For tech-
nical reasons in the proof of Proposition 2.2 we will need in fact to work in a larger domain,
so let us assume that ε and a are such that (s, η) 7→ x(s, η) maps [0, a]×{η ∈ R2; |η| ≤ 5ρ}
into a compact covering B4ρ.

The phase function satisfies d
ds
φ = ξ ·H ′

ξ = 2
∑3
i,j=1 g

ijξiξj . Therefore,

φ(x) = −ρ+ 2
∫ 3∑

i,j=1

gij(x)ξiξj ds, (2.8)

where we integrate along the bicharacteristic joining {x1 = −ρ, ξ = (1, 0, 0)} and (x, ξ).
Since H = 0 along the solutions of (2.7), we get from (2.8)

φ(x) = −ρ+ 2s. (2.9)

The change of coordinates x→ (s, η) is ε-close to x = (2s−ρ, η) in Ck, which implies that φ
must be close to φ = x1. So far θ ∈ S2 was fixed. One can easily investigate the dependence
of φ on θ. As a consequence of Lemma 2.1 and (2.9) we get the following.

Lemma 2.2 Assume that (2.5) holds with ε > 0 sufficiently small. Then there exists C0 > 0
such that

‖φ(x, θ)− x · θ‖Ck(B4ρ×S2) ≤ C0ε.

We are going next to construct a singular solution to (∂2
t − ∆g)u = 0. Given θ ∈ S2

denote by v(t, x, θ) the solution (in distribution sense) of the following problem
{

(∂2
t −∆g)v = 0 in R × R3,
v|t≤−ρ = δ(t− x · θ). (2.10)

One can easily solve (2.10). Given j = 0, 1, . . ., denote

hj(s) =

{
sj/j!, if s ≥ 0
0, otherwise.

(2.11)
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Then the following problem has unique solution w ∈ H2
loc such that ∂tw ∈ H1

loc.

{
(∂2
t − ∆g)w = 0 in R ×R3,
w|t≤−ρ = h2(t− x · θ). (2.12)

The solution to (2.10) is then given by v = ∂3
tw. Denote

τg = ρ+ C0ε, (2.13)

where C0 is the constant in Lemma 2.2.

Proposition 2.2 Assume that (2.5) holds with k ≥ 9 and ε > 0 sufficiently small. Then
there exists a constant C > 0, such that for |t| < 3τg, and for any θ ∈ S2 we have

v(t, x, θ) = α(x, θ)δ(t− φ(x, θ)) + β(x, θ)h0(t− φ(x, θ)) + r(t, x, θ),

where
‖α − 1‖Ck−2(B4ρ×S2) ≤ Cε, ‖β‖Ck−4(B4ρ×S2) ≤ Cε, (2.14)

and
‖r(t, ·, θ)‖L∞ + ‖∂tr(t, ·, θ)‖L2 ≤ Cε. (2.15)

Moreover, for R(t, x, θ) :=
∫ t
−∞ r(s, x, θ)ds we have

‖∇R(t, ·, θ)‖L∞ ≤ Cε. (2.16)

Proof. We look for a solution v of the form

v(t, x, θ) = α(x, θ)δ(t− φ(x, θ)) + β(x, θ)h0(t− φ(x, θ)) + γ(x, θ)h1(t− φ(x, θ)) + r̃(t, x, θ).

Then α = 1 + α̃, β, γ solve the transport equations

(
2

3∑

i,j=1

gij
∂φ

∂xi

∂

∂xj
+ ∆gφ

)
α̃ = −∆gφ, α̃|x·θ=−ρ = 0, (2.17)

(
2

3∑

i,j=1

gij
∂φ

∂xi

∂

∂xj
+ ∆gφ

)
β = ∆gα, β|x·θ=−ρ = 0, (2.18)

(
2

3∑

i,j=1

gij
∂φ

∂xi

∂

∂xj
+ ∆gφ

)
γ = ∆gβ, γ|x·θ=−ρ = 0, (2.19)

while r̃ solves
(∂2
t − ∆g)r̃ = (∆gγ)h1(t− φ), r̃|t�0 = 0. (2.20)

Note that we need to solve (2.17) — (2.19) in the compact x · θ ≥ −ρ, φ(x, θ) ≤ 3τg, |η| < ρ
(η is determined by x = x(s, η)) and for ε sufficiently small this compact is contained in B4ρ.
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It is easy to see by Lemma 2.1 and Lemma 2.2 that the solutions exist and α, β, γ satisfy
the required estimates if k ≥ 6. Applying standard hyperbolic estimates we see that r̃ is
compactly supported with respect to x (uniformly in ε < 1, |t| < 3τg) and satisfies

‖r̃‖H2 + ‖∂tr̃‖H1 ≤ Cε. (2.21)

By the Sobolev embedding theorem this proves (2.15) for r = γh1(t − φ) + r̃. In order to
prove (2.16) note that (2.21) implies ‖∂2

tR‖H1 ≤ Cε. Since ∂2
tR = ∆gR+(∆gγ)h2(t−φ) and

‖∆gγ‖C1(B4ρ) ≤ Cε (k ≥ 9), we get ∆gR ∈ H1 and ‖∆gR‖H1 ≤ Cε, which implies (2.16).
2

3 Moding out the group of diffeomorphisms

Recall that we have the freedom to change the metric g → ψ∗g without changing the DN
map as long as ψ is a diffeomorphism that leaves the boundary fixed pointwise. In particular
we shall construct the diffeomorphism as a harmonic function with respect to the Laplace-
Beltrami operator ∆g.

Proposition 3.1 Suppose ψ : Ω̄ → Ω̄ solves the problem

{
∆gψ = 0 in Ω,
ψ|∂Ω = Id.

(3.1)

Then if g satisfies (2.4) with ε sufficiently small and k ≥ 2, ψ is a diffeomorphism and

‖ψ − Id‖Ck+2,µ(Ω̄) ≤ Cε

with some C > 0. Moreover, for g̃ := ψ∗g we have

3∑

i=1

∂

∂xi
(det g̃)

1
2 g̃iα = 0 in Ω, α = 1, 2, 3. (3.2)

Proof. For the components ψα of ψ we have ∆gψα = 0, ψα|∂Ω = xα. Clearly, Φ := ψ − Id
solves {

∆gΦα = −(det g)−
1
2
∑3
i=1

∂
∂xi

(det g)
1
2 giα in Ω,

Φα|∂Ω = 0.

Condition (2.4) implies that ‖Φ‖Ck+2,µ(Ω̄) ≤ Cε with some C > 0. This in particular implies
that for ε small enough the map ψ = Id + Φ is a diffeomorphism. Let g̃ := ψ∗g, where ψ
solves (3.1). Under the change of coordinates x→ ψ(x) the operator ∆g transforms into ∆g̃,
the function ψ transforms into x, therefore ∆g̃x = 0, or ∆g̃xα = 0 for any α = 1, 2, 3, which
is precisely (3.2). 2
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Proposition 3.2 Let g1, g2 be two metrics satisfying (2.4) with Λg1 = Λg2. Then there exists
a Ck+2,µ diffeomorphism ψ : Ω̄ → Ω̄ with ψ|∂Ω = Id, so that ψ∗g1 = g2 on ∂Ω. Moreover,
ψ = Id +O(ε) in Ck+2.

Proof. This proposition has been proven in [S-U] under the assumption that g1 and g2

belong to C∞ and it is in fact shown that g1 = g2 of infinite order at the boundary. Under
the finite smoothness assumption made here, the proof in [S-U] still works to show that
g1 = g2 on ∂Ω. Indeed, one can construct highly oscillating solutions as in [S-U], not as an
infinite series but as a sum of two leading terms plus a remainder that is easy to estimate
(very similarly to our construction in Proposition 2.2). Then one gets g1 = g2 on ∂Ω by
comparing the action of the DN map on the leading terms of those oscillating solutions as
in [S-U]. 2

Proposition 3.3 Let gi, i = 1, 2 satisfy the assumptions of Theorem 1.1. Let g̃i = ψ∗
i g,

where ψi solves (3.1) with g = gi, i = 1, 2. Then if g1|∂Ω = g2|∂Ω, we have g̃1|∂Ω = g̃2|∂Ω.

Proof. Let wi(t, x), i = 1, 2 solve




(∂2
t − ∆gi)wi = 0 in (0,∞) × Ω,

wi|t=0 = ∂twi|t=0 = 0 in Ω,
wi|(0,∞)×∂Ω = χ(t)Idx,

(3.3)

where χ ∈ C∞
0 (R+),

∫
χ(t)dt = 1. Since Λg1 = Λg2, we have

(det g)
1
2

3∑

i,j=1

gijνi
∂w1

∂xj
= (det g)

1
2

3∑

i,j=1

gijνi
∂w2

∂xj
on (0,∞) × ∂Ω,

where g := g1 = g2 on the boundary. Since for any t > 0 the tangential derivatives (with
respect to x) of wi coincide, i = 1, 2, we conclude that

∇xw1(t, x) = ∇xw2(t, x), ∀t ≥ 0, x ∈ ∂Ω. (3.4)

Set
Ψi(x, λ) =

∫ ∞

0
eiλtwi(t, x) dt. (3.5)

Since the energy ‖∇xwi‖L2(Ω) + ‖∂twi‖L2(Ω) is bounded as t → ∞ (in fact it is constant for
large t), the distribution Ψi is well defined as the Fourier transform of wi extended as zero
for t < 0. By (3.1) we get that away from the square roots of the Dirichlet eigenvalues of
−∆gi in Ω, the distribution Ψi is a smooth (analytic) function of λ solving

{
(∆gi + λ2)Ψi = 0 in Ω,

Ψi|∂Ω = χ̂(λ)Idx,

where χ̂(λ) =
∫
eiλtχ(t)dt. Since λ2 = 0 is not a Dirichlet eigenvalue of −∆gi, we get that

Ψi(λ, x) is smooth near λ = 0 and in particular ψi(x) := Ψ(x, 0) is well defined and solves
(3.1). By (3.4), ∇xψ1 = ∇xψ2 on ∂Ω which directly implies that g̃1 = g̃2 on ∂Ω. We would
like to mention here that in fact we can deduce that g̃1 = g̃2 on ∂Ω of order 10. 2
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4 Proof of Corollary 1.1

Assume that we have two metrics g1 and g2 satisfying (2.4) with Λg1 = Λg2. We first apply
the results of Section 3. First, according to Proposition 3.2, there exist a diffeomorphism
ϕ which is identity on the boundary, such that g̃1 := ϕ∗g1 and g̃2 := g2 coincide on the
boundary. Next, according to Proposition 3.1, ˜̃gi := ψ∗

i g̃i satisfy (3.2), where ψi solve (3.1),
i = 1, 2. And finally, since g̃1 = g̃2 on ∂Ω, by Proposition 3.3 we get ˜̃g1 = ˜̃g2 on ∂Ω. Notice
that ˜̃gi and gi, i = 1, 2 have the same DN maps. Moreover, they satisfy (2.4). In what
follows we denote ˜̃gi again by gi, i = 1, 2 and we have therefore

3∑

j=1

∂

∂xi
(det gα)

1
2 gijα = 0 in Ω, j = 1, 2, 3, α = 1, 2, (4.1)

g1 − g2 = 0 on ∂Ω. (4.2)

By Proposition 2.1, given T > 0 we have

0 =
∫ T

0

∫

Ω

3∑

i,j=1

[
(det g1)

1
2 gij1 − (det g2)

1
2 gij2

] ∂u1

∂xi

∂u2

∂xj
dx dt

−
∫ T

0

∫

Ω

[
(det g1)

1
2 − (det g2)

1
2

] ∂u1

∂t

∂u2

∂t
dx dt (4.3)

for any two solutions u1, u2 of (2.1). Denote

mij = (det g1)
1
2 gij1 − (det g2)

1
2 gij2 = γij1 − γij2 , (4.4)

where γijα := (det gα)
1
2 gijα , α = 1, 2. We aim to show that m = 0 which would easily imply

g1 = g2. By (4.1), (4.2),

3∑

i=1

∂mij

∂xi
= 0, j = 1, 2, 3 and m|∂Ω = 0. (4.5)

We have
det(γijα ) = (det gα)

3
2 det(gijα ) = (det gα)

1
2 .

Thus, det gα = (det(γijα ))2. For the second integrand in (4.3) we therefore have

(det g1)
1
2 − (det g2)

1
2 = det(γij1 ) − det(γij2 ).

Let us denote γ = (γij), det γ = det(γij).

Lemma 4.1

det γ1 − det γ2 = tr (γ1 − γ2) +
3∑

i,j=1

dij(γ
ij
1 − γij2 ),

where dij are polynomials of degree 2 of the entries of γ1 − Id, γ2 − Id with no zero-degree
terms.
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Proof. Denote γij1 = δij +aij, γ
ij
2 = δij +bij. Let F (x) := det(Id+x), x being a 3×3 matrix

which we can consider as a 9-dimensional vector. Then

F (x)− F (y) = (x− y) ·
∫ 1

0
∇xF (tx+ (1 − t)y) dt. (4.6)

For ∇xF = ∇x det(Id + x) we have

∂

∂xi0,j0
det(Id + x) = (−1)i0+j0 det ((Id + xij)i 6=i0 ,j 6=j0) .

If i0 = j0, then ∂ det(Id + x)/∂xi0,j0 = 1 + O(|x|), where O(|x|) denotes a polynomial
containing only linear and quadratic terms, while for i0 6= j0 we get ∂ det(Id + x)/∂xi0,j0 =
O(|x|). Therefore, ∇xF (x) = (δij) +O(|x|). By plugging this into (4.6), we get

det(Id+ a) − det(Id + b) = tr (a− b) +
3∑

i,j=1

dij(aij − bij),

where dij = O(|a| + |b|). This completes the proof. 2

By Lemma 4.1 we see that (4.3) can be rewritten as

∫ T

0

∫

Ω




3∑

i,j=1

mij
∂u1

∂xi

∂u2

∂xj
− trm

∂u1

∂t

∂u2

∂t
−

3∑

i,j=1

dijmij
∂u1

∂t

∂u2

∂t


 dx dt = 0 (4.7)

with
‖dij‖Ck = O(ε). (4.8)

We are going to use in (4.7) the solutions u1 and u2 to the following problems:

{
(∂2
t − ∆g1)u1 = 0 in R× R3,

u1|t≤0 = δ(t− ρ − x · θ1),

{
(∂2
t − ∆g2)u2 = 0 in R ×R3,
u2|t≥s+2ρ = h0(s− t+ ρ− x · θ2),

(4.9)

where g1 and g2 are the extended metrics satisfying (2.5). Here θj ∈ S2, j = 1, 2, s are
parameters and

−2ρ ≤ s ≤ T − 2ρ, (4.10)

where T > 0 will be chosen later. In other words, if vj denotes the solution to (2.10) with
g = gj, j = 1, 2, then

u1(t, x, θ1) = v1(t− ρ, x, θ1), u2(t, x, θ2) = V2(s− t+ ρ, x, θ2), (4.11)

where V2(t, x, θ) =
∫ t
−∞ v2(s, x, θ)ds. Note that u1|t=0, ∂tu1|t=0 vanish in Bρ. Similarly,

u2|t=T , ∂tu2|t=T vanish in Bρ, too, provided that (4.10) holds. Therefore, u1 and u2 solve
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(2.1) with some f1 and f2 and we can plug them into (4.7). Since f1 and f2 are not H2-
functions as required, we could first integrate sufficient number of times u1 and u2 with
respect to t and then differentiate back (4.7) with respect to s, thus substituting u1 and u2

in (4.7) is correct. From now on, we assume that u1 and u2 in (4.7) solve (4.9).
By Proposition 2.2,

u1 = α1δ(t− ρ − φ1(x, θ1)) + β1h0(t− ρ− φ1(x, θ1)) + r1(t− ρ, x, θ1),

u2 = α2h0(s− t+ ρ− φ2(x, θ2)) + β2h1(s− t+ ρ− φ2(x, θ2)) +R2(s− t+ ρ, x, θ2),

where R2(t, ·, ·) :=
∫ t
−∞ r2(s, ·, ·)ds. For the first term in (4.7) we get

∫ T

0

∫

Ω

3∑

i,j=1

mij
∂u1

∂xi

∂u2

∂xj
dx dt =

∫

Ω

3∑

i,j=1

mij

[
∂φ1

∂xi

∂φ2

∂xj
α1α2δ

′(s− φ1 − φ2) +Bijδ(s− φ1 − φ2)

+ Cij +
∫ T

0
∂xir1(t− ρ)∂xjR2(s− t+ ρ) dt

]
dx. (4.12)

Here α = α1(x, θ1), α2 = α2(x, θ2), φ1 = φ1(x, θ1), φ2 = φ2(x, θ2), Cij = Cij(x, s, θ1, θ2),
r1(t) = r1(t, x, θ1), R2(t) = R2(t, x, θ2). According to (2.14) – (2.16), ‖α1α2−1‖Ck−2 = O(ε),
Bij = O(ε) uniformly in θ1, θ2 and

∫
C2
ij(x, s, θ1, θ2)dx = O(ε2) uniformly in s, θ1, θ2.

Similarly, the last term in (4.12) involving r1 and R2 is also an L2-function of x with norm
O(ε) uniformly in s, θ1, θ2.

For the second and the third term in (4.7) we get analogously

∫ T

0

∫

Ω

(
− trm−

3∑

i,j=1

dijmij

)
∂u1

∂t

∂u2

∂t
dx dt

=
∫

Ω

(
trm+

3∑

i,j=1

dijmij

)[
α1α2δ

′(s− φ1 − φ2) +Bδ(s− φ1 − φ2)

+ C +
∫ T

0
∂tr1(t− ρ)r2(s− t+ ρ) dt

]
dx, (4.13)

where B, C and the last term in (4.13) have similar properties as above.
Recall the definition (2.13) of τg. It is easy to see that diamgj (Bρ) ≤ ρ + τgj , j = 1, 2.

Here gj denotes the extended metric. Notice that the s-support of δ′(s−φ1−φ2) is contained
in s ∈ [−2ρ, τ ], where τ := τg1 + τg2. We will choose T so that the latter interval is included
in the interval (4.10). To this end we set

T0 = 2ρ + τ, (4.14)

and from now on we assume that T > T0. Notice that T0 = 4ρ +O(ε).
By (4.12), (4.13) we see that (4.7) can be rewritten as

I0 = I1 + I2, s ∈ [−2ρ, τ ], θ1 ∈ S2, θ2 ∈ S2, (4.15)
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where Ij = Ij(s, θ1, θ2), j = 0, 1, 2 are given by

I0 =
∫

Ω
α1α2δ

′(s− φ1 − φ2)
3∑

i,j=1

mij

(
∂φ1

∂xi

∂φ2

∂xj
+ δij + dij

)
dx, (4.16)

I1 =
∫

Ω

3∑

i,j=1

B̃ijmijδ(s− φ1 − φ2) dx, (4.17)

I2 =
∫

Ω

3∑

i,j=1

C̃ij(x, s, θ1, θ2)mij(x) dx (4.18)

with ‖dij‖Ck = O(ε), ‖B̃ij‖C0 = O(ε), and ‖C̃ij(·, s, θ1, θ2)‖L2 = O(ε) uniformly in s, θ1, θ2.
Notice that I0 and I1 are defined for all s but vanish outside [−2ρ, τ ]. Therefore, the same
is true for I2.

Let us take the Fourier transform Î0 :=
∫
eiλsI0ds of I0 where we have denoted the dual

variable of s by λ. Then
Î0 = −iλF, (4.19)

with

F =
∫

Ω
eiλφα1α2

3∑

i,j=1

(
∂φ1

∂xi

∂φ2

∂xj
+ δij + dij

)
mij dx, (4.20)

where φ := φ1(x, θ1) + φ2(x, θ2). Notice that φ is close to x · (θ1 + θ2). Given ξ ∈ R3 \ {0},
we are going to choose λ = λ(ξ), θ1 = θ1(ξ), θ2 = θ2(ξ) so that λ(θ1 + θ2) = ξ. Then the
phase function λφ will be close to x · ξ. Denote by

ω =
ξ

|ξ| ∈ S2, r = |ξ| ≥ 0

the polar coordinates related to ξ. Let p ∈ S2 be a parameter. Set

θ1 =
ω + (−p + (p · ω)ω)

|ω + (−p + (p · ω)ω)| ∈ S2, θ2 =
ω − (−p+ (p · ω)ω)

|ω − (−p+ (p · ω)ω)| ∈ S2. (4.21)

Notice that −p+ (p · ω)ω is perpendicular to ω. Further,

|ω ± (−p+ (p · ω)ω)|2 = 2 − (p · ω)2 ∈ [1, 2].

We substitute in (4.15)

θ1 = θ1(ω) = θ1

(
ξ

|ξ|

)
, θ2 = θ2(ω) = θ2

(
ξ

|ξ|

)

with θj(ω) as in (4.21). Next, in (4.20) we will set

λ = λ(ξ) =
r

2

√
2 − (p · ω)2 =

1

2

√
2|ξ|2 − (p · ξ)2. (4.22)
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Notice that a priori Ij = I(s, θ1, θ2), F = F (λ, θ1, θ2). After the substitution (4.21) we get
functions of (s, ω) and (λ, ω), respectively that we will denote by Ij(s, ω), F (λ, ω). Let us
estimate the L2-norm of I0 = I0(s, ω).

∫

S2

∫

R
|I0(s, ω)|2 ds dω =

1

2π

∫

S2

∫

R
λ2|F (λ, ω)|2dλ dω

=
1

π

∫

S2

∫

R+

|F (λ(rω), ω)|2r2
(

1

2

√
2 − (p · ω)2

)3

dr dω

=
1

8π

∫ ∣∣∣∣F
(
λ(ξ),

ξ

|ξ|

)∣∣∣∣
2(

2 −
(
p · ξ
|ξ|

)2)3
2

dξ. (4.23)

Let us denote F (λ(ξ), ξ/|ξ|) simply by F (ξ). Recall that F depends also on the parameter
p ∈ S2. We have

2−
3
2

√
π
‖F‖L2(R3

ξ) ≤ ‖I0‖L2(R×S2) = ‖I0‖L2([−2ρ,τ ]×S2) ≤
2−

3
4

√
π
‖F‖L2(R3

ξ). (4.24)

We are going next to estimate the norm of Ij = Ij(s, ω) in L2([−2ρ, τ ]×S2), j = 0, 1, 2. We
will show that c0‖m‖ ≤ ‖I0‖ = ‖I1 + I2‖ ≤ c1ε‖m‖ with c0, c1 independent of m, p and ε,
whence m = 0.

To estimate ‖I0‖, it suffices by (4.24) to estimate the L2-norm of F . Denote

ϕ(x, ξ) = λ(ξ)
(
φ1

(
x, θ1

( ξ
|ξ|
))

+ φ2

(
x, θ2

( ξ
|ξ|
)))

.

Thus (4.20) can be rewritten as

F (ξ) =
∫

Ω
eiϕ(x,ξ)α1α2

3∑

i,j=1

(
∂φ1

∂xi

∂φ2

∂xj
+ δij + dij

)
mij dx (4.25)

with

αj = αj
(
x, θj

( ξ
|ξ|
))
, φj = φj

(
x, θj

( ξ
|ξ|
))
, j = 1, 2.

We introduce next the following class Smk of symbols. We say that a = a(x, ξ) ∈ Ck(Bρ×
R3 \ {0}) belongs to Smk iff there exists a constant C ≥ 0, such that

∣∣∣∂αx∂
β
ξ a(x, ξ)

∣∣∣ ≤ C|ξ|m−|β| for x ∈ Bρ, ξ ∈ R3 \ {0}, |α| + |β| ≤ k. (4.26)

The optimal constant in (4.26) defines a norm in Smk . We say that a = O(ε) in Smk iff a ∈ Smk
and the Smk -norm of a is O(ε), in other words (4.26) holds with C replaced by Cε.

By Lemma 2.2 we have

ϕ(x, ξ) = x · ξ +O(ε) in S1
k. (4.27)
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In (4.25) we have also

α1α2 = 1 +O(ε) in S0
k−2,

∂φ1

∂xi
=

ξi +
(
−|ξ|pi + p·ξ

|ξ| ξi
)

√
2|ξ|2 − (p · ξ)2

+O(ε) in S0
k−1,

∂φ2

∂xj
=

ξj −
(
−|ξ|pj + p·ξ

|ξ| ξj
)

√
2|ξ|2 − (p · ξ)2

+O(ε) in S0
k−1,

dij = O(ε) in S0
k .

Proposition 4.1 Let P denote the operator

(Pf)(ξ) =
∫

Ω
eiϕ(x,ξ)a(x, ξ)f(x) dx,

where ϕ(x, ξ) is homogeneous of order 1 in ξ and for x ∈ Bρ, ξ 6= 0 we have

|∂αx∂
β
ξ (ϕ(x, ξ) − x · ξ)| ≤ Aε|ξ|1−|β|, |α| + |β| ≤ 9,

|∂αx∂
β
ξ a(x, ξ)| ≤ M |ξ|−|β|, |α| + |β| ≤ 7

with some A > 0, M > 0. Then for ε > 0 sufficiently small P : L2(Ω) → L2(R3
ξ) is bounded

and
‖Pf‖L2(R3

ξ) ≤ C0M‖f‖L2(Ω)

with C0 = C0(A). If, in addition, a = 1 +O(ε) in S0
7 , then for ε > 0 small enough

(2π)3

2
‖f‖L2(Ω) ≤ ‖Pf‖L2(R3

ξ). (4.28)

Proof. Proposition 4.1 was proven in [St-U]. For the sake of completeness below we will
recall the proof. Consider P ∗P . We have

(P ∗Pf) (x) =
∫ ∫

e−i(ϕ(x,ξ)−ϕ(y,ξ))a(x, ξ)a(y, ξ)f(y) dy dξ. (4.29)

The phase function above admits the representation

ϕ(x, ξ) − ϕ(y, ξ) = (x− y) · η(x, y, ξ),

where

η(x, y, ξ) =
∫ 1

0
(∇xϕ)(y + t(x− y), ξ) dt. (4.30)

Here η is a homogeneous function of ξ of order 1. Let us extend the definition (4.26) of Smk
to amplitudes a(x, y, ξ) depending on y as well by replacing (4.26) by |∂αx∂βy ∂

γ
ξ a(x, y, ξ)| ≤

14



C|ξ|m−|γ|, x ∈ Bρ, y ∈ Bρ, ξ 6= 0, |α|+ |β|+ |γ| ≤ k. Then η = ξ+O(ε) in S1
8 . The equation

η = η(x, y, ξ) can be solved for ξ for ε small enough. The Jacobian J := |Dη/Dξ| satisfies
J = 1 + O(ε) in S0

7 and moreover, J is homogeneous in ξ. After the change of variables
ξ → η in (4.29) we get

P ∗Pf =
∫ ∫

e−i(x−y)·ηb(x, y, η)f(y)J̃(x, y, η) dy dη, (4.31)

where J̃(x, y, η) = J−1(x, y, ξ)|ξ=ξ(x,y,η), b(x, y, η) = a(x, ξ)a(y, ξ)|ξ=ξ(x,y,η). Clearly, bJ̃ ∈ S0
7

with norm C(A)M2. We are in a position now to apply to (4.31) Theorem A.1 in [St-U], say-
ing that a(x, y,D) is bounded in L2 with norm not exceeding CM , if

∫
|∂αx∂βy a(x, y, ξ)|dxdy ≤

M , |α| + |β| ≤ 7. This theorem is a straightforward generalization of a similar result for
operators a(x,D) (see Theorem 18.1.11′ in [H I]). More precisely, we apply the above men-
tioned theorem to the operator with amplitude χ(x)b(x, y, η)J̃(x, y, η)χ(y), where χ ∈ C∞

0 ,
χ = 1 in Ω, χ = 0 outside Bρ. This yields the first part of the proposition.

To prove the second assertion, notice that if a = 1 +O(ε) in S0
7, then J̃b = 1 + O(ε) in

S0
7 because we have the same for J̃ . Therefore,

‖P ∗P − (2π)3Id‖L(L2(Bρ)) ≤ Cε,

which yields immediately (4.28) for ε > 0 small enough. 2

By Proposition 4.1 and (4.25), F can be represented as F = Pm, where P is an operator
as above (acting on matrix-valued functions). The amplitude aij is homogeneous in ξ of
order 0, belongs to S0

k−2 and

aij =
(
2 −

(
p · ξ
|ξ|

)2)−1
[(

1 +
p · ξ
|ξ|

)
ξi
|ξ| − pi

] [(
1 − p · ξ

|ξ|

)
ξj
|ξ| + pj

]
+ δij +O(ε) in S0

k−2.

If k ≥ 9, then by Proposition 4.1,

F =
∫

Ω
eiϕ

3∑

i,j=1

( [
2 −

(
p · ξ
|ξ|

)2
]−1 [(

1 +
p · ξ
|ξ|

)
ξi
|ξ| − pi

]

×
[(

1 − p · ξ
|ξ|

)
ξj
|ξ| + pj

]
+ δij

)
mij dx+O(ε‖m‖) in L2(R3

ξ).

Using the fact that ∂ϕ/∂xj = ξj +O(ε) in S1
k−1 and m = 0 on the boundary (see (4.5)), we

get

ξj
|ξ|

∫

Ω
eiϕmij dx =

1

|ξ|

∫

Ω
eiϕ

∂ϕ

∂xj
mij dx+O(ε‖m‖) in L2(R3

ξ)

= − i

|ξ|

∫

Ω
eiϕ

∂mij

∂xj
dx+O(ε‖m‖) in L2(R3

ξ). (4.32)
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Since by (4.5),
∑3
i=1 ∂mij/∂xi = 0, j = 1, 2, 3, we get

F =
∫

Ω
eiϕ
(
−
[
2 −

(
p · ξ
|ξ|

)2
]−1 3∑

i,j=1

mijpipj + trm

)
dx+O(ε‖m‖) in L2(R3

ξ). (4.33)

Moreover, Proposition 4.1 allows us to conclude that the estimate on the remainder above
is uniform in p ∈ S2. By (4.24),

‖F0‖L2(R3) ≤ C‖I0‖L2([−2ρ,τ ]×S2) +O(ε‖m‖), (4.34)

where F0 denotes the integral term in (4.33).
Let us estimate now the norm of I1 = I1(s, ω).

‖I1‖L2([−2ρ,τ ]×S2) ≤ Cε‖
∫
|m|δ(s− φ) dx‖L2(R×S2),

where φ = φ1 + φ2, φj = φj(x, θj(ω)), j = 1, 2 (see (4.21)). Since for any f ∈ C1(R) with
f = 0 outside [−2ρ, τ ] we have ‖f‖L2 ≤ C‖f ′‖L2 , after approximating |m| = (

∑
ij |mij|2)1/2

with smooth functions, we get

‖I1‖L2([−2ρ,τ ]×S2) ≤ C ′ε‖
∫
|m|δ′(s− φ) dx‖L2(R×S2).

The integral above has a form similar to that of I0 (see (4.16)) and therefore the analysis of
I0 yields

‖I1‖L2([−2ρ,τ ]×S2) ≤ C ′′ε‖m‖. (4.35)

And finally, for I2 we have

‖I2‖L2([−2ρ,τ ]×S2) ≤ Cε‖m‖ (4.36)

because (see (4.18)) I2 is obtained from m by applying a Hilbert-Schmidt operator with
kernel C̃ij having L2-norm of the kind O(ε), uniformly in the parameter p ∈ S2.

Combining (4.15), (4.34) – (4.36) we obtain F0 = O(ε‖m‖) in L2, in other words,

∫

Ω
eiϕ(x,ξ)




3∑

i,j=1

mij(x)pipj −
(
2 −

(
p · ξ
|ξ|

)2)
trm(x)


 dx = O(ε‖m‖) in L2(R3

ξ). (4.37)

Recall that ϕ depends on p ∈ S2 as well. As in the proof of Proposition 4.1 (we need here
k ≥ 9), let us apply the operator P ∗ to (4.37) to get

∫ ∫

Ω
ei(x−y)·η




3∑

i,j=1

mij(y)pipj −
((

2 −
(
p · η
|η|

)2)
trm(y)


 dy dη = O(ε‖m‖) in L2(Ωx).

(4.38)
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Here, as in the proof of Proposition 4.1 we have made the change ϕ(x, ξ) − ϕ(y, η) = (x −
y) · η(x, y, ξ), η = ξ+O(ε) in S1

k−1 and used that fact that J̃(x, y, η) = 1+O(ε) in S0
k−2. We

can choose now successfully p = e1, e2, e3 and sum up the corresponding equalities (4.38) to
get

−4
∫ ∫

Ω
ei(x−y)·ηtrm(y) dy dη = O(ε‖m‖) in L2(R3

x).

In other words,
‖trm‖ = O(ε‖m‖).

Going back to (4.38) we obtain

3∑

i,j=1

mijpipj = O(ε‖m‖) in L2(Ω), ∀p ∈ S2.

Setting p = e1, e2, e3, we get

‖mii‖ = O(ε‖m‖), i = 1, 2, 3.

Setting p = 1√
2
(ei + ej), i 6= j, we get

‖mij‖ = O(ε‖m‖), i 6= j.

Therefore, ‖m‖ = O(ε‖m‖) which yields m = 0 for ε sufficiently small and k = 9 in
(2.4). Going back to the notations at the beginning of this section, we see that (ϕ1ψ1)

∗g1 =
(ϕ2ψ2)

∗g2, therefore (ψ−1
2 ϕ−1

2 ϕ1ψ1)
∗g1 = g2. This completes the proof of Corollary 1.1.

5 The stability estimate

In this section we prove Theorem 1.1. First we need the following geometrical optics solution.
For more details we refer to [CP].

Fix (t0, x0) ∈ (0,∞) × ∂Ω with t0 sufficiently small and let χ ∈ C∞
0 ((0,∞) × ∂Ω) be a

cut-off function such that χ = 1 near (t0, x0). Then there exists a solution u of (1.1) that
near (t0, x0) has the form

u = eiλ(t−φ(x,ω))(A(x, ω) + v(t, x, ω, λ)), (5.1)

where λ > 0 is a large parameter,
∑3
i,j=1 g

ij(x0)ωiωj = 1, ω · ν(x0) < 0 and

‖v(t, ·, ω, λ)‖H2 ≤ C

λ
. (5.2)

The phase function solves (in a neighborhood of x0) the eikonal equation




∑3
i,j=1 g

ij ∂φ
∂xi

∂φ
∂xj

= 1,

φ|∂Ω = x · ω,
∂φ
∂ν
|∂Ω < 0.

(5.3)
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Recall that ν is the outer normal to ∂Ω and the third equation above implies that ∇φ points
into Ω. Since ω is not tangent to ∂Ω near x0, (5.3) is non-characteristic and therefore well
posed. For the amplitude A we have A = χ(t, x) for x ∈ ∂Ω and A solves the standard
transport equations.

The construction of u is very similar to that of the solution v in Proposition 2.2 (see also
[CP], [S-U]). First we construct a local solution as in Proposition 2.2. Then we extend g
smoothly near ∂Ω such that g = e outside a small neighborhood of ∂Ω and g satisfies (2.4)
with k = 9. We propagate then the local solution backwards to t = 0, cut off the so obtained
initial data so that it is zero in Ω and propagate forward.

In [S-U] it is shown that if two metrics have the same DN maps, they coincide at the
boundary in suitable coordinates. We will adapt that proof to show a continuous dependence
on the boundary. Let us define boundary normal coordinates near ∂Ω as follows. For x
sufficiently close to the boundary, set x3 = distg(x, ∂Ω). If x′ := (x1, x2) are local coordinates
on ∂Ω, then in the new coordinates

3∑

i,j=1

gijξiξj =
2∑

i,j=1

gijξiξj + ξ2
3. (5.4)

Suppose that we have two metrics g1 and g2 satisfying the assumptions of Theorem 1.1.
Fix x0 ∈ ∂Ω and let Nk be a local diffeomorphism mapping the original coordinates into
its normal coordinates (x′, x3), corresponding to the metrics gk, k = 1, 2. Set hk = N∗

k gk,
k = 1, 2. Then hk satisfies (5.4).

Proposition 5.1
‖h1 − h2‖L∞(O) ≤ C‖Λg1 − Λg2‖∗,

where O is a small neighborhood of x0.

Proof. Let u1, u2 be the solution (5.1) associated with h1, h2 respectively defined in a
neighborhood of (t0, x0) with some t0 > 0. For (t, x) close to (t0, x0) we have

Λhk
uk = iλeiλ(t−x·ω)(dethk)

1
2

( 3∑

i,j=1

hijk νi
∂φk
∂xj

+O(λ−1)
)

in H
1
2 (∂Ω)

= iλeiλ(t−x·ω)
(
(dethk)

1
2
∂φk
∂x3

+O(λ−1)
)

in H
1
2 (∂Ω), (5.5)

k = 1, 2. Let us choose f ∈ C∞
0 (R+ × ∂Ω) supported near (t0, x0), such that supp g ⊂

{(t, x); χ(t, x) = 1} and consider

G(λ) =
1

iλ

∫

R+×∂Ω
e−iλ(t−x·ω) (Λh1u1 − Λh2u2) f dt dSx.
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By (5.5),

lim
λ→∞

G(λ) =
∫

R+×∂Ω

3∑

i,j=1

(
(deth1)

1
2
∂φ1

∂x3
− (deth2)

1
2
∂φ2

∂x3

)
f dt dSx. (5.6)

On the other hand,

|G(λ)| ≤ 1

λ
‖Λh1 − Λh2‖∗‖u1‖H1‖f‖L2 +

1

λ
‖Λh2‖∗‖u1 − u2‖H1‖f‖L2,

where ‖ · ‖H1, ‖ · ‖L2 are the norms over (R+ × ∂Ω) ∩ supp f . Since ‖u1‖H1 = O(λ), ‖u1 −
u2‖H1 = O(1) uniformly with respect to g1, g2 satisfying the assumptions of Theorem 1.1,
we get

|G(λ)| ≤ C
(
‖Λh1 − Λh2‖∗ +O(λ−1)

)
‖f‖L2. (5.7)

Combining (5.6), (5.7), we get
∣∣∣∣∣

∫

R+×∂Ω

(
(deth1)

1
2
∂φ1

∂x3
− (deth2)

1
2
∂φ2

∂x3

)
f dt dSx

∣∣∣∣∣ ≤ C‖Λh1 − Λh2‖∗‖f‖L2. (5.8)

The eikonal equation implies that on ∂Ω

∂φk
∂x3

=

(
1 −

2∑

i,j=1

hijk ωiωj

)1
2

.

Picking suitable values of ω and bearing in mind that (5.8) holds for any f ∈ L2(R+ × ∂Ω)
supported near (t0, x0), we complete the proof of the proposition. 2

By Proposition 5.1, we have the same stability estimate at the boundary for g1 and
(N−1

1 N2)
∗g2. Choosing a partition of unity, we get

Proposition 5.2
‖g̃1 − g̃2‖L∞(∂Ω) ≤ C‖Λg1 − Λg2‖∗,

where g̃1 = g1, g̃2 = ϕ∗g2 and ‖ϕ− Id‖C11 ≤ Cε.

We need here a modification of Proposition 3.1.

Proposition 5.3 Suppose ψ : Ω̄ → Ω̄ solves the problem
{

(−∆g + ε)ψ = 0 in Ω,
ψ|∂Ω = Id.

(5.9)

Then if g satisfies (2.4) with ε > 0 sufficiently small and k ≥ 2, ψ is a diffeomorphism and

‖ψ − Id‖Ck+2,µ(Ω̄) ≤ Cε (5.10)
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with some C > 0. Moreover, for g̃ := ψ∗g we have

3∑

i=1

∂

∂xi
(det g̃)

1
2 g̃iα = εxα(det g̃)

1
2 in Ω, α = 1, 2, 3. (5.11)

Proof. As before, denote Φ := ψ − Id. Then

{
(−∆g + ε)Φα = (det g)−

1
2
∑3
i=1

∂
∂xi

(det g)
1
2 giα − εxα in Ω,

Φα|∂Ω = 0.

Applying standard elliptic estimates, we get (5.10). Next, since (−∆g̃ + ε)Φ = 0, we get
(−∆g + ε)Id = 0, which implies (5.11). 2

We prove next an analogue of Proposition 3.3.

Proposition 5.4 Let g1, g2 satisfy the assumptions of Theorem 1.1. Let ˜̃gk = ψ∗
k g̃k, where

g̃k, k = 1, 2 are as in Proposition 5.2 and ψk, k = 1, 2 solve (5.9). Then

‖˜̃g1 − ˜̃g2‖L2(∂Ω) ≤ C (‖Λg1 − Λg2‖∗ + ‖Λg1 − Λg2‖∗∗) . (5.12)

Proof. Let wk, k = 1, 2 solve (3.3) as in the proof of Proposition 3.3 with χ ∈ C∞
0 (R+)

such that
∫∞
0 e−

√
εtχ(t)dt = 1. Define Ψk(x, λ) by (3.5) and set ψk(x) = Ψk(x, i

√
ε), i.e.

ψk(x) =
∫ ∞

0
e−

√
εtwk(t, x) dt,

k = 1, 2. Then ψk solve (5.9). We have

∥∥∥∥(det g̃1)
1
2

3∑

i,j=1

g̃ij1 νi
∂ψ1

∂xj
− (det g̃2)

1
2

3∑

i,j=1

g̃ij2 νi
∂ψ2

∂xj

∥∥∥∥
L2(∂Ω)

≤
∥∥∥∥
∫
e−

√
εt(Λg1 − Λg2)χ(t)Idx dt

∥∥∥∥
L2(∂Ω)

≤ C‖Λg1 − Λg2‖∗∗.

Using Proposition 5.2 and the fact that the tangential derivatives of g̃1 and g̃2 coincide, we
get

‖g̃1 − g̃2‖L2(∂Ω) ≤ C‖Λg1 − Λg2‖∗∗
which implies Proposition 5.4. 2

We are ready now to begin with the proof of Theorem 1.1. Let g1, g2 satisfy the assump-
tions of Theorem 1.1. We define new metrics ˜̃g1 and ˜̃g2 as in Proposition 5.4 and in order to
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simplify the notations we denote them again by g1, g2. Then g1, g2 still satisfy the smallness
assumption of Theorem 1.1. With m as in (4.4) we get by (5.11), (5.12),

3∑

i,j=1

∂mij

∂xi
= O(ε‖m‖) in L2, j = 1, 2, 3, and ‖m|∂Ω‖L2(∂Ω) ≤ Cδ, (5.13)

where
δ := ‖Λg1 − Λg2‖∗ + ‖Λg1 −Λg2‖∗∗.

Instead of (4.3) we have

∫ T

0

∫

∂Ω
u2(Λg1 − Λg2)dSxdt =

∫ T

0

∫

Ω

3∑

i,j=1

[
(det g1)

1
2 gij1 − (det g2)

1
2 gij2

] ∂u1

∂xi

∂u2

∂xj
dx dt

−
∫ T

0

∫

Ω

[
(det g1)

1
2 − (det g2)

1
2

] ∂u1

∂t

∂u2

∂t
dx dt (5.14)

with u1, u2 as in (4.11). Here the left hand side is treated in distribution sense. With the
notations of Section 4 (see (4.15) – (4.18)), (5.14) can be rewritten as

∫ T

0

∫

∂Ω
u2(Λg1 − Λg2)u1 dSxdt = I0 − I1 − I2, (5.15)

where Ij = Ij(s, θ1, θ2), j = 0, 1, 2. Let us set θ1 = θ1(ω, p), θ2 = θ2(ω, p) as in (4.21) with
p ∈ S2 a parameter. Then Ij will depend on s, ω (and p) and we denote for simplicity the
new function by Ij(s, ω) as before. Denote by U1(t, x, ω) the solution to the first problem in
(4.9) with δ replaced by h1, thus in particular ∂2

tU1 = u1. Then we get from (5.15)

∂2
s

∫ T

0

∫

∂Ω
u2(Λg1 − Λg2)U1 dSxdt = I0 − I1 − I2, ∀(s, ω). (5.16)

We have for any s, ω

∣∣∣∣
∫ T

0

∫

∂Ω
u2(Λg1 − Λg2)U1 dSxdt

∣∣∣∣ ≤ ‖u2|∂Ω‖L2([0,T ]×∂Ω)‖Λg1 − Λg2‖∗‖U1|∂Ω‖H1([0,T ]×∂Ω). (5.17)

It follows from Proposition 2.2 that ‖u2|∂Ω‖L2([0,T ]×∂Ω), ‖U1|∂Ω‖H1([0,T ]×∂Ω) are uniformly
bounded for small ε. Let us take Fourier transform Fs→λ of both sides of (5.16)

−λ2Fs→λ

∫ T

0

∫

∂Ω
u2(Λg1 − Λg2)U1 dSxdt = Î0 − Î1 − Î2.

By (5.17),

∥∥∥∥Fs→λ

∫ T

0

∫

∂Ω
u2(Λg1 − Λg2)U1 dSxdt

∥∥∥∥
L2(Rλ×S2

ω)
≤ ‖Λg1 − Λg2‖∗.
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Fix R > 0. Then

‖Î0‖L2([−R,R]×S2
ω) ≤ C‖I1 + I2‖L2([−2ρ,τ ]×S2) + CR2‖Λg1 −Λg2‖∗.

By (4.35), (4.36),
‖Î0‖L2([−R,R]×S2

ω) ≤ Cε‖m‖+ CR2‖Λg1 −Λg2‖∗. (5.18)

Reasoning as in Section 4 (see (4.19), (4.23), (4.24)), we get

‖Î0‖L2([−R,R]×S2
ω) =

∫

S2

∫ R

−R
λ2|F (λ, ω)|2dλ dω ≥ C‖F‖L2(Bρ), (5.19)

where we denote as before F (ξ) := F (λ(ξ), ξ/|ξ|). In this case m does not necessarily vanish
on ∂Ω, as in Section 4 and instead we have (5.13). Nevertheless, this is enough to show as
in (4.32) that

3∑

i=1

ξi
|ξ|

∫

Ω
eiϕmij dx = O(ε‖m‖ +R

1
2 δ) in L2(BR), j = 1, 2, 3.

So, (4.33) remains valid in our case and similarly to (4.34) one gets from (5.18), (5.19)

‖F0‖L2(BR) ≤ C(ε‖m‖+R2δ)

with F0 as in (4.33), (4.34). Similarly to (4.37),

χR(ξ)
∫

Ω
eiϕ(x,ξ)




3∑

i,j=1

mij(x)pipj −
(
2 −

(
p · ξ
|ξ|

)2)
trm(x)


 dx = O(ε‖m‖+R2δ) in L2(R3

ξ),

(5.20)
where χR(ξ) = 1 for |ξ| ≤ R, χR(ξ) = 0 otherwise. As in (4.38), let us apply P ∗ to (5.20) to
get

∫ ∫

Ω
ei(x−y)·ηχR(ξ(η, x, y))

(
3∑

i,j=1

mij(y)pipj −
((

2 −
(
p · η
|η|

)2)
trm(y)

)
dy dη

= O(ε‖m‖ +R2δ) in L2(Ωx). (5.21)

Therefore,

∫ ∫

Ω
ei(x−y)·ηχR(η)

(
3∑

i,j=1

mij(y)pipj −
((

2 −
(
p · η
|η|

)2)
trm(y)

)
dy dη

= O(ε‖m‖ +R2δ) in L2(Ωx)

(compare with (4.38)). This implies

‖χΩχR(D)m‖ ≤ C(ε‖m‖+R2δ). (5.22)
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In order to estimate m̂(ξ) for large ξ, consider

∫

Ω
ξje

ix·ξm(x) dx = i
∫

Ω
eix·ξ

∂m(x)

∂xj
dx− i

∫

∂Ω
eix·ξνj(x)m(x) dSx.

The first term in the right hand side above is O(ε) as a function in L2(R3
ξ), because of (1.2).

The second term belongs to L2
−α with α > 1/2 and

∥∥∥∥
∫

∂Ω
eix·ξνj(x)m(x) dSx

∥∥∥∥
L2
−α

≤ C‖m|∂Ω‖L2(∂Ω) ≤ Cδ.

Therefore,

(1 +R2)1−α
∫

|ξ|>R
|m̂(ξ)|2dξ ≤

∫

|ξ|>R
(1 + |ξ|2)1−α|m̂(ξ)|2dξ

≤ Cε2 + C
3∑

j=1

∥∥∥∥(1 + |ξ|2)−α/2
∫

∂Ω
eix·ξνj(x)m(x) dSx

∥∥∥∥
2

L2

≤ C(ε+ δ)2.

Thus we get

‖m̂‖L2(R3\BR) ≤ CRα−1(ε+ δ), α >
1

2
. (5.23)

Combining (5.22), (5.23), we get

‖m‖ ≤ C(ε‖m‖+R2δ +Rα−1(ε+ δ)),

therefore
‖m‖ ≤ C(R2δ +Rα−1).

Set R = δ−1/(3−α). Then we get

‖m‖ ≤ Cδ
1−α
3−α .

Note that σ := (1 − α)/(3 − α) < 1/5 and can be chosen as close to 1/5 as we wish by
choosing suitable α > 1/2 close to α = 1/2. This completes the proof of Theorem 1.1.
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Partielles Linéaires, Gauthier–Villars, Paris, 1981.
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