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ABSTRACT. We study the geodesic X-ray transformI� of tensor fields on a compact Riemannian manifold
M with non-necessarily convex boundary and with possible conjugate points. We assume thatI� is known
for geodesics belonging to an open set� with endpoints on the boundary. We prove generic s-injectivity and
a stability estimate under some topological assumptions and under the condition that for any.x; �/ 2 T �M ,
there is a geodesic in� throughx normal to� without conjugate points.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let .M; @M / be a smooth compact manifold with boundary, and letg 2 C k.M / be a Riemannian metric
on it. We can always assume that.M; @M / is equipped with a real analytic atlas, while@M andg may or
may not be analytic. We define the geodesic X-ray transformI of symmetric 2-tensor fields by

(1) If . / D
Z l

0

hf . .t//; P 2.t/i dt;

whereŒ0; l � 3 t 7!  is any geodesic with endpoints on@M parameterized by its arc-length. Above,
hf; �2i is the action off on the vector� , that in local coordinates is given byfij�

i�j . The purpose of
this work is to study the injectivity, up to potential fields, and stability estimates forI restricted to certain
subsets� (that we callI� ), and for manifolds with possible conjugate points. We require however that the
geodesics in� do not have conjugate points. We also require that� is an open sets of geodesics such that
the collection of their conormal bundles coversT �M . This guarantees thatI� resolves the singularities.
The main results are injectivity up to a potential field and stability for generic metrics, and in particular for
real analytic ones.

We are motivated here by the boundary rigidity problem: to recoverg, up to an isometry leaving@M
fixed, from knowledge of the boundary distance function�.x; y/ for a subset of pairs.x; y/ 2 @M � @M ,
see e.g., [Mi, Sh1, CDS, SU4, PU]. In presenceof conjugate points, one should study instead the lens rigidity
problem: a recovery ofg from its scattering relation restricted to a subset. ThenI� is the linearization of
those problems for an appropriate� . Since we want to trace the dependence ofI� on perturbations of the
metric, it is more convenient to work with open� ’s that have dimension larger thann, if n � 3, making the
linear inverse problem formally overdetermined. One can use the same method to study restrictions ofI on
n dimensional subvarieties but this is behind the scope of this work.

Any symmetric 2-tensor fieldf can be written as an orthogonal sum of asolenoidalpart f s and a
potentialonedv, wherev D 0 on @M , andd stands for the symmetric differential of the 1-formv, see
Section 2. ThenI.dv/. / D 0 for any geodesic with endpoints on@M . We say thatI� is s-injective,
if I� f D 0 implies f D dv with v D 0 on @M , or, equivalently,f D f s. This problem has been
studied before forsimplemanifolds with boundary, i.e., under the assumption that@M is strictly convex,
and there are no conjugate points inM (thenM is diffeomorphic to a ball). The book [Sh1] contains the

First author partly supported by NSF Grant DMS-0400869.
Second author partly supported by NSF and a John Simon Guggenheim fellowship.

1



2 P. STEFANOV AND G. UHLMANN

main results up to 1994 on the integral geometry problem considered in this paper. Some recent results
include [Sh2], [Ch], [SU3], [D], [Pe], [SSU], [ShU]. For simple 2D manifolds, following the method used
in [PU] to solve the boundary rigidity problem, s-injectivity was proven in [Sh3]. In [SU4], we considered
I on all geodesics and proved that the set of simple metrics on a fixed manifold for whichI is s-injective
is generic inC k.M /, k � 2. Previous results include s-injectivity for simple manifolds with curvature
satisfying some explicit upper bounds [Sh1, Sh2, Pe]. A recent result by Dairbekov [D] proves s-injectivity
for non-trapping manifolds (not-necessarily convex) satisfying similar bounds, that in particular prevent the
existence of conjugate points.

Fix another compact manifoldM1 with boundary such thatM int
1

� M , whereM int
1

stands for the interior
of M1. Such a manifold is easy to construct in local charts, then glued together.

Definition 1. We say that theC k.M / (or analytic) metricg on M is regular, if g has aC k (or analytic,
respectively) extension onM1, such that for any.x; �/ 2 T �M there exists� 2 TxM n 0 with h�; �i D 0

such that there is a geodesic segmentx;� through.x; �/ such that
(a) the endpoints ofx;� are inM int

1
n M .

(b) there are no conjugate points onx;� .
Any geodesic satisfying (a), (b) is called asimple geodesic.

Note that we allow the geodesics in� to self-intersect.
Since we do not assume thatM is convex, given.x; �/ there might be two or more geodesic segments

j issued from.x; �/ such thatj \ M have different numbers of connected components. Some of them
might be simple, others might be not. For example for a kidney-shaped domain and a fixed.x; �/ we
may have such segments so that the intersection withM has only one, or two connected components.
Depending on which point inT �M we target to recover the singularities, we may need the first, or the
second extension. So simple geodesic segments through somex (that we call simple geodesics throughx)
are uniquely determined by an initial pointx and a direction� and its endpoints. In case of simple manifolds,
the endpoints (of the only connected component inM , unless the geodesics does not intersectM ) are not
needed, they are a function of.x; �/. Another way to determine a simple geodesic is by parametrizing it
with .x; �/ 2 T .M int

1
n M /, such that expx � 2 M int

1
n M then

(2) x;� D fexpx.t�/; 0 � t � 1g :

This parametrization induces a topology on the set� of simple geodesics.

Definition 2. The set� of geodesics is calledcomplete, if
(a) 8.x; �/ 2 T �M there exists a simple geodesic 2 � throughx such thatP is normal to� at x.
(b) � is open.

In other words, a regular metricg is a metric for which a complete set of geodesics exists. Another way
to express (a) is to say that

(3) N �� WD
˚
N � I  2 �

	
� T �M;

whereN � stands for the conormal bundle of .
We always assume that all tensor fields defined inM are extended as0 to M1 n M . Notice thatIf does

not change if we replaceM by another manifoldM1=2 close enough toM such thatM � M1=2 � M1

but keepf supported inM . Therefore, assuming thatM has an analytic structure as before, we can always
extendM a bit to make the boundary analytic and this would keep.M; @M; g/ regular. Then s-injectivity
in the extendedM would imply the same in the originalM , see [SU4, Prop. 4.3]. So from now on, we will
assume that.M; @M / is analytic butg does not need to be analytic. To define correctly a norm inC K .M /,
respectivelyC k.M1/, we fix a finite analytic atlas.
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The motivation behind Definitions 1, 2 is the following: ifg is regular, and� is any complete set of
geodesics, we will show thatI� f D 0 implies thatf s 2 C l.M /, wherel D l.k/ ! 1, ask ! 1, in
other words, the so restricted X-ray transform resolves the singularities.

The condition ofg being regular is an open one forg 2 C k.M /, k � 2, i.e., it defines an open set.
Any simple metric onM is regular but the class of regular metrics is substantially larger if dimM � 3

and allows manifolds not necessarily diffeomorphic to a ball. For regular metrics onM , we do not impose
convexity assumptions on the boundary; conjugate points are allowed as far as the metric is regular;M does
not need to be non-trapping. In two dimensions, a regular metric can not have conjugate points inM but
the class is still larger than that of simple metrics because we do not require strong convexity of@M .

Example 1.To construct a manifold with a regular metricg that has conjugate points, let us start with a
manifold of dimension at least three with at least one pair of conjugate pointsu andv on a geodesicŒa; b� 3
t 7! .t/. We assume that is non-selfintersecting. Then we will constructM as a tubular neighborhood
of  . For anyx0 2  , defineSx0

D expx0
fvI hv; P.x0/i D 0; jvj � "g, andM WD [x02Sx0

with
" � 1. Then there are no conjugate points along the geodesics that can be loosely described as those
“almost perpendicular” to but not necessarily intersecting ; and the union of their conormal bundles
coversT �M . More precisely, fixx 2 M , thenx 2 Sx0

for somex0 2  . Let 0 6D � 2 T �
x M . Then there

exists0 6D v 2 TxM that is both tangent toSx0
and normal to�. The geodesic through.x; v/ is then a

simple one for" � 1, and the latter can be chosen in a uniform way independent ofx. To obtain a smooth
boundary, one can perturbM so that the new manifold is still regular.

Example 2.This is similar to the example above but we consider a neighborhood of a periodic trajectory. Let
M D

˚
.x1/2 C .x2/2 � 1

	
� S1 be the interior of the torus inR3, with the flat metric.dx1/2 C .dx2/2 C

d�2, where� is the natural coordinate onS1 with period2� . All geodesics perpendicular to� D const. are
periodic. All geodesicsperpendicular to them have lengths not exceeding2 and their conormal bundles cover
the entireT �M (to cover the boundary points, we do need to extend the geodesics in a neighborhood ofM ).
ThenM is a regular manifold that is trapping, and one can easily show that a small enough perturbation of
M is also regular, and may still be trapping.

The examples above are partial cases of a more general one. Let.M 0; @M 0/ be a simple compact Rie-
mannian manifold with boundary with dimM 0 � 2, and letM 00 be a compact Riemannian manifold with
or without boundary. LetM be a small enough perturbation ofM 0 � M 00. ThenM is regular.

We assume throughout this paper thatM satisfies the following.

Topological Condition: Any path in M connecting two boundary points is homotopic to a polygon
c1 [ 1 [ c2 [ 2 [ � � � [ k [ ckC1 with the properties:

(i) cj are paths on@M ;
(ii) For any j , j D Qj jM for some Qj 2 � ; j lie in M int with the exception of its endpoints and is

transversal to@M at both ends.

Theorem 1. Let g be an analytic, regular metric onM . Let� be a complete complex of geodesics. Then
I� is s-injective.

The proof is based on using analytic pseudo-differential calculus, see [Sj, Tre]. This has been used before
in integral geometry, see e.g., [BQ, Q], see also [SU4].

The property of being simple is stable under small perturbations. The parametrization by.x; �/ as in
(2) clearly has two more dimensions that what is needed to determine uniquely jM . Indeed, a parallel
transport of.x; �/ alongx;�, close enough tox, will not change jM , similarly, we can replace� by
.1 C "/�, j"j � 1.
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To formulate a stability estimate, we will parametrize the simple geodesics in a way that will remove the
extra two dimensions. LetHm be a finite collection of smooth hypersurfaces inM int

1
. LetHm be an open

subset off.z; �/ 2 SM1I z 2 Hm; � 62 TzHmg, and let˙l˙
m .z; �/ � 0 be two continuous functions. Let

� .Hm/ be the set of geodesics

(4) � .Hm/ D
˚
z;�.t/I l�

m.z; �/ � t � lC
m .z; �/; .z; �/ 2 Hm

	
;

that, depending on the context, is considered either as a family of curves, or as a point set. We also assume
that each 2 � .Hm/ is a simple geodesic.

If g is simple, then one can take a singleH D @M1 with l� D 0 and an appropriatelC.z; �/. If g

is regular only, and� is any complete set of geodesics, then any small enough neighborhood of a simple
geodesic in� has the properties listed above and by a compactnessargument on can choosea finite complete
set of such� .Hm/’s, that is included in the original� , see Lemma 1.

Given H D fHmg as above, we consider an open setH0 D fH0
mg, such thatH0

m b Hm, and let
� .H0

m/ be the associated set of geodesics defined as in (4), with the samel˙
m . Set� .H/ D [� .Hm/,

� .H0/ D [� .H0
m/.

The restriction 2 � .H0
m/ � � .Hm/ can be modeled by introducing a weight function˛m in Hm, such

that˛m D 1 onH0
m, and˛m D 0 otherwise. More generally, we allow̨m to be smooth but still supported

in Hm. We then writę D f˛mg, and we say that̨ 2 C k.H/, if ˛m 2 C k.Hm/, 8m.
We considerI˛m

D ˛mI , or more precisely, in the coordinates.z; �/ 2 Hm,

(5) I˛m
f D ˛m.z; �/

Z lm.z;�/

0

˝
f .z;�/; P 2

z;�

˛
dt; .z; �/ 2 Hm:

Next, we set

(6) I˛ D fI˛m
g; N˛m

D I�
˛m

I˛m
D I�j˛mj2I; N˛ D

X
N˛m

;

where the adjoint is taken w.r.t. the measure d� WD jh�.z/; �ij dSz d� on Hm, dSz d� being the induced
measure onHm, and�.z/ being a unit normal toHm.

S-injectivity of N˛ is equivalent to s-injectivity forI˛, which in turn is equivalent to s-injectivity ofI
restricted to supp̨, see Lemma 2. The spaceQH 2 is defined in Section 2, see (8).

Theorem 2.
(a) Let g D g0 2 C k , k � 1 be regular, and letH0 b H be as above with� .H0/ complete. Fix

˛ D f˛mg 2 C 1 with H0
m � supp̨ m � Hm. Then ifI˛ is s-injective, we have

(7) kf skL2.M / � C kN˛f k QH 2.M1/
:

(b) Assume that̨ D ˛g in (a) depends ong 2 C k , so thatC k.M1/ 3 g ! C l.H/ 3 ˛g is continuous
with l � 1, k � 1. Assume thatIg0;˛g0

is s-injective. Then estimate (7) remains true forg in a small

enough neighborhood ofg0 in C k.M1/ with a uniform constantC > 0.

In particular, Theorem 2 proves a locally uniform stability estimate for the class of non-trapping manifolds
considered in [D].

Theorems 1, 2 allow us to formulate generic uniqueness results. One of them is formulated below. Given
a family of metricsG � C k.M1/, andUg � T .M int

1
n M /, depending on the metricg 2 G, we say thatUg

depends continuously ong, if for any g0 2 G, and any compactK � U int
g0

, we haveK � U int
g for g in a

small enough neighborhood ofg0 in C k . In the next theorem, we takeUg D �g, that is identified with the
corresponding set of.x; �/ as in (2).
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Theorem 3. LetG � C k.M1/ be an open set of regular metrics onM , and let for eachg 2 G, �g be a
complete set of geodesics related tog and continuously depending ong. Then fork � 0, there is an open
and dense subsetGs of G, such that the corresponding X-ray transformI�g

is s-injective.

Of course, the setGs includes all real analytic metrics inG.

Corollary 1. LetR.M / be the set of all regularC k metrics onM equipped with theC k.M1/ topology.
Then fork � 1, the subset of metrics for which the X-ray transformI over all simple geodesics is s-injective,
is open and dense inR.M /.

The results above extend the generic results in [SU4], see also [SU3], in several directions: the topology
of M may not be trivial, we allow conjugate points but we use only geodesics without conjugate points;
the boundary does not need to be convex; and we use incomplete data, i.e., we use integrals over subsets of
geodesics only.

In Section 6, we discuss versions of those results for the X-ray transform of vector fields and functions,
where the proofs can be simplified. Our results remain true for tensors of any orderm, the necessary
modifications are addressed in the key points of our exposition. To keep the paper readable, we restrict
ourselves to ordersm D 2; 1; 0.

2. PRELIMINARIES

We say thatf is analytic in some subsetU of a real analytic manifold, not necessarily open, iff can be
extended analytically to some open set containingU . We will use often the word analytic instead of real
analytic. Then we writef 2 A.U /. Let g 2 Ck.M /, k � 2 or g 2 A.M / be a Riemannian metric inM .
We work with symmetric 2-tensorsf D ffij g and with 1-tensors/differential formsvj (the notation here
and below is in any local coordinates). We use freely the Einstein summation convention and the convention
for raising and lowering indices. We think offij andf ij D fklg

kiglj as different representations of the
same tensor. If� is a covector atx, then its components are denoted by�j , while �j is defined as�i D gij �j .
Next, we denotej�j2 D �i�

i , similarly for vectors that we usually denote by� . If �1, �2 are two vectors,
thenh�1; �2i is their inner product. If� is a covector, and� is a vector, thenh�; �i stands for�.�/. This
notation choice is partly justified by identifying� with a vector, as above.

The geodesics ofg can be also viewed as thex-projections of the bicharacteristics of the Hamiltonian
Eg.x; �/ D 1

2
gij .x/�i�j . The energy levelEg D 1=2 corresponds to parametrization with the arc-length

parameter. For any geodesic , we havef ij .x/�i�j D fij . .t// P i.t/ P j .t/, where.x; �/ D .x.t/; �.t// is
the bicharacteristic withx-projection equal to .

2.1. Semigeodesic coordinates near a simple geodesic and boundary normal coordinates.Let Œl�; lC�
3 t 7! x0;�0

.t/ be a simple geodesic throughx0 D x0;�0
.0/ 2 M1 with �0 2 Sx0

M1. The map
t� 7! expx0

.t�/ is a local diffeomorphism for� close enough to�0 and t 2 Œl�; lC� by our simplicity
assumption but may not be a global one, sincex0;�0

may self-intersect. On the other hand, there can
be finitely many intersections only and we can assume that each subsequent intersection happens on a
different copy ofM . In other words, we think of0 as belonging to a new manifold that is a small enough
neighborhood of0, and there are no self-intersections there. The local charts of that manifold are defined
through the exponential map above. Therefore, when working nearx0;�0

we can assume thatx0;�0
does

not intersect itself. We will use this in the proof of Proposition 2. Then one can choose a neighborhoodU

of 0 and normal coordinates centered atx0 there, denoted byx again, such that the radial linest 7! t� ,
� D const., are geodesics. Ifg 2 C k , then we lose two derivatives and the new metric is inC k�2; if g is
analytic near0, then the coordinate change can be chosen to be analytic, as well.

If in the situation above, letx0 62 M , and moreover, assume that the part ofx0;�0
corresponding to

t < 0 is still outsideM . Then, one can consider.�; t/ as polar coordinates onTx0
M . Considering them
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as Cartesian coordinates there, see also [SU3, sec. 9], one gets coordinates.x0; xn/ nearx0;�0
so that the

latter is given byf.0; : : : ; 0; t/; 0 � t � lCg, gin D ıin, and� i
nn D � n

in D 0, 8i . Givenx 2 Rn, we write
x0 D .x1; : : : ; xn�1/. Moreover, the linesx0 D const.,jx0j � 1, xn D t 2 Œ0; lC� are geodesics in� , as
well. We will call those coordinates semigeodesic coordinates nearx0;�0

.
We will often use boundary normal (semi-geodesic) coordinates.x0; xn/ near a boundary point. Ifx0 2

Rn�1 are local coordinates on@M , and�.x0/ is the interior unit normal, forp 2 M close enough to@M ,
they are defined by exp.x0;0/ xn� D p. Thenxn D 0 defines@M , xn > 0 in M , xn D dist.x; @M /. The
metricg in those coordinates again satisfiesgin D ıin, and� i

nn D � n
in D 0, 8i . We also use the convention

that all Greek indices take values from1 to n � 1. In fact, the semigeodesic coordinates in the previous
paragraph are boundary normal coordinates to a small part of the geodesic ball centered atx0 D x0;�0

.0/

with radius", 0 < " � 1.

2.2. Integral representation of the normal operator. We define theL2 space of symmetric tensorsf
with inner product

.f; h/ D
Z

M

hf; Nhi.detg/1=2 dx;

where, in local coordinates,hf; Nhi D fij
Nhij . Similarly, we define theL2 space of 1-tensors (vector fields,

that we identify with 1-forms) and theL2 space of functions inM . Also, we will work in SobolevH s

spaces of 2-tensors, 1-forms and functions. In order to keep the notation simple, we will use the same
notationL2 (or H s) for all those spaces and it will be clear from the context which one we mean.

In the fixed finite atlas onM , extended toM1, the normskf kC k and theH s norms below are correctly
defined. In the proof, we will work in finitely many coordinate charts because of the compactness ofM ,
and this justifies the equivalence of the correspondentC k , respectivelyH s norms.

We define the Hilbert spaceQH 2.M1/ used in Theorem 2 as in [SU3, SU4]. Letx D .x0; xn/ be local
coordinates in a neighborhoodU of a point on@M such thatxn D 0 defines@M . Then we set

kf k2
QH 1.U /

D
Z

U

� n�1X

jD1

j@xjf j2 C jxn@xnf j2 C jf j2
�

dx:

This can be extended to a small enough neighborhoodV of @M contained inM1. Then we set

(8) kf k QH 2.M1/
D

nX

jD1

k@xjf k QH 1.V /
C kf k QH 1.M1/

:

The space QH 2.M1/ has the property that for eachf 2 H 1.M / (extended as zero outsideM ), we have
Nf 2 QH 2.M1/. This is not true if we replaceQH 2.M1/ by H 2.M1/.

Lemma 1. Let�g andG be as in Theorem 3. Then fork � 1, for anyg0 2 G, there existH0 D fH0
mg b

H D fHmg such that� .H/ b �g0
, andH0, H satisfy the assumptions of Theorem 2. Moreover,H0 andH

satisfy the assumptions of Theorem 2 forg in a small enough neighborhood ofg0 in C k .

Proof. Fix g0 2 G first. Given .x0; �0/ 2 T �M , there is a simple geodesic W Œl�; lC� ! M1 in
�g0

throughx0 normal to�0 at x0. Choose a small enough hypersurfaceH throughx0 transversal to
 2 �g0

, and local coordinates nearx0 as in Section 2.1 above, so thatx0 D 0, H is given byxn D 0,
P.0/ D .0; : : : ; 0; 1/. Then one can setH0 D fxI xn D 0I jx0j < "g � f� I j� 0j < "g, andH0

0
is defined in

the same way by replacing" by "=2. We define� .H0/ as in (4) withl˙.z; �/ D l˙. Then the properties
required forH0, including the simplicity assumption are satisfied when0 < " � 1. Choose such an", and
replace it with a smaller one so that those properties are preserved under a small perturbation ofg. Any point
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in SM close enough to.x0; �0/ still has a geodesic in� .H0
0
/ normal to it. By a compactness argument, one

can find a finite number ofH0
m so that the corresponding� .H0/ D [� .H0

m/ is complete.
The continuity property of�g w.r.t. g guarantees that the construction above is stable under a small

perturbation ofg.

Similarly to [SU3], one can see that the mapI˛m
W L2.M / ! L2.Hm; d�/ defined by (5) is bounded,

and therefore thenormaloperatorN˛m
defined in (6) is a well defined bounded operator onL2.M /. Ap-

plying the same argument toM1, we see thatN˛m
W L2.M / ! L2.M1/ is also bounded. By [SU3], at

least whenf is supported in the local chart nearx0 D 0 above, andx is close enough tox0,

(9) ŒN˛m
f �i

0j 0
.x/ D

Z 1

0

Z

SxM

j˛]m.x; �/j
2� i0

�j 0
fij .x;�.t// P i

x;�.t/ P j

x;�
.t/ d� dt;

wherej˛]m.x; �/j2 D j Q̨m.x; �/j2 C j Q̨m.x;��/j2, and Q̨m is the extension of̨ m as a constant along the
geodesic through.x; �/ 2 Hm; and equal to0 for all other points not covered by such geodesics. Formula
(9) has an invariant meaning and holds without the restriction on suppf . On the other hand, if suppf is
small enough (but not necessarily nearx0), y D expx.t�/ defines a local diffeomorphismt� 7! y 2 suppf .
Therefore, after making the change of variablesy D expx.t�/, see [SU3], this becomes

(10) N˛m
f .x/ D

1
p

detg

Z
Am.x; y/

f ij .y/

�.x; y/n�1

@�

@yi

@�

@yj

@�

@xk

@�

@xl
det

@2.�2=2/

@x@y
dy;

where

(11) Am.x; y/ D
ˇ̌
˛]m.x; gradx�.x; y//

ˇ̌2
;

y are any local coordinates near suppf , and�.x; y/ D j exp�1
x yj. Formula (10) can be also understood

invariantly by considering dx� and dy� as tensors. For arbitraryf 2 L2.M / we use a partition of unity in
TM int

1
to expressN˛m

f .x/ as a finite sum of integrals as above, forx near any fixedx0.
We get in particular thatN˛m

has the pseudolocal property, i.e., its Schwartz kernel is smooth outside the
diagonal. As we will show below, similarly to the analysis in [SU3, SU4],N˛m

is a	DO of order�1.
We always extend functions or tensors defined inM as0 outsideM . ThenN˛f is well defined nearM

as well and remains unchanged ifM is extended such that it is still inM1, andf is kept fixed.

2.3. Decomposition of symmetric tensors.For more details about the decomposition below, we refer to
[Sh1]. Given a symmetric 2-tensorf D fij , we define the 1-tensorıf calleddivergenceof f by

Œıf �i D gjkrkfij ;

in any local coordinates, wherer denotes covariant differentiation. Given an 1-tensor (a vector field or an
1-form)v, we denote bydv the 2-tensor called symmetric differential ofv:

Œdv�ij D
1

2

�
rivj C rj vi

�
:

Operatorsd and�ı are formally adjoint to each other inL2.M /. It is easy to see that for each smoothv
with v D 0 on @M , we haveI.dv/. / D 0 for any geodesic with endpoints on@M . This follows from
the identity

(12)
d

dt
hv. .t//; P.t/i D hdv. .t//; P 2.t/i:

If ˛ D f˛mg is as in the Introduction, we get

(13) I˛.dv/ D 0; 8v 2 C 1
0 .M /;
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and this can be extended tov 2 H 1
0
.M / by continuity.

It is known (see [Sh1] and (15) below) that forg smooth enough, each symmetric tensorf 2 L2.M /

admits unique orthogonal decompositionf D f s C dv into asolenoidaltensorSf WD f s and apotential
tensorPf WD dv, such that both terms are inL2.M /, f s is solenoidal, i.e.,ıf s D 0 in M , andv 2 H 1

0
.M /

(i.e., v D 0 on @M ). In order to construct this decomposition, introduce the operator�s D ıd acting on
vector fields. This operator is elliptic inM , the Dirichlet problem satisfies the Lopatinskii condition, and
has a trivial kernel and cokernel. Denote by�s

D
the Dirichlet realization of�s in M . Then

(14) v D
�
�s

D

��1
ıf; f s D f � d

�
�s

D

��1
ıf:

Therefore, we have

P D d
�
�s

D

��1
ı; S D Id � P ;

and for anyg 2 C 1.M /, the maps

(15) .�s
D/

�1 W H �1.M / ! H 1
0 .M /; P ;S W L2.M / �! L2.M /

are bounded and depend continuously ong, see [SU4, Lemma 1] that easily generalizes for manifolds. This
admits the following easy generalization: fors D 0; 1; : : : , the resolvent above also continuously maps
H s�1 into H sC1 \ H 1

0
, similarly, P andS are bounded inH s, if g 2 C k , k � 1 (depending ons).

Moreover those operators depend continuously ong. Note that the 1-formv so thatPf D dv is determined
uniquely by (14).

Notice that even whenf is smooth andf D 0 on @M , thenf s does not need to vanish on@M . In
particular,f s, extended as0 to M1, may not be solenoidal anymore. To stress on the dependence on the
manifold, when needed, we will use the notationvM andf s

M
as well.

OperatorsS andP are orthogonal projectors. The problem about the s-injectivity ofI˛ then can be posed
as follows: ifI˛f D 0, show thatf s D 0, in other words, show thatI˛ is injective on the subspaceSL2 of
solenoidal tensors. Note that by (13) and (6),

(16) N˛ D N˛S D SN˛ ; PN˛ D N˛P D 0:

Lemma 2. Let ˛ D f˛mg with ˛m 2 C 1
0
.Hm/ be as in the Introduction. The following statements are

equivalent:
(a) I˛ is s-injective onL2.M /;
(b) N˛ W L2.M / ! L2.M / is s-injective;
(c) N˛ W L2.M / ! L2.M1/ is s-injective;
(d) If � ˛m is the set of geodesics issued from.supp̨ m/

int as in (4), and� ˛ D [� ˛m , thenI� ˛ is
s-injective.

Proof. Let I˛ be s-injective, and assume thatN˛f D 0 in M for somef 2 L2.M /. Then

0 D .N˛f; f /L2.M / D
X

k˛mIf k2
L2.Hm;d�/

H) f s D 0:

This proves the implication.a/ ) .b/. Next,.b/ ) .c/ is immediate. Assume (c) and letf 2 L2.M / be
such thatI˛f D 0. ThenN˛f D 0 in M1, thereforef s D 0. Therefore,.c/ ) .a/. Finally, .a/ , .d/

follows directly form the definition ofI˛ .

Note that in (d),I� ˛ is the transformI restricted to� ˛ (and weight1), while I˛ is the ray transform
with weight˛.

Remark. Lemma 2 above, and Lemma 4(a) in next section show that.supp̨ m/
int in (d) can be replaced by

supp̨ m if � ˛ is a complete set of geodesics.
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3. MICROLOCAL PARAMETRIX OF N˛

Proposition 1. Letg D g0 2 C k.M / be a regular metric onM , and letH0 b H be as in Theorem 2.
(a) Let˛ be as in Theorem 2(a). Then for anyt D 1; 2; : : : , there existsk > 0 and a bounded linear

operator

Q W QH 2.M1/ 7�! SL2.M /;

such that

(17) QN˛f D f s
M C Kf; 8f 2 H 1.M /;

whereK W H 1.M / ! SH 1Ct .M / extends toK W L2.M / ! SH t.M /. If t D 1, thenk D 1.
(b) Let˛ D ˛g be as in Theorem 2(b). Then, forg in someC k neighborhood ofg0, (a) still holds andQ

can be constructed so thatK would depend continuously ong.

Proof. A brief sketch of our proof is the following: We construct first a parametrix that recovers microlocally
f s

M1
from N˛f . Next we will compose this parametrix with the operatorf s

M1
7! f s

M
as in [SU3, SU4].

Part (b) is based on a perturbation argument for the Fredholm equation (17). The need for such two step
construction is due to the fact that in the definition off s , a solution to a certain boundary value problem is
involved, therefore near@M , our construction is not just a parametrix of a certain elliptic	DO. This is the
reason for losing one derivative in (7). For tensors of orders 0 and 1, there is no such loss, see [SU3] and
(61), (62).

As in [SU4], we will work with	DOs with symbols of finite smoothnessk � 1. All operations we
are going to perform would require finitely many derivatives of the amplitude and finitely many seminorm
estimates. In turn, this would be achieved ifg 2 C k , k � 1 and the corresponding	DOs will depends
continuously ong.

Recall [SU3, SU4] that for simple metrics,N is a	DO in M int of order�1 with principal symbol that is
not elliptic butN C jDj�1P is elliptic. Here,jDj�1 is any parametrix of.��g/

1=2. This is a consequence
of the following. We will say thatN˛ (and any other	DO acting on symmetric tensors) iselliptic on
solenoidal tensors, if for any .x; �/, � 6D 0, �p.N˛/

ijkl.x; �/fkl D 0 and�ifij D 0 imply f D 0. ThenN

is elliptic on solenoidal tensors, as shown in [SU3]. That definition is motivated by the fact that the principal
symbol of ı is given byfij 7! i�ifij , and s-injectivity is equivalent to the statement thatNf D 0 and
ıf D 0 in M imply f D 0. Note also that the principal symbol ofd is given byvj 7! .�ivj C �j vi/=2, and
�p.N / vanishes on tensors represented by the r.h.s. of the latter. We will establish similar properties ofN˛
below.

Let N˛m
be as in Section 2.2 withm fixed.

Lemma 3. N˛m
is a classical	DO of order�1 in M int

1
. It is elliptic on solenoidal tensors at.x0; �

0/ if
and only if there exists�0 2 Tx0

M1 n 0 with h�0 ; �0i D 0 such that̨ 0.x0; �0/ 6D 0. The principal symbol
�p.N˛m

/ vanishes on tensors of the kindfij D .�ivj C �j vi/=2 and is non-negative on tensors satisfying
�ifij D 0.

Proof. We established the pseudolocal property already, and formulas (9), (10) together with the partition
of unity argument following them imply that it is enough to work withx in a small neighborhood of a fixed
x0 2 M int

1
, and withf supported there as well. Then we work in local coordinates nearx0. To expressN˛m

as a pseudo-differential operator, we proceed as in [SU3, SU4], with a starting point (10). Recall that forx
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close toy we have

�2.x; y/ D G
.1/
ij .x; y/.x � y/i.x � y/j ;

@�2.x; y/

@xj
D 2G

.2/
ij .x; y/.x � y/i ;

@2�2.x; y/

@xj@yj
D �2G

.3/
ij
.x; y/;

whereG
.1/
ij , G

.2/
ij G

.3/
ij are smooth and on the diagonal. We have

G
.1/
ij .x; x/ D G

.2/
ij .x; x/ D G

.3/
ij .x; x/ D gij .x/:

ThenN˛m
is a pseudo-differential operator with amplitude

Mijkl.x; y; �/ D
Z

e�i��z
�
G.1/z � z

� �nC1
2

�2 ˇ̌
˛]m.x; g

�1G.2/z/
ˇ̌2

�
�
G.2/z

�
i

�
G.2/z

�
j

� zG.2/z
�
k

� zG.2/z
�
l

j detG.3/j
p

detg
dz;

(18)

where zG.2/
ij
.x; y/ D G

.2/
ij
.y; x/. As in [SU4], we note thatMijkl is the Fourier transform of a positively

homogeneousdistribution in thez variable, of ordern�1. Therefore,Mijkl itself is positively homogeneous
of order�1 in �. Write

(19) M.x; y; �/ D
Z

e�i��zjzj�nC1m.x; y; �/ dz; � D z=jzj;

where

mijkl.x; y; �/D
�
G.1/� � �

��nC1
2 �2 ˇ̌

˛]m.x; g
�1G.2/�/

ˇ̌2

�
�
G.2/�

�
i

�
G.2/�

�
j

� zG.2/�
�
k

� zG.2/�
�
l

j detG.3/jp
detg.x/

;

(20)

and pass to polar coordinatesz D r� . Sincem is an even function of� , smooth w.r.t. all variables, we get
(see also [H, Theorem 7.1.24])

(21) M.x; y; �/ D �

Z

j� jD1

m.x; y; �/ı.� � �/ d�:

This proves thatM is an amplitude of order�1.
To obtain the principal symbol, we setx D y above (see also [SU3, sec. 5] to get

(22) �p.N˛m
/.x; �/ D M.x; x; �/ D �

Z

j� jD1

m.x; x; �/ı.� � �/ d�;

where

(23) mijkl.x; x; �/D
ˇ̌
˛]m.x; �/

ˇ̌2p
detg.x/

�
gij .x/�

i�j
� �nC1

2
�2

� i�j�k� l :

To prove ellipticity ofM.x; �/ on solenoidal tensors at.x0; �
0/, notice that for any symmetric realfij ,

we have

(24) mijkl.x0; x0; �/fijfkl D
ˇ̌
˛]m.x0; �/

ˇ̌2p
detg.x0/

�
gij .x0/�

i�j
� �nC1

2
�2�

fij�
i�j

�2
� 0:
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This, (22), and the assumption̨m.x0; �0/ 6D 0 imply thatM ijkl.x0; x0; �
0/fijfkl D 0 yieldsfij�

i�j D 0

for � perpendicular to�0, and close enough to�0. If in addition.�0/jfij D 0, then this impliesfij�
i�j D 0

for � 2 neigh.�0/, and that easily implies that it vanishes for all� . Sincef is symmetric, this means that
f D 0.

The last statement of the lemma follows directly from (22), (23), (24).
Finally, we note that (23), (24) and the proof above generalizes easily for tensors of any order.

We continue with the proof of Proposition 1. Since (b) implies (a), we will prove (b) directly. Notice that
H0 andH satisfy the properties listed in the Introduction, right before Theorem 2, ifg D g0. On the other
hand, those properties are stable under smallC k perturbation ofg0. We will work here with metricsg close
enough tog0.

By Lemma 3, since� .H0/ is complete,N˛ defined by (6) is elliptic on solenoidal tensors inM . The
rest of the proof is identical to that of [SU4, Proposition 4]. We will give a brief sketch of it. To use the
ellipticity of N˛ on solenoidal tensors, we completeN˛ to an elliptic	DO as in [SU4]. Set

(25) W D N˛ C jDj�1PM1
;

wherejDj�1 is a properly supported parametrix of.��g/
1=2 in neigh.M1/. The resolvent.��s

M1;D
/�1

involved inPM1
andSM1

can be expressed asR1 C R2, whereR1 is any parametrix nearM1, andR2 W
L2

comp.M1/ ! C l.M1/, R2 W H l.M1/ ! H lC2.M1/, wherel D l.k/ � 1, if k � 1. ThenW is an
elliptic 	DO insideM1 of order�1 by Lemma 3.

Let P be a properly supported parametrix forW of finite order, i.e.,P is a classical	DO in the interior
of M1 of order1 with amplitude of finite smoothness, such that

(26) PW D Id C K1;

andK1 W L2
comp.M1/ ! H l.M1/ with l as above. Then

P1 WD SM1
P

satisfies

(27) P1N˛ D SM1
C K2;

whereK2 has the same property asK1. To see this, it is enough to applySM1
to the left and right of (26)

and to use (16).
Next step is to construct an operator that recoversf s

M
, givenf s

M1
, and to apply it toP1N˛ � K2. In

order to do this, it is enough first to construct a mapP2 such that iff s
M1

and vM1
are the solenoidal

part and the potential, respectively, corresponding tof 2 L2.M / extended as zero toM1 n M , then
P2 W f s

M1
7! vM1

ˇ̌
@M

. This is done as in [SU3] and [SU4, Proposition 4]. We also have

P2P1 W zH 2.M1/ ! H 1=2.@M /:

Then we showed in [SU4, Proposition 4] that one can set

Q D .Id C dRP2/P1;

whereR W h 7! u is the Poisson operator for the Dirichlet problem�su D 0 in M , uj@M D h.
As explained above, we work with finite asymptotic expansions that require finite number of derivatives

on the amplitudes of our	DOs. On the other hand, these amplitudes depend continuously ong 2 C k ,
k � 1. As a result, all operators above depend continuously ong 2 C k , k � 1.

The first part of next lemma generalizes similar results in [SU3, Thm 2], [Ch, SSU] to the present situa-
tion. The second part shows thatI� f D 0 implies that a certainQf , with the same solenoidal projection, is
flat at@M . This Qf is defined by the property (29) below.
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Lemma 4. Let g 2 C k.M / be a regular metric, and let� be a complete set of geodesics. Then
(a) KerI� \ SL2.M / is finite dimensional and included inC l.M / with l D l.k/ ! 1, ask ! 1.
(b) If I� f D 0 with f 2 L2.M /, then there exists a vector fieldv 2 C l.M /, with vj@M D 0 andl as

above, such that forQf WD f � dv we have

(28) @˛ Qf j@M D 0; j˛j � l;

and in boundary normal coordinates near any point on@M we have

(29) Qfni D 0; 8i:

Proof. Part (a) follows directly from Proposition 1.
Without loss of generality, we may assume thatM1 is defined asM1 D fx; dist.x;M / � �g, with � > 0

small enough. By Proposition 1, applied toM1,

(30) f s
M1

2 C l.M1/;

wherel � 1, if k � 1.
Let x D .x0; xn/ be boundary normal coordinates in a neighborhood of some boundary point. We recall

how to constructv defined inM so that (29) holds, see [SU2] for a similar argument for the non-linear
boundary rigidity problem, and [E, Sh2, SU3, SU4] for the present one. The condition.f � dv/in D 0 is
equivalent to

(31) rnvi C rivn D 2fin; vjxnD0 D 0; i D 1; : : : ; n:

Recall thatrivj D @ivj �� k
ij vk , and that in those coordinates,� k

nn D � n
kn

D 0. If i D n, then (31) reduces
to rnvn D @nvn D fnn, vn D 0 for xn D 0; we solve this by integration over0 � xn � " � 1; this gives
usvn. Next, we solve the remaining linear system ofn � 1 equations fori D 1; : : : ; n � 1 that is of the form
rnvi D 2fin � rivn, or, equivalently,

(32) @nvi � 2� ˛niv˛ D 2fin � @ivn; vi jxnD0 D 0; i D 1; : : : ; n � 1;

(recall that˛ D 1; : : : ; n � 1). Clearly, if g andf are smooth enough near@M , then so isv. If we set
f D f s above (they both belong to KerI� ), then by (a) we get the statement about the smoothness of
v. Since the condition (29) has an invariant meaning, this in fact defines a construction in some one-sided
neighborhood of@M in M . One can cutv outside that neighborhood in a smooth way to definev globally
in M . We also note that this can be done for tensors of any orderm, see [Sh2], then we have to solve
consecutivelym ODEs.

Let Qf D f � dv, wherev is as above. ThenQf satisfies (29), and let

(33) Qf s
M1

D Qf � d QvM1

be the solenoidal projection ofQf in M1. Recall that Qf , according to our convention, is extended as zero
in M1 n M that in principle, could create jumps across@M . Clearly, Qf s

M1
D f s

M1
becausef � Qf D dv

in M with v as in the previous paragraph, and this is also true inM1 with Qf , f andv extended as zero
(and thenv D 0 on@M1). In (33), the l.h.s. is smooth inM1 by (30), and Qf satisfies (29) even outsideM ,
where it is zero. Then one can getQvM1

by solving (31) withM replaced byM1, andf there replaced by
Qf s
M1

2 C l.M1/. Therefore, one gets thatQvM1
, and therefore Qf , is smooth enough across@M , if g 2 C k ,

k � 1, which proves (28).
One can give the following alternative proof of (28): LetN˛ be related to� , as in Theorem 2. One can

easily check thatN˛ , restricted to tensors satisfying (29), is elliptic for�n 6D 0. SinceN˛ Qf D 0 nearM ,
with Qf extended as 0 outsideM , as above, we get that this extension cannot have conormal singularities
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across@M . This implies (28), at least wheng 2 C 1. The case ofg of finite smoothness can be treated by
using parametrices of finite order in the conormal singularities calculus.

4. S-INJECTIVITY FOR ANALYTIC REGULAR METRICS

In this section, we prove Theorem 1. Letg be an analytic regular metrics inM , and letM1 � M be the
manifold whereg is extended analytically according to Definition 1. Recall that there is an analytic atlas in
M , and@M can be assumed to be analytic, too. In other words, in this section,.M; @M; g/ is a real analytic
manifold with boundary.

We will show first thatI� f D 0 impliesf s 2 A.M /. We start with interior analytic regularity. Below,
WFA.f / stands for the analytic wave front set off , see [Sj, Tre].

Proposition 2. Let .x0; �
0/ 2 T �M n 0, and let0 be a fixed simple geodesic throughx0 normal to�0 .

Let If . / D 0 for some 2-tensorf 2 L2.M / and all  2 neigh.0/. Letg be analytic inneigh.0/ and
ıf D 0 nearx0. Then

(34) .x0; �
0/ 62 WFA.f /:

Proof. As explained in Section 2.1, without loss of generality, we can assume that0 does not self-intersect.
Let U be a tubular neighborhood of0 with x D .x0; xn/ analytic semigeodesic coordinates in it, as in the
second paragraph of Section 2.1. We can assume thatx0 D 0, gij .0/ D ıij , andx0 D 0 on 0. In those
coordinates,U is given byjx0j < ", l� < xn < lC, with some0 < " � 1, and we can choose" � 1 so
thatfxn D l˙I jx0j � "g lie outsideM . Recall that the linesx0 D const. inU are geodesics.

Then�0 D ..�0/0; 0/ with �0
n D 0. We need to show that

(35) .0; �0/ 62 WFA.f /:

We choose a local chart for the geodesics close to0. Set firstZ D fxn D 0I jx0j < 7"=8g, and denote
thex0 variable onZ by z0. Thenz0, � 0 (with j� 0j � 1) are local coordinates in neigh.0/ determined by
.z0; � 0/ ! .z0;0/;.� 0;1/. Each such geodesic is assumed to be defined onl� � t � lC, the same interval on
which0 is defined.

Let �N .z
0/, N D 1; 2; : : : , be a sequence of smooth cut-off functions equal to1 for jz0j � 3"=4,

supported inZ, and satisfying the estimates

(36)
ˇ̌
@˛�N

ˇ̌
� .CN /j˛j; j˛j � N;

see [Tre, Lemma 1.1]. Set� D .� 0; 1/, j� 0j � 1, and multiply

If
�
.z0;0/;�

�
D 0

by �N .z
0/ei�z0��0

, where� > 0, � 0 is in a complex neighborhood of.�0/0, and integrate w.r.t.z0 to get

(37)
“

e�iz0��0
�N .z

0/fij

�
.z0;0/;�.t/

�
P i
.z0;0/;�.t/ P j

.z0;0/;�
.t/ dt dz0 D 0:

For j� 0j � 1, .z0; t/ 2 Z � .l�; lC/ are local coordinates near0 given byx D .z0;0/;�.t/.
If � 0 D 0, we havex D .z0; t/. By a perturbation argument, for� 0 fixed and small enough,.t; z0/ are

analytic local coordinates, depending analytically on� 0. In particular,x D .z0 C t� 0; t/C O.j� 0j/ but this
expansion is not enough for the analysis below. Performing a change of variables in (37), we get

(38)
Z

ei�z0.x;� 0/��0
aN .x; �

0/fij .x/b
i.x; � 0/bj .x; � 0/ dx D 0

for j� 0j � 1, 8�, 8� 0, where, forj� 0j � 1, the function.x; � 0/ 7! aN is analytic and positive forx in a
neighborhood of0, vanishing forx 62 U , and satisfying (36). The vector fieldb is analytic on suppaN ,
andb.0; � 0/ D � , aN .0; �

0/ D 1.
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To clarify the arguments that follow, note that ifg is Euclidean in neigh.0/, then (38) reduces to
Z

ei�.�0;�� 0��0/�x�N fij .x/�
i�j dx D 0;

where�N D �N .x
0 � xn� 0/. Then� D .� 0;�� 0 � � 0/ is perpendicular to� D .� 0; 1/. This implies that

(39)
Z

ei���x�Nfij .x/�
i.�/�j .�/ dx D 0

for any function�.�/ defined near�0 , such that�.�/ � � D 0. This has been noticed and used before ifg

is close to the Euclidean metric (with�N D 1), see e.g., [SU2]. We will assume that�.�/ is analytic. A
simple argument (see e.g. [Sh1, SU2]) shows that a constant symmetric tensorfij is uniquely determined
by the numbersfij�

i�j for finitely many� ’s (actually, forN 0 D .n C 1/n=2 � ’s); and in any open set on
the unit sphere, there are such� ’s. On the other hand,f is solenoidal nearx0. To simplify the argument,
assume for a moment thatf vanishes on@M and is solenoidal everywhere. Then�i Ofij .�/ D 0. Therefore,
combining this with (39), we need to chooseN D n.n � 1/=2 vectors�.�/, perpendicular to�, that would
uniquely determine the tensorOf on the plane perpendicular to�. To this end, it is enough to know that this
choice can be made for� D �0, then it would be true for� 2 neigh.�0/. This way,�i Ofij .�/ D 0 and theN

equations (39) with the so chosen�p.�/, p D 1; : : : ;N , form a system with a tensor-valued symbol elliptic
near� D �0. TheC 1 	DO calculus easily implies the statement of the lemma in theC 1 category, and the
complex stationary phase method below, or the analytic	DO calculus in [Tre] with appropriate cut-offs in
�, implies the lemma in this special case (g locally Euclidean).

We proceed with the proof in the general case. Since we will localize eventually nearx0 D 0, whereg

is close to the Euclidean metric, the special case above serves as a useful guideline. On the other hand, we
work near a “long geodesic” and the lack of points conjugate tox0 D 0 along it will play a decisive role in
order to allow us to localize nearx D 0.

Let �.�/ be a vector analytically depending on� near� D �0, such that

(40) �.�/ � � D 0; �n.�/ D 1; �.�0/ D en:

Here and below,ej stand for the vectors@=@xj . Replace� D .� 0; 1/ in (38) by �.�/ (the requirement
j� 0j � 1 is fulfilled for � close enough to�0), to get

(41)
Z

ei�'.x;�/ QaN .x; �/fij .x/ Qbi.x; �/ Qbj .x; �/ dx D 0;

where QaN is analytic near0 � f�0g, and satisfies (36) for� close enough to�0 and allx. Next,', Qb are
analytic on suppQaN for � close to�0. In particular,

Qb D P.z0;0/;.� 0.�/;1/.t/; t D t.x; � 0.�//; z0 D z0.x; � 0.�//;

and
Qb.0; �/ D �.�/; QaN .0; �/ D 1:

The phase function is given by

(42) '.x; �/ D z0.x; � 0.�// � � 0:

To verify that' is a non-degenerate phase in neigh.0; �0/, i.e., that det'x�.0; �
0/ 6D 0, note first thatz0 D x0

whenxn D 0, therefore,.@z0=@x0/.0; �.�//D Id. On the other hand, linearizing nearxn D 0, we easily get
.@z0=@xn/.0; �.�// D �� 0.�/. Therefore,

'x.0; �/ D .� 0;�� 0.�/ � � 0/ D �
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by (40). So we get'x�.0; �/ D Id, which proves the non-degeneracy claim above. In particular, we get that
x 7! '�.x; �/ is a local diffeomorphism in neigh.0/ for � 2 neigh.�0/, and therefore injective. We need
however a semiglobal version of this along0 as in the lemma below. For this reason we will make the
following special choice of�.�/. Without loss of generality we can assume that

�0 D en�1:

Set

(43) �.�/ D
�
�1; : : : ; �n�2;�

�2
1

C � � � C �2
n�2

C �n

�n�1

; 1

�
:

If n D 2, this reduces to�.�/ D .��2=�1; 1/. Clearly,�.�/ satisfies (40). Moreover, we have

(44)
@�

@��
.�0/ D e� ; � D 1; : : : ; n � 2;

@�

@�n�1

.�0/ D 0;
@�

@�n
.�0/ D �en�1;

In particular, the differential of the mapSn�1 3 � 7! � 0.�/ is invertible at� D �0 D en�1.

Lemma 5. Let �.�/ be as in (43), and'.x; �/ be as in (42). Then there existsı > 0 such that if

'�.x; �/ D '�.y; �/

for somex 2 U , jyj < ı, j� � �0j < ı, � complex, theny D x.

Proof. We will study first the casey D 0, � D �0, x0 D 0. Since'�.0; �/ D 0, we need to show that
'�..0; x

n/; �0/ D 0 for .0; xn/ 2 U (i.e., forl� < xn < lC) impliesxn D 0.
To compute'�.x; �0/, we need first to know@z0.x; � 0/=@� 0 at � 0 D 0. Differentiate 0

.z0;0/;.� 0;1/
.t/ D x0

w.r.t. � 0, wheret D t.x; � 0/, z0 D z0.x; � 0/, to get

@��
 0
.z0;0/;.� 0;1/.t/C @z0 0

.z0;0/;.� 0;1/.t/ �
@z0

@��
C P 0

.z0;0/;.� 0;1/.t/
@t

@��
D 0:

Plug� 0 D 0. Since@t=@� 0 D 0 at � 0 D 0, we get

@z0

@��
D �@��

 0
.z0;0/;.� 0;1/.x

n/
ˇ̌
ˇ
� 0D0;x0D0

D �J 0
�.x

n/;

where the prime denotes the firstn � 1 components, as usual;J�.x
n/ is the Jacobi field along the geodesic

xn 7! 0.x
n/ with initial conditionsJ�.0/ D 0, DJ�.0/ D e� ; andD stands for the covariant derivative

along0. Sincez0..0; xn/; � 0.�0// D 0, by (42) we then get

@'

@�l
..0; xn/; �0/ D �

@��

@�l
.�0/J�.x

n/ � .�0/0:

By (44), (recall that�0 D en�1),

(45)
@'

@�l
..0; xn/; �0/ D

8
<̂

:̂

�J n�1
l

.xn/; l D 1; : : : ; n � 2;

0; l D n � 1;

J n�1
n�1

.xn/; l D n;

whereJ n�1
� is the .n � 1/-th component ofJ� . Now, assuming that the l.h.s. of (45) vanishes for some

fixed xn D t0, we get thatJ n�1
� .t0/ D 0, � D 1; : : : ; n � 1. On the other hand,J� are orthogonal toen

because the initial conditionsJ�.0/ D 0, DJ�.0/ D e� are orthogonal toen, too. Sincegin D ıin, this
means thatJ n

� D 0. Therefore,J�.t0/, � D 1; : : : ; n � 1, form a linearly dependent system of vectors, thus
some non-trivial linear combinationa�J�.t0/ vanishes. Then the solutionJ0.t/ of the Jacobi equation along
0 with initial conditionsJ0.0/ D 0, DJ0.0/ D a�e� satisfiesJ.t0/ D 0. SinceDJ0.0/ 6D 0, J0 is not



16 P. STEFANOV AND G. UHLMANN

identically zero. Therefore, we get thatx0 D 0 andx D .0; t0/ are conjugate points. Since0 is a simple
geodesicx0, we must havet0 D 0 D xn.

The same proof applies ifx0 6D 0 by shifting thex0 coordinates.
Let now y, � andx be as in the Lemma. The lemma is clearly true forx in the ballB.0; "1/ D fjxj <

"1g, where"1 � 1, because'.0; �0/ is non-degenerate. On the other hand,'�.x; �/ 6D '�.y; �/ for
x 2 NU n B.0; "1/, y D 0, � D �0. Hence, we still have'�.x; �/ 6D '�.y; �/ for a small perturbation ofy
and�.

The arguments that follow are close to those in [KSU, Section 6]. We will apply the complex stationary
phase method [Sj]. Forx, y as in Lemma 5, andj� � �0j � ı= QC , QC � 2, ı � 1, multiply (41) by

Q�.� � �/ei�.i.���/2=2�'.y;�//;

where Q� is the characteristic function of the ballB.0; ı/ � Cn, and integrate w.r.t.� to get

(46)
“

ei�˚.y;x;�;�/ QQaN .x; �; �/fij.x/ Qbi.x; �/ Qbj .x; �/ dx d� D 0:

Here QQaN D Q�.� � �/ QaN is another amplitude, analytic and elliptic forx close to0, j� � �j < ı= QC , and

˚ D �'.y; �/C '.x; �/C
i

2
.� � �/2:

We study the critical points of� 7! ˚ . If y D x, there is a unique (real) critical point�c D �, and it satisfies
=˚�� > 0 at � D �c. For y 6D x, there is no real critical point by Lemma 5. On the other hand, again by
Lemma 5, there is no (complex) critical point ifjx � yj > ı=C1 with someC1 > 0, and there is a unique
complex critical point�c if jx � yj < ı=C2, with someC2 > C1, still non-degenerate ifı � 1. For any
C0 > 0, if we integrate in (46) forjx � yj > ı=C0, and use the fact thatj˚� j has a positive lower bound (for
� real), we get

(47)

ˇ̌
ˇ̌
“

jx�yj>ı=C0

ei�˚.y;x;�;�/ QQaN .x; �; �/fij.x/ Qbi.x; �/ Qbj .x; �/ dx d�

ˇ̌
ˇ̌ � C3.C3N=�/N CCNe��=C :

Estimate (47) is obtained by integratingN times by parts, using the identity

Lei�˚ D ei�˚ ; L WD
x̊
� � @�

i�j˚� j2

as well as using the estimate (36), and the fact that on the boundary of integration in�, theei�˚ is expo-
nentially small. ChooseC0 � C2. Note that=˚ > 0 for � 2 @.suppQ�.� � �//, and� as above, as long as
QC � 1, and by choosingC0 � 1, we can make sure that�c is as close to�, as we want.

To estimate (46) forjx � yj < ı=C0, set

 .x; y; �/ WD ˚
ˇ̌
�D�c

:

Note that�c D �i.y � x/C �C O.ı/, and .x; y; �/ D � � .x � y/C i
2
jx � yj2 C O.ı/. We will not use

this to study the properties of , however. Instead, observe that aty D x we have

(48)  y.x; x; �/D �'x.x; �/;  x.x; x; �/D 'x.x; �/;  .x; x; �/ D 0:

We also get that

(49) = .y; x; �/ � jx � yj2=C:
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The latter can be obtained by settingh D y � x and expanding in powers ofh. The stationary complex
phase method [Sj], see Theorem 2.8 there and the remark after it, gives

(50)
Z

jx�yj�ı=C0

ei� .x;˛/fij .x/B
ij .x; ˛I �/ dx D O

�
�n=2.C3N=�/N C Ne��=C �

; 8N;

where˛ D .y; �/, andB is a classical analytic symbol [Sj] with principal part equal toQb ˝ Qb, up to an
elliptic factor. The l.h.s. above is independent ofN , and choosingN so thatN � �=.C3e/ � N C 1 to
conclude that the r.h.s. above isO.e��=C /.

In preparation for applying the characterization of an analytic wave front set through a generalized FBI
transform [Sj], define the transform

˛ 7�! ˇ D .˛x ;r˛x
'.˛// ;

where, following [Sj],˛ D .˛x; ˛�/. It is a diffeomorphism from neigh.0; �0/ to its image, and denote the
inverse one by̨ .ˇ/. Note that this map and its inverse preserve the first (n-dimensional) component and
change only the second one. This is equivalent to setting˛ D .y; �/, ˇ D .y; �/, where� D 'y.y; �/. Note
that� D �C O.ı/, and aty D 0, we have� D �.

Plug˛ D ˛.ˇ/ in (50) to get

(51)
Z

ei� .x;ˇ/fij .x/B
ij .x; ˇI �/ dx D O

�
e��=C �

;

where , B are (different) functions having the same properties as above. Then

(52)  y.x; x; �/D ��;  x.x; x; �/D �;  .x; x; �/D 0:

The symbols in (51) satisfy

(53) �p.B/.0; 0; �/� �.�/˝ �.�/ up to an elliptic factor;

and in particular,�p.B/.0; 0; �
0/ � en ˝ en, where�p stands for the principal symbol.

Let �1 D en; �2; : : : ; �N be N D n.n � 1/=2 unit vectors atx0 D 0, normal to�0 D en�1 such that
any constant symmetric 2-tensorf such thatf n�1

i D 0, 8i (i.e., f j
i �

0
j D 0) is uniquely determined by

fij�
i�j , � D �p , p D 1; : : : ;N . Existence of such vectors is easy to establish, as mentioned above, and

one can also see that such a set exists in any open set in.�0/?. We can therefore assume that�p belong to
a small enough neighborhood of�1 D en such that the geodesicsŒ�l�; lC� 3 t 7! 0;�p.t/ throughx0 D 0

are all simple. Then we can rotate a bit the coordinate system such that�0 D en�1 again, and�p D en, and
repeat the construction above. This gives usN phase functions .p/, and as many symbolsB.p/ in (51)
such that (52) holds for all of them, i.e., in the coordinate system related to�1 D en, we have

(54)
Z

ei� .p/.x;ˇ/fij .x/B
ij

.p/
.x; ˇI �/ dx D O

�
e��=C �

; p D 1; : : : ;N;

and by (53),

(55) �p.B.p//.0; 0; �
0/ � �p ˝ �p ; p D 1; : : : ;N; up to elliptic factors.

Recall thatıf D 0 nearx0 D 0. Let�0 D �0.x/ be a smooth cutoff close enough tox D 0, equal to1

in neigh.0/. Integrate1
�

exp
�
i� .1/.x; ˇ/

�
�0ıf D 0 w.r.t. x, and by (49), after an integration by parts, we

get

(56)
Z

ei� .1/.x;ˇ/�0.x/fij .x/C
j .x; ˇI �/ dx D O

�
e��=C �

; i D 1; : : : ; n;

for ˇx D y small enough, where�p.C
j /.0; 0; �0/ D .�0/j .
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Now, the system ofN C n D .n C 1/n=2 equations (54), (56) can be viewed as a tensor-valued operator
applied to the tensorf . Its symbol, an elliptic factor at.0; 0; �0/, has “rows” given by� i

p�
j
p , p D 1; : : : ;N ;

andıi
k
.�0/j , k D 1; : : : ; n. It is easy to see that it is elliptic; indeed, the latter is equivalent to the statement

that if for some (constant) symmetric 2-tensorf , in Euclidean geometry (becausegij .0/ D ıij ), we have
fij�

i
p�

j
p D 0, p D 1; : : : ;N ; andf n�1

i D 0, i D 1; : : : ; n, thenf D 0. This however follows from the
way we chose�p . Therefore, (35) is a consequence of (54), (56), see [Sj, Definition 6.1]. Note that in [Sj],
it is required thatf must be replaced byNf in (54), (56). Iff is complex-valued, we could use the fact that
I.<f /. / D 0, andI.=f /. / D 0 for  near0 and then work with real-valuedf ’s only.

Since the phase functions in (54) dependonp, we need to explain why the characterization of the analytic
wave front sets in [Sj] can be generalized to this vector-valued case. The needed modifications are as follows.
We definehij

.p/
.x; ˇI �/D B

ij

.p/
, p D 1; : : : ;N ; andh

ij

.N Ck/
.x; ˇI �/D C jıi

k
, k D 1; : : : ; n. Thenfhij

.p/
g,

p D 1; : : : ;N C n, is an elliptic symbol near.0; 0; �0/. In the proof of [Sj, Prop. 6.2], under the conditions
(49), (52), the operatorQ given by

ŒQf �p.x; �/ D
“

ei�. .p/.x;ˇ/� .p/.y;ˇ//fij .y; �/h
ij

.p/
.x; ˇI �/ dy dˇ

is a 	DO in the complex domain with an elliptic matrix-valued symbol, where we viewf andQf as
vectors inCN Cn. Therefore, it admits a parametrix inH ;x0

with a suitable (see [Sj]). Hence, one can
find an analytic classical matrix-valued symbolr.x; ˇ; �/ defined near.0; 0; �0/, such that for any constant
symmetricf we have h

Q
�
r.�; ˇ; �/ei� .1/f

�i
p

D ei� .1/f; 8p:

The rest of the proof is identical to that of [Sj, Prop. 6.2] and allows us to show that (51) is preserved with a
different choice of the phase functions satisfying (49), (52), and elliptic amplitudes; in particular,Z

ei� .1/.x;ˇ/�2.x/fij .x/ dx D O
�
e��=C �

; 8i; j

for ˇ 2 neigh.0; �0/ and for some standard cut-off�2 nearx D 0. This proves (35), see [Sj, Definition 6.1].
This concludes the proof of Proposition 2. Notice that the proof works in the sane way, iff is a distribu-

tion valued tensor field, supported inM .

Lemma 6. Under the assumptions of Theorem 1, letf be such thatI� f D 0. Thenf s 2 A.M /.

Proof. Proposition 2, combined with the completeness of� , imply thatf s is analytic in the interior ofM .
To prove analyticity up to the boundary, we do the following.

We can assume thatM1 n M is defined by�"1 � xn � 0, wherexn is a boundary normal coordinate.
Define the manifoldM1=2 � M by xn � �"1=2, more precisely,M1=2 D M [ f�"1=2 � xn � 0g � M1.

We will show first thatf s
M1=2

2 A.M1=2/. Let us first notice, that inM1=2 n M , f s
M1=2

D �dvM1=2
,

wherevM1=2
satisfies�svM1=2

D 0 in M1=2 n M , vj@M1=2
D 0. Therefore,vM1=2

is analytic up to@M1=2

in M1=2 nM , see [MN, SU4]. Therefore, we only need to show thatf s
M1=2

is analytic in some neighborhood
of M . This however follows from Proposition 2, applied toM1=2. Note that if"1 � 1, simple geodesics
through somex 2 M would have endpoints outsideM1=2 as well, and by a compactness argument, we
need finitely many such geodesics to show that Proposition 2 implies thatf s

M1=2
is analytic in, say,M1=4,

where the latter is defined similarly toM1=2 by xn � �"1=4.
To comparef s

M1=2
andf s D f s

M
, see also [SU3, SU4], writef s

M1=2
D f � dvM1=2

in M1=2, and
f s

M
D f � dvM in M . ThendvM1=2

D �f s
M1=2

in M1=2 n M , and is therefore analytic there, up to@M .

Givenx 2 @M , integratehdvM1=2
; P 2i along geodesics inM1=2 n M , close to ones normal to the boundary,
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with initial pointx and endpoints on@M1=2. Then we get thatvM1=2
j@M 2 A.@M /. Note thatvM1=2

2 H 1

near@M , and taking the trace on@M is well defined, and moreover, ifxn is a boundary normal coordinate,
then neigh.0/ 3 xn 7! vM1=2

.�; xn/ is continuous. Now,

(57) f s
M D f � dvM D f s

M1=2
C dw in M , wherew D vM1=2

� vM .

The vector fieldw solves
�sw D 0; wj@M D vM1=2

j@M 2 A.@M /:

Therefore,w 2 A.M /, and by (57),f s
M

2 A.M /.
This completes the proof of Lemma 6.

Proof of Theorem 1.Let I� f D 0. We can assume first thatf D f s, and thenf 2 A.M / by Lemma 6.
By Lemma 4, there existsh 2 S�1Sf such that@˛h D 0 on@M for all ˛. The tensor fieldh satisfies (29),
i.e., hni D 0, 8i , in boundary normal coordinates, which is achieved by settingh D f � dv0, wherev0

solves (31) near@M . Thenv0, and therefore,h is analytic for smallxn � 0, up toxn D 0. Lemma 4 then
implies thath D 0 in neigh.@M /. So we get that

(58) f D dv0; 0 � xn < "0; with v0jxnD0 D 0;

wherexn is a global normal coordinate, and0 < "0 � 1. Note that the solutionv0 to (58) (if exists, and in
this case we know it does) is unique, as can be easily seen by integratinghf; P 2i along paths close to normal
ones to@M and using (12).

We show next thatv0 admits an analytic continuation from a neighborhood of anyx1 2 @M along any
path inM .

Fix x 2 M . Let c.t/, 0 � t � 1 be a path inM such thatc.0/ D x0 2 @M andc.1/ D x. Given
" > 0, one can find a polygonx0x1 : : : xkx consisting of geodesic segments of length not exceeding", that
is close enough and therefore homotopic toc. One can also assume that the first one is transversal to@M ,
and if x 2 @M , the last one is transversal to@M as well; and all other points of the polygon are inM int.
We choose" � 1 so that there are no conjugate points on each geodesic segment above. We also assume
that" � "0. Thenf D dv nearx0x1 with v D v0 by (58). As in the second paragraph of Section 2.1, one
can choose semigeodesic coordinates.x0; xn/ nearx1x2, and a small enough hypersurfaceH1 throughx1

given locally byxn D 0. As in Lemma 4, one can find an analytic 1-formv1 defined nearx1x2, so that
.f � dv1/in D 0, v1jxnD0 D v0.x

0; 0/. Close enough tox1, we havev1 D v0 becausev0 is also a solution,
and the solution is unique, see also (32). Sincev1 is analytic, we get that it is an analytic extension ofv0

alongx1x2. Sincef andv1 are both analytic in neigh.x1x2/, andf D dv1 nearx1, this is also true in
neigh.x1x2/. So we extendedv0 alongx0x1x2, let us call this extensionv. Then we do the same thing near
x2x3, etc., until we reach neigh.x/, and thenf D dv there.

This definesv in neigh.x/, wherex 2 M was chosen arbitrary. It remains to show that this definition is
independent of the choice of the path. Choose another path that connects somey1 2 @M andx. Combine
them both to get a path that connectsx1 2 @M and y1 2 @M . It suffices to prove that the analytic
continuation ofv0 from x1 to y1 equalsv0 again. Letc1 [ 1 [ c2 [ 2 [ � � � [ k [ ckC1 be the polygon
homotopic to the path above. Analytic continuation alongc1 coincides withv0 again by (58). Next, let
p1, p2 be the initial and the endpoint of1, respectively, wherep1 is also the endpoint ofc1. We continue
analyticallyv0 from neigh.p1/ to neigh.p2/ along1, let us call this continuationv. By what we showed
above,f D dv near1. SinceIf .1/ D 0, andv.p1/ D 0, we get by (12), thathv.p2/; P1.l/i D 0 as well,
wherel is such1.l/ D p2. Using the assumption that1 is transversal to@M at both ends, one can perturb
the tangent vectorP1.l/ and this will define a new geodesic throughp2 that hits@M transversely again
nearp1, wherev D v0 D 0. Since� is open, integral off over this geodesic vanishes again, therefore
hv.p2/; �2i D 0 for �2 in an open set. Hencev.p2/ D 0. Chooseq2 2 @M close enough top2, and�2

close enough to�2 (in a fixed chart). Then the geodesic through.q2; �2/ will hit @M transversally close to
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p1, and we can repeat the same arguments. We therefore showed thatv D 0 on @M nearp2. On the other
hand,v0 has the same property. Sincef D dv D dv0 there, by the remark after (58), we get thatv D v0

nearp2. We repeat this along all the legs of the polygon until we get that the analytic continuationv of v0

along the polygon, fromx1 to y1, equalsv0 again.
As a consequence of this, we get thatf D dv in M with v D 0 on @M . Sincef D f s , this implies

f D 0.
This completes the proof of Theorem 1.

5. PROOF OFTHEOREMS 2 AND 3

Proof of Theorem 2.Theorem 2(b), that also implies (a), is a consequence of Proposition 1, as shown in
[SU4], see the proof of Theorem 2 and Proposition 4 there. Part (a) only follows more directly from [Ta1,
Prop. V.3.1] and its generalization, see [SU3, Thm 2].

Proof of Theorem 3.First, note that for any analytic metric inG, I�g
is s-injective by Theorem 1. We build

Gs as a small enough neighborhood of the analytic metrics inG. ThenGs is dense inG (in the C k.M1/

topology) since it includes the analytic metrics. To complete the definition ofGs , fix an analyticg0 2 G. By
Lemma 1, one can findH0 b H related tog D g0 and�g , satisfying the assumptions of Theorem 2, and
they have the properties required forg close enough tog0.

Let ˛ be as in Theorem 2 with̨ D 1 onH0. Then, by Theorem 2,I˛;g is s-injective forg close enough
to g0 in C k.M1/. By Lemma 2, for any suchg, I� ˛ is s-injective, where� ˛ D � .H˛/,H˛ D supp̨ . If g

is close enough tog0, � ˛ � �g because wheng D g0, � ˛ � � .H/ b �g0
, and�g depends continuously

on g in the sense described before the formulation of Theorem 3. Those arguments show that there is a
neighborhood of each analyticg0 2 G with an s-injectiveI�g

. Therefore, one can choose an open dense
subsetGs of G with the same property.

Proof of Corollary 1. It is enough to notice that the set of all simple geodesics related tog depends conti-
nuously ong in the sense of Theorem 3. Then the proof follows from the paragraph above.

6. THE GEODESICX-RAY TRANSFORM OF FUNCTIONS AND1-FORMS/VECTOR FIELDS

If f is a vector field onM , that we identify with an 1-form, then its X-ray transform is defined quite
similarly to (1) by

(59) I� f . / D
Z l

0

hf . .t//; P.t/i dt;  2 �:

If f is a function onM , then we set

(60) I� f . / D
Z l

0

f . .t// dt;  2 �:

The latter case is a partial case of the X-ray transform of 2-tensors; indeed, iff D ˛g, wheref is a 2-tensor,
˛ is a function, andg is the metric, thenI� f D I� ˛, where in the l.h.s.,I� is as in (1), and on the right,
I� is as in (60). The proofs for the X-ray transform of functions are simpler, however, and in particular,
there is no loss of derivatives in the estimate (7), as in [SU3]. This is also true for the X-ray transform of
vector fields and the proofs are more transparent than those for tensors of order 2 (or higher). Without going
into details (see [SU3] for the case of simple manifolds), we note that the main theorems in the Introduction
remain true. In case of 1-forms, estimate (7) can be improved to

(61) kf skL2.M /=C � kN˛f kH 1.M1/
� C kf skL2.M /;
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while in case of functions, we have

(62) kf kL2.M /=C � kN˛f kH 1.M1/
� C kf kL2.M /:

If .M; @M / is simple, then the full X-ray transform of functions and 1-forms (over all geodesics) is injective,
respectively s-injective, see [Mu2, MuR, BG, AR].
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