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Abstract

We prove local uniqueness for the inverse problem in obstacle scattering at a fixed energy and fixed
incident angle.

We consider the inverse problem of determining a sound-soft obstacle in Rn, n ≥ 2, from its scattering
amplitude at a fixed incident direction θ ∈ Sn−1 and a fixed energy k > 0. This is a formally determined
inverse problem, since the data depends on the same number of variables, n− 1, as does the object we want
to recover.

The purpose of this note is to give a simple proof of local uniqueness for this problem. Roughly speaking,
we show that if two domains are close to a given obstacle, in a precise sense described below, and have the
same scattering amplitude at a fixed angle and fixed energy then they must be the same. Previously, it was
shown in [CS] that local uniqueness holds for small obstacles. The Fréchet derivative of the nonlinear map
from the domain to the scattering amplitude at fixed energy and angle was computed in [P], and one can
easily show that it is injective. However, this does not imply a local result, since we cannot directly apply
the implicit function theorem.

The proof of our result follows by using the arguments of Schiffer’s well-known proof, presented in [LP],
of uniqueness when given all incident directions and the Poincaré inequality.

By obstacles, we mean compact subsets of Rn with C2 boundary and connected complement. The
scattering amplitude AO(k, θ, ω) related to an obstacle O is defined as follows. For k > 0, θ ∈ Sn−1, we
define the scattering solution u(x, θ, k) as the solution to the boundary value problem (see e.g., [CK])

{
(−∆ − k2)u = 0, in Rn \ O,

u|∂O = 0,

such that u = eikθ·x + v, with v satisfying the Sommerfeld outgoing condition at infinity: (∂/∂r − ik)v =
O(r−(n+1)/2), as r = |x| → ∞. Then

v(x, θ, k) = eikθ·x +
eikr

r(n−1)/2
AO

(
k, θ,

x

r

)
+ O

(
1

r(n+1)/2

)
, as r = |x| → ∞.

The function AO(k, θ, ω) is the scattering amplitude related to O.
It is known that Schiffer’s proof implies uniqueness if AO is known for all ω, fixed k0 > 0, and N incident

directions θ; or for all ω, fixed θ0, and N frequencies k ≤ k0, where N is greater than the number of the
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Dirichlet eigenvalues k2 ≤ k2
0 of the Laplacian in a ball containing the obstacles. In particular, as mentioned

above, this implies uniqueness at a fixed θ0 and a fixed k0 for all obstacles contained in a ball with sufficiently
small radius R. In the 3D case, the condition is given by k0R < π. We refer to [CK], [I], [KK], [CS] for
details and references.

In what follows, ωn is the volume of the unit ball in Rn (not to be cofused with the outgoing direction
ω); in particular, ω3 = 4π/3.

Our main result is the following.

Theorem 1 Fix k0 > 0, θ0 ∈ Sn−1. Let O− ⊂ O+ be two obstacles and assume that Vol(O+\O−) < ωnk−n
0 .

Let O− ⊂ Oj ⊂ O+, j = 1, 2 be two other obstacles and assume that AO1 (k0, θ0, ω) = AO2 (k0, θ0, ω). Then
O1 = O2.

In particular, for any fixed obstacle O, and fixed k0 > 0, θ0, any small enough perturbation of the
boundary gives an obstacle with different scattering amplitude.

More precisely, there exists ε = ε(O, k0, θ0) > 0 such that if ∂O1 is given in boundary normal coordinates
(x′, xn) ∈ ∂O × (−δ, δ) by xn = f(x′) with |f(x′)| ≤ ε, ∀x′, then AO1(k0, θ0, ω) = AO(k0, θ0, ω) implies
O1 = O. We would like to emphasize that this is different from the uniqueness for obstacles with small
diameters mentioned above.

In Theorem 1 and Proposition 1 below, we do not impose smallness assumptions on k0 or on the diameters
of the obstacles. We prove unconditional local uniqueness at fixed k0, θ0 near any obstacle.

Let Ωext be the connected unbounded component of Rn \ (O1 ∪ O2). Set Ωint = Rn \ Ωext. Then
Ωint ⊃ O1 ∪O2. Note that Ωint is an open set that contains the interior of O1 ∪O2 as well as all components
of Rn \ (O1 ∪O2) disconnected from infinity.

Theorem 1 follows from the following.

Proposition 1 Let O1 and O2 be two obstacles. Assume that for the corresponding scattering amplitudes
we have

AO1(k0, θ0, ω) = AO2(k0, θ0, ω)

for a fixed θ0 ∈ Sn−1, fixed k0 > 0 and all ω ∈ Sn−1. If

Vol(Ωint \ Oi) < ωnk−n
0 , i = 1, 2, (1)

then O1 = O2.

Our argument is based on an estimate of the first eigenvalue of the Dirichlet Laplacian in a bounded
domain.

Lemma 1 Let k2 be a Dirichlet eigenvalue of −∆ in the bounded domain G. Then

ωn ≤ knVol(G).

Proof. We use the Poincaré inequality in the form presented in [GT]:

‖u‖ ≤
(

Vol(G)
ωn

)1/n

‖∇u‖, for any u ∈ H1
0(G). (2)

Let u be a normalized eigenfunction corresponding to k2. Then ‖∇u‖ = k and u ∈ H1
0(G). Applying

(2), we get

1 ≤ k

(
Vol(G)

ωn

)1/n

,

which implies the lemma. 2
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Proof of Proposition 1. The proof is a combination of Schiffer’s idea and Lemma 1.
Let uj(x, θ, k) be the scattering solution related to Oj , j = 1, 2. By a well-known argument based on

Rellich’s lemma, AO1 (k0, θ0, ω) = AO2 (k0, θ0, ω) implies that u1(x, θ0, k0) = u2(x, θ0, k0) for all x outside a
ball containing O1 ∪O2. We know that u1 and u2 solve

{
(−∆ − k2

0)uj = 0, in Rn \ Oj ,
uj|∂Oj = 0.

Then by analytic continuation, u1 = u2 on ∂Ωext.
Suppose that O1 6= O2. Then for j = 1 or j = 2, Ωint \ Oj is an open nonempty set. Suppose that this

happens for j = 1. Let G be any connected component of Ωint \ O1. Then u1 = 0 on ∂G, and therefore
u1|G ∈ H1

0(G). Since ∂G may not be smooth, the latter needs some justification. This was done in [CK] by
approximating u1 by a sequence u1,n ∈ C∞

0 (G); see [CK, Theorem 5.1 and Lemma 3.8]. Therefore, u1 solves
the problem {

(−∆ − k2
0)u1 = 0, in G,
u1|G ∈ H1

0(G).

Moreover, u1 is not identically equal to zero in G, because it is a real analytic function in the domain
Rn \ O1 not vanishing for large x. Thus k2

0 is a Dirichlet eigenvalue of the Laplacian in G. By Lemma 1,
ωnk−n

0 ≤ Vol(G) ≤ Vol(Ωint \O1). This contradicts our assumption (1), which proves the proposition. Note
that in (1), we can actually replace Ωint \ Oj by the biggest (in terms of volume) connected component of
this set. 2

Proof of Theorem 1. We claim that the open sets Ωint \ Oj are included in O+ \ O−.
To prove that, note that Ωint \ O1, for example, is a union of the interior of O2 \ O1 and all bounded

components of Rn \ (O1 ∪O2). We only need to show that any such component is in O+ \O−. Assume that
there is a point x0 in such a component with x0 6∈ O+ \O−. Clearly, x0 6∈ O+. Then we can connect x0 and
infinity with a continuous curve lying outside O+, because O+ is an obstacle. This curve is in Rn\(O1∪O2),
and this contradicts the assumption that x0 is in a bounded component of this set. This proves the inclusion,
and the theorem now follows from Proposition 1. 2
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