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Weyl type upper bounds on the number of
resonances near the real axis for trapped systems

Plamen Stefanov

Abstract
We study semiclassical resonances in a box Ω(h) of height hN , N � 1. We

show that the semiclassical wave front set of the resonant states (including the
“generalized eigenfunctions”) is contained in the set T of the trapped bichar-
acteristics. We also show that for a suitable self-adjoint reference operator
P#(h) with discrete spectrum the number of resonances in Ω(h) is bounded
by the number of eigenvalues of P#(h) in an interval a bit larger than the
projection of Ω(h) on the real line. As an application, we prove a Weyl type
estimate of the number of resonances in Ω(h) in terms of the measure of T .
We prove a similar estimate in case of classical scattering by a metric and
obstacle.

1. Introduction
We study resonances in semiclassical scattering in a “box” Ω(h) = [a0, b0] +

i[−S(h), 0], where 0 < S(h) = O(hK), K � 1. In the classical case, we study
resonances λ with Reλ � 1, 0 ≤ −Imλ ≤ C(Reλ)−K , K � 1. Such resonances
may exist only for trapping geometries if the trapping is “strong” enough. Here we
will formulate the main results and explain the main ideas, the full proofs will be
published elsewhere.

We work in the abstract “black box scattering” setting in Rn, introduced by
Sjöstrand and Zworski [SjZ] and developed further by Sjöstrand [Sj2] for long range
operators. Let P (h) be such a semiclassical long range operator. First we study the
properties of the resonant states related to resonances near the real axis. Resonant
states are all outgoing “eigenfunctions” u(h) (of infinite energy) that solve the equa-
tion (P (h)− z(h))u(h) = 0 and “generalized eigenfunctions” belonging to the range
of the residue of the resolvent at the resonance z(h) that solve (P (h)−z(h))mu(h) =
0 with some m. In view of the a priori polynomial bound N(Ω(h)) = O(h−n#

),
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n# ≥ n, where N(Ω(h)) is the number of resonances in Ω(h), counting multi-
plicities, we have that m = O(h−n#

). We prove that all resonant states satisfy
(P (h)− z(h))u(h) = O(hK1), where K1 depends on K. We also prove that for some
K2 = K2(K) � 1, all normalized resonant states are O(hK2) small, in an annulus
R1 ≤ |x| ≤ R2 surrounding the black box and this estimate is uniform with respect
to the resonances and the order m of the resonant state, as long as z(h) ∈ Ω(h).
In fact, we do not work with single resonances but with clusters of resonances and
prove the above estimates for any normalized linear combination of resonant states
belonging to such a cluster. Next, we show that the linear independence of the
resonant states belonging to different clusters in Ω(h) is stable under certain small
perturbations. If we work with eigenvalues of a self-adjoint operator, this is true
because of the orthogonality of the eigenfunctions, in the case under consideration
this stability replaces the orthogonality property. Those results allow us to show
that all resonances in Ω(h) are perturbations of some of the eigenvalues of a suitable
“reference” self-adjoint operator with discrete spectrum.

In the case when P (h) is a second order elliptic semiclassical PDO, we use prop-
agation of singularities arguments to show that the resonant states are “small” not
only far away from the scatterer, but also they are “small” microlocally along all
non-trapped bicharacteristics. In other words, for a suitable s = s(K), with s� 1,
if K � 1, we show that the semiclassical wave front set WFs(u) is included in the
trapped set T ⊂ T ∗R defined as the set of those (x, ξ) for which the bicharacteristic
through (x, ξ) never leaves some compact set. This allows us to construct a reference
operator P#(h) from P (h) by adding a barrier near the trapped set and comparing
the spectral density of P#(h) and N(Ω(h)) as above, to get Weyl type upper bounds
on N(Ω(h)) in terms of the measure of T . We get a similar estimate in the classical
case of scattering by obstacle (and metric).

The idea that the counting function of the resonances (not only near the real line)
is essentially bounded by the spectral counting function of certain reference opera-
tor, which is P (h), modified for |x| > R0, has been used implicitly or explicitely [Z1],
[SjZ], [V], [Sj2] in the proof of the polynomial bound of this function. Sjöstrand [Sj1],
under certain assumptions involving analyticity and hyperbolicity of the bicharac-
teristic flow, showed that the resonances in a box of height δ, C0h ≤ δ ≤ 1/C0 is
O(δd−εh−n), ε > 0, where d is the Minkowski codimension of the set of the trapped
rays. Numerical study of this and other phenomena can be found in [LZ]. M. Zerzeri
[Ze] obtained in the classical case an upper bound in a sector in C related to the
measure of the trapped rays but the notion of trapped rays that he uses is weaker
than the common one.

2. Estimates on the resonant states
In the black-box scattering [SjZ], [Sj2] one works with self-adjoint operator P (h)

on the Hilbert space H = HR0 ⊕ L2(Rn \ B(0, R0)). We refer to [Sj2] for more
details. Important examples are the long range Schrödinger operator −h2∆ + V (x)
with V (x) analytic in x in the domain {rω; ω ∈ C}, r > R0, dist(ω, Sn−1) <
d0, r ∈ C, arg(r) ∈ [−θ0, θ0]}, or the classical or semiclassical Laplacian outside a
bounded obstacle with Dirichlet or Neumann boundary conditions. For simplicity
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we assume below that in Rn \B(0, R0) we have P (h) = −h2∆ + V (x), where V (x)
is a long range potential as above but our results remain true for more general long
range perturbations of the semiclassical Laplacian as in [Sj2]. The (semi-classical)
resonances ResP (h) of P (h) are defined in a conic neighborhood of the real axis by
the method of complex scaling (see [SjZ], [Sj2]).

As in [SjZ], [Sj2], we construct a reference selfadjoint operator P#(h) from P (h)
on H# = HR0 ⊕ L2(M \ B(0, R0)), where M = (R/RZ)n for some R � R0. Then
for the number of eigenvalues of P# in a given interval [−λ, λ], we assume

#{z ∈ SpecP#(h); −λ ≤ z ≤ λ; } ≤ C(λ/h2)n#/2, λ ≥ 1,

with some n# ≥ n. This implies (see [SjZ] and [Sj2]) that

#{z ∈ ResP (h); 0 < a0 ≤ Re z ≤ b0; 0 ≤ −Im z ≤ c0} ≤ C(a0, b0, c0)h
−n#

.(1)

For any resonance z(h) there is an outgoing solution u(h) to (P (h)−z(h))u(h) =
0 and possibly “generalized eigenvectors” v(h) satisfying (P (h)− z(h))k(h)v(h) = 0.
We will call u and v resonant states. Given Ω(h) ⊂ C, N(Ω(h)) will denote the
number of resonances in Ω(h) counted with their multiplicities defined as the rank
of the residue of the cut-off resolvent at any resonance.

For technical reasons, we work with the complex scaled operator Pθ(h). Fix
A < B, such that R0 +1 < A < B−1. As in [SjZ] and [Sj2], we choose a real-valued
increasing C∞–function κ(r), r ≥ 0, with the properties:

(i) κ(r) = 0 for 0 ≤ r ≤ B,
(ii) κ(r) = 1 for r ≥ B + 1/2,
(iii) 0 ≤ κ(r) ≤ 1,
(iv) κ(r) = e−1/(r−B)2 for B ≤ r ≤ B + ε0 with some ε0 � 1.

Set θ = θ(r) := θ0κ(r), where 0 < θ0 � 1 will be chosen later. Define fθ(r) := reiθ(r).
As in [SjZ], [Sj2], we perform the analytic dilation by considering the map

Rn 3 x = rω 7−→ fθ(r)ω ∈ Cn, ω ∈ Sn−1. (2)

This transforms P into an operator Pθ on HR0 ⊕ L2(Γθ \B(0, R0)), where Γθ is the
image of (2). We always identify Γθ with Rn.

It is known that for a fixed h > 0 and z 6= 0 with arg(z) 6= −2θ0, the operator
Pθ − z is Fredholm with index 0. Moreover, for z 6= 0 with − arg(z) < 2θ0, and in
particular for z ∈ Ω(h), we have that z is a resonance of P if and only if z is an
eigenvalue of Pθ and the multiplicities coincide.

Our first starting point is an estimate that is a refinement of [B2, Prop. 6.1].
Let ρ(r) be a smooth function equal to 1 for r < A − 1/2 and equal to r(n−1)/2 for
r > A. Set P̃ := ρPρ−1. Then P̃ is self-adjoint for the measure dµ := ρ−2rn−1drdω
and we denote by H̃ = ρH the corresponding Hilbert space.

Let P̃θ be the operator obtained from P̃ by analytic dilation for r ≥ B and
denote by D̃ its domain.

Proposition 1 There exists B0 > 0, such that if B ≥ B0, then for h > 0 and
θ0 > 0 small enough, Re z ≥ a0, Im z ≤ 0, and for any u ∈ D̃θ we have

C
∫

((θ + rθ′)|h∂ru|2 + θ(|hr−1∇ωu|2 + |u|2))drdω (3)

≤ −Im
(
eiθ(P̃θ − z)u, u

)
H̃

+
(
−Im z + e−h−1/3

)
‖u‖2

H̃,
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where C = min(a0, 1)/2 and the inner product and the norm are taken in H̃.

For a proof, we refer to [B2]. The only new point here is that we give a different

form of the error term represented here by e−h−1/3
.

We note that the estimate above remains true for Im z > 0 as well after replacing
−Im z by − cos θ0Im z. This shows that

‖(Pθ − z)−1‖ ≤ 2

Im z − e−h−1/3
, Im z > e−h−1/3

. (4)

The second starting point is an estimate of the resolvent on a contour around a
cluster of resonances. Fix 0 < a0 < b0. Choose some a(h), b(h) and c(h) such that

a0 ≤ a(h) ≤ b(h) ≤ b0, b(h)−a(h) = o(1), 2e−h−1/3 ≤ c(h) ≤ o(1)h(5n#+1)/2 (5)

and let
Ω(h) := [a(h), b(h)] + i[−c(h), 0]. (6)

Let z1(h), . . . , zp(h) be all distinct resonances in Ω(h) with multiplicities m1(h),. . . ,
mp(h). Set m(h) := m1 + . . .+mp = N(Ω(h)). Assume that there are no resonances
on ∂Ω. Consider the spectral projector associated with the eigenvalues of Pθ in Ω

ΠΩ :=
1

2πi

∮

∂Ω
(z − Pθ)

−1dz,

where ∂Ω is assumed to be positively oriented. Denote HΩ := RanΠΩ. Then it
is well known (see e.g. [K]) that Pθ acts invariantly on HΩ that is the span of all
eigenvectors and generalized eigenvectors of Pθ with eigenvalues in Ω. The dimension
m(h) of HΩ is finite, bounded by Ch−n#

, and equal to the sum of the multiplicities of
zj ∈ Ω. Set PΩ := Pθ|HΩ

. Then PΩ is a finite rank operator (matrix) and we denote
by ‖ · ‖HΩ

the operator norm in HΩ. The spectrum of PΩ consists of {z1, . . . , zp}
with the same multiplicities. We need the following estimate due to Zworski [Z2]
(in this generality, see the proof of Lemma 1 in [TZ1])

‖(z−Pθ)
−1‖ ≤ CeCh−n#

ln(1/g) for z ∈ Ω0, dist(z,ResP (h) ∩ Ω0) ≥ g(h), g(h) � 1,

where Ω0 is any simply connected precompact subset of −π < − arg z < 2θ0 (inde-
pendent of h). In our analysis Ω(h) is always included in such a fixed set, therefore
the constant C above will be uniform. As a consequence, the resolvent of PΩ satisfies
the following estimate

‖(z − PΩ)−1‖HΩ
≤ CeCh−n#

ln(1/g) for z ∈ Ω0, dist(z,ResP (h) ∩ Ω0) ≥ g(h), (7)

where g(h) � 1. This allows us to apply the “semiclassical maximum principle”
([TZ1], [TZ2]) as in [St3, Lemma 2] to get the following.

Proposition 2 Assume that c(h) ≤ S(h) ≤ h(5n#+1)/2w(h), w(h) = o(1), as h→ 0,
where a(h), b(h) and c(h) are as in (5). Then

‖(z − PΩ)−1‖HΩ
≤ C

S(h)
on ∂Ω̃,

where Ω̃ := [a(h) −w(h), b(h) + w(h)] + [−h−n#
S(h), S(h)].
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Sketch of the proof. The proof is similar to that of [St3, Lemma 2]. We multiply
(z − PΩ)−1 by

G(z, h) :=
(z − z1)

m1 . . . (z − zp)
mp

(z − z̃1)m1 . . . (z − z̃p)mp
,

where z̃j(h) := z̄j(h) + 2iS(h), j = 1 . . . p, are obtained from zj(h) by reflection
about the line Im z = S(h). On that line we have ‖(z − PΩ)−1‖HΩ

≤ 4/S(h) by (5)
and (4). We have |G(z, h)| ≤ 1 for Im z ≤ S(h). The function F := G(z − PΩ)−1 is
holomorphic below the line Im z = S(h), and in particular in Ω(h). This allows us
to apply the “semiclassical maximum principle” [TZ1] in the form presented in [St3,
Lemma 1] to the function F in the domain Ω1 := [a(h) − 5w(h), b(h) + 5w(h)] +
i[−S(h)h−2n#−1, S(h)] to get that for h small enough

‖G(z)(z − PΩ)−1‖HΩ
≤ 2e3/S(h), ∀z ∈ Ω̃(h). (8)

Next we show that 1/C ≤ |G(z, h)| on ∂Ω̃(h). This shows that (8) remains true
with a different constant if we remove the factor G(z) there and this completes the
proof of the proposition. 2

This proposition allows us to estimate ‖PΩ−z0‖HΩ
for z0 ∈ [a(h), b(h)]. We have

z0 − PΩ =
1

2πi

∮

∂Ω̃
(z0 − PΩ)(z − PΩ)−1dz =

1

2πi

∮

∂Ω̃
(z0 − z)(z − PΩ)−1dz,

therefore,

‖z0 − PΩ‖HΩ
≤ |∂Ω̃|

2π
|z0 − z|‖(z − PΩ)−1‖HΩ

≤ C
(b− a+ w)2

S
. (9)

Choosing w(h) = h−(5n#+1)/2S(h), and minimizing with respect to S(z), we see that
estimate (9) implies the following.

Proposition 3 Let Ω and ΠΩ be as above. Then for z0 ∈ [a(h), b(h)] we have

‖(Pθ − z0)f‖ ≤ Ch−(5n#+1)/2 max{b(h) − a(h), c(h)}‖f‖, ∀f ∈ RanΠΩ. (10)

In particular, if f is a resonant state, corresponding to a single resonance z0(h),
then

‖(Pθ(h) − z0(h))f‖ ≤ Ch−(5n#+1)/2 max{−Im z0(h), e
−h−1/3}‖f‖.

The estimate in Proposition 3 above is interesting only if the width of Ω(h) does
not exceed hN , N � (5n# + 1)/2. We apply this estimate to domains containing
clusters of resonances as follows. Let

a0 ≤ a(h) < b(h) ≤ b0, 2e−h−1/3 ≤ c(h) ≤ o(1)h(5n#+1)/2 (11)

and let Ω(h) be as in (6). Assume that there are no resonances on ∂Ω(h). A
direct consequence of (1) is that one can group the resonances in Ω(h) into clusters
contained in the interiors of the boxes

Ωk(h) = [ak(h), bk(h)] + i[−c(h), 0], k = 1, . . . ,K(h), K = O(h−n#

), (12)
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where Ωk(h) do not intersect, moreover, dist{Ωk,Ωm} ≥ 4w(h) for k 6= m and
width(Ωk) = bk − ak ≤ Ch−n#

w(h), where 0 < w(h) = o(1)hn#
is fixed in advance.

There are no resonances in Ω outside Ωk’s. Denote as before by ΠΩk
the spectral

projectors related to the eigenvalues of Pθ in Ωk and let PΩ, HΩ be as before.
We know that the subspaces RanΩk(h) are linearly independent. The following

proposition basically gives us control over the lower bound of the angles between
them.

Proposition 4 Under the assumptions above, if w(h) = h−(5n#+1)/2c(h), then there
exists a constant A = A(a0, b0), such that

‖ΠΩk
‖HΩ

≤ Ah−(7n#+1)/2, k = 1, . . . ,K. (13)

For any fk ∈ RanΩk(h), k = 1, . . . ,K, and for any k0 we have

‖fk0‖ ≤ Ah−(7n#+1)/2‖f1 + . . .+ fK‖,

Sketch of the proof. As in Proposition 2, we get that

‖(z − PΩ)−1‖HΩ
≤ C

c(h)
on ∂Ω̃k(h), ∀k, (14)

where Ω̃k(h) := [ak(h) − w(h), bk(h) + w(h)] + i[−h−n#
c(h), c(h)]. Note that Ω̃k(h)

have the same properties as Ωk(h) concerning the distance between two such domains
and their widths, with w(h) replaced by w(h)/2. To justify (14), it is enough to
note that in the proof of Proposition 2 we used the fact that there are no poles of
(z−PΩ)−1 above Im z = c(h) only, and the fact that there might be poles to the left
or right of Ωk does not play any role as far as those poles are separated by distance
2w(h) (see also [St3]). Notice also that the constant C in (14) is independent of k.
Since there are no eigenvalues of PΩ in Ω̃k \ Ωk, one can define ΠΩk

|HΩ
as integrals

of (z − PΩ)−1 over ∂Ω̃k. A direct estimation of that integral, using (14), yields the
proof of the first part.

To prove the second part, write

fk0 = ΠΩk0
(f1 + . . .+ fK)

and use the estimate on ΠΩk0
. 2

The estimates proven above allow us to estimate the number N(Ω(h)) of reso-
nances in Ω(h) from above by the number of eigenvalues of a suitably chosen refer-
ence self-adjoint operator P#(h). To this end we will show first that by cutting off
the resonant states outside a large ball, we get quasimodes that are also quasimodes
for any such reference operator. Note that next theorem is in some sense converse to
[St1, Theorem 1] that states that locally existence of quasimodes implies existence
of resonances nearby.

Define the smooth cut-off function 0 ≤ χB(x) ≤ 1 as follows:

χB(x) = 1 for |x| ≤ B + 3/4, χB(x) = 0 for |x| > B + 1. (15)

In what follows, Hs is equipped with the semiclassical norm.
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Theorem 1 Let a0 ≤ a(h) < b(h) ≤ b0, b(h) − a(h) = o(1)h(5n#+1)/2, 2e−h−1/3 ≤
c(h) = o(1)h(5n#+1)/2 and set

Ω(h) = [a(h), b(h)] + i[−c(h), 0].

Suppose that P (h) has m(h) = N(Ω(h)) resonances (counting multiplicities) in
Ω(h). Fix z0(h) ∈ [a(h), b(h)]. Then z0 is a quasimode of multiplicity m(h) for
P (h), in the following sense: The space χBRanΠΩ has dimension m(h) and for any
ψ ∈ χBRanΠΩ with ‖ψ‖ = 1 we have

(a) suppψ ⊂ B(0, B + 1),
(b) ‖(P (h) − z0(h))ψ‖ ≤ Cε(h),

where ε(h) = h−(5n#+1)/4{max{b(h) − a(h), c(h)}}1/2.
Moreover, if ψ = χBf with f ∈ χBRanΠΩ, and ‖ψ‖ = 1, then

‖ψ − f‖H1 ≤ Cε(h). (16)

Remark. It follows from the propagation of singularities arguments later and from
the theorem above, that one can cut off f for B0 < |x| < B, before the complex
scaling is performed, if ε(h) = O(hN ), N > (5n# + 1)/2 or N = ∞. In other words,
one can replace f above by non-scaled resonant states.

Sketch of the proof of Theorem 1. Given f ∈ RanΠΩ, set ψ = χBf . Then ψ
is supported in B(0, B+1). First, observe that by Proposition 1 and Proposition 3,

∫
θ

(
|h∇f |2 + |f |2

)
dx ≤ C

(
ε2(h) + e−h−1/3

)
‖f‖2 ≤ Cε2(h)‖f‖2, ∀f ∈ RanΠΩ

(17)
with C > 0 independent of f (and h). Since for |x| > B + 1/2 we have θ = θ0, we
get

‖ψ − f‖H1 ≤ Cε(h)‖f‖. (18)

Normalize ψ so that ‖ψ‖ = 1, then also ‖f‖ = 1 + o(1). In particular, this proves
(16).

Next, (Pθ − z0)ψ = [Pθ, χB]f + χB(Pθ − z0)f and by (17), we deduce that
‖[Pθ, χB]f‖ ≤ Cε(h). Therefore,

‖(Pθ − z0)ψ‖ ≤ Cε(h). (19)

To pass from Pθ to P , it is enough to show that ‖(Pθ − P )ψ‖ ≤ Cε(h). The
proof of this is based on Proposition 1. Indeed, in the coordinates considered there,
the coefficients of Pθ − P are bounded by C(θ + θ′ + |θ′′|). This, combined with
Proposition 1 allows us to prove the estimate above and thus to complete the proof
of the theorem. 2

Let Ω(h) and Ωk(h) be as in Proposition 4. Apply Theorem 1 to each Ωk. In
view of the upper bound of bk(h) − ak(h) that we have, we see that we can choose
ε(h) to be

ε(h) = Ch−(3n#+1/2)c1/2(h), (20)

where C depends only on the constant C(a0, b0, c0) in (1). Then for each k =
1, . . . ,K(h), Theorem 1 holds for Ωk(h) with z0(h) there replaced by zk(h) ∈
[ak(h), bk(h)] and ε(h) as above.
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Definition 1 Let H# be a Hilbert space that can be expressed as H# = HR0 ⊕
L2(B(0, R) \ B(0, R0)) ⊕ Hext, R > B + 1, with Hext another Hilbert space, and
assume that P#(h) is a selfadjoint operator in H# with discrete spectrum in a h-
independent neighborhood of the interval [a(h), b(h)], where a0 ≤ a(h) < b(h) ≤ b0.
We call P#(h) a reference operator for P (h) in Ω(h) with discrepancy δ(h), if for
some decomposition of Ω(h) as above such that ResP ∩Ω = ResP ∩ (∪kΩk) one has
‖(P#(h) − zk(h))ψk(h)‖ ≤ δ(h) → 0, as h→ 0 for any ψk ∈ χBRanΠΩk

, ‖ψk‖ = 1,
where zk(h) ∈ Ωk(h) ∩ R.

We can choose P#(h) to be The Dirichlet realization of P (h) restricted to a large
ball, and then δ(h) = ε(h). This choice of P#(h) does not lead to sharp estimates
however. Later we obtain P# from P not only by modifying it for large x but also
by modifying it outside the wave front set of the resonant states.

Next theorem is a “global” version of Theorem 1, i.e., it applies to resonances in
wider domains Ω(h).

Theorem 2 Let 0 < a0 ≤ a(h) < b(h) ≤ b0, 2e−h−1/3 ≤ c(h) ≤ Ch15n#+3 and set

Ω(h) = [a(h), b(h)] + i[−c(h), 0].

Let P#(h) be a reference operator in Ω(h) with discrepancy δ(h) ≤ h9n#/2+1. Then
(a)

N(Ω(h)) ≤ N#{[a(h)− δ1(h), b(h) + δ1(h)]} for h� 1,

where δ1(h) = h−9n#/2−1δ(h).
(b) If δ1(h) ≥ h−9n#/2−1δ(h), then each f ∈ RanΠΩ with ‖f‖ = 1 is a linear

combination of eigenfunctions of P# with eigenvalues in [a(h)− δ1(h), b(h) + δ1(h)]
up to an error that in any compact does not exceed

Ch−(9n#+1)/2
(
h−(3n#+1/2)c1/2(h) + δ(h)/δ1(h)

)

for 0 < h ≤ h0, with C and h0 uniform with respect to the choice of f .

Sketch of the proof. The basic argument in the proof is that the property that
the resonant states corresponding to resonances in two different clusters in Ω(h) are
linearly independent is stable under small perturbations. This property is guaran-
teed by Proposition 4. Let ψk = χBf , fk ∈ RanΠΩk

be as in Definition 1. We
project ψk on the space spanned by the eigenfunctions of P#(h) belonging to the
interval [aj(h) − δ1(h), bj(h) + δ1(h)]}ψk(h), k = 1, . . . ,K(h). By Theorem 1 and

the spectral theorem, these projections differ from ψk by δ(h)/δ1(h) = h9n#/2+1.
Then we use Proposition 4, to show that the so perturbed system of functions is
still linearly independent and this implies (a). Part (b) follows in a similar way. 2

3. Trapped geodesics and wave front set of the resonant states
In this section we show that in some classical situations the wave front set of

the resonant states is contained in the union of the trapped rays. We consider
self-adjoint differential operators of the form

P (h) =
n∑

i,j=1

hDxiaij(x)hDxj +
n∑

j=1

bj(x)hDxj + V (x) + P1(h) (21)
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with smooth coefficients such that {aij(x)} is a symmetric positively definite matrix
for any x ∈ Rn and aij − δij = bj = 0 for |x| > R0 with some R0 > 0 while V (x) is a
long range potential as above. Here P1(h) =

∑
b̃j(x, h)hDxj + Ṽ (x, h) is assumed to

be a differential operator of first order with coefficients supported in B(0, R0), such
that P1(h) ∈ L1,−1 considered as an h-ΨDO (note that P (h) ∈ L2,0). The operator
P (h) is self-adjoint in L2(Rn) and satisfies the black-box assumptions.

We will use propagation of singularities results to get microlocal estimates of
ΠΩf/‖ΠΩf‖ away from the trapping trajectories. One can define the semi-classical
wave front WFs(u) and WF(u) of a tempered u as in [G] (see also [SjV], [I]). We
note that here we will work with finite points of the semiclassical wave front set only,
because we study operators with characteristic variety bounded in the ξ variable.
Consider the bicharacteristics of P (h) related to its semi-classical principal symbol
p0(x, ξ) =

∑
aij(x)ξiξj +

∑
j bjξj + V (x). They are the integral curves of the Hamil-

tonian vector field Hp0 = (∂ξp0)∂x − (∂xp0)∂ξ. We call a bicharacteristic t 7→ γ(t)
non-trapped, if for any R > 0, there exists τ (positive or negative), such that γ(τ )
lies outside T ∗B(0, R). We call all other bicharacteristics trapped. Denote by T the
trapped subset of T ∗Rn, i.e, (x, ξ) ∈ T if and only if the bicharacteristic passing
through (x, ξ) is trapped.

Theorem 3 Let 0 < a0 ≤ a(h) < b(h) ≤ b0, b(h) − a(h) ≤ hM , M > (5n + 1)/2,
and set

Ω(h) = [a(h), b(h)] + i[−hN , 0], N ≥M.

Let P (h) be the operator defined above and let f = f(h) ∈ RanΠΩ, and ‖f‖ =
1. Then for s = M/2 − (5n + 1)/4, WFs(f) is supported in the set of trapped
bicharacteristics of P (h) on energy levels in p−1

0 [a0, b0] uniformly with respect to the
choice of f . More precisely, for any zeroth order symbol q(x, ξ) with support disjoint
from T ∩ p−1

0 [a0, b0] there exists C > 0 such that ‖q(x, hD)f‖ ≤ Chs for any f(h)
as above.

If Ω(h) is as above with 0 < a0 ≤ a(h) < b(h) ≤ b0, N > (7n+ 1)/2 but without
smallness assumptions on b(h)−a(h), then the statement of the theorem is true with
s = N/2 − (15n+ 2)/2.

The proof of Theorem 3 is based on a propagation of singularities argument. It
says that if (P (h)− z0(h))u(h) = g(h) in B(0, R), ‖u(h)‖L2(B(0,R)) ≤ C, and u ∈ Hs

microlocally near (x0, ξ0), then u ∈ Hs microlocally near (x1, ξ1), provided that
(x0, ξ0) and (x1, ξ1) can be connected by a bicharacteristic (of finite length) lying in
T ∗B(0, R) \WFs+1(g). We apply this argument to ψ = χBf that vanishes for large
x, and therefore belongs to any Hs there.

4. Upper bounds on the number of resonances close to the

real axis
Let P (h) be the operator (21). In this section we establish an upper bound of

the resonances of P (h) in a box of width independent of h and height hN , N � 1
in terms of the measure of the trapped set T , where the measure is considered in
T ∗Rn. To this end we choose a suitable reference operator P#(h) that imposes a
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barrier outside a small neighborhood of the trapped set T by modifying P (h) there.
Since the resonant states are “small” there, the resonant states will be quasimodes
for the new operator. An application of Theorem 2 then will imply an upper bound
and the well-known asymptotics for the eigenvalues of selfadjoint h-ΨDOs will relate
this bound with meas(T ).

Theorem 4 Let 0 < E1 < E2 be fixed and N ≥ 15n + 3. Let P (h) be as in (21)
and set

Ω(h) = [E1, E2] + i[−hN , 0].

Then

N(Ω(h)) ≤ 1

(2πh)n

(
meas

{
T ∩ p−1

0 [E1, E2]
}

+ o(1)
)
, as h→ 0,

where T is the trapped set related to P (h).

Sketch of the proof. The resonances in Ω(h) are contained in ∪K(h)
k=1 Ωk(h), where

Ωk(h) are as in (12) with ω(h) as in Proposition 4. Then and bk − ak ≤ hN−(7n+1)/2,
dist{Ωk1 ,Ωk2} ≥ 4hN−(5n+1)/2. Each Ωk satisfies the assumptions of Theorem 1. The
corresponding discrepancy function (see (20)) is given by ε(h) = ChN/2−(3n+1/2).
Denote

T ν = T ∩ p−1
0 [a0 − ν, b0 + ν], T ν

µ = {ζ ∈ T ∗Rn; dist{ζ,T ν} < µ}, (22)

where ν > 0, µ > 0 are small parameters. Fix ν > 0. Clearly, T ν is a closed set.
Next, Vol(T ν

µ ) → meas(T ν), as µ → 0. Denote −C0 = min p0(x, ξ) and let qµ(x, ξ)
be a smooth function such that qµ = 0 on T ν

µ , qµ = 2b0 + C0 outside T ν
2µ, and

0 ≤ qµ ≤ 2b0 + C0. Set
P#

µ (h) = P (h) + qw
µ (x, hD).

Note that P#
µ (h) is a reference operator in Ω(h) with discrepancy ε(h). The principal

symbol of P#
µ (h) is pµ(x, ξ) = p0(x, ξ) + qµ(x, ξ). The self-adjoint operator P#

µ (h)
has discrete spectrum in (−∞, 2b0), because {pµ(x, ξ) ≤ M} is compact for any
M < 2b0. Moreover, we have the following estimate for the number N#

µ [a0, b0] of
eigenvalues of P#

µ (h) (see [DSj])

1

(2πh)n

(
V #
− ([a0, b0]) + o(1)

)
≤ N#

µ [a0, b0] ≤
1

(2πh)n

(
V #

+ ([a0, b0]) + o(1)
)
, (23)

where
V #
± ([a0, b0]) = lim

±ε↘0

∫

pµ(x,ξ)∈[a0−ε,b0+ε]
dxdξ. (24)

We then use the fact that P#
µ (h) is a reference operator to get from (23) that

N(Ω(h)) ≤ 1

(2πh)n

(
Vol

(
p−1

µ [a0 − ν, b0 + ν]
)

+ o(1)
)
, as h→ 0. (25)

Next, we take the limits µ → 0 and ν → 0 to conclude the proof. 2
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5. Example of sharp lower bounds, generalized potential well
In this section we study again the resonances of the operator (21) under the

assumption that for some non-critical energy level E2, the set p−1
0 [−∞, E2] has at

least one compact connected component. Then we get lower bound in terms of the
volume of the compact component. If in addition we assume that the unbounded
component is non-trapping, we also get an asymptotic formula for the resonances
near the real line and a resonance free zone. This situation can be considered as a
generalized “potential well in an island”.

Fix two energy levels 0 < E1 < E2 < max{p0(x, ξ)}. Assume that E1 and E2

are non-critical values of p0. Assume also that p−1
0 (−∞, E2] is not connected, i.e., it

has a non-empty compact component (this component then must have non-empty
interior because E2 is non-critical value of p0). Then

p−1
0 [E1, E2] = Wint ∪Wext,

is a unbounded closed set with smooth boundary, where we denote by Wext the
unbounded connected component and the union of the bounded ones is denoted by
Wint. Then Wint is a compact and consists of trapped points only. The set Wext

contains non-trapped points and may contain trapped ones as well.

Theorem 5
(a) For some function 0 ≤ S(h) = O(h∞) we have as h→ 0

1

(2πh)n
(Vol(Wint) −O(h)) ≤ N([E1, E2] + i[−S(h), 0])

≤ N([E1, E2] + i[−h15n+3, 0])

≤ 1

(2πh)n
(Vol (Wint) + meas{T ∩Wext} + o(1)) .

(b) If Wext is non-trapping, i.e., if Wext ∩ T = ∅, then there exists a function
0 < S0(h) = O(h∞) such that for any S(h) such that S0(h) ≤ S(h) = O(h∞),

N([E1, E2] + i[−S(h), 0]) =
1

(2πh)n
(Vol(Wint) +O(h)) , as h→ 0.

Moreover, if P (h) = −h2∆ for |x| > R0 with some R0 > 0, then ∀M > 0 the
function S(h) above can be chosen so that for some h0 = h0(M) > 0, there are no
resonances in

[E1, E2] + i[−Mh,−S(h)] for 0 < h < h0.

Sketch of the proof. We show first that the x-projections of Wint and Wext do
not intersect. This allows us to use cut-off functions depending on x only. Denote
by Xext the (unique) unbounded component of {Ṽ (x) ≤ E2} and let Xint be the
union of the connected ones. The distance between Xint and Xext is positive. Let
χint + χext = 1 be a partition of unity associated with those two closed sets, i.e.,
χint = 1 in a neighborhood of Xint, and χext = 1 in a neighborhood of Xext. Define

Pint(h) = P (h) + Vint(x), Vint(x) := αχext(x),

Pext(h) = P (h) + Vext(x), Vext(x) := αχint(x),
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where α > E2−inf Ṽ . Then E1 and E2 are not critical values for neither symbol pi =
p0(x, ξ) + Vi(x), i = int , ext , and p−1

int[E1, E2] = Wint, p
−1
ext[E1, E2] = Wext. Moreover,

Pint(h) and Pext(h) are selfadjoint, Pint(h) has discrete spectrum in [E1, E2], while
Pext(h) is non-trapping for energy levels in [E1, E2].

To prove (a), note that the upper bound there follows from Theorem 4. To prove
the lower bound, use the eigenfunctions of Pint(h) related to an O(h∞) neighborhood
of [E1, E2] as quasimodes of P (h). More precisely, since Pint(h) is elliptic outside
Xint, those eigenfunctions are O(h∞) there (and even exponentially small there by
Agmon’s estimates if P (h) is the Schrödinger operator), so after cutting them off
near Xint, we get compactly supported asymptotically orthogonal quasimodes. An
application of [St1, Theorem 1], allows us to show that there are at least as many
resonances in Ω(h). This proves (a).

To prove (b), we first prove an upper bound for N(Ω) with remainderO(h). Next,
fix M > 0 and assume that z(h) is a resonance in the domain [E1, E2] + i[−Mh, 0].
Then there exists an outgoing u(h) belonging locally to the domain of P (h) such that
(P (h) − z(h))u(h) = 0. Let us normalize u(h) by requiring that ‖u‖L2(B(0,R)) = 1
with a fixed R > R0. Notice that P (h) − z(h) is elliptic for x 6∈ Xint ∪ Xext.
This yields WF(u|B(0,R0)) ⊂ T ∗(Xint ∪ Xext). Choose the smooth cut-off function
χ′

ext so that χext = 1 on suppχ′
ext and χ′

ext = 1 in a neighborhood of Xext. Then
(P (h) − z(h))χ′

extu(h) = v(h), where v = [P (h), χ′
ext]u(h) = O(h∞) is supported

in B(0, R) and WF(χ′
extu) ⊂ T ∗Xext. Then (P (h) − z(h))χ′

extu(h) = (Pext(h) −
z(h))χ′

extu(h) = v(h). Since χ′
extu(h) = u(h) for large |x|, we get that χ′

extu(h)
is z(h)-outgoing. Therefore, χ′

extu(h) = Rext(z(h), h)v(h), where Rext(z, h) is the
outgoing resolvent of Pext(h). Since Pext is non-trapping for energy levels between
E1 and E2, by [B3, Theorem 2], ‖χ′

extu(h)‖L2(B(0,R)) ≤ (C/h)‖v(h)‖ = O(h∞). By
the ellipticity of P (h) we have similar estimate for theH2 norm of u(h) near ∂B(0, R)
and by the trace theorem, the H1 norm of u(h) on ∂B(0, R) is O(h∞) as well. An
application of the Green’s formula in the ball B(0, R) then yields −Im z = O(h∞).
This proves part (b) of the theorem. 2

An example of operator satisfying the assumptions above is the Schrödinger
operator P (h) = −h2∆ + V (x), where V (x) has strong local minimum, or more
generally, if {x; V (x) ≤ E2} is not connected. In this case, the construction of
the quasimodes above yields exponentially small error of the kind e−d/h, for any
d is less than the Agmon distance between Xint and Xext. Therefore, there are
resonances with exponentially small imaginary part with asymptotic number as in
(a). Our proof does not exclude the existence of other resonances in the strip
[E1, E2] + i[−S(h),−e−d/h] with some S(h) = O(h∞) but their number does not
exceed O(h1−n). This case has been studied in much more detail in [HSj] where
other precise results are obtained.

The existence of the resonance free zone in (b) together with the results in [St3]
makes it possible to get polynomial estimates on the spectral projectors ΠΩk

as in
Proposition 4 acting on the whole space H rather than on a space spanned by reso-
nant states. This implies a resonance expansion of the solution of the corresponding
wave equation as in [TZ2] and [St3]. Moreover, the wave front set of the spectral
projectors are included in the trapped set and that gives us good control over the
terms in that expansion.
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6. Sharp upper bounds in the classical case
In this section we formulate a result similar to Theorem 5 in the classical case.

Let X ⊂ Rn be a domain with smooth boundary and compact complement O. Let

P =
n∑

i,j=1

Dxiaij(x)Dxj +
n∑

j=1

bj(x)Dxj + V (x) (26)

be a formally symmetric elliptic differential operator with C∞(X̄) coefficients having
the same properties as those of P (h) in (21). For simplicity, assume that P = −∆
for |x| > R0. We study the resonances λ of P near the real line. Denote by P again
the selfadjoint realization of P in L2(X) with Dirichlet boundary conditions on ∂X.
We study the resonances λ of P near the real axis.

Define the generalized bicharacteristic flow of P as in [MSj] (see also [H]). Recall
that in the interior T ∗X the generalized bicharacteristics are the integral curves of
the Hamiltonian p0(x, ξ) =

∑
ij aijξiξj . We assume that the bicharacteristics of P

cannot be tangent to the boundary of infinite order. Under this assumption, any
generalized bicharacteristics is uniquely determined by any of its points. Define the
trapped subset T of T ∗X as the complement of the set of all ζ ∈ T ∗X, for which
any generalized bicharacteristic passing through ζ leaves B(0, R0) × Rn for either
t > 0 or t < 0. Fix a decreasing function 0 < S(r) = O(r−∞), as r → ∞. Set

Ω(r) := {λ ∈ C; 1 ≤ Reλ ≤ r, 0 < −Imλ < S(Reλ)}. (27)

The main result in this section is the following.

Theorem 6 Let P be the operator (26) and Ω(r) be as in (27). Then

N(Ω(r)) ≤ rn

(2π)n
(meas(T ∩B∗X) + o(1)), as r → ∞,

where B∗X = {(x, ξ) ∈ T ∗X; p0(x, ξ) ≤ 1}.

To prove the theorem, we translate the problem into a semiclassical one. We use
the propagation of singularities results in [MSj]. We construct a reference operator
P#(h) by imposing a pseudodifferential barrier near T as above but we do that
outside a small neighborhood of the boundary only. Near the boundary, our operator
remains the same. Then we extend the operator in the whole space. The cut-off
resonant states, extended as zero inside the obstacle, do not belong locally to H2

and are not in the domain of the reference operator P#(h). We work with the
quadratic form (P#(h)f, f)L2(Rn) however, and they do belong to its domain. Using
the min-max principle, we prove the desired estimate.

We would like to give an example of a system with trapped set of positive mea-
sure. Let P = −∆ in the exterior of a bounded obstacle with smooth boundary and
assume that there exists an elliptic periodic ray satisfying some mild degeneracy
conditions (see [Po]). Then it is known that for some S(r) = O(r−∞), N(Ω(r))
admits a lower bound of the kind crn(1+ o(1)). The constant c there is positive and
is proportional to the measure of the invariant tori around the elliptic ray, which
existence is guaranteed by the KAM theory. This constant can also be chosen to
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be c = (2π)−nmeas(T0 ∩ B∗X), where T0 ⊂ T is a Cantor set of trapped rays near
the periodic elliptic ray. There is no hope that meas(T0 ∩B∗X) = meas(T ∩B∗X)
because T0 is (a part of) the trapped rays that are close enough to a single periodic
ray, while T is the set of all trapped rays. Nevertheless, this gives us a two-side
estimate with different constants in the principal terms that have the same nature.
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[DSj] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical
Limit, London Math. Society Lecture Notes Series, No. 268, Cambridge Univ.
Press, 1999.
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[SjZ] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of
scattering poles, Journal of AMS 4(4)(1991), 729–769.

[St1] P. Stefanov, Quasimodes and resonances: sharp lower bounds, Duke Math.
J. 99(1999), 75–92.

[St2] P. Stefanov, Lower bound of the number of the Rayleigh resonances for
arbitrary body, Indiana Univ. Math. J. 49(2)(2000), 405–426.

[St3] P. Stefanov, Resonance expansions and Rayleigh waves, Math. Res. Lett.,
8(1–2)(2001), 105–124.

[StV1] P. Stefanov and G. Vodev, Distribution of resonances for the Neumann
problem in linear elasticity outside a strictly convex body, Duke Math. J.
78(1995), 677–714.

[TZ1] S.-H. Tang and M. Zworski, From quasimodes to resonances, Math. Res.
Lett., 5(1998), 261–272.

[TZ2] S.-H. Tang and M. Zworski, Resonance expansions of scattered waves,
Comm. Pure Appl. Math. 53(10)(2000), 1305–1334.

Geometry, Marcel Dekker, New York, 1979, 273–291.

[V] G. Vodev, Sharp polynomial bounds on the number of scattering poles for
perturbations of the Laplacian, Comm. Math. Phys. 146(1992), 39–49.

[Ze] M. Zerzeri, Majoration du nombre des résonances près de l’axe reél pour
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