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Abstract

We study the scattering poles of a compactly supported “black box” perturbations of the LaplaBi&yvirodd.
We prove a sharp upper bound of the counting funcféoi) moduloo(r™) in terms of the counting function of the
reference operator in the smallest ball around the black box. In the most interesting cases, we prove a bound of the
type N(r) < Apr" + o(r™) with an explicit 4,,. We prove that this bound is sharp in a few special spherically
symmetric cases where the bound turns into an asymptotic formula.

1 Introduction and Main Results

Let P be a compactly supported perturbation of the LaplaciaRih» odd, defined by the “black box scattering”
formalism, i.e.,P = —A outside the ballB(0, Ry) and P satisfies the hypotheses in [SjZ2], see section 2. As usual,
P* denotes a reference operator on the “perturbed tolyg’R > R,, See next section. Le¥(r) be the number of
scattering poles (resonances)®fwith modulus less than. One of the basic questions in the theory of resonances
is to estimateV (r) and, if possible, to find an asymptotic formula,ras> co. In a pioneering work, Melrose [M1]
showed thatV (r), related toP = —A + V(x), where the potentidl is compactly supported, has at most polynomial
growth, and in an unpublished note later he improved thi§ te) < Cr"*!, r > 1. Then he showed [M2] that

N(@) < Ar", r>1, @)

in obstacle scattering. M. Zworski [Z2] proved (1) for compactly supported potentials. The case of elliptic second
order P's was resolved by G. Vodev in [V1], and in [V2] for non-self-adjoint operators. In a general black-box setting,
a generalization of (1) was proved bydSiiand and Zworski [SjZ1]. Similar bounds are known in the semiclassical
case, see e.g., [PZ2] and the references there. Bounds on a modified ve®ior) @i even dimensions were studied
in 1], [V3], [V4].

It is known that the distribution of the scattering poles in various neighborhoods of the real axis depends on the
geometry of the scatterer, respectively on the properties of the Hamiltonian flow associatgel with will not give
full account of those results and will mention only [SjZ2], [Ze] where scattering poles in sdctors argh < 1 are
studied, and [S2] for upper bounds{ifi| > 1; IA < |A|"V}, N > 1.

At present, very little is known about a possible asymptotic formulafér). Inthe 1D case, foP = —d?/dx? +
V(x), itis known [Z1] that

2
N(r) = ?"r +o(r), )
whereq is the diameter of the support &f. Forn > 3 odd, andP = —A + V(x), M. Zworski [Z3] proved that

N(r) = K, R"r"(1 + o(1)), 3
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under the assumption that € C? is radial, supported iB(0, R), andV has a jump alx| = R (see also Theorem 3
below). His proof also implies an asymptotic of the same kind with a different constant for the sphere resonances with
Dirichlet boundary conditions (see also Theorem 1 below). The con&tain (3) is not specified in [Z3].

The purpose of this work is to find an explicit constaht such that

N(r) < Ay 4+ 0(@™), asr — oo, (4)

for variousP’s, and to show that in some special cases, including those aldgvs,sharp because then (4) turns into
an asymptotic. The term,»" would then serve as a candidate for the leading term in the asymptoti¢&-9f if the
latter exists, at least if the scatterer is spherically symmetric. In the case studied in [Z3], the c@hsRindepends
on the size of the support df only, and not ornV itself. This corresponds well to the known fact that the scattering
determinants(A) related to generaP’s, admits an estimate of the kind(1)| < C, exp(4,,|1|") in the “physical
plane”3A > 0 [PZ2] with constants having the same property.

Since we use Jensen’s type of equality, this forces us to work with a regularized véfgigrof N (r), instead of

N(r):
(r) Sy
M(r)=n /0 l ny. Iog (5)

A; |<r

whereA; are the resonances. The factoabove can be explained by the followindf (r) has asymptotic if and only
if N(r) has asymptotics, and then the leading terms coincide, see Lemma 1. In all 8&sps; (nlogs)~! M (sr),
Vs > 1, see [Fr], and this implied/(r) < M (e'/"r) but then the extra factarin (4) probably makes the estimate for
N (r) non-sharp.

In order to state our main results, introduce the function

o(z) =log————— L+ —V1-2z2, Jargz| <m,

see section 4 for more details. We denpt&ip]r = max—Np,0). TheninC4 := {3Jz > 0}, the function|—N p]+
is supported outside an eye-like dom&nsee Figure 1 in section 4.

We study first the case aP = —A in |x| > R, with Dirichlet boundary conditions. The resonances in this
case are well known to be the zerosI(ifJr /a2 L (ARo), I = 0, 1,... with multiplicities equal to the dimension of
the corresponding spherical harmonics e|genspace and their asymptotics follow from Olver’s uniform asymptotics of
Hankel's functions, see Figure 2 in section 7. The asymptotic of the counting function however, to our best knowledge,
has not been studied except for [Z3], as mentioned above.

Theorem 1 Let Ng sn—1(r), n 0dd, be the counting function of the resonances for the exterior Dirichlet problem for
the sphereRyS™~!, Ry > 0. Then

Ngysn—1(r) = Agn-1 Ror" +o(r"), asr — oo,

where voIZ(B(O 1) n 9oL, ()
T)n’-l-/lsn—l = 21— 2)! /;z>0 ERE dxdy, z=x+iy. (6)
In particular, ifn = 3, "
;iﬂ +Ag2 = g - %dx dy.

The same results holds for Neumann or Robin boundary conditions, as it can be seen from the proof.

Numerical experiments based both on direct counting all resonances with modulus l&gs(tragetNg2 (67) =
522,772), and on a numerical computation of the integral above, showARatis in the rangg1.73, 1.75). Another
integral representation of g».—: is given in Lemma 4 below.

1Actually, an integral representation &, of the kind we obtain is implicit in [Z3], see the proof of Theorem 3.



We find it more convenient to work with a reference operatérequal toP in B(0, R), whereR > R, is fixed,
with Dirichlet boundary conditions ofx| = R (to be more precise, “irB(0, R)” means orHg, & L?(B(0, R) \
B(0, Rp)), see next section). In most interesting cases, taking the Rmit- Ry would provide the best estimates.
From now on,P¥ is that operator, an® > R, is fixed.

Recall that one of our assumptions is thét(r + 1) — N#(r) = o(+") (which is true any time wheV#(r) has
an asymptotic), see section 2. One can impose this assumption either on the torus reference operator, or on the ball
reference operator.

For convenience, set

7, = (27) "vol*(B(0, 1)). (7)

Next theorem is the main result of the paper. It gives an upper bountffey for generalP’s.

Theorem 2 Let P satisfy the black-box assumptions in the b&({0, R) described in section 2; odd, with a refer-
ence operatoP? in B(0, R), with arbitrary but fixedR > Ry. Then

‘M(r) —2 (N”(r) - t,,R”r”) < (2t + Agn1) RUF" + 0(r"),  asr — oo. 8)

In particular,
M(r) < 2N*(r) + Rl Agu—1r" + 0(r"), asr — oo.

One can interpret the result above as follows: the regularized counting funefien of resonances is bounded
by the number of the square roots of the eigenvalues of the “interior problemB@R), R ~ R,, with Dirichlet
boundary conditions) plus the resonances of the “exterior problem”, i.e., that in the exterior of the |spherd,,
with Dirichlet boundary conditions (Neumann boundary conditions would not change that). TheXas®xplained
by the fact that each eigenvaliié has two square roots:A andA, and resonances are symmetric ab®ut in fact,
we have a stronger estimate with the extra terd{R” — Rf)7,r" in the r.h.s. of the second inequality in the theorem
that makes the principal terms independent#bf Since the main application of this estimate however is to take the
limit R — Ry+, this term does not add anything new unless one needs sharper estimates on the remainder term.

One can assume more generally that(r) = O(V”n) with somen* > n. Then the result is still true with
a remaindeb(r”u). Then we recover the asymptotic formula () in case tha‘r]\”‘(r)/r”n > 1/C, see [V5]
and [Sj1]: N(r) = 2N¥(r)(1 + o(r)). Itis known that outside any sector near the real line, the resonances are
O(r™), so the asymptotic is valid actually in any fixed sector aroRnés in those works. We also note that the first
inequality in the theorem, (8), can be interpreted as a “bottle type” theorem, when we have a faiitysnfch that
N#@)/r" > 1; then (8) gives “almost an asymptotic” fo¥/ (), and therefore fotV (). This improves to some
extent the corresponding bottle theorem in [Sj1, sec. 9], for example, by providing a sharp boun@oRhe’) term
that is independent aP.

In the semiclassical case, Petkov and Zworski [PZ2, Theorem 4] establish an estimate of the number of resonances
in an h-independent “box” that is similar to (8) with a non-explicit constant of the leading term in the r.h.s. that is
independent ofP. In the case we consider, such boxes correspond to sectormrgl < C < /2.

The main idea behind the proof of Theorem 2 is the following. In most cases, (1) is proven by estimating the
characteristic values of operatdgs. (1) with Schwartz kernet**@* where|w| = 1, andRq +¢; < |x| < Ry + €2,

0 < €12 < 1, see the discussion following Proposition 2. This usually is done by estimAlﬁuj“"x, Vm, see
(28) and (29). We show however that those characteristic values can be commputed explicitly in terms of the Hankel
functions J,. Indeed, it is known that*®?, |w| = |§| = 1, has expansion in spherical harmonics ahdX),
see Lemma 3, that in fact implies that®? is a kernel of a diagonal operator ¢! in the spherical harmonics
base, with eigenvalue@m )"/ 2"\ "2 J;,/»—1 (). This implies similar formula for the eigenvalues Bf. (1).
Now, estimating the characteristic values of the latter is reduced to uniform estimates and asymptotics of the Hankel
functionsJ, (A) for v half-integer and3A > 0, and to do that we use the results by Olver [O1], [02], [O3].
Consider the following examples:

(i) Po = —A inthe domainf2 = R" \ O with Dirichlet or Neumann boundary conditions, wh&beC B(0, Ry),
00 € C*;



@iy Py =—-A+V(x),V e L, suppV C B(0, Ry);

(i) Pgc = —c2Ag, WhereA, is the Laplace-Beltrami operator associated with a smooth mefiic< ¢ = c¢(x)
is smooth, such that = §;;, c = 1 outsideB(0, Ry).

Corollary 1 In cases (i), (ii), (iii), one has

M(r) < 224%™ 4+ Agn1 REF" + o(r™),

where _
Q)™ fxEB(O,Ro)\(’),\E\Sl dx dg, if P = Ppo,
AF = 3 Q" [y, jr 0¥ O, it P = Py,
@)™ JixizRo, D2 gt gy =1 WX TP = P,

Theorem 1 above shows that the estimate above is sharp in case (i). Next theorem, proven in [Z2] (see the remarks
above), shows that our estimate is sharp in case (ii) as well.

Theorem 3 Let V(x) = v(]x|) be a radially symmetric potential iR”, » odd,
v e C*([0, RoD.  v(Ro) # 0.
and letV be extended a&for |x| > Ro. Then for the counting functio¥ (r) of P = —A + V we have

vol?(B(0, 1))

N(r) = (2 2y + AS,,_l) Ry +o(r™), r — oc.

Finally, we show that the estimate in Corollary 1 is sharp in the “transparent obstacle” case that can be considered
as (iii) with singularc. Fix0 < ¢ # 1, and let

P = —(x)A, whereé(x) = ¢ for |x| < Ry, é(x) = 1 otherwise,

with domain H?(R") (that corresponds to transmission conditions requiring ¢hanhd du/dv agree onx| = Rp).

The operatorP is self-adjoint onZ2(R"”, ¢~2dx) and satisfies the black-box assumptions. Resonancsimktrips

near the real axis for general strictly convex domains &'slof variable coefficients have been studied by Cardoso,
Popov and Vodeyv, see [CPV] and the references therexlfl, then there are resonances converging rapidly to the real
axis; if ¢ > 1 there is a resonance free zorg&A < (C|%RA|)~!, |)A| > C. This can be explained by the existence,

in the case < 1, of totally reflected rays in the interior, close enough to tangent ones to the boundary. In both cases,
there is a Weyl type of asymptotic in the stlip< —3JA < C with a suitableC. We refer to [CPV] for more results

and details. We are concerned here with all the resonances however and we show that for all admissible ¥alues of
the estimate in Theorem 2 turns into asymptoticRas> Ro+.

Theorem 4 Let P be the “transparent obstacle” operator as above with soRg> 0, ¢ > 0, ¢ # 1. Then

N(r)=2 dx dé r" + Cgn—1 RGr™ + o(r™).

(27)" Jix1<Ro; c21€12<1

The structure of the paper is the following. A short review of scattering theory for black boxes is presented in
section 2. After some preliminary results in section 3, we recall some asymptotics of Bessel's functions in section 4.
In section 5, we give sharp estimate of the scattering determinant, which is our key argument. In section 6, we complete
the proof of the main Theorem 2, and in sections 7, 8, 9, we prove the rest of our main results. The paper is essentially
self-contained but we advise the reader to consult the figures in [O3, p. 336] for the mapping properties of the function
p (andg, see section 4).



2 Short review of scattering theory in the black box setting

We introduce briefly the black-box scattering formalism, for more details, see [SjZ1] or [Sj2] for more recent treatment.
Fix Ry > 0 and letH be the complex Hilbert space

H =Hg, ® L*(R"\ B(0, Ro)).

whereB(0, Ry) is the open ball with radiu®, centered ab. Let P > —C be a selfadjoint operator i with domain
D. Denote byl g, r,), 1r"\B(0,R,) the corresponding orthogonal projections, and for gng L*° that is constant
on B(0, Ry), we defineyu in an obvious way. In particular, ifx is the characteristic function & > B(0, Ry),
we use the notatiopgx = 1x. Assume that the restriction @ to R” \ B(0, Ro) is included inH?(R" \ B(0, Ry)),
and conversely, eveny € H>(R" \ B(0, Ro)) vanishing neaB(0, Ry) belongs toD. The operato is a compactly
supported perturbation of the Laplacian, i.e.,

Pulrm\B(0,Ry) = —AulrR"\ B(0,Ry)-

We also require that
1B(0,Ry) (P + )"0
to be trace class for some, > 0 (see [C]).
We define a reference operatbf as follows. FixR > R, and letT z be the flat torus obtained by identifying the
opposite sides ofx € R”; |x;| < R, i =1,...,n}. Let P% be the selfadjoint operator defined by

P%u: Pxu+ Aty (1 — xu, (9)

wherey = 1 nearB(0, Ry), suppx C B(0, R), andAt, is the Laplacian orTg. ThenP% is independent on the
choice ofy. Our assumptions guarantee th‘aﬂt has discrete spectrum only, and we set

Ni(r) = #{Aj; A7 is an eigenvalue oPt, 0<; < r} , (10)

including multiplicities. Note thalP% may have a finite number of negative eigenvalues but they are not included in
the counting function above. We assume that

NE(r) = 0(™), NE(r+1)=NE(r) =00, asr— occ. (11)

In most interesting situationgV ¥ has asymptotic, and the te”) can be replaced b@(r"~!).
Under the conditions above, T. Christiansen [C] proved that the scattering plegesee (23) below, admits the
asymptotic
o(r) = Nf(r) = " + 0(r"),  asr — oo, (12)

where
T, = 27)"vol B(0, 1) vol Tg

is the Weyl constant related to the torlig. As shown in [C], up tw(r"), N{i (r) — 7,r™ is independent of the choice
of R > 0, and in most interesting cases can be expressed by Weyl terms relaedrily, see Corollary 1 and its
proof. The asymptotic (12) generalizes earlier results in the classical situations and uses techniques developed by
Robert [R].

Instead of the reference operator defined above, we consider a reference operator defigeebi.?(B(0, R) \
B(0, Ry)), whereR > Ry is fixed. We definePg to be equal toP on that space and satisfy Dirichlet boundary
conditions onx| = R (in other words, we use an obvious modification of (9)). The results in [C], see Proposition 2.1

there that also holds for manifolds with boundary, imply th%t(r) — T = ng (r) = R"r" + o(r™). From now



on, we useP]‘; as a reference operator and will drop the subsdiite., we will denoteP* = P]‘;, andN*(r)is asin
(10) but related taP¥. Then we have, as in (12),

o(r) = N¥*(or) = tu R"r" + o(r™), asr — oo. (13)

Under the conditions above? may have a finite number of negative eigenvalugs?, and positive eigenvalues as

well (the positive ones do not exists in the interesting cases). The resa@nt= (P — 12)~! : Heomp = Hioc
admits a meromorphic continuation from the upper half-plane> 0, where it has poles agi; only, into the whole
complex plane (for odd), see e.g., [SjZ1] or [Sj2]. We will denote this continuation®gi). The poles ifSA < 0
are called resonances.

We recall some facts about scattering theory for black boxes, see e.g., [PZ1], [S3] where this is done in the semi-
classical setting and we will translate this into the non-semiclassical setting.

Fix R;»3 such thatRy < R; < R, < Rj3, and choose a smooth cut-off functignn such thaty; = 1 on
B(0, Ry), andy; = 0 outsideB(0, R,). For anyd € S"~!, and anyA > 0, we are looking for a solutiog (x, 6, A)
to the problem(P — A%)y = 0, ¥ € Dioc(P) such that

v=>0- Xl)eiw'x + Vsc, (14)

with v satisfying the Sommerfeld outgoing condition at infinityy 9r —id)ys. = O(r~#+D/2) asr = |x| — oo.
Then .
_ iAGx el r X 1 _
W(x,0,%) = M0 4 WA(7, 9,)\) +0 (m) asr = |x| — oo. (15)

The function4(w, 6, 1) is the scattering amplitude related £ In order to justify this definition, we will show that
Ysc is well defined and the limit above exists.

Before proceeding, we will recall the definition for outgoing solution in the caseihiatnot necessarily real
that we will need later. In short, “outgoing” function is a function equal for laxg® Ry (1) f for some compactly
supportedf. HereRo(A) : Hcomp — Hioc is the outgoing free resolvent, i.e., the analytic continuatio®Rgfl) =
(—=A — A%)~! from the upper half-plane into the lower half-planedn The extension from the lower to the upper half
plane is called incoming.

Definition 1 Giveni € C, we say that the functiom is A-outgoing (or simply, outgoing, ik is understood from the
context), if there existg > 0 and f* € Hcomp SUCh thati||x|>¢ = Ro(A) [ ||x|>a-

Similarly one defines incoming functions.

Proposition 1 ([S1], see also Lemma 1 in [Z4])
(a) For any /' € Hcompand anyA not a resonance, the function= R(1) /' is A-outgoing. Moreover, ify is a
smooth cut-off function such thgt= 1 for |x| > a4, andx = 0 in a neighborhood of3(0, R¢) andsuppf, then we

haveR(A) f | jxj>a = —Ro(M[A, XIRQ) [ ||x|>a-
(b) Assumer € Dioc(P), (P — A%)u = f € Heomp, A iS NOt a resonance, andis A-outgoing. Thent = R(A) f .

The scattering solutiotts. can be constructed as follows. Apply/— A2 to s to get
(P =) se = —(P = A3)(1 = x)e™™* = —[A, x1]e**. (16)
Then, since/s. is outgoing, by Proposition 1(b),
Ysolx, 0,1) = —RM)[A, y1]e*?™. (17)

Choose a smooth functiog, with suppy, C B(0, R3) and x> = 1 on B(0, R2) D suppyx;. Then, by Proposi-
tion 1(a), |
(1 — x2)¥selx, 0, 1) = Ro(W)[A, x2]RM)[A, x1]e™?™,



To take the asymptotic as= rw, r = |x| — oo, we recall the asymptotic formula faty (1) /', where f has compact
support, see [M3, section 1.7], (note that in [M3], we have to take complex conjugate since the resonances there are in
the upper half-plane)

iAr 1
[Ro () f1r) = < (voow,m n 0(;)) , (18)
roz
where ]
voo = 5(2m) F AT f ), (19)

The functionv, is called in the applied literature the far-field pattern of the outgoing solutio(—A —A?)v = 0 for
largex (which always can be expressedwas: Ry (A) f for largex). In our casep is just the scattering amplitude,
if v = Ys. Thus we get

n+ n—3

A(w,0,)) = %e—iﬂ%(zn)— b n / e AOX A Y, ]RA[A, x1]e™? dx. (20)

It is clear from this formula, that the scattering amplitudlean be extended meromorphically everywhere, where the
resolvent admits continuation as well. In particular, all polegi@fre poles of the cut-off resolvent as well.
As in [Z4], [PZ2], introduce the operators

[E+()/f)() = / AR () dy = f(Fho). @ e S,

and we will applyE (1) only to functionsf with compact support. LEE L (1) be the transpose operators defined as
operator with Schwartz kernél€ (x, w) = E(w, x). Then viewing the scattering amplitude as an operat@r) on
L?(S"1) with kernel A(w, 6, 1), we recover the formula fod in [PZ2] modulo normalizing factors:

1 . n-3 ntl . p—3
AR) = 58_'”7(271)_%%TE—(X)[A, X2JRM[A, x11"E+ (). (21)

The scattering matri¥'(1) is an operator or.(S"~!) and the kernel of — I is given by

n—

i2\"T
a(w,0,)) :=-2— A(w, 6, 1).
4

Therefore,
S = I + ca A" 2E_(M[A, x2]RMA, x1]'E+ (), en = —iQm)r20m/2, (22)

Note that one can replade_(1) by E_(A)1{g,<|x|<r;}, @NA’'E4 (1) by 1¢g, <|x|<r,} E+(A) above.
The scattering poles are defined as the poleS(@j in the lower halfplan&¥A < 0. It is known thatS* (1) =
S~1()), and in particulars is unitary fori € R. Note that possible non-negative eigenvalue®afo not contribute
to real poles becauggS(1)|| = 1 for A not a pole, and ik, € R were a pole, then we would hay&(1)|| — oo, as
R > A — A¢. On the other hand, the finite number of negative eigenvam#contribute to poles of(A) atin; in
the physical halfplan&X > 0 that we do not include in the definition of resonances. Itis known, that this definition
of resonances is equivalent to the one as the poles of the resol&ht<n0 given above, including the multiplicities.
Thescattering determinant(i) is defined by

s(h) = detS(h).

Thescattering phase (A) is given by

1
0(1) = 5=l0gs(). 0(0) =0, o(-1)=—-o(h). (23)



3 Preliminary results

Lemmal Let M (r) be asin (5). Then

M(r)y = Ar" + o(r"), asr — oo. (24)
with someA4 > 0, if and only if

N(r) = Ar" + o(r™), asr — oo, (25)

Proof: Assume (24), i.e. M(r) = Ar™ 4+ p(r)r”*, where lim o u(r) = 0. Setp,(r) = sups, |u(@)|. Then
|M(r)— Ar"| < u4+(r)r", andu 4 is decreasing and convergesitolf () = 0 for r large enough, our statement
follows easily. Assume this never happens, thern(r) > 0 for all r. Setee = r /4 (r). Then

r+a
n/ @ dt = M(r +a)— M(r) = Anar™ ' + O " s (r)).

r

On the other hand,

no =
r

N(r) <n/’+°‘ N(1) dt<nocN(r+a)
r+o , t - ’

Therefore,
r
N@) < Ar" Yor +a) + C’r”p,+(r)(—a(r) + l) = Ar" 4+ o(r™).

Similarly,
N +a)> A" = C"r" g (r)Jo = Ar™ — C'r" s (r).
This easily yiledsV (r) > Ar™ — o(r™), which completes the proof of the implication (243 (25).
Assume now (25). Givea > 0, leta be such thatN (r) — Ar"| < er” forr > a. Then

"IN(t) — At" d
|()li|dt < C(a) +e/ nt"ldt = C(a) + e(r" — a").

|[M(r)— Ar"| < n/
0
Divide by r" to getr ™" | M (r) — Ar™| < 2e¢ for r large enough, and this proves (24). O

The following lemma is due essentially to R. Froese [Fr] and its semiclassical version is presented in [PZ2].

Lemma 2 Foranyr > 0 we have

lM(r) = z/ 7@ dr + i/ log |s(re'®)| dd + m(r).
n 0 t 27'[ 0

where0 < m(r) = O(logr) (andm = 0 if P has no negative eigenvalues).

Proof: The resonances are zeross¢k) in IA > 0, with multiplicities, with finitely many possible exceptions at
points in the sefix;}. On the other hand,(A) may have a finite number of poles in the same set. Assume first that
is not an absolute value of a resonance or a zesgof in A > 0. Letn(¢) be the number of poles 6{A) on i(0, ).
Following the proof of Jensen’s formula, we integratgs along the contouf—r, r] U r exp(i[0, 7r]) keeping in mind
thats’/s = 2mio’, to get

1 s'(2)

_ _ AL L8
NO—n@) = 27ri s(2) d = KSZJT s(2)

! 1 T d :
= "(z)dz + — —1 %y do
/ o'(z)dz + Zﬂ/o ldt og|s(te™)|

—t

dz

1 T d :
= 2 — —1 19| do.
o(t) + 2”/0 ldt og|s(te”)]

Divide by ¢ and integrate to get the lemma. Note that the integrand has singularities at the resonances and the zeros,
and to justify the calculations we use the same arguments as in [T] together with the fagbyhat 1. |



Proposition 2

M@r)=2 (Nn(r) — ‘CanVn) + 21/ log|s(re'®)|dd + o(r"), asr — oco. (26)
T Jo
Proof: We apply Lemma 2. To estimate the scattering phase, we apply the asymptotic (13). ]

Below, we will sketch a proof that the integral term in (26) is boundedlgRy " + 1) with an absolute constant
C, which is one of the ways to prove the polynomial bound (1), see e.g., [PZ2]. The reason we sketch this proof is to
explain the main idea in the proof of Theorem 2.
To estimate the scattering determinait), we proceed in the usual way, see for example [PZ2]. By (22), we need
to estimate the characteristic valuesSif\) — 7, which equalsA (A) modulo polynomial factors, see (21) and (22).
This reduces to an estimate of the characteristic values of the opeEat@$1 g, <|x|<r;, andlg, <x<r,E+ (1), see
the remark after (22), and the latter can be done by estimating

A'e"ei)‘x'e, |x| < R3.

We need to work here in a sector< § < argh < & — §. Using a standard argument, to cover the missing sectors
0 <argh < §andr —§ < argAr < &, we use the fact thas| = 1 onR and the Phrageni-Lindeldf principle.

More precisely, assume th&; = 1 and that in the representation (22), the cut-off functignsand x, are so
that they are supported iB(0, 1). Then the statement for ang; > 0 would follow by a scaling argument. In what
follows,0 < § < argh < 7 — § forsomed < § < 1/(n + 1) and|A| > 1. Note that| R(A)|| < C/|A|*> < C for A in
this region, so in (22), we have

< Cel (27)

iLG-e
[ISPREISTNPH P I

with C > 0 depending oid only and in particular, independent &f. Therefore, foranyn = 1,2, ...,

|A"a(w, 0,))] < CelM ‘m‘ax‘Age_i“"” ., Va6, (28)
x|=1

with a similarC. This shows that one can get the standard now estimate of the characteristic values of the operator

with kernela(w, 6, 1) as in [Z3, Lemma 2]

|Ama,0,)] < €21 (2 4+ @m)!) e, 29)

with C as above. By [Z2, Proposition 2],
ls(A)] < CeCP" (30)

with C > 0 independent of? under the assumptioRy < R; = 1. This is an analogue of [PZ2, Lemma 4.3], where
(30) is proved in the semiclassical case (and is implicit in [PZ1]). A scaling argument gives us immediately

Is(V)] < CeCRM" € = C(n, Rs3/Ro).

where R; is any constant such tha&; > Ry. As mentioned above, using PhragmLindelof principle, we extend
this to3JA > 0.

The main idea behind the proof of Theorem 2, as explianed briefly in the Introduction, is the following. To get an
explicit value forC, we notice that by a well known expansionat*? in spherical harmonics and Bessel functions
Jy, see Lemma 3, one can find the characteristic valueB_af )1 g, <|x|<r;, and1g, <xj<r,E+ (1) explicitly in
terms ofJ, (r), see (49). In the spherically symmetric cases (i), (ii), (iii), this in fact gives not only an upper bound,
but an asymptotic of the integral term in (26).



4 Preliminaries about Bessel’s functions

We will recall some facts about separation of variables in polar coordinates for the Laplace operator, see e.g., [Fo],
and some asymptotics of Bessel’s functions, see [O1], [OZ2], [O3]. Denot’by = 0,1,...,m = 1,...m(/), an
orthonormal set of spherical harmonics 8fi~!. They are the eigenfunctions of the Laplaciag.—1 on S"~'. We
have

—Agn1 Y =1l +n-2)Y", 1=0,1,...;m=1,....m().

For each/, the multiplicity of the eigenvalu&/ + n — 2) is given by

_ _ n—2
m(l):21+n 2(l+n 3)_ 21

n—2 n—3 B (n—2)! (1+0(l_1))‘ (31)

Any solutionu of the Helmholtz equatioi—A — A?)u = 0 near0 has the form

u(x) =Y cimOr) 2 Iy ()Y (@), (32)
=0

wherex = rw andr > 0, |w| = 1 are polar coordinates. Similarly, any outgoing solution@has similar expansion,
with J, replaced byH,fZ). The functionsxl‘”/ZJHn/z_l(A) are entire and in particular, regulariat= 0.
We will need the formula below.

Lemma3 Foranyf € S"~!, A € C, andx € R", we have
e = @y 2 il Y @)Y O) ) T T ypa hr). X =ro. (33)
I

Proof: This formula is known and widely used, at least in the 3D case. We could not find a proof for generead,odd
so we will sketch one here.

Note first that the series above converges absolutely and uniformly fof aagdA in any compact, as a conse-
guence of the well known asymptotics &f, asv — oo. Itis enough to prove it for redl, because we can then extend
it analytically for allA. With x = rw, we have

eMrwﬂ ::zzzalm)ym(w)’

I,m

where
Aim = / eix”"'eYl”’(w) dw.
Ssn—1

By the Funk-Hecke Theorem (see e.g., [EMQT1.4]),
i = PO [ 072010510 f ) (34)

where

1
f@) = @n)™! /_ eSS (g, (35)

1
The well-known integral representation

rv+ %)JV(Z) - % (%)/_11 e (1 _tz)v_l/zdt

shows thatl‘”/2J1+,,/2_1(t) has Fourier transform supported[ial, 1]. Expressing (34) via the Plancherel theorem,
we see that one can change the definitiorf'ah (35) by integrating from-oo to co, and this would not change (34).
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The integral in (35) however, over the whole real line, is simfgly— Ar). Settingf = 6(r — Ar) in (34), we complete
the proof of the lemma. |

Let Ai be the Airy function, having its zeros on the negative real axis; sgi{(#) = Ai (e T>*/3w). Then

. —wl/4 =
Ai(w) ~ ST (1+Z ) Ai'(w) ~ (1+Z§s), |argw| < 7, (36)

whereg = 2w3/2. In particular, A(w) is exponentially decaying, d&| — oo, in the sectof argw| < 7/3. The

expansions above hold for Aias well with the appropriate choice of the branchegf?; this branch is uniquely
determined by the condition that A{w) is exponentially decaying fot- argw € (x/3, ).
Near the zeros of Aw) we have [O3, p. 413],

_ > d, . O ds
Ai(—w) ~ ﬁ {cos(é - %) (l +> 57) + sm(é - %) > pErE } . largw] < 2771 (37)

s=1 s=0
) 1/4 ) o d~/
Ai'(—w) ~ uj/; {sm(é - %) (—1 + Z éTss) + cos(g - %) Z ngfH } , |argw| < 2771 (38)
s=1 s=0

Following Olver [O1], [02], introduce the functions

JI = 2
p(z):§§3/2:|gl+ 1=z —V1-z2 J|argz| <.

The branches of the functions appearing above are chosen sp ihatal, if z is real. The mapping properties of
p and¢ can be found in [O3, p. 336], and they are of fundamental importance in our analysis. An important role is
played by the eye-shaped dom&nsymmetric about the real axis, bounded by the following curve and its conjugate:

z = x(tcothr — 122 +i(:? —rtanhr)/2, 0 <1 <1, (39)

andz, = 1.19967864 ... is the positive root of = cothz. The intercepts oK with the imaginary axis aret(tg —
1)1/2 = 4i0.6627 .. .. Notice thatinC, = {z; 3z > 0}, we havelip > 0in K, and®p < 0 outsideK.

10.6627. ..

e T 0K

-1 0 1

Figure 1: Sketch of the domal in the upper halfplan&z > 0.

The following asymptotic expansions are established in [O1], [02], see [O1, Theorem B], an§#]O2,

40\ (A3 A0 A3 S By(0)
Sovz) ~ (1_22) ( NVE ) b2 ¥ T ) 02 | (40)

5s=0 5s=0
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HIDz) ~ zemﬁ( S )1/4 (Aiﬂvmg)i/lsm+Ai/*(”2/3§)i3sm). (41)

pl/3 1—22 pl/3 p2s vs/3 p2s
§s=0 §s=0

The infinite series expansions above are uniformiargz| < = — §, § > 0 fixed. Similar expansions hold for the
derivatives, and they can be obtained by differentiating (40), (41) term by term.
5 Sharp estimate of the scattering determinants(A)

To prove Theorem 2, we will use Proposition 2. To this end, we need to estimate the integral

1 / log |s(r¢'?)| do. (42)
2 0
We will prove first the following sharp estimate on the scattering determin@ntin JA > 0:

Theorem 5
(a) Foranyé@ € [0, r], _
log|s(re'®)| < ha(O)REr™ 4 o(r™), asr — oo, (43)

where

hn(e) =

4 [ [Rpli@e®)
/0 ot (44)

(n—2)! (et

and the remainder term depends on the operatoiand is uniform for) < § < 6 < & — § foranyé € (0, 7).
(b) For anys > 0, _
log|s(re'?)| < (ha(O)RY + 8) r™ + o(r™), asr — oo (45)

uniformly in6 € [0, r].

Remark. The integral above can be evaluated to some extent. In the3 case, for example, we get

[—Rp]e(te'?) 4R —22)3/2
h3(0) = 4 dr = ,
3(9) / Iz 9|23

wherez is the unique point 0dK with argumen®, i.e., z is given by (39) withs [0, 7] the unique solution of

t — tanht

taf ) = ————.
a cothr — ¢

Another way to define = z(0) is as the solution ofip(z) = 0, argz = 6.

Remark. One can verify thak,(9) ~ C,0%/2 asf — 0+. In fact, we prove that one can replat (45) by O(6)
nearf = 0, see (58). A more careful analysis of the leading term in (45) as 0+ is in principle possible, but not
needed for our purposes because at the end, we will integrate (45 i0, ].

Proof of Theorem 5We will estimate the integral (42). Recall Weyl's estimate

|det/ + B)| < [ [(1 + p;(B)),
j=1

12



provided thatB is trace class. We also recall that det- A B) = det(/ + BA). Then by (22),
logls(A)| = log ‘del([ + enA"PE— (M) 1R, <jx|<Rs[A, X2] ROVIA, 1] 1R, <|x|<R, tE+()»))‘

= log ‘del([ + a2 [A, 2] RAA, x1] 1Ry <ix|<Rs "E+(ME—(X) 1R, <|x|<R,)

Z log (1 + 1 (a2 [AL X2l RM)[A, X1] 1R, <|x|<R; "E+(RWE-(D) 1R1<\x\<R2)). (46)
j=1

IA

We work in the set
€ <argh <m—e€y, 2=<|A| (47)

with a fixed0 < ¢y < 7/2. There, we have by the spectral theorem and standard elliptic estimatea for
A A RM)[A, xulll = C.
Here and below, all constants may dependgthat is kept fixed. Use this ang; (4B) < || 4||n;(B) to get
logls()] < log (1 + ColA" 24 (Lro=ivi<rs “E+(IE-(4) Lr,<ixi<ks)) (48)
j=1

By (33), the operator
LA(S") 3 f(w) — / eTHeh f(w)dw € LA™, [0 =1,
Ssn—1

is a diagonal one in the spherical harmonics base, and has eigenvatés?i! (F4r)! ="/ p/2—1 (Fri) with
multiplicities m (/) given by (31). Therefore, the non-zero characteristic values

14 (1Ry<ix|<Rs "E+ (WDE- (M1, <|x|<r,)

coincide with

Ry 1/2 R3 1/2
fu = ([ 1002 o) ([ G0 Gt ar) L @9
R, Ry
/ = 0,1,..., each one repeated(/) times. The sequence above may not be decreasing but since the series (48)
converges absolutely, it will not be affected by rearrangement of its terms.
So the problem is reduced to that of estimating the exponential growth of
|Jy(AR1)Jy(AR2)|, Ry~ Ra~ R.
Notice first, that by (40),
|y (v2)| < Ce™"MP
for z in the sectok, < argz < = — €. From now on, we denote
n
=/+--1 50
v + 7 (50)

Note thatv is half-integer, becauseis odd. Then (see (49)),
|(kr)1—n/2Jv(kr)|2rn—1 < C|A|2—nre—2v§ﬁp(kr/v)‘

We wantto estimate this faR; < r < R, and\ asin (47). Observe thatfor> 0, —dRp(tz)/dt = 'R /1 — (12)? >
0 for z in the sector (47). Therefore, the exponent above is an increasing functioaod

Iog(|(Ar)1_”/2Jv(Ar)|2r”_1) < —20Mp(ARy/v) +C. Ry <r < Rs.
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This yields (see (49), (48)),
log (c0|)\|"—2,1,) < 209 p(AR3/v) + C log A, (51)

and

log[s(1)| < Y " m(l)log (1 + C0|A|"—2;1,) . (52)
=0

Observe that-Rp(AR3/v) > 0 for AR3/v € K, and—%p(AR3/v) < 0 otherwise (in the set (47)). Fik < § < 1.
We will split the sum above into three pad3 , 3 correspondingtaRs;/v € (14+8)K,AR3/v € (1 +8)K\ (1-9)K,
andARs/v € (1 — §)K, respectively.

To estimateX', we use the inequality

0<a<A, 1<A4 = log(l+a)=<log(l+ A)=1IlogA4+log(l +1/A4) <logA + log2, (53)

and (51) to get

r < Y 2umO=RplAR3/v) + C|A["" log 2]
AR3/v€(1+8)K
4 n—1
< 3 D [=RpI(ARs/v) + CIA[" " log |A|.

—2)!
AR3/v¢(1+8)K (n—2)!
To be more clear, the summation above is takenover all/ +n/2—1,/ = 0, 1, .. ., with the property indicated. To
estimate the remainder we used (31) and the factth&tC |A|. To get the second inequality above, we used (31) again
and the factthat-Rp(z) < |z|(1+ O(|z|7"), |z| > 1/C, 3z > 0. The factthat-R p(AR3/v) is a decreasing function
of v makes it easy to prove that one can replace the sum above by an integral with the same remainder estimate:

4 n—1
5, < / Y [9p](ARs/v) dv + CA[" ' log ||
ARy /vg(1+8)K (1 —2)!
4 [-Rp)e®) i i0
= (R )"/ dr + Cr"tlogr, A:=re®. 54
(rRs reéfg+Kk (m—2)1 ! ’ .

We made the change of variableR; /v = ¢ above.
To estimateX,, note that-% p(R3A/v) changes sign now but we havel p(R3A/v) < Cé with C independent
of €y as can be seen using the relationshig: (2/3)¢3/2 betweenp and¢, and the fact that is analytic neat = 1.
To apply the same argument nea= —1, we use the symmetry propefyp(—z) = Rp(z). Reasoning as above, we
get
X, < C8r”, (55)

uniformly in 6, wherer = |A| as above.
Finally, for v as in the definition o5, we have§/C < %ip(R3A/v). Using the inequality logl + a) < a,a > 0,
and (51), we deduce
X3 < Ce"/C, (56)

with someC = C(§).

Recall that in3z > 0, K is characterized by the conditiGhp(z) > 0. We can integrate over'? ¢ K in (54) and
this will only increase the integral (by addir@(é7"), as in (55), so we are in no danger of losing the sharpness of the
estimate). Also, we can integrate ov&re'® > 0, i.e., overr > 0, as long as we replace® p by [-9ip]+ because
[9pl+ =0in K.

Combine (54), (55) and (56) to get

|Og|s(rei9)| < (rR3)"hn(0) + Cér" + Cyr 1 logr, € <0 <m—¢, (57)
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whereC > 0 depends ory and R3; C; depends in addition of, see (56), but they not depend on Clearly,
hn(6) = 1/C for 6 as in (57), therefore th€'5r" term can be absorbed by the preceeding one at the expense of
parturbingR; by anO(§) term. So we may formally assume tifat= 0, and (57) still holds.

Consider the functionfy () = r " log|s(re'?)| — R3hy(9). By (57) and the remark above, for as > Ry, we
have fy(r) < Co(R — R}) + g g, (1), Whered < ag g, (r) — 0, asr — oo uniformly for  as in (57). Set

pr) = 605057!—60]21(:)<R3<R0+1 {CO(Rg — Ro) + gk (r)} ’
Chooses > 0. Let R; € (Ro, Ry + 1) be such thaCo(R” R{) < €/2. Letrg be such thabzeR (r) < ¢e/2 for
r > ro and allf as above. Thefi(r) < € for r > ry. In other wordsg(r) — oo, asr — oo, andfg(r) < B(r) for
all 6 as above. This completes the proof of (a).

To prove (b), notice that since the scattering operator is unitary forireale have lods(+r)| = 0. Also, we
have the rather rough a priori estimai€r)| < Ce€*" in 31 > 0, see e.g., [PZ2]. Since the functiofi sin(z6)
is harmonic inA = re'?, we can apply the Phragm-Lindeldf principle to the harmonic function ldgre'?)] —
Ar" sin(nf) in the secto < 6 < o with 4 = 2R/, (€o)/ Sin(neo) to get

- in(né
1091s(re®)] < 2R () o) i fory 51,0 <0 < e . (58)
sin(neg)
Sinceh,(0) — 0, asé — 0, this proves part (b) of the theorem. |
Set
K4 = dK N {Jz > 0}. (59)
Lemma 4

21 1—z2|1/2
Asn—l = — / | | |dZ|
mnn—=2) ik, |z|"H!

Proof: We start with formula (6). Set = —%p. Thenu is aC! function in the closure o€ \ K. Indeed, this is
true atz = 1 because = 2¢3/2/3, and? is analytic there. Itis also true &t-oco, —1] as well, because(—z) = u(z).
Inside that domairny is harmonic. On the other handy—2|z|™ = |z|™"~2, whereA is the Laplacian irR? that we
identify with C. Now, we view the integrand in (6) asAn~—2|z|™", and apply Green’s formula i@ ;. \ K using the
factthatu = O(|z]), Vu = O(1), as|z| — oo. Sinceu = 0 on the boundary, we get

[Npl+(2) / du 1 ®ou 1
————~dxdy = ————|d 2 ———d
/:xz>0 |z|n+2 Al 9Ky Ov n?|z|" jdz1 + . 0y n2xn *

wherev is the unit normal toK, pointing into the exterior t&. Note that in both integrals in the r.h.s. above, the
integration is taken over a curve defined by= 0. Thenv = Vu/|Vu|, anddu/dv = |Vu|. On the other hand,
p' = —+/1—2z2/z, therefordVu| = |1 — z2|'/2/|z|. Then by (6) and the formula above, we get

Asn—l + 2

vol*(B(0,1)) 2 / |1 —z2|1/2 4 /00 V2 —1 dr
K+

= d
Q)" an(n —2)! |z|nt+1 ozl + an(n —2)! et

It remains to show that the second term in the I.h.s. equals the second one in the r.h.s.
After the change of variables= 1/s, and then settingl2 +...y2 =s% we get

00 =t
/ Ve -1 / 22 ds — / dy— _NEres)
1 244yt

Tl 2nwp—1 2nl'(%)

an 1

wherew, = 27"/%/I'(n/2) is the area ofs”~! (and then valB(0, 1)) = w,/n). The proof is then reduced to
showing that

2 JAr(5H)  vol(B(0. 1)

an(n—2)! 2nl(%) Qmyn
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and that can be verified by uisng the Legendre duplication formigla) = (27)~1/222=2(t)I"(t 4+ 1/2) applied
tor = (n—1)/2. O

6 Proof of Theorem 2 and Corollary 1

Proof of Theorem 2The proof of Theorem 2 follows directly from Proposition 2 and Theorem 5(b). We integrate (45)
w.r.t. 6 € [0, 7], and then pass from polar coordinates to Cartesian ones.

Proof of Corollary 1:

Consider (i). By the standard Weyl asymptotidét () = t,(R"” — vol(0))r"(1 + Or(1/r)). Apply Theorem 2
and in lim supM (r)/r", take the limitR — Ro+.

Next, consider (ii). Foiv#, we haveN*(r) = ©,R"r"(1 + Og(1/r)). Take the limitR — Ry+ as above to
prove the corollaty in case (ii).

Finally, in case (iii), we haveV#(r) = 27)™" f‘x‘sRszcng&%sl dx dé(1 + Ogr(1/r)), and as above, we get
the desired estimate.

7 Asymptotics of the sphere resonances, proof of Theorem 1

Itis enough to study the cag®, = 1. Itis well known (and also follows from section 4) that the resonances of the unit
sphereS™!, n odd, coincide with the zeros df,fl)(k), v=I[+4+n/2-1,1=0,1,..., and each one has multiplicity
m(l), see (31). By [0O2] and (41), they lie in af(1/v) neighborhood obdK N {Jz < 0} and are symmetric to the
zeros ofH,fz)(A) about the real axis, see Figure 2. They are the zeros of the ponnaﬁﬁa\J“H,fz) (1) of degree

v — 1/2. More precisely, one can describe those resonances as follows.
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Figure 2: Resonances of the unit sphsre(with Dirichlet b. c.), corresponding to < 30.

Set ; - 2
ay = [E(_Z+kﬂ)] , k=1,2,....

We vieway, as approximate zeros of Aiz), and by (37), the actual zeros of (Aiw) stay at distance no greater than
C/ . /ax. Motivated by (41), we then set

Mok = 8w ey = vp T (—i(k — 1 /47 /v), k=1,2,...,v— > (60)
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We viewh, i, k = 1,...,14+(n—3)/2,1 = 0,1, ... (recall (50)), as approximate resonances. The difference between
Avk and the zerog, . of H,fz) can be estimated as follows. We combine asymptotics (37), (38) of Aiyith that of
H,fz) (41). Then we get

codivp —m/4) + O(1/v|p|) =0, (61)
wherep = p(A/v) and ignoring the remainder, we do get solutidns as in (60). To simplify our analysis, we will
analyze only the zerds,; and the approximate oneg,, in the sector

e<argh <m—e, (62)

with 0 < € < 1 fixed, and we will estimate roughly the rest of the zeros. This will guarantee, that we worlowith
that is away fronmD and—iz. One can, in principle, work in the whole sector arg [0, 7] and use the fact that even
thoughp is not analytic (and invertible) nedr, the function? is; and this would probably give a sharp bound on the
remainder term in Theorem 1.

For asin (62),0 = p()/v) satisfiegp| > €3/2/C. Since the spacing between distiigy is uniformly bounded
from below in (62), by the Roua@htheorem we get from the equation ¢o® (A /v) —m/4)+ O(1/v) = 0for Ay, = A
that|A,x — hyi| < C/v for thosenh,, in the sector (62). For the remainithg; we have

#{hyi; arghy, < eor argh,, > 7 — e} < Ce¥/?v, (63)

and they stay at a distane®(1/v) from K in the sector (62).
We will estimate now the number

[Avi|<r; 0<argh,; <6+A6

see (31), fo¥ in (62) and0 < A6 small enough. Let(6) be defined by € 0K, argz = 6. Then[0, 7] > 0 — z(0)
is a parameterization @K . On the other hand, the propertiesmimply that[0, 7] > t — p~!(—it) = z is another

parameterization. Differentiating(z) = —it, we getp’(z)(dz/dt) = —i, therefore
d V1 —z2
@ ip'(z) = —i = (65)
dz z

Note that for any,; appearing in (64)\,x| = v|z(0)| + vO(AH). On the other hand, for a fixad the number\ k
of k's appearing in (64) satisfiesAk /v = At + O(1/v), therefore the number &, ;'s corresponding to the interval
[t,t + At]isvAt + O(1). Therefore,

A(r, 6.0 + AB) > m(z)"TAl +r"0((AN*) + O¢ ")

v|z(0)|=r

2 n—1
= Y A0 + OGTY).
verpiaey T !

Note that forf as in (62),r stays at distance to the endpoifitand of [0, ] at least,/¢/C. This, in combination
with (65), and the inequality above, yields

2r" dr
A(r,e,m—¢€) = ;/ +7r"0(e) + O(r™ ™)
wn(n—2)! Jak, |z]"

21" |1 —z2|2 1
— d n n
i 2) /3K+ EG lz| + " O(e) + OG" ),

compare with Lemma 4. By (63),
A(r,0,€) + A(r,m — e, ) < C¥/2pm,

The estimates above, true for ahy € < 1, combined with Lemma 4, prove Theorem 1 #6(r, 0, 27). The relation
between\,; andh,; (and the resonancésy) established above yields the same resultNgr—i (r). O
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8 Proof of Theorem 3

As mentioned in the Introduction, the asymptotic formdl@) = K, Rir" + o(r") was proven in [Z2], so we only
need to show thak, is given by (6). As above, it is enough to study the c&se= 1. Note first that in the notation
of [Z2], & there corresponds teip here, thereforeié = Jp. The approach in [Z2] is to find approximaggy in

Lemma 6 there: . . P
oo = i L 08Y |ogf(”—), k=—[/2,....—-1,0,1,..., (66)
V V V

f(p) = 1 — 22, and to consider “approximate resonancegj given as solutions op(A/v) = pyx. Fork < 0,

Auk lie nearvdK 4 N {Nz > 0} (at a distance not exceedir@(log v)) similarly to the zeros oh,(,l), and those with

negative real parts are symmetric to them. kar 0, they lie in a logarithmic neighborhood of the positive real axis,

and again, there is a sequence with negative real parts, symmetric to them. They can be considered as approximate
zeros ofj, (A). Each of the\ ,;’s is counted with multiplicity= (/). The counting function of the first type is denoted

in [Z2] by n_(r), the one related té > 0isny(r). Then one replaces, in (66) by its first term itk /v only and

counts the resulting’s. The proof of [Z2] shows that this gives the leading term in the asymptotics for the exact
resonances. On the other hand, the counting funetigm) for p~!(ixk /v) with k < 0 has the same asymptotics as

that of Ng.—1 (1), see (60). Similarly, the counting functien.(r) for p~!(izk /v) with k > 0 coincides with that of

the zeros ofj, (1), counted with multiplicities as can be shown as in (61). The latter is governed by the classical Weyl
law, as it represents the eigenvalues of the Dirichlet proble®(ih 1). Therefore,

vol?(B(0, 1))

N(r) = Ngui (r) + T

" +o(r™),

which proves Theorem 8. We also note that one could also compare the integrals at the end of the proof of [Z2] on
p. 402, and compare them with the integral representatiofi@f1 we have, see also the proof of Lemma 4, and to
deduce the proof from there. |

9 Proof of Theorem 4

Let us mention first, that by the Weyl formula for the transmission problem,

N¥r) =

dx d§ + 7, (R" — RY)r" + o(r"), (67)
(27)" Jix1<Ry; c2j812<1

whereR is related to the reference operat®t, as in the Introduction. This shows that the statement of the theorem
shows that the estimate in Theorem 2 turns into asymptotic, whesn Ry+.
We will next find an explicit expression @A) in this case. Set

J@& =" T @, BP0 =T HEED, O,

Without loss of generality, we may assume tig = 1. Letu € H2.(R") be any solution of P — 12)u = 0.
Write u in polar coordinates, and project onto the eigenspace spanned by the spherical harmonics corresponding to the
momentun? to get for the following for the projection;:

uy(rw) = ai(A\)ji(Ar/c), r<1.

OutsideB(0, 1), we have
uro) = bW (r) + 5P 0RP (). 1> 1L
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By the transmission conditions implied by the requiremert 2 (R"), we get

bR ) + 5P MEP (1) ar(h)ji(A/c), (68)
PR 3 + PP ) = a0 /e). (69)

Solving the system above, we get
b0 _ eh WjiGfe) = hP W) j{ (/o)
biPy  ehf )i e) = hP ) /e)

The quotient above is the absolute scattering matrix acting on the space spanned by the spherical harmonics with
momentuny. Since the absolute values of the determinants of the relative and absolute scattering matrices coincide,
we see that

| ch® (1) i fe) — KO0 Je) |

ls()I = ;
,11, chy” (1) i fe) =BG j{ (/o)

This characterizes the resonances as the zeros of the denominator above with multipligitieg/e will show that

they split into two groups: one near the real axis near the zergs(®fc) (or those ofj/(A/c) that have the same

asymptotic); and another one near the zerds}Bf(A) (we can also view them as approximating the zerd5§8f(k)).
The conjugates of those resonance<in coincide with the zeros of the numerator, so we will study those zeros
instead of the resonances.

Therefore, we are interested in the asymptotic distribution of the solutions of

ch™ W) i Je) = hP () j{(hfe) =0, (70)
each one countea (/) times. This equation is equivalent to (fors 0)

MP'0) G/t

=0, 71
hP () J1/e) (71)

that can be viewed as the transmission condition satisfied by the resonant states at the resonance frequencies. Note
that the terms above are regulanat 0. We will use below the notatioh = ¢(A/v), { = {(A/cv), wherev is as

in (50). We also reserve the notatiorfor A /v. Fix0 < € < 1. We will study the zeros of the equation above for
z=XA/v e 2 :=C\{D(c,e) U D(1, €)}, (that must be li€ ;. ), and then roughly estimate the zeros in the two disks
appearing above. Her®(a, r) is the disk inC centered at with radiusr. Note that the exclusion of a neighborhood

of z = 1 removes a neighborhood ¢f= 0. On the other hand; ¢ D(c, €) guarantees thgt.| > 1/C. We will

first express the ratih}z)/(k) / h;z) (1) away from its zeros and poles that lie nedK ;. To use the asymptotics (41)

and (36), arg must be outside a fixed neighborhood-et /3. In 2. N C, this is achieved it is away from a fixed
neighborhood ofK . Therefore,

AP a3 AL (130) (l) (72)
v h;z)(k) v’ vIBAIL(v2/30) v
= +V1-z22+ 0(1) for dist(z, 9K 1) > €, |argz| < 7 —e, (73)
V

where we choose the positive sign forg K, and the negative one otherwise. The last restriction is not significant
because of the symmetry of the resonances about the imaginary axis. Abevé,(A/v), and the branch of/1 — z2
is chosen so that its imaginary part is non-positivedar> 0. Similarly,

M /o) A AL +0(1)

veji(A /) ve vI/3AI(v2/3¢,) v

1
1 —2z2/c? + 0(;) fore <|argz| < 7 —e. (75)
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Itis easy to see that the leading terms in (73) and (75) are never equal in the common region of validity, moreover, the
absolute value of their difference is bounded from below by a positive constant. Thereforesfor, equation (71)
may have solutions only in

({o <argz <€)U {m —e<argz < 71}) U {dist(z, IK 4) < €} . (76)

By the symmetry of resonances about the imaginary axis, it is enough to study tlémn=n0 only.

Let us first focus on the regiof?; = {dist(z, dK+) < e} N {|z — 1| = ¢; Nz > 0}. Isolating a neighborhood of
z = 1 allows us to use the asymptotics of Ai singg > 1/C. Then (72) is still valid but to get an analogue of (73),
we need to use (37), (38) instead of (36). We divide (70)ji% /c) and after canceling an elliptic factor, we write it
in the form

0 = ivVi-z2sin(ivp ”)(1+0(1)) 77)

- (m+ 0(%)) cos(i‘;p— %)(1 + 0(%))

This can be written also as

. 7 1 —2z2/c? 1
tan(w,o— —) =—l—— 4+ 0(—).
4 V-2 v
Forw # =i, the equation tan = w has a unique solution = arctarw in 0 < %z < &, and by the periodicity of
tanz, all solutions are given by shifts byr, k = 0, £1,.... Forv > 1, the r.h.s above is uniformly bounded from

below, at a distance 1/C to tifor z € £2, , therefore we get the equation

. 1 Vi—z2/c2  k+1/4 1
ip = — arctan Z/e + +1/ n+0(—2).
v iv1—z2 v v

We think of this as an equation far, wherez = z(p). Sincez € £, we wee thatCe*/2 < k/v < 1/2+ O(1/v),
see (63). Fov > 1, we get solutions

poe = —Zit o(1)

for k as above. As in section 7, they are mapped irsoapproximating zeros OH,EZ) (vz), with deviationO(1/v),

and therefore we get conjugate resonarnicgsin an O(1) neighborhoods of those zerosldf) (A) that lie in anO(1)
neighborhood ob£2;. The O(1) error would not change the asymptotic of their counting function, therefore we get

# Aok Aok <7 v >0} = % (Asn_l + 0(63/2)) (1 + o(1)) (78)

based on the analysis in section 7, whege> 0 is fixed. The factoil /2 there is explained by the fact that we work in
NRA > 0only.

We next study the solutions of (71) 2, = {0 < argz <¢; |z — 1| > €; |z — ¢| = €}. Similarly to the analysis
above, the reason to remove a neighborhood &f ¢ is to be ensure that. (z)| = |{(z/c)| = 1/C, therefore (74) is
still valid. This case is analyzed in a manner similar to that above, and we will skip the details. As a restt] jf
we get zeros inf2, corresponding to

k 1
Pewk = i+ 0(_), k> Ce¥?v. v =, (79)
Vv )Y

andk is an integer, compare with (66) far> 0 there. The correspondirfg,k = vep H(pe.vx) approximate zeros of
Ji(A/c) and have counting function satisfying

#hok: o] <75 v =0} = (me™" + 0()) r™(1 + o(1)). (80)
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Note that the corresponding ,x = A.,x/v areinfc, oo) + O(1/v), thus the restrictiofz — 1| > € does not play any
role in this cased > 1). If ¢ < 1, we have to remov®(¢)v number ofk’s from (79), and (80) will still be preserved.

It remains to estimate the numbaf , () and N, (¢) of zeros of (71) in the disc®(1, €) and D(c, €) that are
not covered by2; U £2,. We will prove that

Niy(€) + Ney(e) < Cev + Cclogv. (81)

Set ,
fo(2) = ch® (v2) i (vz/e) — WP (v2) ] (vz]e).

We will estimate the numbewN; _ic , (2¢) of zeros in|z — (1 — i€)| < 2¢ and then use the fact thaf; , < 1\71,,,. By
Jensen’s formula,

4e N—'ev 1 2 ) _
Iog|f,,(1—ie)|+/ Niciew(®) 4 —/ log| f, (1 — i€ + 4ee'?)| db.
0 S 2 0

By a standard argument,
1 2 )
Ni—iew(2€)l0g2 < E/ log| f, (1 — i€ + 4ee'®)| dd —log| £, (1 — ie)|. (82)
0

Write £, (z) = ji(vz/c)h\® (v2)g, (2), and as in (72), (74), we show that, (1—ie)| = 1/Cc—Ce/v. Lete > 1. Then
by the asymptotics of,,, S, log|j;(vz/c)h\® (vz)| < v (=p(1/c) + O(€)) + O(logv) on|z—(1—€)| = 4¢, and it
is an equality for = 1—e. Plugging this into (82), we get (81) fa¥; , (¢). Letc < 1. Then Iog|j1(vz/c)h§2) (vz2)| =
O (ve) + O(logv) on|z— (1 —¢)| = 4¢, and it is also true when = 1 — ¢ for the absolyte value of the same function.
Thus we get (81) foVy ,, (¢) in this case as well. In the same way we prove (81)X6r, (¢).

Estimate (81) show that the zeros missed in (78), (80) affect the leading term in the asymptgti¢rofonly by
an O(e) term. On the other hand, summing up (78) and (80), and then taking theelimit0 in lim supN()/r",
completes the proof of Theorem 4. |
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