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Abstract

We study the scattering poles of a compactly supported “black box” perturbations of the Laplacian inRn, n odd.
We prove a sharp upper bound of the counting functionN.r/ moduloo.rn/ in terms of the counting function of the
reference operator in the smallest ball around the black box. In the most interesting cases, we prove a bound of the
type N.r/ � Anrn C o.rn/ with an explicitAn. We prove that this bound is sharp in a few special spherically
symmetric cases where the bound turns into an asymptotic formula.

1 Introduction and Main Results

Let P be a compactly supported perturbation of the Laplacian inRn, n odd, defined by the “black box scattering”
formalism, i.e.,P D �� outside the ballB.0;R0/ andP satisfies the hypotheses in [SjZ2], see section 2. As usual,
P ] denotes a reference operator on the “perturbed torus”TR, R > R0, see next section. LetN .r / be the number of
scattering poles (resonances) ofP with modulus less thanr . One of the basic questions in the theory of resonances
is to estimateN .r / and, if possible, to find an asymptotic formula, asr ! 1. In a pioneering work, Melrose [M1]
showed thatN .r /, related toP D ��C V .x/, where the potentialV is compactly supported, has at most polynomial
growth, and in an unpublished note later he improved this toN .r / � C r nC1, r > 1. Then he showed [M2] that

N .r / � Ar n; r > 1; (1)

in obstacle scattering. M. Zworski [Z2] proved (1) for compactly supported potentials. The case of elliptic second
orderP ’s was resolved by G. Vodev in [V1], and in [V2] for non-self-adjoint operators. In a general black-box setting,
a generalization of (1) was proved by Sj¨ostrand and Zworski [SjZ1]. Similar bounds are known in the semiclassical
case, see e.g., [PZ2] and the references there. Bounds on a modified version ofN .r / in even dimensions were studied
in [I], [V3], [V4].

It is known that the distribution of the scattering poles in various neighborhoods of the real axis depends on the
geometry of the scatterer, respectively on the properties of the Hamiltonian flow associated withP . We will not give
full account of those results and will mention only [SjZ2], [Ze] where scattering poles in sectors0 < � arg� � 1 are
studied, and [S2] for upper bounds infj�j > 1I =� � j�j�N g, N � 1.

At present, very little is known about a possible asymptotic formula forN .r /. In the 1D case, forP D �d2=dx2 C
V .x/, it is known [Z1] that

N .r / D
2a

�
r C o.r /; (2)

wherea is the diameter of the support ofV . Forn � 3 odd, andP D ��C V .x/, M. Zworski [Z3] proved that

N .r / D KnRnr n.1 C o.1//; (3)
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under the assumption thatV 2 C 2 is radial, supported inB.0;R/, andV has a jump atjxj D R (see also Theorem 3
below). His proof also implies an asymptotic of the same kind with a different constant for the sphere resonances with
Dirichlet boundary conditions (see also Theorem 1 below). The constantKn in (3) is not specified in [Z3]1.

The purpose of this work is to find an explicit constantAn such that

N .r / � Anr n C o.r n/; asr ! 1; (4)

for variousP ’s, and to show that in some special cases, including those above,An is sharp because then (4) turns into
an asymptotic. The termAnr n would then serve as a candidate for the leading term in the asymptotics ofN .r /, if the
latter exists, at least if the scatterer is spherically symmetric. In the case studied in [Z3], the constantKnRn depends
on the size of the support ofV only, and not onV itself. This corresponds well to the known fact that the scattering
determinants.�/ related to generalP ’s, admits an estimate of the kindjs.�/j � C 0

n exp.A0
nj�jn/ in the “physical

plane”=� > 0 [PZ2] with constants having the same property.
Since we use Jensen’s type of equality, this forces us to work with a regularized versionM.r / of N .r /, instead of

N .r /:

M.r / D n

Z r

0

N .t/

t
dt D n

X

j�j j<r

log
r

j�j j
; (5)

where�j are the resonances. The factorn above can be explained by the following:M.r / has asymptotic if and only
if N .r / has asymptotics, and then the leading terms coincide, see Lemma 1. In all cases,N .r / � .n logs/�1M.sr /,
8s > 1, see [Fr], and this impliesN .r / � M.e1=nr / but then the extra factore in (4) probably makes the estimate for
N .r / non-sharp.

In order to state our main results, introduce the function

�.z/ D log
1 C

p
1 � z2

z
�
p

1 � z2; j argzj < �;

see section 4 for more details. We denoteŒ�<��C D max.�<�; 0/. Then inCC WD f=z > 0g, the functionŒ�<��C
is supported outside an eye-like domainK, see Figure 1 in section 4.

We study first the case ofP D �� in jxj > R0 with Dirichlet boundary conditions. The resonances in this
case are well known to be the zeros ofH

.1/

lCn=2�1
.�R0/, l D 0; 1; : : : with multiplicities equal to the dimension of

the corresponding spherical harmonics eigenspace and their asymptotics follow from Olver’s uniform asymptotics of
Hankel’s functions, see Figure 2 in section 7. The asymptotic of the counting function however, to our best knowledge,
has not been studied except for [Z3], as mentioned above.

Theorem 1 LetNR0Sn�1.r /, n odd, be the counting function of the resonances for the exterior Dirichlet problem for
the sphereR0Sn�1, R0 > 0. Then

NR0Sn�1.r / D ASn�1Rn
0r n C o.r n/; asr ! 1;

where

2
vol2.B.0; 1//

.2�/n
C ASn�1 D

2n

�.n � 2/!

Z

=z>0

Œ�<��C.z/
jzjnC2

dx dy; z D x C iy: (6)

In particular, ifn D 3,
4

9�
C AS2 D

6

�

Z

=z>0

Œ�<��C.z/
jzj5

dx dy:

The same results holds for Neumann or Robin boundary conditions, as it can be seen from the proof.
Numerical experiments based both on direct counting all resonances with modulus less that67 (we getNS2 .67/ D

522; 772), and on a numerical computation of the integral above, show thatAS2 is in the range.1:73; 1:75/. Another
integral representation ofASn�1 is given in Lemma 4 below.

1Actually, an integral representation ofKn of the kind we obtain is implicit in [Z3], see the proof of Theorem 3.
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We find it more convenient to work with a reference operatorP ] equal toP in B.0;R/, whereR > R0 is fixed,
with Dirichlet boundary conditions onjxj D R (to be more precise, “inB.0;R/” means onHR0

˚ L2.B.0;R/ n
B.0;R0//, see next section). In most interesting cases, taking the limitR ! R0 would provide the best estimates.
From now on,P ] is that operator, andR > R0 is fixed.

Recall that one of our assumptions is thatN ].r C 1/ � N ].r / D o.r n/ (which is true any time whenN ].r / has
an asymptotic), see section 2. One can impose this assumption either on the torus reference operator, or on the ball
reference operator.

For convenience, set
�n D .2�/�nvol2.B.0; 1//: (7)

Next theorem is the main result of the paper. It gives an upper bound forM.r / for generalP ’s.

Theorem 2 Let P satisfy the black-box assumptions in the ballB.0;R0/ described in section 2,n odd, with a refer-
ence operatorP ] in B.0;R/, with arbitrary but fixedR > R0. Then

ˇ̌
ˇM.r / � 2

�
N ].r / � �nRnr n

�ˇ̌
ˇ � .2�n C ASn�1 /Rn

0r n C o.r n/; asr ! 1: (8)

In particular,
M.r / � 2N ].r /C Rn

0ASn�1 r n C o.r n/; asr ! 1:

One can interpret the result above as follows: the regularized counting functionM.r / of resonances is bounded
by the number of the square roots of the eigenvalues of the “interior problem” (inB.0;R/, R � R0, with Dirichlet
boundary conditions) plus the resonances of the “exterior problem”, i.e., that in the exterior of the spherejxj D R0,
with Dirichlet boundary conditions (Neumann boundary conditions would not change that). The factor2 is explained
by the fact that each eigenvalue�2 has two square roots:�� and�, and resonances are symmetric about iR. In fact,
we have a stronger estimate with the extra term�2.Rn � Rn

0
/�nr n in the r.h.s. of the second inequality in the theorem

that makes the principal terms independent ofR. Since the main application of this estimate however is to take the
limit R ! R0C, this term does not add anything new unless one needs sharper estimates on the remainder term.

One can assume more generally thatN ].r / D O.r n]

/ with somen] � n. Then the result is still true with
a remaindero.r n]

/. Then we recover the asymptotic formula forN .r / in case thatN ].r /=r n] � 1=C , see [V5]
and [Sj1]: N .r / D 2N ].r /.1 C o.r //. It is known that outside any sector near the real line, the resonances are
O.r n/, so the asymptotic is valid actually in any fixed sector aroundR, as in those works. We also note that the first
inequality in the theorem, (8), can be interpreted as a “bottle type” theorem, when we have a family ofP ’s such that
N ].r /=r n � 1; then (8) gives “almost an asymptotic” forM.r /, and therefore forN .r /. This improves to some
extent the corresponding bottle theorem in [Sj1, sec. 9], for example, by providing a sharp bound of theO.Rn

0
r n/ term

that is independent ofP .
In the semiclassical case, Petkov and Zworski [PZ2, Theorem 4] establish an estimate of the number of resonances

in an h-independent “box” that is similar to (8) with a non-explicit constant of the leading term in the r.h.s. that is
independent ofP . In the case we consider, such boxes correspond to sectors0 < arg� � C < �=2.

The main idea behind the proof of Theorem 2 is the following. In most cases, (1) is proven by estimating the
characteristic values of operatorsE˙.�/ with Schwartz kernele˙i�!�x , wherej!j D 1, andR0 C �1 � jxj � R0 C �2,
0 < �1;2 � 1, see the discussion following Proposition 2. This usually is done by estimating�m

! e i�!�x , 8m, see
(28) and (29). We show however that those characteristic values can be commputed explicitly in terms of the Hankel
functionsJ� . Indeed, it is known thate i�!�� , j!j D j� j D 1, has expansion in spherical harmonics andJ�.�/,
see Lemma 3, that in fact implies thate i�!�� is a kernel of a diagonal operator onSn�1 in the spherical harmonics
base, with eigenvalues.2�/n=2in�1�n=2JlCn=2�1.�/. This implies similar formula for the eigenvalues ofE˙.�/.
Now, estimating the characteristic values of the latter is reduced to uniform estimates and asymptotics of the Hankel
functionsJ�.�/ for � half-integer and=� > 0, and to do that we use the results by Olver [O1], [O2], [O3].

Consider the following examples:

(i) PO D �� in the domain̋ D Rn n O with Dirichlet or Neumann boundary conditions, whereO � B.0;R0/,
@O 2 C 1;
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(ii) PV D ��C V .x/, V 2 L1, suppV � B.0;R0/;

(iii) Pg;c D �c2�g , where�g is the Laplace-Beltrami operator associated with a smooth metricg, 0 < c D c.x/

is smooth, such thatg D ıij , c D 1 outsideB.0;R0/.

Corollary 1 In cases (i), (ii), (iii), one has

M.r / � 2A]r n C ASn�1 Rn
0r n C o.r n/;

where

A] D

8
<̂

:̂

.2�/�n
R

x2B.0;R0/nO; j�j�1
dx d�; if P D PO;

.2�/�n
R

jxj�R0; j�j�1
dx d�; if P D PV ,

.2�/�n
R

jxj�R0;
P

c2.x/gij .x/�i �j �1
dx d�; if P D Pg;c .

Theorem 1 above shows that the estimate above is sharp in case (i). Next theorem, proven in [Z2] (see the remarks
above), shows that our estimate is sharp in case (ii) as well.

Theorem 3 LetV .x/ D v.jxj/ be a radially symmetric potential inRn, n odd,

v 2 C 2.Œ0;R0�/; v.R0/ 6D 0;

and letV be extended as0 for jxj > R0. Then for the counting functionN .r / of P D ��C V we have

N .r / D

 
2

vol2.B.0; 1//

.2�/n
C ASn�1

!
Rn

0r n C o.r n/; r ! 1:

Finally, we show that the estimate in Corollary 1 is sharp in the “transparent obstacle” case that can be considered
as (iii) with singularc. Fix 0 < c 6D 1, and let

P D �Qc2.x/�; whereQc.x/ D c for jxj � R0, Qc.x/ D 1 otherwise,

with domainH 2.Rn/ (that corresponds to transmission conditions requiring thatu and@u=@� agree onjxj D R0).
The operatorP is self-adjoint onL2.Rn; Qc�2dx/ and satisfies the black-box assumptions. Resonances ofP in strips
near the real axis for general strictly convex domains andP ’s of variable coefficients have been studied by Cardoso,
Popov and Vodev, see [CPV] and the references there. Ifc < 1, then there are resonances converging rapidly to the real
axis; if c > 1 there is a resonance free zone�=� � .C j<�j/�1, j<�j > C . This can be explained by the existence,
in the casec < 1, of totally reflected rays in the interior, close enough to tangent ones to the boundary. In both cases,
there is a Weyl type of asymptotic in the strip0 � �=� � C with a suitableC . We refer to [CPV] for more results
and details. We are concerned here with all the resonances however and we show that for all admissible values ofc,
the estimate in Theorem 2 turns into asymptotic, asR ! R0C.

Theorem 4 LetP be the “transparent obstacle” operator as above with someR0 > 0, c > 0, c 6D 1. Then

N .r / D 2
1

.2�/n

Z

jxj�R0Ic2j�j2�1

dx d� r n C CSn�1Rn
0r n C o.r n/:

The structure of the paper is the following. A short review of scattering theory for black boxes is presented in
section 2. After some preliminary results in section 3, we recall some asymptotics of Bessel’s functions in section 4.
In section 5, we give sharp estimate of the scattering determinant, which is our key argument. In section 6, we complete
the proof of the main Theorem 2, and in sections 7, 8, 9, we prove the rest of our main results. The paper is essentially
self-contained but we advise the reader to consult the figures in [O3, p. 336] for the mapping properties of the function
� (and�, see section 4 ).
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2 Short review of scattering theory in the black box setting

We introduce briefly the black-box scattering formalism, for more details, see [SjZ1] or [Sj2] for more recent treatment.
Fix R0 > 0 and letH be the complex Hilbert space

H D HR0
˚ L2.Rn n B.0;R0//;

whereB.0;R0/ is the open ball with radiusR0 centered at0. LetP � �C be a selfadjoint operator inH with domain
D. Denote by1B.0;R0/, 1RnnB.0;R0/ the corresponding orthogonal projections, and for any� 2 L1 that is constant
on B.0;R0/, we define�u in an obvious way. In particular, if�K is the characteristic function ofK � B.0;R0/,
we use the notation�K D 1K . Assume that the restriction ofD to Rn n B.0;R0/ is included inH 2.Rn n B.0;R0//,
and conversely, everyu 2 H 2.Rn n B.0;R0// vanishing nearB.0;R0/ belongs toD. The operatorP is a compactly
supported perturbation of the Laplacian, i.e.,

PujRnnB.0;R0/ D ��ujRnnB.0;R0/:

We also require that
1B.0;R0/.P C i/�m0

to be trace class for somem0 > 0 (see [C]).
We define a reference operatorP ] as follows. FixR > R0 and letTR be the flat torus obtained by identifying the

opposite sides offx 2 RnI jxij < R; i D 1; : : : ; ng. Let P
]
T be the selfadjoint operator defined by

P
]

T u D P�u C�TR
.1 � �/u; (9)

where� D 1 nearB.0;R0/, supp� � B.0;R/, and�TR
is the Laplacian onTR. ThenP

]
T is independent on the

choice of�. Our assumptions guarantee thatP
]
T has discrete spectrum only, and we set

N
]
T .r / D #

n
�j I �2

j is an eigenvalue ofP ]
T ; 0 � �j � r

o
; (10)

including multiplicities. Note thatP ]

T may have a finite number of negative eigenvalues but they are not included in
the counting function above. We assume that

N
]
T .r / D O.r n/; N

]
T .r C 1/ � N

]
T .r / D o.r n/; asr ! 1: (11)

In most interesting situations,N ] has asymptotic, and the termo.r n/ can be replaced byO.r n�1/.
Under the conditions above, T. Christiansen [C] proved that the scattering phase�.�/, see (23) below, admits the

asymptotic
�.r / D N

]

T .r / � Q�nr n C o.r n/; asr ! 1; (12)

where
Q�n D .2�/�nvol B.0; 1/ vol TR

is the Weyl constant related to the torusTR. As shown in [C], up too.r n/, N
]
T .r / � �nr n is independent of the choice

of R > 0, and in most interesting cases can be expressed by Weyl terms related toP only, see Corollary 1 and its
proof. The asymptotic (12) generalizes earlier results in the classical situations and uses techniques developed by
Robert [R].

Instead of the reference operator defined above, we consider a reference operator defined inHR0
˚ L2.B.0;R/ n

B.0;R0//, whereR > R0 is fixed. We definePB to be equal toP on that space and satisfy Dirichlet boundary
conditions onjxj D R (in other words, we use an obvious modification of (9)). The results in [C], see Proposition 2.1
there that also holds for manifolds with boundary, imply thatN

]
T .r / � Q�nr n D N

]
B.r / � �nRnr n C o.r n/. From now
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on, we useP ]
B as a reference operator and will drop the subscriptB, i.e., we will denoteP ] D P

]
B, andN ].r / is as in

(10) but related toP ]. Then we have, as in (12),

�.r / D N ].r / � �nRnr n C o.r n/; asr ! 1: (13)

Under the conditions above,P may have a finite number of negative eigenvalues��2
j , and positive eigenvalues as

well (the positive ones do not exists in the interesting cases). The resolventR.�/ D .P � �2/�1 W Hcomp ! Hloc

admits a meromorphic continuation from the upper half-plane=� > 0, where it has poles at i�j only, into the whole
complex plane (forn odd), see e.g., [SjZ1] or [Sj2]. We will denote this continuation byR.�/. The poles in=� < 0

are called resonances.

We recall some facts about scattering theory for black boxes, see e.g., [PZ1], [S3] where this is done in the semi-
classical setting and we will translate this into the non-semiclassical setting.

Fix R1;2;3 such thatR0 < R1 < R2 < R3, and choose a smooth cut-off function�1 such that�1 D 1 on
B.0;R1/, and�1 D 0 outsideB.0;R2/. For any� 2 Sn�1, and any� > 0, we are looking for a solution .x; �; �/
to the problem.P � �2/ D 0, 2 Dloc.P / such that

 D .1 � �1/e
i�� �x C  sc; (14)

with  sc satisfying the Sommerfeld outgoing condition at infinity:.@=@r � i�/ sc D O.r �.nC1/=2/, asr D jxj ! 1.
Then

 .x; �; �/ D e i�� �x C
e i�r

r .n�1/=2
A
�x

r
; �; �

�
C O

�
1

r .nC1/=2

�
; asr D jxj ! 1. (15)

The functionA.!; �; �/ is the scattering amplitude related toP . In order to justify this definition, we will show that
 sc is well defined and the limit above exists.

Before proceeding, we will recall the definition for outgoing solution in the case that� is not necessarily real
that we will need later. In short, “outgoing” function is a function equal for largex to R0.�/f for some compactly
supportedf . HereR0.�/ W Hcomp ! Hloc is the outgoing free resolvent, i.e., the analytic continuation ofR0.�/ D
.��� �2/�1 from the upper half-plane into the lower half-plane inC. The extension from the lower to the upper half
plane is called incoming.

Definition 1 Given� 2 C, we say that the functionu is �-outgoing (or simply, outgoing, if� is understood from the
context), if there existsa > 0 andf 2 Hcomp such thatujjxj>a D R0.�/f jjxj>a.

Similarly one defines incoming functions.

Proposition 1 ([S1], see also Lemma 1 in [Z4])
(a) For anyf 2 Hcomp and any� not a resonance, the functionu D R.�/f is �-outgoing. Moreover, if� is a

smooth cut-off function such that� D 1 for jxj > a, and� D 0 in a neighborhood ofB.0;R0/ andsuppf , then we
haveR.�/f jjxj>a D �R0.�/Œ�; ��R.�/f jjxj>a.

(b) Assumeu 2 Dloc.P /, .P � �2/u D f 2 Hcomp, � is not a resonance, andu is �-outgoing. Thenu D R.�/f .

The scattering solution sc can be constructed as follows. ApplyP � �2 to sc to get

.P � �2/ sc D �.P � �2/.1 � �1/e
i�� �x D �Œ�; �1�e

i�� �x : (16)

Then, since sc is outgoing, by Proposition 1(b),

 sc.x; �; �/ D �R.�/Œ�; �1�e
i�� �x : (17)

Choose a smooth function�2 with supp�2 � B.0;R3/ and�2 D 1 on B.0;R2/ � supp�1. Then, by Proposi-
tion 1(a),

.1 � �2/ sc.x; �; �/ D R0.�/Œ�; �2�R.�/Œ�; �1�e
i�� �x ;
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To take the asymptotic asx D r!, r D jxj ! 1, we recall the asymptotic formula forR0.�/f , wheref has compact
support, see [M3, section 1.7], (note that in [M3], we have to take complex conjugate since the resonances there are in
the upper half-plane)

ŒR0.�/f �.r!/ D
e i�r

r
n�1

2

�
v1.!; �/C O

�1

r

��
; (18)

where

v1 D
i

2
.2�/�

nC1
2 �

n�3
2 e�i� n�1

4 Of .�!/: (19)

The functionv1 is called in the applied literature the far-field pattern of the outgoing solutionv to .����2/v D 0 for
largex (which always can be expressed asv D R0.�/f for largex). In our case,v1 is just the scattering amplitude,
if v D  sc. Thus we get

A.!; �; �/ D
1

2
e�i� n�3

4 .2�/�
nC1

2 �
n�3

2

Z
e�i�!�x Œ�; �2�R.�/Œ�; �1�e

i�� �� dx: (20)

It is clear from this formula, that the scattering amplitudeA can be extended meromorphically everywhere, where the
resolvent admits continuation as well. In particular, all poles ofA are poles of the cut-off resolvent as well.

As in [Z4], [PZ2], introduce the operators

ŒE˙.�/f �.!/ D
Z

e˙i�!�xf .x/ dx D Of .��!/; ! 2 Sn�1;

and we will applyE˙.�/ only to functionsf with compact support. Lett E˙.�/ be the transpose operators defined as
operator with Schwartz kernelst E.x; !/ D E.!;x/. Then viewing the scattering amplitude as an operatorA.�/ on
L2.Sn�1/ with kernelA.!; �; �/, we recover the formula forA in [PZ2] modulo normalizing factors:

A.�/ D
1

2
e�i� n�3

4 .2�/�
nC1

2 �
n�3

2 E�.�/Œ�; �2�R.�/Œ�; �1�
t EC.�/: (21)

The scattering matrixS.�/ is an operator onL2.Sn�1/ and the kernel ofS � I is given by

a.!; �; �/ WD �2

�
i�

4�

� n�1
2

A.!; �; �/:

Therefore,
S.�/ D I C cn�

n�2E�.�/Œ�; �2�R.�/Œ�; �1�
t EC.�/; cn D �i.2�/�n2.1�n/=2: (22)

Note that one can replaceE�.�/ by E�.�/1fR2<jxj<R3g, andtEC.�/ by 1fR1<jxj<R2gt EC.�/ above.
The scattering poles are defined as the poles ofS.�/ in the lower halfplane=� < 0. It is known thatS�.�/ D

S�1.N�/, and in particular,S is unitary for� 2 R. Note that possible non-negative eigenvalues ofP do not contribute
to real poles becausekS.�/k D 1 for � not a pole, and if�0 2 R were a pole, then we would havekS.�/k ! 1, as
R 3 � ! �0. On the other hand, the finite number of negative eigenvalues��2

j contribute to poles ofS.�/ at i�j in
the physical halfplane=� > 0 that we do not include in the definition of resonances. It is known, that this definition
of resonances is equivalent to the one as the poles of the resolvent in=� < 0 given above, including the multiplicities.

Thescattering determinants.�/ is defined by

s.�/ D detS.�/:

Thescattering phase�.�/ is given by

�.�/ D
1

2� i
logs.�/; �.0/ D 0; �.��/ D ��.�/: (23)
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3 Preliminary results

Lemma 1 LetM.r / be as in (5). Then

M.r / D Ar n C o.r n/; asr ! 1: (24)

with someA > 0, if and only if
N .r / D Ar n C o.r n/; asr ! 1; (25)

Proof: Assume (24), i.e.,M.r / D Ar n C �.r /r n, where limr!1�.r / D 0. Set�C.r / D supt�r j�.t/j. Then
jM.r / � Ar nj � �C.r /r n, and�C is decreasing and converges to0. If �C.r / D 0 for r large enough, our statement
follows easily. Assume this never happens, then�C.r / > 0 for all r . Set˛ D r

p
�C.r /. Then

n

Z rC˛

r

N .t/

t
dt D M.r C ˛/ � M.r / D An˛r n�1 C O.r n�C.r //:

On the other hand,

n˛
N .r /

r C ˛
� n

Z rC˛

r

N .t/

t
dt � n˛

N .r C ˛/

r
:

Therefore,

N .r / � Ar n�1.r C ˛/C C 0r n�C.r /
� r

˛.r /
C 1

�
D Ar n C o.r n/:

Similarly,
N .r C ˛/ � Ar n � C 00r nC1�C.r /=˛ D Ar n � C 00r n

p
�C.r /:

This easily yiledsN .r / � Ar n � o.r n/, which completes the proof of the implication (24)� (25).
Assume now (25). Given� > 0, let a be such thatjN .r / � Ar nj � �r n for r > a. Then

jM.r / � Ar nj � n

Z r

0

jN .t/ � Atnj
t

dt � C.a/C �

Z r

a

ntn�1 dt D C.a/C �.r n � an/:

Divide by r n to getr �njM.r / � Ar nj � 2� for r large enough, and this proves (24). 2

The following lemma is due essentially to R. Froese [Fr] and its semiclassical version is presented in [PZ2].

Lemma 2 For anyr > 0 we have

1

n
M.r / D 2

Z r

0

�.t/

t
dt C

1

2�

Z �

0

log js.re i� /j d� C m.r /;

where0 � m.r / D O.log r / (andm D 0 if P has no negative eigenvalues).

Proof: The resonances are zeros ofs.�/ in =� > 0, with multiplicities, with finitely many possible exceptions at
points in the setfi�jg. On the other hand,s.�/ may have a finite number of poles in the same set. Assume first thatr

is not an absolute value of a resonance or a zero ofs.�/ in =� > 0. Letn.t/ be the number of poles ofs.�/ on i.0; t/.
Following the proof of Jensen’s formula, we integrates0=s along the contourŒ�r; r �[ r exp.iŒ0; ��/ keeping in mind
thats0=s D 2� i� 0, to get

N .t/ � n.t/ D
1

2� i

I
s0.z/

s.z/
dz D =

1

2�

I
s0.z/

s.z/
dz

D
Z t

�t

� 0.z/ dz C
1

2�

Z �

0

t
d

dt
log js.te i� /j d�

D 2�.t/ C
1

2�

Z �

0

t
d

dt
log js.te i� /j d�:

Divide by t and integrate to get the lemma. Note that the integrand has singularities at the resonances and the zeros,
and to justify the calculations we use the same arguments as in [T] together with the fact thats.0/ D 1. 2

8



Proposition 2

M.r / D 2
�
N ].r / � �nRnr n

�
C

n

2�

Z �

0

log js.re i� /j d� C o.r n/; asr ! 1: (26)

Proof: We apply Lemma 2. To estimate the scattering phase, we apply the asymptotic (13). 2

Below, we will sketch a proof that the integral term in (26) is bounded byC.Rn
0
r n C 1/ with an absolute constant

C , which is one of the ways to prove the polynomial bound (1), see e.g., [PZ2]. The reason we sketch this proof is to
explain the main idea in the proof of Theorem 2.

To estimate the scattering determinants.�/, we proceed in the usual way, see for example [PZ2]. By (22), we need
to estimate the characteristic values ofS.�/ � I , which equalsA.�/ modulo polynomial factors, see (21) and (22).
This reduces to an estimate of the characteristic values of the operatorsE�.�/1R2<jxj<R3

, and1R1<jxj<R2
EC.�/, see

the remark after (22), and the latter can be done by estimating

�m
� e i�x�� ; jxj � R3:

We need to work here in a sector0 < ı � arg� � � � ı. Using a standard argument, to cover the missing sectors
0 � arg� � ı and� � ı � arg� � � , we use the fact thatjsj D 1 on R and the Phragm´en-Lindelöf principle.

More precisely, assume thatR3 D 1 and that in the representation (22), the cut-off functions�1 and�2 are so
that they are supported inB.0; 1/. Then the statement for anyR3 > 0 would follow by a scaling argument. In what
follows, 0 < ı � arg� � � � ı for some0 < ı < 1=.n C 1/ andj�j � 1. Note thatkR.�/k � C=j�j2 � C for � in
this region, so in (22), we have Œ�; �2�R.�/Œ�; �1� e

i�� ��


L2.Rn/
� Cej�j (27)

with C > 0 depending onı only and in particular, independent ofP . Therefore, for anym D 1; 2; : : :,

j�m
! a.!; �; �/j � Cej�j max

jxj�1

ˇ̌
ˇ�m

! e�i�x�!
ˇ̌
ˇ ; 8!; �; (28)

with a similarC . This shows that one can get the standard now estimate of the characteristic values of the operator
with kernela.!; �; �/ as in [Z3, Lemma 2]

ˇ̌
�m

! a.!; �; �/
ˇ̌

� C 2mC1
�
j�j2m C .2m/!

�
e2j�j; (29)

with C as above. By [Z2, Proposition 2],
js.�/j � CeC j�jn (30)

with C > 0 independent ofP under the assumptionR0 < R3 D 1. This is an analogue of [PZ2, Lemma 4.3], where
(30) is proved in the semiclassical case (and is implicit in [PZ1]). A scaling argument gives us immediately

js.�/j � CeCRn
3

j�jn ; C D C.n;R3=R0/;

whereR3 is any constant such thatR3 > R0. As mentioned above, using Phragm´en-Lindelöf principle, we extend
this to=� � 0.

The main idea behind the proof of Theorem 2, as explianed briefly in the Introduction, is the following. To get an
explicit value forC , we notice that by a well known expansion ofe i�x�� in spherical harmonics and Bessel functions
J�, see Lemma 3, one can find the characteristic values ofE�.�/1R2<jxj<R3

, and1R1<jxj<R2
EC.�/ explicitly in

terms ofJ�.r /, see (49). In the spherically symmetric cases (i), (ii), (iii), this in fact gives not only an upper bound,
but an asymptotic of the integral term in (26).
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4 Preliminaries about Bessel’s functions

We will recall some facts about separation of variables in polar coordinates for the Laplace operator, see e.g., [Fo],
and some asymptotics of Bessel’s functions, see [O1], [O2], [O3]. Denote byY m

l
, l D 0; 1; : : :, m D 1; : : :m.l/, an

orthonormal set of spherical harmonics onSn�1. They are the eigenfunctions of the Laplacian�Sn�1 on Sn�1. We
have

��Sn�1 Y m
l D l.l C n � 2/Y m

l ; l D 0; 1; : : : I m D 1; : : : ;m.l/:

For eachl , the multiplicity of the eigenvaluel.l C n � 2/ is given by

m.l/ D
2l C n � 2

n � 2

�
l C n � 3

n � 3

�
D

2ln�2

.n � 2/!

�
1 C O.l�1/

�
: (31)

Any solutionu of the Helmholtz equation.�� � �2/u D 0 near0 has the form

u.x/ D
1X

lD0

clm.�r /1�n=2JlCn=2�1.�r /Y m
l .!/; (32)

wherex D r! andr > 0, j!j D 1 are polar coordinates. Similarly, any outgoing solution at1 has similar expansion,
with J� replaced byH .2/

� . The functions�1�n=2JlCn=2�1.�/ are entire and in particular, regular at� D 0.
We will need the formula below.

Lemma 3 For any� 2 Sn�1, � 2 C, andx 2 Rn, we have

e i�x�� D .2�/n=2
X

l

il Y m
l .!/Y

m
l
.�/.�r /1�n=2JlCn=2�1.�r /; x D r!: (33)

Proof: This formula is known and widely used, at least in the 3D case. We could not find a proof for general oddn’s,
so we will sketch one here.

Note first that the series above converges absolutely and uniformly for any� , and� in any compact, as a conse-
quence of the well known asymptotics ofJ�, as� ! 1. It is enough to prove it for real�, because we can then extend
it analytically for all�. With x D r!, we have

e i�r!�� D
X

l;m

almY m
l .!/;

where

alm D
Z

Sn�1

e i�r!�� Y m
l
.!/ d!:

By the Funk-Hecke Theorem (see e.g., [EMOT,~11.4]),

alm D Y m
l
.�/ il .2�/n=2

Z
t1�n=2JlCn=2�1.t/f .t/ dt; (34)

where

f .t/ D .2�/�1

Z 1

�1

e�iste i�rs ds: (35)

The well-known integral representation

�
�
� C

1

2

�
J�.z/ D

1
p
�

�z

2

��
Z 1

�1

e izt
�
1 � t2

���1=2

dt

shows thatt1�n=2JlCn=2�1.t/ has Fourier transform supported inŒ�1; 1�. Expressing (34) via the Plancherel theorem,
we see that one can change the definition off in (35) by integrating from�1 to 1, and this would not change (34).
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The integral in (35) however, over the whole real line, is simplyı.t ��r /. Settingf D ı.t ��r / in (34), we complete
the proof of the lemma. 2

Let Ai be the Airy function, having its zeros on the negative real axis; set Ai˙.w/ D Ai .e�2� i=3!/. Then

Ai.w/ �
e��

2
p
�w1=4

 
1 C

1X

sD1

cs

�s

!
; Ai 0.w/ �

�w1=4e��

2
p
�

 
1 C

1X

sD1

c0
s

�s

!
; j argwj < �; (36)

where� D 2
3
w3=2. In particular, Ai.!/ is exponentially decaying, asj!j ! 1, in the sectorj argwj < �=3. The

expansions above hold for Ai˙ as well with the appropriate choice of the branch of!3=2; this branch is uniquely
determined by the condition that Ai˙.!/ is exponentially decaying foṙ argw 2 .�=3; �/.

Near the zeros of Ai.w/ we have [O3, p. 413],

Ai .�w/ �
1

p
�w1=4

(
cos

�
� �

�

4

� 
1 C

1X

sD1

ds

�2s

!
C sin

�
� �

�

4

� 1X

sD0

Qds

�2sC1

)
; j argwj <

2�

3
; (37)

Ai 0.�w/ �
w1=4

p
�

(
sin
�
� �

�

4

� 
�1 C

1X

sD1

d 0
s

�2s

!
C cos

�
� �

�

4

� 1X

sD0

Qd 0
s

�2sC1

)
; j argwj <

2�

3
: (38)

Following Olver [O1], [O2], introduce the functions

�.z/ D
2

3
�3=2 D log

1 C
p

1 � z2

z
�
p

1 � z2; j argzj < �:

The branches of the functions appearing above are chosen so that� is real, if z is real. The mapping properties of
� and� can be found in [O3, p. 336], and they are of fundamental importance in our analysis. An important role is
played by the eye-shaped domainK, symmetric about the real axis, bounded by the following curve and its conjugate:

z D ˙.t cotht � t2/1=2 C i.t2 � t tanht/1=2; 0 � t � t0; (39)

andt0 D 1:19967864 : : : is the positive root oft D cotht . The intercepts of@K with the imaginary axis arė .t2
0

�
1/1=2 D ˙i 0:6627 : : :. Notice that inCC D fzI =z > 0g, we have<� > 0 in K, and<� < 0 outside NK.

0

∂K

1−1

i 0.6627 . . .

Figure 1: Sketch of the domainK in the upper halfplane=z � 0.

The following asymptotic expansions are established in [O1], [O2], see [O1, Theorem B], and [O2,~4]:

J�.�z/ �
�

4�

1 � z2

�1=4
 

Ai .�2=3�/

�1=3

1X

sD0

As.�/

�2s
C

Ai 0.�2=3�/

�5=3

1X

sD0

Bs.�/

�2s

!
; (40)
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H .1;2/
� .�z/ �

2e�i�=3

�1=3

�
4�

1 � z2

�1=4
 

Ai �.�2=3�/

�1=3

1X

sD0

As.�/

�2s
C

Ai 0
�.�

2=3�/

�5=3

1X

sD0

Bs.�/

�2s

!
: (41)

The infinite series expansions above are uniform inj argzj � � � ı, ı > 0 fixed. Similar expansions hold for the
derivatives, and they can be obtained by differentiating (40), (41) term by term.

5 Sharp estimate of the scattering determinants.�/

To prove Theorem 2, we will use Proposition 2. To this end, we need to estimate the integral

n

2�

Z �

0

log js.re i� /j d�: (42)

We will prove first the following sharp estimate on the scattering determinants.�/ in =� � 0:

Theorem 5
(a) For any� 2 Œ0; ��,

log js.re i� /j � hn.�/R
n
0r n C o.r n/; asr ! 1, (43)

where

hn.�/ D
4

.n � 2/!

Z 1

0

Œ�<��C.te i� /

tnC1
dt (44)

and the remainder term depends on the operatorP , and is uniform for0 < ı � � � � � ı for anyı 2 .0; �/.
(b) For anyı > 0,

log js.re i� /j �
�
hn.�/R

n
0 C ı

�
r n C o.r n/; asr ! 1 (45)

uniformly in� 2 Œ0; ��.

Remark. The integral above can be evaluated to some extent. In then D 3 case, for example, we get

h3.�/ D 4

Z
Œ�<��C.te i� /

t4
dt D

4<.1 � z2/3=2

9jzj3
;

wherez is the unique point on@K with argument� , i.e.,z is given by (39) witht 2 Œ0; t0� the unique solution of

tan2 � D
t � tanht

cotht � t
:

Another way to definez D z.�/ is as the solution of<�.z/ D 0, argz D � .

Remark. One can verify thathn.�/ � Cn�
5=2 as� ! 0C. In fact, we prove that one can replaceı in (45) byO.�/

near� D 0, see (58). A more careful analysis of the leading term in (45) as� ! 0C is in principle possible, but not
needed for our purposes because at the end, we will integrate (45) in� 2 Œ0; ��.

Proof of Theorem 5:We will estimate the integral (42). Recall Weyl’s estimate

j det.I C B/j �
1Y

jD1

.1 C �j .B//;
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provided thatB is trace class. We also recall that det.I C AB/ D det.I C BA/. Then by (22),

log js.�/j D log
ˇ̌
ˇdet

�
I C cn�

n�2E�.�/ 1R2<jxj<R3
Œ�; �2�R.�/Œ�; �1� 1R1<jxj<R2

t EC.�/
�ˇ̌
ˇ

D log
ˇ̌
ˇdet

�
I C cn�

n�2Œ�; �2�R.�/Œ�; �1� 1R2<jxj<R3

t EC.�/E�.�/ 1R1<jxj<R2

�ˇ̌
ˇ

�
1X

jD1

log
�
1 C �j

�
cn�

n�2Œ�; �2�R.�/Œ�; �1� 1R2<jxj<R3

tEC.�/E�.�/ 1R1<jxj<R2

��
: (46)

We work in the set
�0 � arg� � � � �0; 2 � j�j (47)

with a fixed0 < �0 < �=2. There, we have by the spectral theorem and standard elliptic estimates for��,

kŒ�; �2�R.�/Œ�; �1�k � C:

Here and below, all constants may depend on�0 that is kept fixed. Use this and�j .AB/ � kAk�j .B/ to get

log js.�/j �
1X

jD1

log
�
1 C C0j�jn�2�j

�
1R2<jxj<R3

t EC.�/E�.�/ 1R1<jxj<R2

��
(48)

By (33), the operator

L2.Sn�1/ 3 f .!/ ’
Z

Sn�1

e�i�r!��f .!/ d! 2 L2.Sn�1/; j� j D 1;

is a diagonal one in the spherical harmonics base, and has eigenvalues.2�/n=2i l .��r /1�n=2JlCn=2�1.�r�/ with
multiplicities m.l/ given by (31). Therefore, the non-zero characteristic values

�j

�
1R2<jxj<R3

t EC.�/E�.�/1R1<jxj<R2

�

coincide with

Q�l D .2�/n
� Z R2

R1

j.�r /1�n=2JlCn=2�1.�r /j2r n�1 dr
�1=2� Z R3

R2

j.�r /1�n=2JlCn=2�1.�r /j2r n�1 dr
�1=2

; (49)

l D 0; 1; : : :, each one repeatedm.l/ times. The sequence above may not be decreasing but since the series (48)
converges absolutely, it will not be affected by rearrangement of its terms.

So the problem is reduced to that of estimating the exponential growth of

jJ�.�R1/J�.�R2/j; R1 � R2 � R:

Notice first, that by (40),
jJ�.�z/j � Ce��<�

for z in the sector�0 � argz � � � �0. From now on, we denote

� D l C
n

2
� 1: (50)

Note that� is half-integer, becausen is odd. Then (see (49)),

j.�r /1�n=2J�.�r /j2r n�1 � C j�j2�nre�2�<�.�r=�/:

We want to estimate this forR1 � r � R2 and� as in (47). Observe that fort > 0, �d<�.tz/=dt D t�1<
p

1 � .tz/2 >

0 for z in the sector (47). Therefore, the exponent above is an increasing function ofr , and

log
�
j.�r /1�n=2J�.�r /j2r n�1

�
� �2�<�.�R2=�/ C C; R1 � r � R2:
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This yields (see (49), (48)),

log
�
C0j�jn�2 Q�l

�
� �2�<�.�R3=�/C C log j�j; (51)

and

log js.�/j �
1X

lD0

m.l/ log
�
1 C C0j�jn�2 Q�l

�
: (52)

Observe that�<�.�R3=�/ > 0 for �R3=� 62 K, and�<�.�R3=�/ � 0 otherwise (in the set (47)). Fix0 < ı < 1.
We will split the sum above into three partṡ1;2;3 corresponding to�R3=� 62 .1Cı/K,�R3=� 2 .1Cı/Kn .1�ı/K,
and�R3=� 2 .1 � ı/K, respectively.

To estimatė 1, we use the inequality

0 < a < A; 1 � A � log.1 C a/ � log.1 C A/ D logA C log.1 C 1=A/ � logA C log2; (53)

and (51) to get

˙1 �
X

�R3=� 62.1Cı/K

2�m.l/Œ�<��.�R3=�/C C j�jn�1 log j�j

�
X

�R3=� 62.1Cı/K

4�n�1

.n � 2/!
Œ�<��.�R3=�/C C j�jn�1 log j�j:

To be more clear, the summation above is taken over all� D l C n=2 � 1, l D 0; 1; : : :, with the property indicated. To
estimate the remainder we used (31) and the fact that� � C j�j. To get the second inequality above, we used (31) again
and the fact that�<�.z/ � jzj.1CO.jzj�1/, jzj > 1=C , =z > 0. The fact that�<�.�R3=�/ is a decreasing function
of � makes it easy to prove that one can replace the sum above by an integral with the same remainder estimate:

˙1 �
Z

�R3=� 62.1Cı/K

4�n�1

.n � 2/!
Œ�<��.�R3=�/ d� C C j�jn�1 log j�j

D .rR3/
n

Z

tei� 62.1Cı/K

4

.n � 2/!

Œ�<��.te i� /

tnC1
dt C C r n�1 logr; � WD re i� : (54)

We made the change of variablesrR3=� D t above.
To estimatė 2, note that�<�.R3�=�/ changes sign now but we have�<�.R3�=�/ � Cı with C independent

of �0 as can be seen using the relationship� D .2=3/�3=2 between� and�, and the fact that� is analytic nearz D 1.
To apply the same argument nearz D �1, we use the symmetry property<�.�Nz/ D <�.z/. Reasoning as above, we
get

˙2 � Cır n; (55)

uniformly in � , wherer D j�j as above.
Finally, for � as in the definition oḟ 3, we haveı=C � <�.R3�=�/. Using the inequality log.1 C a/ � a, a > 0,

and (51), we deduce
˙3 � Ce�r=C ; (56)

with someC D C.ı/.
Recall that in=z > 0, K is characterized by the condition<�.z/ > 0. We can integrate overte i� 62 K in (54) and

this will only increase the integral (by addingO.ır n/, as in (55), so we are in no danger of losing the sharpness of the
estimate). Also, we can integrate over=te i� > 0, i.e., overt > 0, as long as we replace�<� by Œ�<��C because
Œ�<��C D 0 in K.

Combine (54), (55) and (56) to get

log js.re i�/j � .rR3/
nhn.�/C Cır n C C1r n�1 logr; �0 � � � � � �0; (57)
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whereC > 0 depends on�0 andR3; C1 depends in addition onı, see (56), but they not depend onr . Clearly,
hn.�/ � 1=C for � as in (57), therefore theCır n term can be absorbed by the preceeding one at the expense of
parturbingR3 by anO.ı/ term. So we may formally assume thatı D 0, and (57) still holds.

Consider the functionf� .r / D r �n log js.re i�/j � Rn
0hn.�/. By (57) and the remark above, for anyR3 > R0, we

havef� .r / � C0.R
n
3

� Rn
0
/C ˛�;R3

.r /, where0 � ˛�;R3
.r / ! 0, asr ! 1 uniformly for � as in (57). Set

ˇ.r / D inf
�0������0 ; R0<R3<R0C1

˚
C0.R

n
3 � Rn

0/C ˛�;R3
.r /
	
:

Choose� > 0. Let QR3 2 .R0;R0 C 1/ be such thatC0. QRn
3

� Rn
0
/ � �=2. Let r0 be such that̨

�; QR3
.r / � �=2 for

r � r0 and all� as above. Theň.r / � � for r � r0. In other words,̌ .r / ! 1, asr ! 1, andf� .r / � ˇ.r / for
all � as above. This completes the proof of (a).

To prove (b), notice that since the scattering operator is unitary for real�, we have logjs.˙r /j D 0. Also, we
have the rather rough a priori estimatejs.�/j � CeC j�jn in =� > 0, see e.g., [PZ2]. Since the functionr n sin.n�/
is harmonic in� D re i� , we can apply the Phragm´en-Lindelöf principle to the harmonic function logjs.re i� /j �
Ar n sin.n�/ in the sector0 � � � �0 with A D 2Rn

0
hn.�0/= sin.n�0/ to get

log js.re i� /j � 2Rn
0hn.�0/

sin.n�/

sin.n�0/
r n; for r � 1, 0 � � � �0 : (58)

Sincehn.�/ ! 0, as� ! 0, this proves part (b) of the theorem. 2

Set
@KC WD @K \ f=z � 0g: (59)

Lemma 4

ASn�1 D
2

�

1

n.n � 2/!

Z

@KC

j1 � z2j1=2

jzjnC1
jdzj:

Proof: We start with formula (6). Setu D �<�. Thenu is aC 1 function in the closure ofCC n K. Indeed, this is
true atz D 1 because� D 2�3=2=3, and� is analytic there. It is also true at.�1;�1� as well, becauseu.�Nz/ D u.z/.
Inside that domain,u is harmonic. On the other hand,�n�2jzj�n D jzj�n�2, where� is the Laplacian inR2 that we
identify with C. Now, we view the integrand in (6) asu�n�2jzj�n, and apply Green’s formula inCC n K using the
fact thatu D O.jzj/, ru D O.1/, asjzj ! 1. Sinceu D 0 on the boundary, we get

Z

=z>0

Œ�<��C.z/
jzjnC2

dx dy D
Z

@KC

@u

@�

1

n2jzjn
jdzj C 2

Z 1

1

@u

@y

1

n2xn
dx;

where� is the unit normal to@K, pointing into the exterior toK. Note that in both integrals in the r.h.s. above, the
integration is taken over a curve defined byu D 0. Then� D ru=jruj, and@u=@� D jruj. On the other hand,
�0 D �

p
1 � z2=z, thereforejruj D j1 � z2j1=2=jzj. Then by (6) and the formula above, we get

ASn�1 C 2
vol2.B.0; 1//

.2�/n
D

2

�n.n � 2/!

Z

@KC

j1 � z2j1=2

jzjnC1
jdzj C

4

�n.n � 2/!

Z 1

1

p
t2 � 1

tnC1
dt:

It remains to show that the second term in the l.h.s. equals the second one in the r.h.s.
After the change of variablest D 1=s, and then settingy2

1
C : : : y2

n�1
D s2, we get

Z 1

1

p
t2 � 1

tnC1
dt D

Z 1

0

p
1 � s2 sn�2 ds D

1

2!n�1

Z

y2
1

C:::Cy2
n�1

dy D
!n

2n!n�1

D
p
�� .n�1

2
/

2n�.n
2
/
;

where!n D 2�n=2=� .n=2/ is the area ofSn�1 (and then vol.B.0; 1// D !n=n). The proof is then reduced to
showing that

2

�n.n � 2/!

p
�� .n�1

2
/

2n�.n
2
/

D
vol2.B.0; 1//

.2�/n
;
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and that can be verified by uisng the Legendre duplication formula� .2t/ D .2�/�1=222t�1=2� .t/� .t C 1=2/ applied
to t D .n � 1/=2. 2

6 Proof of Theorem 2 and Corollary 1

Proof of Theorem 2:The proof of Theorem 2 follows directly from Proposition 2 and Theorem 5(b). We integrate (45)
w.r.t. � 2 Œ0; ��, and then pass from polar coordinates to Cartesian ones.

Proof of Corollary 1:
Consider (i). By the standard Weyl asymptotics,N ].r / D �n.R

n � vol.O//r n.1 C OR.1=r //. Apply Theorem 2
and in lim supM.r /=r n, take the limitR ! R0C.

Next, consider (ii). ForN ], we haveN ].r / D �nRnr n.1 C OR.1=r //. Take the limitR ! R0C as above to
prove the corollaty in case (ii).

Finally, in case (iii), we haveN ].r / D .2�/�n
R

jxj�R ;
P

c2gij �i �j �1
dx d�.1 C OR.1=r //, and as above, we get

the desired estimate.

7 Asymptotics of the sphere resonances, proof of Theorem 1

It is enough to study the caseR0 D 1. It is well known (and also follows from section 4) that the resonances of the unit
sphereSn�1, n odd, coincide with the zeros ofH

.1/
� .�/, � D l C n=2 � 1, l D 0; 1; : : :, and each one has multiplicity

m.l/, see (31). By [O2] and (41), they lie in anO.1=�/ neighborhood of�@K \ f=z < 0g and are symmetric to the
zeros ofH .2/

� .�/ about the real axis, see Figure 2. They are the zeros of the polynomiale�i���H
.2/
� .�/ of degree

� � 1=2. More precisely, one can describe those resonances as follows.

Figure 2: Resonances of the unit sphereS2 (with Dirichlet b. c.), corresponding to� � 30.

Set

ak D
h3

2

�
�
�

4
C k�

�i2=3

; k D 1; 2; : : : :

We viewak as approximate zeros of Ai.�z/, and by (37), the actual zeros of Ai.�w/ stay at distance no greater than
C=

p
ak . Motivated by (41), we then set

��k D ���1.��2=3e�i�=3ak / D ���1.�i.k � 1=4/�=�/; k D 1; 2; : : : ; � �
1

2
: (60)
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We view N��k , k D 1; : : : ; l C .n�3/=2, l D 0; 1; : : : (recall (50)), as approximate resonances. The difference between
��k and the zerosh�k of H

.2/
� can be estimated as follows. We combine asymptotics (37), (38) of Ai, Ai0 with that of

H
.2/
� (41). Then we get

cos.i�� � �=4/C O.1=�j�j/ D 0; (61)

where� D �.�=�/ and ignoring the remainder, we do get solutions�k� as in (60). To simplify our analysis, we will
analyze only the zerosh�k and the approximate ones�k� in the sector

� � arg� � � � �; (62)

with 0 < � � 1 fixed, and we will estimate roughly the rest of the zeros. This will guarantee, that we work with�

that is away from0 and�i� . One can, in principle, work in the whole sector arg� 2 Œ0; �� and use the fact that even
though� is not analytic (and invertible) near1, the function� is; and this would probably give a sharp bound on the
remainder term in Theorem 1.

For� as in (62),� D �.�=�/ satisfiesj�j � �3=2=C . Since the spacing between distinct��k is uniformly bounded
from below in (62), by the Rouch´e theorem we get from the equation cos.i��.�=�/��=4/CO.1=�/ D 0 for h�k D �

that j��k � h�k j � C=� for thoseh�k in the sector (62). For the remainingh�k we have

#
˚
h�k I argh�k � � or argh�k � � � �

	
� C�3=2�; (63)

and they stay at a distanceO.1=�/ from @KC in the sector (62).
We will estimate now the number

�.r; �; � C��/ D
X

j��k j�rI ��arg��k ��C��

m.l/; (64)

see (31), for� in (62) and0 < �� small enough. Letz.�/ be defined byz 2 @K, argz D � . ThenŒ0; �� 3 � ‘ z.�/

is a parameterization of@KC. On the other hand, the properties of� imply that Œ0; �� 3 t ! ��1.�it/ D z is another
parameterization. Differentiating�.z/ D �it , we get�0.z/.dz=dt/ D �i, therefore

dt

dz
D i�0.z/ D �i

p
1 � z2

z
: (65)

Note that for any��k appearing in (64),j��kj D �jz.�/j C �O.��/. On the other hand, for a fixed�, the number�k

of k ’s appearing in (64) satisfies��k=� D �t C O.1=�/, therefore the number of��k ’s corresponding to the interval
Œt; t C�t � is ��t C O.1/. Therefore,

�.r; �; � C��/ D
X

�jz.�/j�r

m.l/
��t

�
C r nO..�t/2 /C O.r n�1/

D
X

��r=jz.�/j

2�n�1

�.n � 2/!
�t C r nO..�t/2 /C O.r n�1/:

Note that for� as in (62),t stays at distance to the endpoints0 and� of Œ0; �� at least
p
�=C . This, in combination

with (65), and the inequality above, yields

�.r; �; � � �/ D
2r n

�n.n � 2/!

Z

@KC

dt

jzjn
C r nO.�/ C O.r n�1/

D
2r n

�n.n � 2/!

Z

@KC

j1 � z2j 1
2

jzjnC1
djzj C r nO.�/ C O.r n�1/;

compare with Lemma 4. By (63),
�.r; 0; �/C�.r; � � �; �/ � C�3=2r n:

The estimates above, true for any0 < � � 1, combined with Lemma 4, prove Theorem 1 for�.r; 0; 2�/. The relation
between��k andh�k (and the resonancesNh�k) established above yields the same result forNSn�1 .r /. 2
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8 Proof of Theorem 3

As mentioned in the Introduction, the asymptotic formulaN .r / D KnRn
0
r n C o.r n/ was proven in [Z2], so we only

need to show thatKn is given by (6). As above, it is enough to study the caseR0 D 1. Note first that in the notation
of [Z2], � there corresponds to�i� here, therefore,<� D =�. The approach in [Z2] is to find approximate��k in
Lemma 6 there:

��k D i
�k

�
C

log�

�
C

1

�
logf

�
�k

�

�
; k D �Œ�=2�; : : : ;�1; 0; 1; : : : ; (66)

f .�/ D 1 � z2, and to consider “approximate resonances”��k given as solutions of�.�=�/ D ��k. For k < 0,

��k lie near�@KC \ f<z > 0g (at a distance not exceedingO.log�/) similarly to the zeros ofh.1/
� , and those with

negative real parts are symmetric to them. Fork > 0, they lie in a logarithmic neighborhood of the positive real axis,
and again, there is a sequence with negative real parts, symmetric to them. They can be considered as approximate
zeros ofj�.�/. Each of the��k ’s is counted with multiplicitym.l/. The counting function of the first type is denoted
in [Z2] by n�.r /, the one related tok > 0 is nC.r /. Then one replaces��k in (66) by its first term i�k=� only and
counts the resulting�0s. The proof of [Z2] shows that this gives the leading term in the asymptotics for the exact
resonances. On the other hand, the counting functionn�.r / for ��1.i�k=�/ with k < 0 has the same asymptotics as
that ofNSn�1 .r /, see (60). Similarly, the counting functionn�.r / for ��1.i�k=�/ with k > 0 coincides with that of
the zeros ofj�.�/, counted with multiplicities as can be shown as in (61). The latter is governed by the classical Weyl
law, as it represents the eigenvalues of the Dirichlet problem inB.0; 1/. Therefore,

N .r / D NSn�1.r /C
vol2.B.0; 1//

.2�/n
r n C o.r n/;

which proves Theorem 8. We also note that one could also compare the integrals at the end of the proof of [Z2] on
p. 402, and compare them with the integral representation ofASn�1 we have, see also the proof of Lemma 4, and to
deduce the proof from there. 2

9 Proof of Theorem 4

Let us mention first, that by the Weyl formula for the transmission problem,

N ].r / D
1

.2�/n

Z

jxj�R0I c2j�j2�1

dx d� C �n.R
n � Rn

0/r
n C o.r n/; (67)

whereR is related to the reference operatorP ], as in the Introduction. This shows that the statement of the theorem
shows that the estimate in Theorem 2 turns into asymptotic, whenR ! R0C.

We will next find an explicit expression ofs.�/ in this case. Set

jl .t/ D t1�n=2JlCn=2�1.t/; h
.1;2/

l
.t/ D t1�n=2H

.1;2/

lCn=2�1
.t/:

Without loss of generality, we may assume thatR0 D 1. Let u 2 H 2
loc.R

n/ be any solution of.P � �2/u D 0.
Write u in polar coordinates, and project onto the eigenspace spanned by the spherical harmonics corresponding to the
momentuml to get for the following for the projectionul :

ul .r!/ D al.�/jl .�r=c/; r < 1:

OutsideB.0; 1/, we have
ul .r!/ D b

.1/

l
.�/h

.1/

l
.�r /C b

.2/

l
.�/h

.2/

l
.�r /; r > 1:
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By the transmission conditions implied by the requirementu 2 H 2
loc.R

n/, we get

b
.1/

l
.�/h

.1/

l
.�/C b

.2/

l
.�/h

.2/

l
.�/ D al .�/jl .�=c/; (68)

b
.1/

l
.�/h

.1/0

l
.�/C b

.2/

l
.�/h

.2/0

l
.�/ D c�1al .�/j

0
l .�=c/: (69)

Solving the system above, we get

b
.2/

l
.�/

b
.1/

l
.�/

D �
ch

.2/0

l
.�/jl .�=c/ � h

.2/

l
.�/j 0

l
.�=c/

ch
.1/0

l
.�/jl .�=c/ � h

.1/

l
.�/j 0

l
.�=c/

:

The quotient above is the absolute scattering matrix acting on the space spanned by the spherical harmonics with
momentuml . Since the absolute values of the determinants of the relative and absolute scattering matrices coincide,
we see that

js.�/j D
1Y

lD0

ˇ̌
ˇ̌
ˇ
ch

.2/0

l
.�/jl .�=c/ � h

.2/

l
.�/j 0

l
.�=c/

ch
.1/0

l
.�/jl .�=c/ � h

.1/

l
.�/j 0

l
.�=c/

ˇ̌
ˇ̌
ˇ

m.l/

:

This characterizes the resonances as the zeros of the denominator above with multiplicitiesm.l/. We will show that
they split into two groups: one near the real axis near the zeros ofjl .�=c/ (or those ofj 0

l
.�=c/ that have the same

asymptotic); and another one near the zeros ofh
.1/

l
.�/ (we can also view them as approximating the zeros ofh

.1/0

l
.�/).

The conjugates of those resonances inCC coincide with the zeros of the numerator, so we will study those zeros
instead of the resonances.

Therefore, we are interested in the asymptotic distribution of the solutions of

ch
.2/0

l
.�/jl .�=c/ � h

.2/

l
.�/j 0

l .�=c/ D 0; (70)

each one countedm.l/ times. This equation is equivalent to (for� 6D 0)

�h
.2/0

l
.�/

h
.2/

l
.�/

�
.�=c/j 0

l
.�=c/

jl .�=c/
D 0; (71)

that can be viewed as the transmission condition satisfied by the resonant states at the resonance frequencies. Note
that the terms above are regular at� D 0. We will use below the notation� D �.�=�/, �c D �.�=c�/, where� is as
in (50). We also reserve the notationz for �=�. Fix 0 < � � 1. We will study the zeros of the equation above for
z D �=� 2 ˝� WD C nfD.c; �/ [ D.1; �/g, (that must be lieCC), and then roughly estimate the zeros in the two disks
appearing above. Here,D.a; r / is the disk inC centered ata with radiusr . Note that the exclusion of a neighborhood
of z D 1 removes a neighborhood of� D 0. On the other hand,z 62 D.c; �/ guarantees thatj�cj � 1=C . We will
first express the ratioh.2/0

l
.�/=h

.2/

l
.�/ away from its zeros and poles that lie near�@KC. To use the asymptotics (41)

and (36), arg� must be outside a fixed neighborhood of��=3. In˝� \ CC, this is achieved ifz is away from a fixed
neighborhood of@KC. Therefore,

�

�

h
.2/0

l
.�/

h
.2/

l
.�/

D
�

�
�0 Ai 0

C.�
2=3�/

�1=3Ai C.�2=3�/
C O

�1

�

�
(72)

D ˙
p

1 � z2 C O
�1

�

�
for dist.z; @KC/ � �, j argzj � � � �; (73)

where we choose the positive sign forz 62 K, and the negative one otherwise. The last restriction is not significant
because of the symmetry of the resonances about the imaginary axis. Above,�0 D �0.�=�/, and the branch of

p
1 � z2

is chosen so that its imaginary part is non-positive for=z � 0. Similarly,

�j 0
l
.�=c/

�cjl .�=c/
D

��0
c

�c

Ai 0.�2=3�c/

�1=3Ai .�2=3�c/
C O

�1

�

�
(74)

D
q

1 � z2=c2 C O
�1

�

�
for � � j argzj � � � �. (75)
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It is easy to see that the leading terms in (73) and (75) are never equal in the common region of validity, moreover, the
absolute value of their difference is bounded from below by a positive constant. Therefore, for� � 1, equation (71)
may have solutions only in

�
f0 � argz � �g [ f� � � � argz � �g

�
[ fdist.z; @KC/ � �g : (76)

By the symmetry of resonances about the imaginary axis, it is enough to study them in<� � 0 only.
Let us first focus on the region̋ 1 D fdist.z; @KC/ � �g \ fjz � 1j � �I <z > 0g. Isolating a neighborhood of

z D 1 allows us to use the asymptotics of Ai sincej�j > 1=C . Then (72) is still valid but to get an analogue of (73),
we need to use (37), (38) instead of (36). We divide (70) byjl .�=c/ and after canceling an elliptic factor, we write it
in the form

0 D i
p

1 � z2 sin
�
i�� �

�

4

��
1 C O

�1

�

��
(77)

�
�q

1 � z2=c2 C O
�1

�

��
cos

�
i���

�

4

��
1 C O

�1

�

��
:

This can be written also as

tan
�
i���

�

4

�
D �i

p
1 � z2=c2

p
1 � z2

C O
�1

�

�
:

Forw 6D ˙i, the equation tanz D w has a unique solutionz D arctanw in 0 � <z < � , and by the periodicity of
tanz, all solutions are given by shifts byk� , k D 0;˙1; : : :. For � � 1, the r.h.s above is uniformly bounded from
below, at a distance� 1=C to ˙i for z 2 ˝1 , therefore we get the equation

i� D
1

�
arctan

p
1 � z2=c2

i
p

1 � z2
C

k C 1=4

�
� C O

� 1

�2

�
:

We think of this as an equation for�, wherez D z.�/. Sincez 2 ˝1, we wee thatC�3=2 � k=� � 1=2 C O.1=�/,
see (63). For� � 1, we get solutions

��k D �
k�

�
i C O

�1

�

�

for k as above. As in section 7, they are mapped intoz’s approximating zeros ofH .2/
� .�z/, with deviationO.1=�/,

and therefore we get conjugate resonances��k in anO.1/ neighborhoods of those zeros ofh
.2/
� .�/ that lie in anO.1/

neighborhood of�˝1. TheO.1/ error would not change the asymptotic of their counting function, therefore we get

#f��kI j��k j < r I � � �0g D
1

2

�
ASn�1 C O.�3=2/

�
r n.1 C o.1// (78)

based on the analysis in section 7, where�0 > 0 is fixed. The factor1=2 there is explained by the fact that we work in
<� > 0 only.

We next study the solutions of (71) in̋2 D f0 � argz � �I jz � 1j � �I jz � cj � �g. Similarly to the analysis
above, the reason to remove a neighborhood ofz D c is to be ensure thatj�c.z/j D j�.z=c/j � 1=C , therefore (74) is
still valid. This case is analyzed in a manner similar to that above, and we will skip the details. As a result, ifc > 1,
we get zeros in̋ 2 corresponding to

�c;�k D
k�

�
i C O

� 1

�

�
; k � C�3=2�; � � �0; (79)

andk is an integer, compare with (66) fork > 0 there. The correspondingQ��k D �c��1.�c;�k/ approximate zeros of
jl .�=c/ and have counting function satisfying

#fQ��kI j Q��k j < r I � � �0g D .�nc�n C O.�// r n.1 C o.1//: (80)
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Note that the correspondingzc;�k D �c;�k=� are inŒc;1/C O.1=�/, thus the restrictionjz � 1j � � does not play any
role in this case (c > 1). If c < 1, we have to removeO.�/� number ofk ’s from (79), and (80) will still be preserved.

It remains to estimate the numberN1;�.�/ andNc;�.�/ of zeros of (71) in the discsD.1; �/ andD.c; �/ that are
not covered by̋ 1 [˝2. We will prove that

N1;� .�/C Nc;�.�/ � C�� C C� log�: (81)

Set
f�.z/ D ch

.2/0

l
.�z/jl .�z=c/ � h

.2/

l
.�z/j 0

l .�z=c/:

We will estimate the numberN1�i�;�.2�/ of zeros injz � .1 � i�/j � 2� and then use the fact thatN1;� � QN1;� . By
Jensen’s formula,

log jf�.1 � i�/j C
Z 4�

0

N1�i�;� .s/

s
ds D

1

2�

Z 2�

0

log jf�.1 � i� C 4�e i� /j d�:

By a standard argument,

N1�i�;� .2�/ log2 �
1

2�

Z 2�

0

log jf�.1 � i� C 4�e i� /j d� � log jf�.1 � i�/j: (82)

Writef�.z/ D jl .�z=c/h
.2/

l
.�z/g� .z/, and as in (72), (74), we show thatjg�.1�i�/j � 1=C��C�=�. Letc > 1. Then

by the asymptotics ofJ�, H
.2/
� , logjjl .�z=c/h

.2/

l
.�z/j � � .��.1=c/C O.�//CO.log�/ on jz �.1��/j D 4�, and it

is an equality forz D 1��. Plugging this into (82), we get (81) forN1;�.�/. Letc < 1. Then logjjl .�z=c/h
.2/

l
.�z/j D

O .��/CO.log�/ on jz � .1��/j D 4�, and it is also true whenz D 1�� for the absolyte value of the same function.
Thus we get (81) forN1;�.�/ in this case as well. In the same way we prove (81) forNc;�.�/.

Estimate (81) show that the zeros missed in (78), (80) affect the leading term in the asymptotic ofNP .r / only by
an O.�/ term. On the other hand, summing up (78) and (80), and then taking the limit� ! 0 in lim supN .r /=r n,
completes the proof of Theorem 4. 2
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[SjZ1] J. SJÖSTRAND AND M. ZWORSKI,Complex scaling and the distribution of scattering poles, Journal of AMS4(4)(1991),
729–769.

[SjZ2] J. SJÖSTRAND AND M. ZWORSKI, Distribution of scattering poles near the real axis, Comm. P.D.E.17(1992), 1021–
1035.

[S1] P. STEFANOV, Quasimodes and resonances: sharp lower bounds, Duke Math. J.99(1999), 75–92.

[S2] P. STEFANOV, Sharp upper bounds on the number of resonances near the real axis for trapping systems, Amer. J. Math.
125(1)(2003), 183–224.

[S3] P. STEFANOV, Estimates on the residue of the scattering amplitude, Asymptotic Anal.32(3-4)(2002), 317–333.

[T] T ITCHMARSH, The Theory of Functions, Oxford Univ. Press, 1968.

[V1] G. VODEV, Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian inRn,
Math. Anal.291(1991), 39–49.

[V2] G. VODEV,Sharp polynomialbounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math.
Phys.146(1992), 205–216.

[V3] G. VODEV, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J.74(1994), 1–17.

[V4] G. VODEV, Sharp bounds on the number of scattering poles in the two dimensional case, Math. Nachr.170(1994),
287–297.

[V5] G. VODEV, Asymptotics on the number of scattering poles for degenerate perturbations of the Laplacian, J. Funct. Anal.
138(1996), 295–310.
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