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The Identification Problem in SPECT

This problem arises in SPECT. We measure the radiation emitted
by radioactive markers in the patient’s body, modeled by a source
distribution f (x), attenuated by the body, with attenuation a(x).
We want to recover f but we know neither f , nor a. So the
question is: can we recover both? — but we care about f only.

Math Model

The attenuated X-ray transform

Xaf (x , θ) =

∫
e−Ba(x+tθ,θ)f (x + tθ)dt, x ∈ R2, θ ∈ S1,

in the plane.

We use the notation

Ba(x , θ) =

∫ ∞
0

a(x + tθ) dt

to denote the “beam transform” of a, usually denoted by Da.
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Identification Problem

Given Xaf , recover both a and f .

Can we recover both?

I Short answer: Depends.

I Sometimes we can, even in a stable way; sometimes we
cannot.

I There is a hidden dynamical system (in the phase space).
Generally speaking, the problem is well posed, locally near
some (a, f ), if the perturbation δa is supported in a set which
is non-trapping w.r.t. that flow.

I If δa is supported in a trapping set ; well posedness and
uniqueness (even up to a finite dimensional set) may be lost.
In the radial case, at least, they are lost.

I There are various degrees of instability when the non-trapping
condition fails.3/39
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If we know a, problem solved. . .

When a is known, it is well known that f can be reconstructed
uniquely, even by means of explicit formulas:
Bukhgeim, Kazantsev & Arbuzov; Novikov; Natterer.

For this reason, some of the numerical attempts to do a
reconstruction are focused on recovery, or getting a good
approximation of a first, instead of treating (a, f ) as a pair. Then
they get a better approximation for a, etc. Sometimes this is called
attenuation correction. In clinical applications, additional X-rays
are taken to reconstruct a(x) first. Eliminating or reducing those
additional X-rays remains an important problem.
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Clinical scans with the wrong and the right attenuation

Figure : SPECT cardiac scans reconstructed assuming a = 0 (top), and
with an approximation of the actual a (bottom)
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a SPECT/CT scanner

Figure : The Siemens Symbia SPECT/CT scanner
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a CT (only) scanner

Figure : The Siemens Somatom Sensation Spirit CT scanner
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. . . but we do not know a

No much progress in the mathematical understanding of the
identification problem so far. A related but not identical problem
for finding both a constant attenuation and the source in the
exponential X-ray transform has been solved by Solmon and
Hertle. The main result in Solmon is, roughly speaking, that
specific pairs of constant a and radial f cannot be distinguished
but all other pairs can.

The identification problem with f a finite sum of delta sources has
been studied by Natterer, also Boman, but the results there do
not (and cannot) imply uniqueness.
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Natterer also viewed the problem as a range characterization
problem: if the ranges of Xa1 and Xa2 happen to be the same, for
example, then there cannot be uniqueness. If they intersect at the
origin only, there is. Range conditions, in example, in a work by
Novikov, have been viewed as a possible tool for solving the
problem, both numerically, for example by Bronnikov; and
analytically, as in the recent work by Jolllivet & Bal.
Numerical reconstructions have been tried, too, with variable
success, by

Censor et al., Manglos et al., Welch et al., Ramlau et al.,
Bronnikov, Zaidi,

for example. Some of them use clinical data.

A. L. Bukhgeim recently outlined a recovery algorithm if a is a
priori known to be a constant multiple of the characteristic
function of a star-shaped domain.
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Linearization

Linearize. Notation: δXa,f acting on (δa, δf ). Another notation:

Iw f (x , θ) =

∫
w(x + tθ, θ)f (x + tθ)dt,

which is the weighted X-ray transform of f with weight w(x , θ).
Note that Xa is of the same type but with a more special weight:
Xa = Ie−Ba .

Linearization

δXa,f (δa, δf ) = Iwδa + Xaδf ,

where

w(x , θ) = −
∫ 0

−∞
e−Ba(x+tθ,θ)f (x + tθ) dt.
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Another way to write w :

w = −e−Bau,

with u solving the transport equation (θ · ∂x + a) = f , u = 0 for
θ · x � 1:

u(x , θ) =

∫ 0

−∞
e−

∫ 0
t a(x+sθ) ds f (x + tθ)dt.
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A more general problem: inverting a sum of two weighted
X-ray transforms

In other words,

δXa,f (δa, δf ) = Iw1δa + Iw2δf ,

where
w1 = −e−Bau, w2 = e−Ba.

This brings us to the more general problem:

Inverting a sum of two weighted X-ray transforms

Given two weights w1,2(x , θ), and

I(g1, g2) = Iw1g1 + Iw2g2,

find g1 and g2.
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The first impression is that this might be too much to ask for, but
the second impression is that we seem to have two equations
(integrals in the θ and the −θ directions) for two unknowns. So
this might work, if a certain determinant is not zero. On the other
hand, that determinant vanishes for any x (and some θ), as we will
see in a moment.

To study Ker I, take the Fourier transform of

(Iw1g1 + Iw2g2) (z ,±θ) = 0, z ⊥ θ,

w.r.t. z , to get(
w1(x ,±D⊥/|D|) + l.o.t.

)
g1 +

(
w2(x ,±D⊥/|D|) + l.o.t.

)
g2 = 0.

Here, “l.o.t.” = “lower order terms”. This is actually a 2× 2
system of ΨDO equations.
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The determinant of the principal symbol is given by the following

Hamiltonian

p0(x , ξ) = W (x , ξ⊥/|ξ|),

where

W (x , θ) = w1(x , θ)w2(x ,−θ)− w1(x ,−θ)w2(x , θ).

This function is of fundamental importance. Since W is an odd
function of θ, it has zeros for any x! Therefore, p0 cannot be
elliptic in any domain. The Hamiltonian flow of p0 then plays a
fundamental role by the Hörmander’s propagation of singularities
theorem. We call the projections of the Hamiltonian curves on the
x-space rays.
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A radial example

Choose

w1 =
1

2
θ · x , w2 = 1.

Then
W (x , θ) = θ · x , |ξ|p0 = x1ξ2 − x2ξ1.

Therefore,

|D|p0(x ,D) = x1D2 − x2D1 = −i∂/∂φ,

where φ is the polar angle. Bicharacteritics:

x = R(cos t, sin t), ξ = λ(sin t, cos t), R ≥ 0, λ 6= 0.

The rays are the circles |x | = R ≥ 0, including the origin.
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One can easily show that

Ker I = {(g1, 0); g1 is radial}.

In other words, there is an infinite dimensional kernel, and the rays
here appear as level curves of the functions in the kernel.
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ΨDOs of real principal type

We will apply the theory of ΨDOs of real principal type. If P is
such an operator, singularities (points of the wave front set
WF(g)) of the solution Pg = 0 occupy whole bicharacteristics.
Under the a priori assumption supp g ⊂ K , we can actually recover
WF(g) if all bicharacteristics over K leave K eventually.

Definition 1

We call K non-trapping (for p0) if there is no complete
bicharacteristic over K .
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The non-trapping condition plays a fundamental role in the theory
of solvability of Pu = h in K . In our case, we get

If a priori, supp g ∈ K , and K is non-trapping, then
Ig = 0 =⇒ g ∈ C∞.

We can make it more precise:

If supp g ∈ K , and K is non-trapping, then
Ig ∈ Hs =⇒ g ∈ Hs−3/2.

The operator I is of order −1/2, so there is a loss of one
derivative there.
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Trapping and non-trapping sets in the “radial example”

The rays are the circles |x | = R.

Non-trapping, left; trapping, right.

In the first case, the problem of inverting I is well posed
(uniqueness and stability); in the second one — it is not (infinite
dimensional kernel).

19/39



Trapping and non-trapping sets in the “radial example”

The rays are the circles |x | = R.

Non-trapping, left; trapping, right.

In the first case, the problem of inverting I is well posed
(uniqueness and stability); in the second one — it is not (infinite
dimensional kernel).

19/39



Trapping and non-trapping sets in the “radial example”

The rays are the circles |x | = R.

Non-trapping, left; trapping, right.

In the first case, the problem of inverting I is well posed
(uniqueness and stability); in the second one — it is not (infinite
dimensional kernel).

19/39



Back to the linearized map δXa,f

What does this mean for δXa,f ? Look for (x , θ) so that

u(x , θ) = u(−x , θ),

where, as before, u is the solution of the transport eqn. (an
attenuated integral of f ). If a = 0, then this just means that x is
the midpoint of the chord below. Then (x , θ) is a zero of W , and
(x ,±θ⊥) are characteristic. The green curve represents a ray.
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Main results for the linearized map δXa,f

Assume δa supported in a non-trapping compact set K . Then

I Knowing δXa,f (δa, δf ), we can recover the singularities with a
loss of one derivative; there is an estimate.

I Ker δXa,f is finite dimensional and is in C∞0 (K ).

I If δXa,f is injective on K , then there is a stability estimate:

‖δa‖Hs(K) + ‖δa‖Hs(K) ≤ C‖δXa,f (δa, δf )‖Hs+3/2(Z).

I This estimate is preserved with a uniform C under a slightly
stronger condition: K ⊂ Ω with Ω pseudo-convex : (any

compact subset is non-trapping, and ∀ compact K1 ⊂ Ω, there exists a

compact set K2 ⊂ Ω so that every ray in Ω having endpoints over K1, lies

entirely in K2).

Why δa must be supported in a non-trapping set only? The reason
is that δXa,f is elliptic where δa = 0 because it reduces to Xa then.
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Explicit conditions for injectivity of δXa,f (and therefore, for
stability):

I Local Condition: With W0 = u(x , θ)− u(x ,−θ), if

W0(x0, θ) = 0 =⇒ ∂θ⊥W0(x0, θ) 6= 0,

then δXa,f is injective on some neighborhood of x0. This
property guarantees that the rays have non-zero speed at x0,
i.e., x0 is non-trapping.

I If Ba and u are analytic in K , then δXa,f is injective on K .
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W0(x0, θ) = 0 =⇒ ∂θ⊥W0(x0, θ) 6= 0,
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Main results for the non-linear map (a, f ) 7→ Xaf

Theorem 2 (local uniqueness and stability)

Fix a0, f0. Let

I aj − a0, fj − f0, j = 1, 2 be supported in a compact set K ⊂ Ω
— non-trapping (a bit more is needed: pseudo-convex).

I δXa,f be injective on K .

I aj , fj are close to a0, f0 in the sense

‖B(aj−a0)‖C k (Ω̄×S1)+‖uj−u0‖C k (Ω̄×S1) ≤ ε, j = 1, 2, k � 1.

Then, if ε� 1, Xa1f1 = Xa2f2 implies a1 = a2 and f1 = f2.
Moreover, there is Hölder stability.

The estimate above is just a smallness condition for aj − a0 and
fj − f0 but a weaker one.

Conditions for injectivity were given before (small K satisfying the
local injectivity condition, or analyticity).
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A radial example

We study the linearization δX w.r.t. (a, f ) near

a = 0, f = 1B(0,1),

for perturbations of those a and f supported in B(0, 1) only. Recall

δXa,f (δa, δf ) = Iwδa + I1δf

with

w(x , θ) = −
√

1− (θ⊥ · x)2 − θ · x .
Then W0 = −2θ · x .
The Hamiltonian H, up to a constant factor, is as in the previous
example. Therefore, −2|ξ|H is the symbol of

x1D2 − x2D1 = −i∂/∂φ,
φ is the polar angle in the x space. The rays are the concentric
circles |x | = R, R ≥ 0, including the degenerate case x = 0. As
before, K ⊂ B(0, 1) is non-trapping, if and only if K does not
contain an entire circle of that kind.
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Non-trapping and trapping sets:

Figure : Left: A non-trapping (and pseudo-convex) set. Small enough
perturbations supported in a non-trapping set are recoverable. Actually,
{supp δa ⊂ non-trapping} only is enough.

In the whole ball (which is trapping) the kernel of δX (δa, δf )
consists of radial δa and δf supported there connected by (using
the Radon transform notation Rf (p, ω))√

1− p2Rδa− Rδf = 0,

which is an infinite dimensional space. Indeed, given a radial δa
supported in B(0, 1), we can solve for δf explicitly (an Abel type
of integral operator).25/39
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Non-uniqueness for general radial a and f

Next two theorems serve as an example that for non-trapping
domains, the uniqueness may fail (by more than a finite
dimensional space).

Theorem 3 (non-uniqueness for the linearization)

Let f ∈ C∞0 be radial. Then δX0,f has an infinite dimensional
kernel.

One can write an explicit integral formula to compute δf , given δa.
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Theorem 4 (non-uniqueness for the non-linear problem)

Let a ∈ C∞0 and f ∈ C∞0 be radial. Then there exists a radial
f0 ∈ C∞0 so that

Xaf = X0f0.

Again, one can write an explicit integral formula to compute f0,
given a and f . A simple but a non-constructive proof is to observe
that the l.h.s. is an even C∞0 function of r = |x |, and therefore, in
the range of X0.
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The method (developed with Luo and Jianliang) works!
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Figure : ”Good guess” a0 = 0, f0 = 1. Top row: original a and f ; bottom
row: the reconstructed ones with good guesses
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Non-uniqueness for radial (a, f )
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Figure : Non-uniqueness for radial (a, f ). Top row: a, bottom row: f .
Fist column: exact a and f ; second and third columns: computed a, f
with different initial guesses. The reconstructions are totally wrong.
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Ill-posedness for perturbed radial (a, f )
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Figure : Ill-posedness for perturbed radial (a, f ). Fist column: exact a
and f ; second and third columns: computed a, f with different choices of
initial guesses. The reconstructions are very poor.
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Ill posedness with circular rays
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Hamiltonian flow.31/39



Stabilized example with circular rays
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Figure : A stabilized example with circular rays. A constraint condition
for supp a to be in y < 0 was used. The initial guesses were the same as
in Figure 8. Top row: a, bottom row: f . Fist column: exact a and f ;
second and third columns: computed a, f with different initial guesses.32/39



In the examples above, the determinant W (x , ξ) has a
non-degenerate characteristic variety W = 0. The Hamiltonian
flow (projected on the x-space) consists of concentric circles.

It is possible to have an open set in the phase space, where W = 0.
Then those zeros are stationary and we can expect high instability.
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Large open set of zeros of W
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Figure : Large open set of unstable points. Top row: a, bottom row: f .
Fist column: exact a and f ; 2nd and 3rd column: computed with guess
zero for both a and f with the LBFGS/AG solver. With the LBFGS
solver, the recovered a takes values in the range (−0.31, 0.70) instead of
(0, 1), while with the AG solver, that range is (−0.25, 0.34). Note the
black spot in the reconstructed f .34/39



A smaller open set of zeros of W
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Figure : The phantom was moved closer to a corner compared to the
previous example. This decreases the set of the unstable points (the zeros
of W . Top row: a, bottom row: f . Fist column: exact a and f ; second
column: computed with guess zero for both a and f with the LBFGS
solver; computed with guess zero for both a and f with the AG solver.
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A less unstable case; two walls removed
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Figure : We removed two “walls”. This changes the properties of W
dramatically. The set of zeros is much smaller.
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Figure : We removed two “walls”. This changes the properties of W
dramatically. The set of zeros is much smaller.
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Another less unstable case
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Figure : Back to four “walls” but the have linearly changing density. The
zeros of W are (almost) a set of lower dimension: two opposite θ’s at
each x .
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Another less unstable case
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Figure : Back to four “walls” but the have linearly changing density. The
zeros of W are (almost) a set of lower dimension: two opposite θ’s at
each x .
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