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Introduction

In Synthetic Aperture Radar (SAR) imaging a plane flies along a curve in
R3 and collects data from the surface, that we consider flat. A simplified
model of this is to project the curve on the plane, call it γ; then the data
are integrals of a unknown density function on the surface over circles with
various radii centered at the curve. Then the model is the inversion of the
circular transform

Rγf (r , p) =

∫
|x−p|=r

f (x) d`(x), p ∈ γ, r ≥ 0. (1)

d`(x) = the Euclidean arc-length measure.

γ
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Introduction The circular transform

This transform has been studied extensively; injectivity sets for Rγ on C∞
0

have been described in full (Agranovski and Quinto). In particular, each
non-flat curve, does not matter how small, is enough for uniqueness.
Without the compact support assumption, there is no injectivity. In view
of the direct relation to the wave equation, this transform, and its 3D
analog have been studies extensively as well and in particular in
thermoacoustic tomography with constant speed, for example by
Agranovsky Kuchment, Ambartsoumian, Finch, Rakesh, Haltmeier, Patch.
A related transform appeaing in SAR has been studied in [Ambartsoumian,
Felea, Krishnan, Nolan, Quinto], and [Ambartsoumian, Krishnan, Quinto].
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Introduction What singularities are recoverable?

The problem we study is the following: what part of the wave front set
WF(f ) can we recover? Clearly, we can only hope to recover the visible
singularities: those conormal to the circles involved in the transform.

If γ is a straight line, there is obvious non-uniqueness due to symmetry,
called left-right ambiguity. Moreover, we can have cancellation of
singularities symmetric about that line. More precisely, we can recover the
singularities of the even part of f and cannot recover those of the odd
part. When using R∗

γRγf as a method for recovery, we get symmetric
images of the actual singularities (artifacts), and we do not not know
whether they are real on not.
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Introduction What singularities are recoverable?

Straight line flight path

You image this. . .

γ

Figure: Original
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Introduction What singularities are recoverable?

Straight line flight path

You image this. . . You get this:

γ

Figure: Original and an ”artifact”
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Introduction What singularities are recoverable?

You image this. . . You get this:

Figure: Cancelation of singularities
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Introduction What singularities are recoverable?

Figure: Original
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Introduction What singularities are recoverable?

Figure: Left-right ambiguity
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Introduction What singularities are recoverable?

Why R∗R?

Why R∗R? If we study injectivity, R∗R and R are injective at the same
time (proof: (R∗Rf , f ) = ‖Rf ‖2). There is some microlocal equivalent of
that which has not been studied. But even then, we would get that
knowing Rγf is equivalent to knowing R∗

γRγf (mod C∞). We still have to
solve one of those equations however!

If no artifacts, i.e., everything on one side of the curve, then R∗R is a
ΨDO elliptic at the visible singularities; problem solved. . . almost — with
amplitudes proportional on the number of times the singularity is detected.

In the general case, a typical structure of R∗R is

R∗R = ΨDO + FIO

and the FIO is the one creating the artifacts. When γ is a straight line,
then the FIO is just the symmetry about it. If the FIO is of the right class
and a lower order, then the ΨDO dominates and we are done; but often,
this is not the case. Then we still want to invert the ΨDO+FIO part.
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Introduction What singularities are recoverable?

Based on the straight line example, it has been suggested that a curved
trajectory γ might be a batter flight path. Nolan and Cheney 2003:
numerical examples suggesting that when the curvature of γ is non-zero,
the artifacts are “weaker”, and increasing of the curvature, they become
even weaker. By artifacts, they mean singularities in the wave front set of
R∗

γRγf that are not in WF(f ) located at mirror points:

γ

x  
L

Lξ

x  R

Rξ

L
-ξ

R
-ξ
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Introduction What singularities are recoverable?

Wave equation model: studied from a point of view of FIOs by Nolan and
Cheney 2004 and Felea 2007. The artifacts have been explained in terms
of the FIO part of the Lagrangian of R∗

γRγ . They are of the same
strength, as an order of the corresponding FIO. More precisely, this is true
at least away from the set of measure zero consisting of the points whose
projections to the base falls on γ (points right below the plane’s path, i.e.,
r = 0), and for (x , ξ) such that the line trough it is tangent to γ at some
point. The latter set is responsible for existence of a submanifold of the
Lagrangian near which the left and right projections are not
diffeomorphisms.

What part of the singularities of f can be recovered however has not been
studied.
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Introduction What singularities are recoverable?

Artifact removal?

In other words, if we use R∗R, there are many works explaining where we
may get artifacts. What remains unclear is if those artifacts are
unavoidable, i.e.,

I if there is lack of uniqueness, and (if not)

I if they can be resolved constructively by some other method.

In a nutshell, the main result we prove is that

no better!

A curved path is not better!

Cancellation of singularities always occurs, and there is no unique recovery.
We describe the microlocal kernel. For simplicity, we stay away from
points on γ or singularities that hit γ tangentially.
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Main results There is always cancellation!

The microlocal kernel of Rγ

We use the subscripts L/R for singularities which hit γ from the
Left/Right.

γ

x  
L

Lξ

x  R

Rξ

L
-ξ

R
-ξ

Let f = fL + fR , where fL,R have left (right) singularities hitting γ only
once.

Theorem 1

Rγ(fL + fR) ∈ C∞(Σγ) ⇐⇒ fR − UfL ∈ C∞(ΣR),

where U is a unitary FIO.
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Main results There is always cancellation!

In other words, regardless of the shape of γ (a line or a curve),
singularities can always cancel! The “artifacts” are unavoidable, and they
are not weaker, they are unitary images of the original!

Idea of the Proof: We relate Rγ to the solution of the wave equation in
R2. Let u solve the problem

(∂2
t −∆)u = 0 in Rt × R2

x ,
u|t=0 = 0,

∂tu|t=0 = f .

Solution restricted to γ:

uγ = (A⊗ I)Rγ , Ah(t) =

∫ t

0

rh(r)√
t2 − r2

dr , t > 0.

Here, A⊗ I just means that we apply A with respect to the t variable only.
The presence of A is more of nuisance than a problem because A is an
elliptic ΨDO of order −1/2 on R+.
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Main results There is always cancellation!

So we can forget about A and just assume that our transform is the
solution u of the wave equation with Cauchy data (0, f ) at t = 0. The
data is then u(t, x), t > 0, x ∈ γ, i.e.,

Λf := u|R+×γ .

Let u = uL + uR , corresponding to fL,R . We know that uL + uR ∈ C∞.
Given fL, we want to solve

Λ(fL + fR) ∈ C∞

for fR . This boils down to the question whether Λ is microlocally
invertible. Not in principle (which is the whole point of the theorem) but
restricted to singularities on the right only, (or on left only), it is. Explicit
microlocal inversion can be done by back-projection to one side of γ. Then

fR = −Λ−1
R ΛLfL,

where ΛL,R are the corresponding restrictions. The unitarity of
U := Λ−1

R ΛL follows by energy preservation.
Plamen Stefanov (Purdue University ) Is a curved flight path better? 17 / 30
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Main results There is always cancellation!

We assumed above that each singularity hits γ once. In some cases (γ has
to be curved for that!) each singularity leaves two traces on γ. Can we
use this extra information to recover the singularities?

x  ξ γ

Figure: The singularity (x , ξ) leaves two traces on T ∗γ
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Main results There is always cancellation!

Even this does not allow us to recover the singularities! Each of those
traces can be cancelled by other singularities, etc. Here are two examples:

γ x  ξ

x  
-1

ξ
-1

ξ
1

x  
1

γ x  ξ

x  
-1

ξ
-1

ξ
1

x  
1

ξ
2

x  
2

ξ
3

x  
3

p

p

p

1

2

3

p
-1

p
-1

p
1

Figure: Singularities that cannot be resolved. Left: (x , ξ) has mirror images
(x−1, ξ−1) and (x1, ξ1). Singularities at any two of those three points are related
by unitary maps. Right: an example with more than three points.

A closed curve γ.
Let M(x , ξ) be the discrete set of all mirror points to (x , ξ). In the second
example above,

M(x , ξ) =
{
(x−1, ξ−1), (x , ξ), (x1, ξ1), (x2, ξ2), (x3, ξ3)

}
.
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Main results γ = closed curve

We then get the following “propagation of singularities theorem”.

Theorem 2

Let γ = ∂Ω, where Ω ⊂ R2 is a strictly convex domain. Let f ∈ D′(R2)
and assume that Rγf ∈ C∞. Then for any (x , ξ) ∈ T ∗Ω \ 0, either
M(x , ξ) ⊂ WF(f ) or M(x , ξ) ∩WF(f ) = ∅.

As in the example above, if we know a priori that one of those points
cannot be in WF(f ), then none is, and in particular, f is smooth at (x , ξ).
One such case is when WF(f ) a priori lies over a fixed compact set.

Theorem 3

Let γ be as in Theorem 2. Let f ∈ E ′(R2). If Rγf ∈ C∞, then f |Ω ∈ C∞.
Moreover, f |Ω can be obtained from Rγf modulo C∞ constructively by a
back-projection.

Plamen Stefanov (Purdue University ) Is a curved flight path better? 20 / 30



Main results γ = closed curve

We then get the following “propagation of singularities theorem”.

Theorem 2

Let γ = ∂Ω, where Ω ⊂ R2 is a strictly convex domain. Let f ∈ D′(R2)
and assume that Rγf ∈ C∞. Then for any (x , ξ) ∈ T ∗Ω \ 0, either
M(x , ξ) ⊂ WF(f ) or M(x , ξ) ∩WF(f ) = ∅.

As in the example above, if we know a priori that one of those points
cannot be in WF(f ), then none is, and in particular, f is smooth at (x , ξ).
One such case is when WF(f ) a priori lies over a fixed compact set.

Theorem 3

Let γ be as in Theorem 2. Let f ∈ E ′(R2). If Rγf ∈ C∞, then f |Ω ∈ C∞.
Moreover, f |Ω can be obtained from Rγf modulo C∞ constructively by a
back-projection.

Plamen Stefanov (Purdue University ) Is a curved flight path better? 20 / 30



Main results γ = closed curve

We then get the following “propagation of singularities theorem”.

Theorem 2

Let γ = ∂Ω, where Ω ⊂ R2 is a strictly convex domain. Let f ∈ D′(R2)
and assume that Rγf ∈ C∞. Then for any (x , ξ) ∈ T ∗Ω \ 0, either
M(x , ξ) ⊂ WF(f ) or M(x , ξ) ∩WF(f ) = ∅.

As in the example above, if we know a priori that one of those points
cannot be in WF(f ), then none is, and in particular, f is smooth at (x , ξ).
One such case is when WF(f ) a priori lies over a fixed compact set.

Theorem 3

Let γ be as in Theorem 2. Let f ∈ E ′(R2). If Rγf ∈ C∞, then f |Ω ∈ C∞.
Moreover, f |Ω can be obtained from Rγf modulo C∞ constructively by a
back-projection.

Plamen Stefanov (Purdue University ) Is a curved flight path better? 20 / 30



Main results γ = closed curve

This is a discrete analog of the corresponding theorem in the
Duistermaat-Hörmander theory of ΨDOs of real principal type: Let P be
such an operator; Pu ∈ C∞, and let supp f ⊂ K , where K is compact. If
K is non-trapping w.r.t. the Hamiltonian flow of P, then f ∈ C∞ as well.

Note that this conclusion is not based on ellipticity; it is based on the fact
that if there is a singularity, then the whole zero bicharacteristic through it
consists of singularities (by propagation of singularities); but some part of
it goes out of supp f ; thus there cannot be singularities.

The “bicharacteristics” here are the discrete sets of the mirror points to a
fixed one.
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Main results γ = closed curve

If we do not have a priori information about f , then WF(f ) cannot be
reconstructed.

Theorem 4

Let γ be as in Theorem 2. Then there is f ∈ D′(R2 \ γ) \ C∞ so that
Rγf ∈ C∞(R+ × γ). Moreover, for any f with singsupp f ⊂ Ω, there is g
with singsupp g ⊂ R2 \ Ω so that Rγ(f − g) ∈ C∞(R+ × γ).

The second statement of the theorem says that we can take any f singular
in Ω, and extend it outside Ω so that its circular transform will be smooth
on γ. Therefore, not only it is the case that singularities cannot be
detected but any chosen in advance f singular in Ω can be neutralized by
choosing suitable extension singular outside Ω.
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Example

Example

Let γ = S1 be the unit circle. Take f to be the characteristic function of
the circle |x | < 1/2. That makes Rγf singular for r near 1/2; the
singularity is of the type

√
(r − 1/2)+. One can easily construct g

supported in |x | ≥ 3/2 so that Rγ(f − g) ∈ C∞ near r = 1/2.

Figure: Left: density plot (white = 1, black = 0); right: a graph of f and g with
R(f − g) smooth near r = 1/2.
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Example

The first three coefficients of g are shown below (h = Heaviside)

g = h(t)

(√
3

3
− 5

16
t +

83

5184
t2 + O

(
t3
))

, t := |x |2 − 9/4.

Figure: The thick red line: The graph of Rγ(f − g) near r = 1/2 computed
numerically with three terms in the expansion of g . The blue dotted line: the
graph of Rγ f having a square root type of singularity.

We could go on to kill all the singularities for all r , not just at r = 3/2 by
constructing a suitable jump of g at r = 5/2, then at r = 7/2, etc.
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Recovery when f is compactly supported

Would R∗R work?

We showed in Theorem 3 that for γ = ∂Ω, Ω convex, if f has singularities
known a priori to lie in a compact set K , then there is unique recovery of
the visible ones, and in particular the ones in Ω. How to recover them?
Would R∗

γRγ work?

No! Original. . .
γ
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Would R∗R work?

We showed in Theorem 3 that for γ = ∂Ω, Ω convex, if f has singularities
known a priori to lie in a compact set K , then there is unique recovery of
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Artifact Artifact 2 x amplitude
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Recovery when f is compactly supported

Recovery when f is compactly supported via backprojection

R∗R does not work but one could apply a certain FIO to “displace the
artifacts” (Felea 2007). This pushes the most singular part away step by
step. Instead, one can simply do the following.
Let T � 1 so that any singularity of f enters and leaves Ω for time T . We
are assuming that we have wave equation data, as explained above. Solve

(∂2
t −∆)v = 0 in [0,T ]× Ω,

v |[0,T ]×∂Ω = χ.data,
v |t=T = 0,

∂tv |t=T = 0,

where χ cuts smoothly near t = T . Then we get

f |Ω = ∂tv |t=0 mod C∞.

Why? Because the difference u − v (here, u is the forward solution with
Cauchy data (0, f )) solves a mixed problem with smooth data everywhere.
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Recovery when f is compactly supported

The solution u with Cauchy data (0, f ) is smooth in Ω for t = T .
Therefore, if we assign zero Cauchy data at t = T and make sure that the
compatibility conditions there are satisfied (this is the reason for χ), we
can get only a smooth error when we back-project in [0,T ]× Ω.

supp f

u is smooth here t=T

t=0

γ
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Non closed curves

Non closed curves

What if γ is not closed? Let us take an arc which is concave when looking
from the left, for example. The some singularities are detected twice, some
once, some — never. The R∗R inversion will put different amplitudes
(from 1/2 to 1) on the first two kinds (and a zero amplitude on the
invisible ones). Close that arc to an closed curve and do a backprojection
with zero data on the artificial boundary. Still wrong amplitudes.

Now, iterate, i.e., write the result as BRγf = (I− K )f , where B is the
backprojection, and K is the “error”. The latter is a ΨDO with a principal
symbol between 0 and 1/2. Consider the truncated Neumann series

(I + K + K 2 + · · ·+ KN)BRγ

Up to an error 2−N , this a ΨDO with principal symbol 1 on the visible
singularities. So we have the right amplitudes!
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