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It is a linear inverse problem

Under the “right conditions”, it is well-posed (stable)

but...:

it is formally determined

the speed is variable, and might be discontinuous (we can include a metric, etc.)

in many interesting cases, conditions are not “right”, hence ill posedness

we give if and only if conditions for uniqueness, even in the partial data case

we give if and only if conditions for stability, even in the partial data case

we write an explicit solution formula in the form of a converging Neumann series
(whole boundary, T above the stability threshold)
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Introduction Model

Thermo- and photo- acoustic Tomography

In thermo/photo-acoustic tomography, a short electro-magnetic pulse/laser beam is sent
through a patient’s body. The tissue reacts and emits an ultrasound wave form any
point, that is measured away from the body. Then one tries to reconstruct the internal
structure of a patient’s body form those measurements.
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Introduction Model

The Mathematical Model

Let c(x) > 0 be the acoustic speed. Let u solve the problem8<:
(∂2

t − c2∆)u = 0 in (0, T )× Rn,
u|t=0 = f ,

∂tu|t=0 = 0,
(1)

where T > 0 is fixed.
Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded domain. The
measurements are modeled by the operator

Λf := u|[0,T ]×∂Ω.

The problem is to reconstruct the unknown f .

Note that the wave equation is solved in the whole space, and ∂Ω is “invisible” to the
solution.
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Introduction Time reversal

If T = ∞, we can just solve a Cauchy problem backwards with zero initial data.
One of the most common methods when T < ∞ is to do the same (time reversal). Solve8>><>>:

(∂2
t − c2∆)v0 = 0 in (0, T )× Ω,
v0|[0,T ]×∂Ω = χh,

v0|t=T = 0,
∂tv0|t=T = 0,

(2)

where h will be taken to be h = Λf . Here χ cuts off smoothly near t = T so that the 1st
order compatibility condition is satisfied.
Then we define the following

Time Reversal

f ≈ A0h := v0(0, ·) in Ω̄, where h = Λf .

Most (but not all) works are in the case of constant coefficients, i.e., when c = 1. If n is
odd, and T > diam(Ω), this is an exact method by the Hyugens’ principle.

In that case, this is actually an integral geometry problem because of Kirchoff’s formula
— recovery of f from integrals over spheres centered at ∂Ω.

When n is even, or when the coefficients are not constant, this is an “approximate
solution” only. As T →∞, the error tends to zero by finite energy decay. When the
geometry is non-trapping, the convergence is uniform and exponentially fast for n odd
and O(t1−n) for n even [Hristova].
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Introduction Time reversal

Prior results

Kruger; Agranovsky, Ambartsoumian, Finch, Georgieva-Hristova, Jin,
Haltmeier, Kuchment, Nguyen, Patch, Quinto, Wang, Xu . . .

The time reversal (but not only) is often used for reconstruction. It is exact only when
T = ∞ but above some critical time T1, it is a parametrix.

When T is fixed, there is no good control over the error (unless n is odd and c = const).
There are other methods, as well, for example a method based on an eigenfunctions
expansion; or explicit formulas if c = const and Ω is a ball (with T = ∞ in even
dimensions).

Results for variable coefficients existed but not so many. Finch and Rakesh (2009)
proved uniqueness when T > diam(Ω), based on Tataru’s uniqueness theorem (that we
use, too). Reconstructions for finite T have been tried numerically, and they “seem to
work” at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with
measurements on a part of the boundary. There were no results so far for the variable
coefficient case, and there is a uniqueness result in the constant coefficients one by
Finch, Patch and Rakesh (2004).
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Introduction Explicit formulas in special cases

Ω=ball, constant speed

The simplest case is when c = 1 and Ω is the unit ball. Let also n = 3. Then there are
explicit reconstruction formulas (Finch, Haltmeier, Kunyansky, Nguen, Patch,
Rakesh, Xu, Wang). Let g(x , t) = Λf be the data, x ∈ Sn−1. Then, in 3D,

f (x) = − 1

8π2
∆x

Z
|y|=1

g(y , |x − y |)
|x − y | dSy .

Also,

f (x) = − 1

8π2

Z
|y|=1

„
1

t

d2

dt2
g(y , t)

« ˛̨̨̨
˛
t=|y−x|

dSy .

Yet another one:

f (x) =
1

8π2
∇x ·

Z
|y|=1

„
ν(y)

1

t

d

dt

g(y , t)

t

« ˛̨̨̨
˛
t=|y−x|

dSy .

The latter is a partial case of an explicit formula in any dimension (Kunyansky).
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Introduction It is an integral geometry problem if c = 1, n odd

When c = const., an n is odd, this is also an integral geometry problem. By the
Kirchhoff’s formula, up to time derivatives, in odd dimensions, what we measure are the
spherical means of f centered at point on ∂Ω:

Λf ∼
Z
|ω|=1

f (x + tω)dω, t ∈ [0, T ], x ∈ ∂Ω.

Now, we have to invert it. This transform can be (and has been) studied with microlocal
methods that in particular answer some questions about stability and recovery of
singularities, including cases with partial data (but c still constant). One can also use
analytic microlocal analysis for uniqueness.

Our initial interest in this problem was motivated by extending this approach to non
Euclidean transforms over geodesic spheres.

But we abandoned that approach for something better!
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New results: Measurements on the whole boundary Uniqueness

Uniqueness

The underlying metric is c−2dx2. Set

T0 = max
x∈Ω̄

dist(x , ∂Ω).

Theorem 1

T ≥ T0 =⇒ uniqueness.
T < T0 =⇒ no uniqueness. We can recover f (x) for dist(x , ∂Ω) ≤ T and nothing
else.

The proof is based on the unique continuation theorem by Tataru.

The explanation is simple. We can recover f (x) on the maximal set that signals from ∂Ω
can reach at times t ≤ T (by unique continuation), and nothing else (by finite speed of
propagation).
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New results: Measurements on the whole boundary Stability

Stability

Stability should be related to propagation of singularities. As a general principle, it is
necessary (and sufficient) to be able to “detect” all singularities. By singularities, we
mean elements of the wave front set WF(f ). Since ut = 0 for t = 0, each singularity
(x , ξ) splits into two parts with equal energy and they start to travel in positive (ξ) and
negative (−ξ) direction. We need to detect one of them, at least.

Let T1 ≤ ∞ be the length of the longest (maximal) geodesic through Ω̄. Then the
“stability time” is T1/2. One can show that T0 ≤ T1/2. If T1 = ∞, we say that the
speed is trapping in Ω.

Theorem 2

T > T1/2 =⇒ stability.
T < T1/2 =⇒ no stability, in any Sobolev norms.

The second part follows from the fact that Λ is a smoothing FIO on an open conic subset
of T ∗Ω. In particular, if the speed is trapping, there is no stability, whatever T .
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New results: Measurements on the whole boundary Reconstruction. Modified time reversal

Reconstruction. Modified time reversal

A modified time reversal, harmonic extension

Given h (that eventually will be replaced by Λf ), solve8>><>>:
(∂2

t − c2∆)v = 0 in (0, T )× Ω,
v |[0,T ]×∂Ω = h,

v |t=T = φ,
∂tv |t=T = 0,

(3)

where φ is the harmonic extension of h(T , ·):

∆φ = 0, φ|∂Ω = h(T , ·).

Note that the initial data at t = T satisfies compatibility conditions of first order (no
jump at {T} × ∂Ω). Then we define the following pseudo-inverse

Ah := v(0, ·) in Ω̄.
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New results: Measurements on the whole boundary Reconstruction. Modified time reversal

Why would we do that? We are missing the Cauchy data at t = T ; the only thing we
know there is its value on ∂Ω. The time reversal methods just replace it by zero. We
replace it by that data (namely, by (φ, 0)), having the same trace on the boundary, that
minimizes the energy.

Given U ⊂ Rn, the energy in U is given by

EU(t, u) =

Z
U

“
|∇u|2 + c−2|ut |2

”
dx .

We define the space HD(U) to be the completion of C∞0 (U) under the Dirichlet norm

‖f ‖2
HD

=

Z
U

|∇u|2 dx .

The norms in HD(Ω) and H1(Ω) are equivalent, so

HD(Ω) ∼= H1
0 (Ω).

The energy norm of a pair [f , g ] is given by

‖[f , g ]‖2
H(Ω) = ‖f ‖2

HD (Ω) + ‖g‖2
L2(Ω,c−2dx)
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New results: Measurements on the whole boundary Reconstruction. Modified time reversal

Consider the “error operator” K . It is straightforward to see that

Kf = first component of: UΩ,D(−T )ΠΩURn (T )[f , 0],

where

URn (t) is the dynamics in the whole Rn,

UΩ,D(t) is the dynamics in Ω with Dirichlet BC,

ΠΩ : H(Rn) → H(Ω) is the orthogonal projection.

That projection is given by ΠΩ[f , g ] = [f |Ω − φ, g |Ω], where φ is the harmonic extension
of f |∂Ω.

Obviously,
‖Kf ‖HD ≤ ‖f ‖HD .

If we can show that K is a contraction (‖K‖ < 1), we can use Neumann series to invert
I− K .
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New results: Measurements on the whole boundary Reconstruction, whole boundary

Reconstruction, whole boundary

Theorem 3

Let T > T1/2. Then AΛ = I− K, where ‖K‖L(HD (Ω)) < 1. In particular, I− K is
invertible on HD(Ω), and the inverse thermoacoustic problem has an explicit solution of
the form

f =
∞X

m=0

KmAh, h := Λf .

If T > T1, then K is compact.

We have the following estimate on ‖K‖:

Corollary 4

‖Kf ‖HD (Ω) ≤
„

EΩ(u, T )

EΩ(u, 0)

« 1
2

‖f ‖HD (Ω), ∀f ∈ HD(Ω), f 6= 0,

where u is the solution with Cauchy data (f , 0).
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New results: Measurements on the whole boundary Critical values of T

Summary: Dependence on T

(i) T < T0 =⇒ no uniqueness
Λf does not recover uniquely f . ‖K‖ = 1.

(ii) T0 < T < T1/2 =⇒ uniqueness, no stability
We have uniqueness but not stability (there are invisible singularities). We do not
know if the Neumann series converges. ‖Kf ‖ < ‖f ‖ but ‖K‖ = 1.

(iii) T1/2 < T < T1 =⇒ stability and explicit reconstruction
This assumes that c is non-trapping. The Neumann series converges exponentially
but maybe not as fast as in the next case (K contraction but not compact). There
is stability (we detect all singularities but some with 1/2 amplitude). ‖K‖ < 1

(iv) T1 < T =⇒ stability and explicit reconstruction
The Neumann series converges exponentially, K is contraction and compact (all
singularities have left Ω̄ by time t = T ). There is stability. ‖K‖ < 1

If c is trapping (T1 = ∞), then (iii) and (iv) cannot happen.
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New results: Measurements on the whole boundary Critical values of T

Iterating the Time Reversal

What if we use Neumann series for the time reversal?

The “error operator” K then is smoothing for T > T1 (good) but not necessarily a
contraction (bad). Still, for T � T1 and χ with |χ′| � 1, it will be a contraction by well
known local energy decay estimates (Hristova in the TAT setting). Therefore,

(I− K)f = AχΛf

can be solved by Neumann series, if T � T1 and χ are “right”.

We cannot give sharp conditions when T � T1 and χ are “right”.

In contrast, with the “harmonic extension method”, T > T1 is right, T < T1 is not, and
there is no χ. Also, ‖K‖ is minimized by that method.
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Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: The speed, T0 ≈ 1.15. Ω = [−1.28, 1.28]2, computations are done in [−2, 2]2
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Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: Original
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Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: Neumann Series reconstruction, T = 4T0 = 4.6, error = 3.45%
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Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: Time Reversal, T = 4T0 = 4.6, error = 23%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: The speed, T0 ≈ 1.18
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: The original
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Neumann Series reconstruction, 10 steps, T = 4T0 = 4.7, error = 8.75%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Neumann Series reconstruction with 10% noise, 15 steps, T = 4T0 = 4.7, error = 8.72%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Time Reversal, T = 4T0 = 4.7, error = 55%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Time Reversal with 10% noise, T = 4T0 = 4.7, error = 54%
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Original
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Neumann series, T = 4T0 = 4.7, error = 7.5%, 10 steps
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Time Reversal, T = 4T0 = 4.7, error = 27.7%
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Time Reversal, T = 12T0 = 14.1, error = 99.67%
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: A trapping speed. Darker regions represent a slower speed. The circles of radii
approximately 0.23 and 0.67 are stable periodic geodesics. Left: the speed. Right: the speed
with two trapped geodesics
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: Original, lower resolution than before
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: Neumann series, 10 steps, T = 8T0 = 8.7, error = 9.7%
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: Iterated Time Reversal, 10 steps, T = 8T0 = 8.7, error = 12.1%
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: Time Reversal, T = 8T0 = 8.7, error = 21.7%
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Numerical examples, smooth speed waves coming back

What if the waves can come back to Ω (reflectors)?
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The time reversal solution
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Figure: T0 ≈ 1.2, 2.9 < T1 < 3.5. There are Neumann BC here at the boundary of the larger
square! Waves leaving Ω come back without any damping!
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Measurements on a part of the boundary

Measurements on a part of the boundary

Assume that c = 1 outside Ω. Let Γ ⊂ ∂Ω be a relatively open subset of ∂Ω.

Assume now that the observations are made on [0, T ]× Γ only, i.e., we assume we are
given

Λf |[0,T ]×Γ.

We consider f ’s with
supp f ⊂ K,

where K ⊂ Ω is a fixed compact.

Uniqueness?

Stability?

Reconstruction?
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Measurements on a part of the boundary Uniqueness

Uniqueness

Heuristic arguments for uniqueness: To recover f from Λf on [0, T ]× Γ, we must at
least be able to get a signal from any point, i.e., we want for any x ∈ K, at least one
“signal” from x to reach some Γ for t < T . Set

T0(K) = max
x∈K

dist(x , Γ).

The uniqueness condition then should be

T ≥ T0(K). (4)

Theorem 5

Let c = 1 outside Ω, and let ∂Ω be strictly convex. Then if T ≥ T0(K), if Λf = 0 on
[0, T ]× Γ and supp f ⊂ K, then f = 0.

Proof based on Tataru’s uniqueness continuation results. Generalizes a similar result for
constant speed by Finch, Patch and Rakesh.

As before, without (4), one can recover f on the reachable part of K. Of course, one
cannot recover anything outside it, by finite speed of propagation. Therefore,

(4) is an “if and only if” condition for uniqueness with partial data.
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Measurements on a part of the boundary Λ is an FIO

Stability

Heuristic arguments for stability: To be able to recover f from Λf on [0, T ]× Γ in a
stable way, we need to recover all singularities. In other words, we should require that

∀(x , ξ) ∈ K × Sn−1, the ray (geodesic) through it reaches Γ at time |t| < T .

We show next that this is an “if and only if” condition (up to replacing an open set by a
closed one) for stability. Actually, we show a bit more.

Proposition 1

Assume formally T = ∞. Then Λ = Λ+ + Λ−, where Λ± are elliptic Fourier Integral
Operators of zeroth order with canonical relations given by the graphs of the maps

(y , ξ) 7→
`
τ±(y , ξ), γy,±ξ(τ±(y , ξ)), |ξ|, γ̇′y,±ξ(τ±(y , ξ))

´
,

where |ξ| is the norm in the metric c−2dx2, and the prime in γ̇′ stands for the tangential
projection of γ̇ on T∂Ω.

Corollary 6

If the stability condition is not satisfied on [0, T ]× Γ̄, then there is no stability, in any
Sobolev norms.

Here, τ±(x , ξ) is the time needed to reach ∂Ω starting from (x ,±ξ).
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Measurements on a part of the boundary Λ is an FIO

A reformulation of the stability condition

Every geodesic through K intersects Γ.

∀(x , ξ) ∈ K × Sn−1, the travel time along the geodesic through it satisfies |t| < T .

Let us call the least such time T1/2, then T > T1/2 as before.
In contrast, any small open Γ suffices for uniqueness.

GK
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Measurements on a part of the boundary Recovery of f is a Fredholm problem

Let A be the “modified time reversal” operator as before. Actually, φ will be 0 because of
χ below. Let χ ∈ C∞0 ([0, T ]× ∂Ω) be a cutoff (supported where we have data).

Theorem 7

AχΛ is a zero order classical ΨDO in some neighborhood of K with principal symbol

1

2
χ(γx,ξ(τ+(x , ξ))) +

1

2
χ(γx,ξ(τ−(x , ξ))).

If [0, T ]× Γ satisfies the stability condition, and |χ| > 1/C > 0 there, then
(a) AχΛ is elliptic,
(b) AχΛ is a Fredholm operator on HD(K),
(c) there exists a constant C > 0 so that

‖f ‖HD (K) ≤ C‖Λf ‖H1([0,T ]×Γ).

(b) follows by building a parametrix, and (c) follows from (b) and from the uniqueness
result.

In particular, we get that for a fixed T > T1, the classical Time Reversal is a parametrix
(of infinite order, actually).
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Measurements on a part of the boundary Reconstruction

Reconstruction

One can constructively write the problem in the form

Reducing the problem to a Fredholm one

(I− K)f = BAχΛf with the r.h.s. given,

i.e., B is an explicit operator (a parametrix), where K is compact with 1 not an
eigenvalue.

Constructing a parametrix without the ΨDO calculus.

Assume that the stability condition is satisfied in the interior of supp χ. Then

AχΛf = (I− K)f ,

where I− K is an elliptic ΨDO with 0 ≤ σp(K) < 1. Apply the formal Neumann series of
I− K (in Borel sense) to the l.h.s. to get

f = (I + K + K 2 + . . . )AχΛf mod C∞.

With a bit of luck, this series may converge or at least give a good approximation with a
certain number of finitely many terms.
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Measurements on a part of the boundary Reconstruction

Examples: Non-trapping speed, 1 and 2 sides missing

original NS, 3 sides, error = 7.99% NS, 2 sides, error = 12.2%

Figure: Partial data reconstruction, non-trapping speed, T = 4T0.
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Discontinuous speeds Modeling Brain Imaging

Discontinuous speeds, modeling Brain Imaging

The following modification appears in brain imaging and was proposed by Lihong Wang
in May 2010, during a Banff meeting. Let c be piecewise smooth with a jump across a
smooth closed surface Γ. How much of all that is preserved? The direct problem is a
transmission problem, and there are reflected and refracted rays.

In brain imaging, the interface is the skull. The sound speed jumps by about a factor of 2
there. Experiments show that the ray that arrives first carries about 20% of the energy.

x  0

ξ0

∂Ω

"skull"

Figure: Propagation of singularities in the “skull” geometry
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Discontinuous speeds Modeling Brain Imaging

Propagation of singularities (an example is shown on the previous slide) is well
understood away from tangent rays. When a ray approaches Γ from the side with the
higher speed, there are always a reflected and a refracted rays. When the ray is coming
from a slower to a faster region, we may or may not have a refracted one, but we always
have a reflected one. If there is only a reflected one, this is known as full internal
reflection. The energy (at high frequencies) naturally splits into fractions of the total
one. So a single singularity may exit at several different places with different amplitudes.

There are might be trapping singularities, as well, that remain invisible. But even the
visible ones, are visible with a fraction of their amplitudes only! In a way, all singularities
inside Γ are partly invisible, some — totally invisible.

(Completely) trapped singularities are a problem, as before. Let K ⊂ Ω be a compact set
such that all rays originating from it are never tangent to Γ and non-trapping. For f
satisfying

supp f ⊂ K

the Neumann series above still converges (uniformly to f ).

We need a small modification to keep the support in K all the time. We use the
projection ΠK : HD(Ω) → HD(K) for that purpose.
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Discontinuous speeds Reconstruction

Reconstruction

Theorem 8

Let all rays from K have a path never tangent to Γ that reaches ∂Ω at time |t| < T.
Then

ΠKAΛ = I− K in HD(K), with ‖K‖HD (K) < 1.

In particular, I− K is invertible on HD(K), and Λ restricted to HD(K) has an explicit left
inverse of the form

f =
∞X

m=0

KmΠKAh, h = Λf . (5)

The assumption supp f ⊂ K means that we need to know f outside K; then we can
subtract the known part.

In the numerical experiments below, we do not restrict the support of f , and still get
good reconstruction images but the invisible singularities remain invisible.
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Numerical examples, discontinuous speed

Brain imaging of square headed people

Figure: The speed jumps by a factor of 2 in average from the exterior of the ”skull”. The region
Ω, as before, is smaller: Ω = [−1.28, 1.28]2.
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Numerical examples, discontinuous speed

A “skull” speed, Neumann series

original T = 2T0, error = 15%

T = 4T0, error = 9.75% T = 8T0, error = 7.55%

Figure: Neumann Series, 15 steps
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Numerical examples, discontinuous speed

A “skull” speed, Time Reversal

original T = 2T0, error = 68%

T = 4T0, error = 23.7% T = 8T0, error = 78.5%

Figure: Time Reversal. There is a lot of “white clipping” in the last image, many values in [1, 1.6]
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Numerical examples, discontinuous speed

A “skull” speed, Time Reversal

original T = 2T0, error = 68%

T = 4T0, error = 23.7% T = 8T0, error = 78.5%

Figure: Time Reversal. The values in last image are compressed from [0, 1] to [−0.05, 1.6]
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Numerical examples, discontinuous speed

Original vs. Neumann Series vs. Time Reversal

original NS, error = 7.55% TR, error = 78.5%

Figure: T = 8T0. Original vs. Neumann Series vs. Time Reversal (the latter compressed from
[0, 1] to [−0.05, 1.6])
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