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Formulation of the Problem

Let (M, g) be a Riemannian manifold, and let γ0 be a fixed
geodesic on it with possible conjugate points. More general curves
are allowed, as well. Let κ 6= 0 be a fixed weight function on TM.

Main Problem

What information about the singularities of f can we recover, given

Xf (γ) =

∫
κ
(
γ(t), γ̇(t)

)
f (γ(t))dt

known for all geodesics γ near γ0?

We assume here that supp f is disjoint from the endpoints of γ0.

In particular, if Xf (γ) = 0 (or is smooth) near γ0, what do we get
for WF(f )?

This is a linearized version of the problem to recover a unknown
speed from travel times.2/34
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Figure: Xf (γ) known for all γ near a fixed geodesic γ0.

Why do we want to know that?

I In some applications in medical imaging and geophysics, this
is all we want to know, to recover the “features” of the image.

I If we can prove uniqueness somehow (possible even with
conjugate points in some cases), we immediately say if we
have stability or not.

I We can think of this as stability analysis even if uniqueness
might not hold.

3/34
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If no conjugate points, we can do the best thing possible:

No conjugate points

We can recover singularities conormal to γ0 (and close to those);
i.e., WF(f ) near N∗γ0.

If we know Xf (γ) for all (or for a rich enough set of) geodesics,
then

I The problem is Fredholm; hence injectivity implies stability
I if κ = 1, there is injectivity (Mukhometov et al.)
I Finitely dimensional smooth kernel
I Works also for general curves, tensors, incomplete data
I If the metric (the family of curves) is real analytic, then we

have injectivity (hence stability).
I Support theorems in the analytic case, incluidng such for

tensors.

How much of that is preserved in presence of conjugate points?
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Conjugate Points

If there are conjugate points, things change quite a bit.

I n ≥ 3: the problem is overdetermined and we could use an
open subset of geodesics. If they do not have conjugate
points, and their conormals cover T ∗M, we are fine
[S-Uhlmann, 2008].

I n ≥ 3, [Uhlmann–Vasy, 2013]: Under a foliation condition
(allowing conjugate points), we can do layer stripping.

I n ≥ 3, [S-Uhlmann, 2012]: Conjugate points of fold type
might not be a problem, if a certain non-degeneracy condition
holds. Hard to verify, and there is no geodesic example (but
there are non-geodesic ones).

I n = 2, [S-Uhlmann, 2012]: If there are conjugate points of
fold type, there is always mild instability at least (loss of 1/4
derivative) for the local problem (γ near γ0).

I S. Holman and G. Uhlmann: Characterization of X ′X as an
FIO.
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How is this work different?

We give a complete answer of what we can recover (and what we
cannot) from knowing Xf in a neighborhood of one geodesic γ0.

Once we understand that, we can answer the same question for
any partial data problem (γ in an open set).
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Typical geometry in 2D

Figure: A cusp and two folds formed by geodesics around a slow region
7/34
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Figure: The three non-degenerate types of conjugate points in the plane
together: a blowdown, a fold, and a cusp.
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Main results in a nutshell

I Recovery of WF(f ) (for the localized transform, in one
direction) is impossible, regardless of the type of the
conjugate points — loss of all derivatives at conjugate points!

I If the weight κ(x , θ) is an even function of θ, reversing the
direction of t of γ(t) does not matter — even knowing Xf (γ)
for all γ does not help! The problem then is unstable.

I For the attenuated transform with a positive attenuation, if
there are no more than two conjugate points along each
geodesic, then there is stability for the global problem!
Reason: reversing the time gives us an additional equation.

I For the attenuated transform with a positive attenuation, if
there are three or more conjugate points along each geodesic,
then there is no stability.
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Unlike the previous works, we do not study X ∗X (but we have
results for it, as well). We work directly with X .

Theorem 1

X is a Fourier Integral Operator in the class I−
n
4 (M0 ×M0,C

′). It
is a ΨDO (of order −1) if and only if the geodesics in M0 have no
conjugate points.

From now on, n = 2. Then all manifolds in the microlocal diagram

C

T ∗M0 T ∗M0

πM πM

C

are of the same dimension, 4. Both projections are local
diffeomorphisms (πM is global) thus so is C. Is C global? If and
only if there are no conjugate points.
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Theorem 2

C(p, ξ) = C(q, η) if and only if there is a geodesic [0, 1]→ γ ∈M0

joining p and q so that
(a) p and q are conjugate to each other,
(b) ξ = λJ ′(0), η = λJ ′(1), λ 6= 0, where J(t) is the unique
non-trivial, up to rescaling, Jacobi filed with J(0) = J(1) = 0.

The main idea is to use a partition of unity with cutoffs localized
near conjugate points.

Then we have X acting on f with small supports, and there are no
conjugate points on each piece. So we just need to understand X
without conjugate points, that is all. This is easy (in 2D):

Theorem 3

Assume no conjugate points and n = 2. Then X is an FIO
associated with the canonical diffeomorphism C. It is elliptic at
(x , ξ) if and only if κ(x , ξ⊥/|ξ|) 6= 0.

11/34
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Cancellation of singularities

We are ready to prove one of the main results.

M

γ0

v1p1

p2 v2

ξ1

ξ2

supp f1

supp f2

Write f = f1 + f2, where fk are microlocalized near (pk , ξ
k),

k = 1, 2, where p1, p2 are conjugate. Write also X = X1 + X2.
Then

Xf = X1f1 + X2f2.

But X1,2 are elliptic; therefore

X1f1 + X2f2 = g ⇐⇒ f1 + X−11 X2f2 = X−11 g ⇐⇒ X−12 X1f1 + f2 = X−12 g
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Theorem 4 (Cancellation of singularities)

Given f1, one can choose f2 so that X (f1 + f2) ∈ C∞ (microlocally).

Indeed, just solve X1f1 + X2f2 = 0 for f2 to get f2 = −X−12 X1f1.

In other words, there is a huge microlocal kernel, and we can only
recover WF(f ) up to that kernel. Basically, we have one equation
for two variables.

This can be generalized easily to m conjugate points: choose fk for
all k but one; then one can solve for the remaining one.
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for two variables.

This can be generalized easily to m conjugate points: choose fk for
all k but one; then one can solve for the remaining one.
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Numerical Example

Figure: The geometry of the geodesics
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Choose f1 to be an approximate delta function.

Figure: The function f1 (left) and Xf1 (right). The horizontal axis is the
initial point on the boundary; the vertical one is the initial angle from 0
to π.

Geodesics issued from the bottom in a direction close to a vertical
one, will hit the blob once. They are plotted around the 0.06 mark.
The ones issued from the top at a downward vertical direction or
close would hit the blob three times. They are plotted around the
0.02 mark.
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Given f1, we construct f2 as in the theorem:

f2 = −X−12 X1f1 microlocally.

For this purpose, we invert X in a smaller domain encompassing
the expected location of the artifact (near the conjugate locus).

Figure: The function f = f1 + f2 (left) and the same function with a few
superimposed geodesics on it (right). The “artifact” f2 appears as an
approximate conormal distribution to the conjugate locus of the blob that
f1 represents. The gray scale has changed, and black now represents
negative values, around −0.5.
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Figure: X (f1 + f2) (top) and Xf1 (bottom). Some singularities of Xf1 are
nearly erased. The gray scale on top is slightly different to allow for the
negative values of X (f1 + f2). The erased singularities correspond to
nearly vertical geodesics.17/34



Corollary: instability

When there are no conjugate points on the geodesics in M, ∀n,
one has

‖f ‖Hs(M) ≤ C‖Xf ‖Hs+1/2(∂+SM1)
+ Ck‖f ‖H−k (M), ∀f ∈ Hs

0(M)

for all s ≥ 0, where M1 ⊃⊃ M. When we know that X is injective,
for example when the weight is constant; then we can remove the
H−k term.

Let κ(x , θ) be even in θ (then integrating over γ(−t) does not
provide more information). Then, if there are conjugate points,
such an estimate does not hold. Moreover, even

‖f ‖Hs1 (M) ≤ C‖Xf ‖Hs2 (∂+SM1) + C‖f ‖Hs3 (M)

does not hold, regardless of the choice of s1, s2, s3.

We therefore have an if and only if condition (up to the borderline
case of conjugate points on the boundary) for stability for even
weights.
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The X ∗Xf (backprojection) inversion fails

Figure: f1 (left) and C
√
−∆gX

∗Xf1 (right).

The artifacts are at the conjugate loci to each point. In the
notation above, we see a linear combination of f1 and f2 in the
reconstruction Then f2 is an artifact.
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The attenuated X-ray transform

Assume now that the weight is coming from an attenuation
σ(x , v) > 0:

κ(x , v) = e−
∫∞
0 σ(γx,v (s),γ̇x,v (s)) ds .

M

γ0

v1p1

p2 v2

ξ1

ξ2

supp f1

supp f2

Then the direction along γ matters. Microlocally, to recover
singularities near (p1, ξ

1) and (p2, ξ2), we have two equations. If
the determinant is not zero, we can solve them!

det

(
κ(p1, v1)

<

κ(p2, v2)
κ(p1,−v1)

>

κ(p2,−v2)

)
6= 0.

Automatically true! Then we can recover the singularities!
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More examples

Reconstruction with the Landweber iteration method. The metric
has conjugate points.

Figure: Attenuation = 0. Left: original; right: reconstruction

There is an artifact at the conjugate locus.
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More examples

Reconstruction with the Landweber iteration method. The metric
has conjugate points.

Figure: Variable attenuation with average = 0.6. Left: original; right:
reconstruction.
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Figure: Variable attenuation with average = 0.6. Iteration #1.
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Figure: Variable attenuation with average = 0.6. Iteration #11.
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Figure: Variable attenuation with average = 0.6. Iteration #21.
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Figure: Variable attenuation with average = 0.6. Iteration #21.
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Figure: Variable attenuation with average = 0.6. Iteration #31.
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Figure: Variable attenuation with average = 0.6. Iteration #41.
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Figure: Variable attenuation with average = 0.6. Iteration #51.
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Figure: Variable attenuation with average = 0.6. Iteration #61.
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Figure: Variable attenuation with average = 0.6. Iteration #71.
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Figure: Variable attenuation with average = 0.6. Iteration #81.
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Figure: Variable attenuation with average = 0.6. Iteration #91.
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Figure: Variable attenuation with average = 0.6. Iteration #101.
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