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Formulation

The Boundary Rigidity Problem (Inverse Kinematic Problem, Travel Time
Tomography)

Let M be a bounded domain (manifold) with boundary. Let g = {gij} be a
Riemannian metric on M. Let ρ(x , y) be the distance between any two
boundary points x , y (in the metric g).

Bondary Rigidity: Does ρ, known on ∂M × ∂M, determine uniquely g?
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simple metrics, invariance under isometries

The distance ρ(x , y) is equal to the travel time of a signal coming from x and
measured at y under the following simplicity conditions:

I ∀(x , y) ∈ ∂M × ∂M, there is unique geodesics connetcing x , y , depending
smoothly on (x , y) (i.e., no caustics);

I ∂M is strictly convex.

Then we call g a simple metric.

The answer is negative because for every diffeomorphism ψ fixing ∂M
pointwise, the metric ψ∗g has the same data as g ! Here,

(ψ∗g)ij = gkl
∂ψk

∂xi

∂ψl

∂xj
,

and we use the Einstein summation convention.

So the right question to ask is whether we can recover g , up to an isometry as
above, from the boundary distance function.
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simple metrics, invariance under isometries

In other words, if ρĝ = ρg , is there a diffeo ψ : M → M, ψ|∂M = Id , such that
ψ∗ĝ = g?

Assume that g is isotropic, i.e., gij(x) = c(x)δij . Physically, this corresponds to
a variable wave speed that does not depend on the direction of propagation.
Then any ψ that is not identity, will make g anisotropic. Therefore, in the class
of the isotropic metrics, we do not have the freedom to apply isometries and
we would expect that g is uniquely determined. This is known to be true for
simple metrics (Mukhometov, Romanov, et al.)

Our interest is in anisotropic metrics.

If the metric is not simple, the answer is negative.
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Motivation: Travel Time Seismology

Travel Time Seismology

This problem was first studied in the beginning of the 20th century by
Herglotz, and Wiechert & Zoeppritz in an attempt to recover the inner
structure of the Earth from travel times of seismic waves. They solved
explicitly a partial case of this problem: when M is a ball, and g is a radially
symmetric isotropic metric, i.e.,

ds2 = a2(r)dx2, r := |x |.

They imposed a simplicity assumption as well. Travel time seismology is still

one of the main methods to study the inner structure of the Earth today.

Other possible applications: in medical imaging.
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nice picture: actual travel times of seismic waves

Figure: Travel times of P-waves through Earth. Picture taken from the web page of
L. Braile, Purdue University.
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Formulation

Multiple Arrival Times: The Lens Rigidity Problem

Define the scattering relation σ and the length (travel time) function `:

σ : (x , ξ) → (y , η), `(x , ξ) → [0,∞].

Diffeomorphisms preserving ∂M pointwise do not change σ, `!

Lens rigidity: Do σ, ` determine uniquely g, up to an isometry?
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Formulation

In other words, if σĝ = σg , `ĝ = `g , is there a diffeo ψ : M → M, ψ|∂M = Id ,
such that ψ∗ĝ = g?

No, in general but the counterexamples are harder to construct.

The lens rigidity problem and the boundary rigidity one are equivalent for
simple metrics! Indeed, then ρ(x , y), known for x , y on ∂M determines σ, `
uniquely, and vice-versa.

For non-simple metrics (caustics and/or non-convex boundary), the Lens
Rigidity is the right problem to study.

Even for non-simple metrics, one can still recover σ, ` from the travel times,
but we need multiple arrival times, and a non-degeneracy assumption.
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The Hyperbolic DN map

Those travel times are related to propagation of waves in anisotropic media
modeled by a Riemannian metric. One sends a signal from a boundary point x
and waits for the first signal to arrive at y ∈ ∂M: call that ρ(x , y).

The model:

(∂2
t −∆g )u = 0

u|t≤0 = 0, u|∂M = f (t, x).

We measure Λf = ∂u/∂ν on R+ × ∂M (the hyperbolic Dirichlet-to-Neumann
map).

If we know the whole Λf , ∀f , unique recovery of g is known [Belishev and
Kurylev] but the proof is very unstable (based on unique continuation).

We want to know only the leading singularities of Λ,
and we show that we can recover g in a stable way.

There is a price to pay: we will impose some assumptions.
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Some History

Brief history, simple metrics:

I Mukhometov; Mukhometov & Romanov, Bernstein & Gerver, Croke,
Gromov, Michel, Pestov & Sharafutdinov

I Results for g conformal; flat; of negative curvature.

I S & Uhlmann ’98: for g close to the Euclidean one.

I Croke, Dairbekov and Sharafutdinov ’00: locally, near metrics with
(explicitly) small enough curvature.

I Lassas, Sharafutdinov & Uhlmann ’03: one metric with (explicitly) small
curvature, one close to the Euclidean.

I Pestov & Uhlmann ’03: n = 2, simple metrics (no smallness assumptions)

I S & Uhlmann ’03-07: the results described below.

Plamen Stefanov, Gunther Uhlmann : Recovering Anisotropic Metrics from Travel Times Purdue University



Boundary Rigidity Lens Rigidity Linearized Problem Results - Simple M Results - non-simple M Reconstruction Arbitrary Curves Magnetic Systems

Some History

Lens Rigidity for non-simple metrics:

Very few results:

I Croke ’05: If M is lens rigid, a finite quotient is lens rigid, too.

I Croke & Kleiner ’94: counterexamples (M trapping).
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Formulation, solenoidal and potential tensors

Linearized problem:

Recover a tensor field fij from the geodesic X-ray transform

Ig f (γ) =

Z
fij(γ(t))γ̇

i (t)γ̇ j(t) dt

known for all (or some) max geodesics γ in M.

Every tensor admits an orthogonal decomposition into a solenoidal part f s and
a potential part dv ,

f = f s + dv , v |∂M = 0.

where δf s = 0.

Here the symmetric differential dv is given by [dv ]ij = (∇ivj +∇jvi )/2, and the
divergence δ is given by: [δf ]i = g jk∇k fij . We have Ig (dv) = 0.

More precise formulation of the linearized problem: Does Ig f = 0 imply f s = 0?
We will call this s-injectivity of Ig .
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Potential tensors as a linearization of a family of isometric metrics

It should not be surprising that Ig (dv) = 0. Take a diffeo

ψ = Id + εv + O(ε2).

Then
ψ∗g = g + εdv + O(ε2)

have the same data. Next, v |∂M = 0 because ψ|∂M = Id.
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Generic uniqueness and stability

What is known about the linearized problem for simple metrics

I s-injectivity for functions (can be viewed as scalar multiples of the metric
α(x)gij(x))

I also, for 1-tensors

I also, for metrics with small enough curvature (Pestov and Sharafutdinov)

Theorem 1

I true for real analytic simple metrics

I true for metrics close enough to real analytic simple metrics

I Moreover, if Ig is s-injective for some simple g, there is a stability estimate
of hypoelliptic type:

‖f s‖L2(M) ≤ C‖Ng f ‖H̃2(M1), (1)

where M ⊂⊂ M1, and Ng = I ∗g Ig ; and C can be chosen uniform under
small perturbations of g.

Here H2 ⊂ H̃2 ⊂ H1, and roughly speaking, H̃2 is defined as H2 but second
order normal derivatives are excluded.
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Idea of the Proof

More about the linear problem...

The main point is that the linear problem behaves like an elliptic one. One can
construct explicitly a parametrix to Ng that involves a pseudodifferential
operator step, and solving some elliptic BVP.

After that, one gets a Fredholm equation of the kind

(Id + Kg )f = h,

where Kg is compact (of order −1) and depends continuously on g .

If −1 is not an eigenvalue of Kg (happens when Ig is s-injective), then there is
an estimate.

S-injectivity for analytic g is proved by using analytic microlocal analysis.
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Boundary Rigidity Results

Results for the non-linear Boundary Rigidity Problem:

I uniqueness for isotropic (simple) metrics

I more generally, if gij and ĝij = α(x)gij have the same data, then α = 1

Theorem 2

I If Ig0 is s-injective (g0 simple), then there is local uniqueness near that g0.

I Moreover, there is Hölder stability

Corollary 3 (generic local uniqueness)

We have local uniqueness, up to isometry, near any simple g0 in a generic set.
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the class of non-simple manifolds we study

Results for non-simple manifolds:

We study more general manifolds than the simple ones. The right question to
study then is the lens rigidity one (multiple arrival times).

I M does not need to be diffeomorphic to a ball (but some topological
restrictions are still needed)

I ∂M does not need to be convex

I Conjugate points are allowed but some non-conjugacy assumptions are still
made

I incomplete data
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Main Condition

Main Condition:
We study the scattering relation and travel times restricted to
(x , ξ) ∈ D ⊂ ∂(SM). Here D is chosen so that the conormal bundle of the
geodesics issued from D covers T ∗M, and those geodesics have no conjugate
points. Such D are called complete.

Definition 4
We say that D is complete for the metric g , if for any (z , ζ) ∈ T ∗M there
exists a maximal in M, finite length geodesic γ : [0, l ] → M through z , normal
to ζ, such that

I γ belongs to our data (issued from D);

I there are no conjugate points on γ.

We call g regular, if a complete set D exists, i.e., if the maximal D is complete.
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Example: A “cylinder”

Example 1: A cylinder around an arbitrary geodesic

γ0: a finite length geodesic segment on a Riemannian manifold, conjugate
points are allowed.
M: a “cylinder” around γ0, close enough to it.

One can study the scattering relation only for geodesics almost perpendicular
to γ0, there are no conjugate points on them.
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Example: A torus

Example 2: The interior of a perturbed torus

M = S1 × {x2
1 + x2

2 ≤ 1}, with g close to the flat one:

We need only geodesics almost perpendicular to the boundary. Note that M is
trapping!

More generally, one can consider a tubular neighborhood of any periodic
geodesic on any Riemannian manifold.
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perturbed product manifold

Even more generally, we can study M × N, where M is simple, and N is
arbitrary; and study σ for all geodesics over fixed points of N, and all those
close to them. A small enough perturbation of this manifold satisfies our
assumptions, and can have a terrible topology and all kinds of trapping rays
and conjugate points.

The examples above are of that type.
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Linear Results: S-injectivity for analytic regular metrics

New results for this class of non-simple manifolds:

About the linearized problem:

Theorem 5
Let g be analytic, D - open and complete. Then Ig,D is s-injective.

A very brief sketch of the proof

The proof is based on analytic microlocal analysis. We show that N = I ∗g,DIg,D
is an analytic pseudo-differential operator. If Ig,Df = 0, then Nf = 0 near M.
We show that N is not elliptic, but restricted to solenoidal tensors, it is. Then
f s has to be analytic up to the boundary. Next, we show that all derivatives at
∂M vanish. Therefore, f s = 0.

It is actually more complicated than that...
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Linear Results: S-injectivity for analytic regular metrics

As an easy example, here is how one can prove this theorem for integrals of
functions. Note that this is a partial case: if f (x) is a function, not a tensor,
then f (x)gij is a tensor, andZ

f (γ)gij γ̇
i γ̇ j dt =

Z
f (γ) dt.

Extend f as zero outside M. Then Nf is still zero because integrals outside M
are zero. Now, Nf = 0 implies the extended f is analytic. Since f = 0 outside
M, then f = 0.
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More linear results: Stability and generic s-injectivity

More results about the linear problem for non-simple metrics

Theorem 6 (stability)

Let D be open and complete. Then s-injectivity of Ig,D implies a locally
uniform stability estimate.

In other words, injectivity implies stability!

Theorem 7 (generic s-injectivity)

Let D be open and complete for g in an open set G of regular metrics. Then
there exists an open dense subset Gs of G (in the C k topology, k � 2), so that
Ig,D is s-injective for g ∈ Gs .

Plamen Stefanov, Gunther Uhlmann : Recovering Anisotropic Metrics from Travel Times Purdue University



Boundary Rigidity Lens Rigidity Linearized Problem Results - Simple M Results - non-simple M Reconstruction Arbitrary Curves Magnetic Systems

Non-linear Results

Results about the non-linear lens rigidity problem:

Theorem 8 (local uniqueness if the linear problem is s-injective)

Let g0 be regular, D - open and complete for g0. Assume ∃D′ ⊂⊂ D be such
that Ig0,D′ is s-injective.
Then for g, ĝ close enough to g0, the relations

σ = σ̂, ` = ˆ̀, on D

imply that ĝ is isometric to g.

In other words, uniqueness for the linear problem implies local uniqueness for
the non-linear one. This implicit function type of theorem heavily depends on
the hypoellipticity of the linear map.
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Non-linear Results

By Thm 7, the condition in Thm 8 is generic:

Theorem 9 (generic local uniqueness)

Let D′ ⊂⊂ D, G, Gs be as above. Then the conclusion of Theorem 8 holds for
any g0 ∈ Gs .

In other words, we get local uniqueness near a generic set of regular metrics
(for σ, ` restricted to D that is complete for each g ∈ G).

We believe that one can prove Hölder stability, too; like in the case of simple
metrics. It seems doable but we expect it to be very technical.
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Nonlinear results: Boundary Determination

Boundary Determination

Finally, a result on boundary determination. It is part of the proof of the
theorems above but it is of independent interest as well.

Theorem 10
Let (M, g) be a compact Riemannian manifold with boundary. Let
(x0, ξ0) ∈ S(∂M) be such that the maximal geodesic γx0,ξ0 through it is of
finite length, and assume that x0 is not conjugate to any point in γx0,ξ0 ∩ ∂M.
If σ and ` are known on some neighborhood of (x0, ξ0), then the jet of g at x0

in boundary normal coordinates is determined uniquely.

Note that there are no generic or analyticity assumptions here. Previous results
required convexity of ∂M. In that case, there is a Lipshitz stability estimate
(S&Uhlmann) but no constructive recovery was known.
The proof of Thm 10 is actually constructive, and as such, implies Lipshitz
stability.
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How stable and constructive is all this?

I First, it is a perturbation method. Given a known g0, and a unknown g
close enough to g0, we want to recover g from its scattering relation. We
linearize, and we want to recover an approximation f to g − g0.

I Recover the derivatives of g at ∂M: constructive, finite number are
needed.

I We get Nf = h, with h known, and N related to g0 (aslo known).
Construct a parametrix to N of order 1 only.

I Get a Fredholm equation (Id + K)f = h̃ with K compact.

I Solve it, and get f .

I If g is simple, we proved that there is Hölder stability.
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The linear problem for other families of curves.

Consider the weighted X-ray transform of functions over a general family of
curves Γ:

If (γ) =

Z
w(γ(t), γ̇(t))f (γ(t)) dt, γ ∈ Γ.

On can assume that Γ are the solutions of a Newton-type of equation

ẍ = G(x , ẋ)

with a generator G . (For example, G = 0 gives us lines).

Theorem 11 (Frigyik, S & Uhlmann)

I is injective for generic regular (G ,w), including real analytic ones. There is a
stability estimate.

Here, G is called regular, if the corresponding curves have no “conjugate
points” on supp w , and their conormal bundle (on supp w) covers T ∗M.
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Magnetic systems.

On (M, g), consider an one form α, and the Hamiltonian

H =
1

2
(ξ + α)2

g .

The corresponding characteristics on the energy level H = 1/2 are called unit
speed magnetic geodesics. They describe the trajectories of a charged particle
in a magnetic field.

The lens rigidity is formulated in a similar way. The boundary rigidity is
formulated in terms of the action A(x , y), on ∂M × ∂M, not the boundary
distance function ρ(x , y). The action A(x , y) is defined by

A(x , y) = T (x , y)−
Z

γ[x,y ]

α,

where T (x , y) is the travel time from x to y , and γ[x,y ] is the unit speed
magnetic geodesic connecting x and y (under a simplicity assumption).
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Magnetic Systems

In a joint work with Dairbekov, Paternain and Uhlmann, we study simple
magnetic systems. We prove analogs of the results above. The linearized
problem then reduces to the invertibility of the integral transform

Iφ(γ) =

Z
γ

φ(γ, γ̇) dt

for functions φ(x , ξ) that are quadratic in ξ:

φ(x , ξ) = hij(x)ξiξj + βj(x)ξj .

Then I is called s-injective, if Iφ = 0 implies h = dv , β = dφ− Y (v), where
Y (η) = ((dα)j

iηj).

The uniqueness of the non-linear problem is possible up to a gauge
transformation only

g 7→ ψ∗g , α 7→ ψ∗α+ dφ.
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