
Travel Time Tomography and Tensor Tomography, I

Plamen Stefanov

Purdue University

Mini Course, MSRI 2009

Plamen Stefanov (Purdue University ) Travel Time Tomography and Tensor Tomography, I 1 / 17



Alternative titles:

Boundary/Lens Rigidity
Inverse Kinematic Problem
Integral Geometry of Tensor Fields

Plamen Stefanov (Purdue University ) Travel Time Tomography and Tensor Tomography, I 2 / 17



References

References

Most references available at my web page.

Boundary rigidity and tensor tomography for simple metrics:

Stability estimates for the X-ray transform of tensor fields and boundary rigidity
(with Gunther Uhlmann), Duke Math. J. 123(2004), 445–467.

Boundary rigidity and stability for generic simple metrics (with Gunther Uhlmann),
Journal Amer. Math. Soc. 18(2005), 975–1003.

Lens rigidity and tensor tomography with incomplete data for a class of non-simple
metrics:

Integral geometry of tensor fields on a class of non-simple Riemannian manifolds
(with Gunther Uhlmann), Amer. J. Math. 130(1)(2008), 239–268.

Local lens rigidity with incomplete data for a class of non-simple Riemannian
manifolds (with Gunther Uhlmann), J. Diff. Geom. 82(2) (2009), 383–409.

Plamen Stefanov (Purdue University ) Travel Time Tomography and Tensor Tomography, I 3 / 17

http://www.math.purdue.edu/~stefanov/site//Publications.html
http://www.math.purdue.edu/~stefanov/publications/rigidity.pdf
http://www.math.purdue.edu/~stefanov/publications/gen_rig.pdf
http://www.math.purdue.edu/~stefanov/publications/non_simple.pdf
 http://www.math.purdue.edu/~stefanov/publications/lens_rigidity.pdf
 http://www.math.purdue.edu/~stefanov/publications/lens_rigidity.pdf


References More references

More references

A survey of those papers, with many technical details sketched only:

Microlocal Approach to Tensor Tomography and Boundary and Lens Rigidity,
Serdica Math. J. 34(1)(2008), 67–112.

If you are going to read only one of those papers, this is the one.

Integral geometry of functions for arbitrary curves:

The X-Ray transform for a generic family of curves and weights, with Bela Frigyik
and Gunther Uhlmann, J. Geom. Anal. 18(1)(2008), 8197.

A philosophical paper:

Linearizing non-linear inverse problems and an application to inverse backscattering
(with Gunther Uhlmann), J. Funct. Anal. 256(9)(2009), 2842–2866.

Excellent Lecture Notes

Vladimir Sharafutdinov, Ray Transform on Riemannian manifolds.

Plamen Stefanov (Purdue University ) Travel Time Tomography and Tensor Tomography, I 4 / 17

http://www.math.purdue.edu/~stefanov/publications/Rio.pdf
http://www.math.purdue.edu/~stefanov/publications/X_ray_FrStUh.pdf
http://www.math.purdue.edu/~stefanov/publications/stab.pdf
http://www.ima.umn.edu/talks/workshops/7-16-27.2001/sharafutdinov/Ray_transform.pdf


References More references

Lecture 1

In this lecture, we formulate the problem and motivate our interest in it.

Travel Time Seismology as a motivating example

Boundary Rigidity, definition

Lens Rigidity, definition

Linearizing the Boundary Rigidity Problem: Tensor Tomography
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Motivation Motivation: Travel Time Seismology

Travel Time Seismology

To image the inner structure of the Earth, we need signals that can get from there to the
surface. One such signal (and perhaps the only usable one) are seismic waves. Each time
there is an earthquake, a network of seismic stations around the world record the seismic
wave that arrives there and in particular, time it takes the wave to get there. The speed
of those waves depends on the structure of the Earth, and one hopes to use this
information to recover the latter.

A good model is a domain (a ball) in R3 with a Riemannian metric g in it. More about
this later.
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Motivation nice picture: travel times of seismic waves

Figure: Travel times of P-waves through Earth. Picture taken from the web page of L. Braile,
Purdue University.
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Motivation

Travel Time Seismology

This problem was first studied in the beginning of the 20th century by Herglotz, and
Wiechert & Zoeppritz in an attempt to recover the inner structure of the Earth from
travel times of seismic waves. They solved explicitly a partial case of this problem: when
M (the Earth) is a ball, and g is a radially symmetric isotropic metric, i.e.,

ds2 = a2(r)dx2, r := |x |.

They imposed an assumption that there are no multiple arrival times (simplicity
assumption) as well. Travel time seismology is still one of the main methods to study the

inner structure of the Earth today.

Other possible applications: in medical imaging.
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Boundary Rigidity Formulation

The Boundary Rigidity Problem (Travel Time Tomography)

Let M be a compact domain (manifold) with boundary. Let g = {gij} be a Riemannian
metric on M. Let ρ(x , y) be the distance between any two boundary points x , y (in the
metric g).

Boundary Rigidity: Does ρ, known on ∂M × ∂M, determine uniquely g?
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Boundary Rigidity simple metrics, invariance under isometries

The distance ρ(x , y) is equal to the travel time of the unique signal coming from x and
measured at y under the following simplicity conditions:

∀(x , y) ∈ ∂M × ∂M, there is unique geodesics connecting x , y , depending smoothly
on (x , y) (i.e., no caustics);

∂M is strictly convex.

Then we call g a simple metric.

The answer is negative because for every diffeomorphism ψ fixing ∂M pointwise, the
metric ψ∗g has the same data as g ! Here,

(ψ∗g)ij = gkl
∂ψk

∂x i

∂ψl

∂x j
,

and we use the Einstein summation convention.

So the right question to ask is whether we can recover g , up to an isometry as above,
from the boundary distance function.
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Boundary Rigidity simple metrics, invariance under isometries

In other words, if ρĝ = ρg , is there a diffeo ψ : M → M, ψ|∂M = Id , such that ψ∗ĝ = g?

Assume that g is isotropic, i.e., gij(x) = c(x)δij . Physically, this corresponds to a variable
wave speed that does not depend on the direction of propagation. Then any ψ that is
not identity (but is identity on ∂M), will make g anisotropic. Therefore, in the class of
the isotropic metrics, we do not have the freedom to apply isometries and we would
expect g to be uniquely determined. This is known to be true for simple metrics
(Mukhometov, Romanov, et al.)

Our interest is in anisotropic metrics.

If the metric is not simple, the answer is negative in general. A “slow region” inside M
cannot be seen from the distance function.
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Lens Rigidity Formulation

Multiple Arrival Times: The Lens Rigidity Problem (The Inverse Kinematic
Problem)

Define the scattering relation σ and the length (travel time) function `:

σ : (x , ξ) → (y , η), `(x , ξ) → [0,∞].

Diffeomorphisms preserving ∂M pointwise do not change σ, `!

Lens rigidity: Do σ, ` determine uniquely g, up to an isometry?
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Lens Rigidity Formulation

In other words, if σĝ = σg , `ĝ = `g , is there a diffeo ψ : M → M, ψ|∂M = Id , such that
ψ∗ĝ = g?

No, in general but the counterexamples are harder to construct.

The lens rigidity problem and the boundary rigidity one are equivalent for simple metrics!
Indeed, then ρ(x , y), known for x , y on ∂M determines σ, ` uniquely, and vice-versa.

Exercise: Prove it!

Hint: Let’s assume that we know ρ|∂M×∂M . Take the tangential gradient grad′xρ(x , y)
and grad′yρ(x , y). Prove that for the full gradients we have

gradxρ(x , y) = −ξ, gradyρ(x , y) = η,

with ξ, η as above and unit. Now, since they are unit, they are uniquely determined by
their projections ξ′, η′ that we know.

If we know σ, ` then we can integrate along appropriate curves to reconstruct ρ|∂M×∂M .

For non-simple metrics (caustics and/or non-convex boundary), the Lens Rigidity is the
right problem to study.

Even for non-simple metrics, one can still recover σ, ` from the travel times, but we need
multiple arrival times, and a non-degeneracy assumption.
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The Linearized Problem Linearization of the Boundary Rigidity Problem

Linearization of the Boundary Rigidity Problem

Let g s , |s| � 1 be an one-parameter family of metrics. Let ρs(x , y) be the corresponding
distance function. We want to compute dρs

ds
|s=0.

ρs(x , y) =

Z 1

0

q
g s

ij (γs(t))γ̇ i
s(t)γ̇ i

s(t) dt,

where [0, 1] 3 t 7→ γs is the unique geodesic connecting x and y . Notice that the
integrand equals ρs(x , y) and is independent of t.

Differentiate w.r.t. s at s = 0. The variable s occurs 4 times. The (combined) derivative
w.r.t. the red ones is zero because for a fixed metric, the geodesics minimize the length
functional! So only the blue derivative survives.

So we get
dρs

ds

˛̨̨
s=0

=
1

2ρ0

Z 1

0

fij(γ(t))γ̇
i (t)γ̇ j(t) dt, f :=

dg s

ds

˛̨
t=0
.
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The Linearized Problem Linearization of the Boundary Rigidity Problem

Change the parameterization of the geodesics from constant speed to unit speed to get

dρs

ds

˛̨̨
s=0

=
1

2

Z
fij(γ(t))γ̇

i (t)γ̇ j(t) dt, f :=
dg s

ds

˛̨
s=0
,

where the integral is taken over the unit speed geodesic connecting x and y .

If we have two metrics g and ĝ , close to each other, we can set

g s = sĝ + (1− s)g , 0 ≤ s ≤ 1.

Then
f = ĝ − g ,

and
dρs

ds

˛̨̨
s=0

≈ ρ̂− ρ.
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The Linearized Problem Linearization of the Boundary Rigidity Problem

Linearized problem (Tensor Tomography)
Recover a tensor field fij from the geodesic X-ray transform

Ig f (γ) =

Z
fij(γ(t))γ̇

i (t)γ̇ j(t) dt

known for all (or some) max geodesics γ in M.

This problem should not have a unique solution because it linearizes one that has no
unique solution (remember the diffeomorphism).

Given a vector field v , take a diffeomorphism

ψ(x) = x + εv(x) + O(ε2).

Then g and ψ∗g have the same data. One can check that

ψ∗g = g + 2εdv + O(ε2).

where dv is the symmetric differential of v defined by

[dv ]ij = (∇ivj +∇jvi )/2, here ∇ = covariant derivative.

Next, v |∂M = 0 because ψ|∂M = Id.
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The Linearized Problem Linearization of the Boundary Rigidity Problem

So we arrive at
Ig (dv) = 0

for any such v .

This is not hard to check directly. Indeed,`
[dv ]ij(γ(t))γ̇

i (t)γ̇ i (t)
´

=
d

dt
〈v(γ(t)), γ̇(t)〉.

Integrate w.r.t. t; then the l.h.s. is Ig (dv), while the r.h.s. vanishes by the Fundamental
Theorem of Calculus (because v = 0 on ∂M).

We expect this to be the whole kernel, which justifies the following.

Definition 1

We say that Ig is s-injective, if Ig f = 0 implies f = dv with v |∂M = 0.

So the linearized version of the boundary rigidity problem is to show that Ig is s-injective
for simple g .

This is still an open problem. So far we know that this is true for a dense and open set of
simple metrics.
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