
Travel Time Tomography and Tensor Tomography, II

Plamen Stefanov

Purdue University

Mini Course, MSRI 2009, Lecture 2

Plamen Stefanov (Purdue University ) Travel Time Tomography and Tensor Tomography, II 1 / 27



Solving an Inverse Problem through linearization

Solving an Inverse Problem through linearization

First, this is not the only way to solve an inverse problem. But it is one of the most used.

For more details, see Linearizing non-linear inverse problems and an application to inverse
backscattering (with Gunther Uhlmann), J. Funct. Anal. 256(9)(2009), 2842–2866.

Consider the following “inverse problem.” Let A : B1 → B2 (Banach spaces).

Given h ∈ Ran(A), find f so that A(f ) = h. (1)

We want to prove local uniqueness near some (and hopefully all) f0, i.e., that

A(f1) = A(f2) for f1,2 close to f0 =⇒ f1 = f2.

The first thing that comes to mind is to see if the derivative is “non-zero.” Let Af be the
differential of A (the Gâteaux derivative) at f (we assume that it exists), i.e., Af is a
linear operator given by

Af h = lim
ε→0

1

ε
(A(f + εh)−A(f )).

Then the local uniqueness near f0 is often associated with the injectivity of Af0 . That can
be wrong!
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Solving an Inverse Problem through linearization

A finitely dimensional “inverse problem.”

Let A : Rn → Rm, A ∈ C 2. Then

A(x) = A(x0) + Ax0(x − x0) + Rx0(x) with |Rx0(x)| ≤ Cx0 |x − x0|2,
for x near x0. Assume now that Ax0 is injective (then m ≥ n). This immediately implies

|h| ≤ C |Ax0h|, ∀h ∈ Rn.

Therefore,

Injectivity implies stability (of the linear problem) in finite dimensions.

Also, it implies local uniqueness and stability for the original non-linear problem. Indeed,
assuming A(x) = A(x0), we get

|x − x0| ≤ C |Ax0(x − x0)| ≤ C |x − x0|2

and the local uniqueness follows easily. Similarly, if |x − x0| � 1, one gets

|x − x0| ≤ 2C |A(x)−A(x0)|. (2)

One can replace Rm here by an ∞-dim space. In particular, we get (in the original
formulation, A : B1 → B2), that if B1 is finite dimensional (there is no need B2 to be
finitely dimensional, too), we have trivially Lipschitz stability for any inverse problem with
an injective differential!
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Solving an Inverse Problem through linearization

Now, if dimB1 = ∞, this is no longer true in general. First,

Injectivity does not imply stability,

i.e., an estimate of the type

‖h‖B1 ≤ C‖Af0h‖B2 .

Second,

Without stability, we may not have local uniqueness (forget about any type of stability)
for the non-linear problem.

So if we want to use those type of arguments, we need to prove injectivity and stability
of Af . Under those conditions, the arguments above work. This is known as the local
injectivity theorem.
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Solving an Inverse Problem through linearization

Most inverse problems are ill-posed however, and this approach rarely works the way
described. It is typical that we can only prove stability in different (reasonable) norms:

‖h‖B′1 ≤ C‖Af0h‖B′2 , ∀h ∈ B1,

where B1,2 are different Banach spaces that cannot be replaced with the original ones.
Then we can still prove local uniqueness (and Hölder stability) under an additional
regularity condition. Remember, the decisive argument was that the linearization holds
up to a quadratic error O(|f − f0|2), while on the left we had |f − f0|. So at some point
we get

‖f − f0‖ ≤ C‖f − f0‖2,

that implies f = f0 if ‖f − f0‖ � 1. We can afford to replace the power 2 by 1 + ε,
ε > 0, and this argument still works!

This suggests that we should use interpolation estimates of the kind

‖f ‖Hs ≤ C‖f ‖α1
Hs1 ‖f ‖

α2
Hs2 ,

where α1s1 + α2s2 = 1, α1 + α2 = 1, αj > 0.
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Solving an Inverse Problem through linearization

Here is an example. Suppose that A : L2 → L2. On the other hand, assume that Af is
injective for any f but we can only show that

‖h‖L2 ≤ C‖Af h‖H1 . (3)

What we really want is
‖h‖L2 ≤ C‖Af h‖L2 , (4)

but that might not be true. If we can show that A : L2 → H1, then we just choose
B2 = H1, and we can proceed as before. But if we cannot, it is time to use interpolation
estimates:

‖Af h‖H1 ≤ C‖Af h‖α
L2 ‖Af h‖1−α

Hs

with s(1− α) = 1. Now, if we assume that h belongs to a subspace so that

‖Af h‖Hs ≤ C0,

then
‖Af h‖H1 ≤ C ′

0‖Af h‖α
L2 .

Then we get from (3),
‖h‖L2 ≤ C‖Af h‖α

L2 .

Compare this to (4). It is similar, but the power 1 is replaced by α < 1.
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Solving an Inverse Problem through linearization

We can still use
‖h‖L2 ≤ C‖Af h‖α

L2 .

in our proof of uniqueness, where an important role was played by the inequality

‖f − f0‖ ≤ C‖Af0(f − f0)‖ ≤ C‖f − f0‖2.

In our case, we have instead

‖f − f0‖ ≤ C‖Af0(f − f0)‖ ≤ C‖f − f0‖2α

and it is enough to have 2α > 1. This can be achieved if s > 2 (remember that
s(1− α) = 1). So, for this to work we need

‖Af h‖H2+δ ≤ C0, with some δ > 0.

A typical situation is that Af is e ΨDO of order −1; then the estimate above holds if

‖f ‖H1+δ ≤ C1, (5)

for f near f0, with some C1 > 0. Let us say that we work on a compact domain
(manifold) with or without boundary. Then (5) restricts f to a compact subset and
appears as an additional assumption. The resulting stability estimate is called a
conditional stability estimate.
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Solving an Inverse Problem through linearization

Conditions for local uniqueness and stability

Theorem 1 (weak local uniqueness and stability)

Assume that A has a derivative at f0 with quadratic estimate on the remainder. Let

‖h‖B′1 ≤ C‖Af0h‖B′2 , ∀h ∈ B1. (6)

Assume also that there exist Banach spaces B′′2 ⊂ B′2, B′′1 ⊂ B1 so that Af0 : B′′1 → B′′2
and the following interpolation estimates hold

‖u‖B′2 ≤ C‖u‖µ2
B2
‖u‖1−µ2

B′′2
, ‖h‖B1 ≤ C‖h‖µ1

B′1
‖h‖1−µ1

B′′1
µ1, µ2 ∈ (0, 1], µ1µ2 > 1/2.

Then for any K > 0 there exists ε > 0, so that for any f with

‖f − f0‖B1 ≤ ε, ‖f ‖B′′1 ≤ K , (7)

one has the conditional stability estimate

‖f − f0‖B1 ≤ C(K)‖A(f )−A(f0)‖µ1µ2
B2

, C(K) = CK 2−µ1−µ2 . (8)

In particular, there is a weak local uniqueness near f0, i.e., if A(f ) = A(f0), then f = f0.
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Solving an Inverse Problem through linearization

Theorem 2 (Strong local uniqueness and stability)

Assume in addition that there is a Banach space K ⊂ B′′1 so that (6) holds

for f0 replaced with f close enough to f0 in K, and Af : B′′1 → B′′2 is uniformly
bounded for such f . Then there exists ε > 0, so that for any f1, f2 with

‖f1 − f0‖K ≤ ε, ‖f2 − f0‖K ≤ ε, (9)

one has the conditional stability estimate

‖f1 − f2‖B1 ≤ C‖A(f1)−A(f2)‖µ1µ2
B2

. (10)

In particular, there is a strong local uniqueness near f0, i.e., if A(f1) = A(f2), then f1 = f2.

Here the compactness type of condition is hidden in the assumption that f1,2 ∈ K ⊂ B′′2 .
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Solving an Inverse Problem through linearization

A short version of what we did so far:

Proving injectivity of the linearization is not enough.

We need also a stability estimate.

That estimate may not be in the original norms. As long as it is in some Hs or C k

spaces, the whole approach still works.

If the estimate is not in the original norms, we pay a price: we have to assume
higher regularity of the coefficients.
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Analysis of the Tensor Tomography Problem

Back to Tensor Tomography

The linearized problem

If g is simple, and for the geodesic X-ray transform

Ig f (γ) =

Z
fij(γ(t))γ̇ i (t)γ̇ j(t) dt

we have Ig f (γ) = 0 for all max geodesics γ in M, show that f = dv with v |∂M = 0.

First, we will project onto the space of tensors (called solenoidal) orthogonal to all such
dv ’s (called potential). There is a natural definition of L2 spaces of tensors of a fixed
order involving the volume measure. We want to describe all f so that (f , dv) = 0.
Integrate by parts to get

δf = 0, (11)

where δ is the divergence operator sending 2-tensors to 1-tensors (forms); given in local
coordinates by

[δf ]i = ∇j fij .

Therefore, solenoidal tensors are given by the condition (11).
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Solenoidal-Potential decomposition

Solenoidal-Potential decomposition

Based on that, we can decompose orthogonally any symmetric 2-tensor f into a
solenoidal part f s and a potential one dv with v |∂M = 0:

f = f s + dv .

To find f s and v , use the condition δf s = 0 to get

δdv = δf , v |∂M = 0.

The is an elliptic 2-nd order differential equation (system) with Dirichlet b.c. It has
unique solution.

Reformulation of the Tensor Tomography Problem

For g simple,
Ig f = 0 =⇒ f s = 0?

It makes sense to study this for tensors of any order; in particular for Order 1: 1-forms,
Order 0: functions (then Ig f = 0 ⇒ f = 0).

For 1-forms and functions, the answer is known to be affirmative.

For 2-tensors, it is still an open problem, with several partial results.
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Solenoidal-Potential decomposition

Let ∂−SM consists of points x on ∂M and unit vectors θ ∈ Sx pointing into M. There is
a natural measure dµ on ∂−SM defined locally as the product of the surface measures
(more precisely, the induced measure on the submanifold ∂SM) times the factor 〈ν, θ〉,
where ν is a unit normal to ∂M. Then on can view Ig as the operator

Ig : L2(M, dVol) =⇒ L2(∂−SM, dµ).

Instead of studying Ig , we will study N := I ∗g Ig . It is much more convenient object to
study and we do not lose much. S-injectivity of N is equivalent to s-injectivity of Ig ;
stability estimates for N can be translated into stability estimates for Ig .

The next step is to extend M slightly to another manifold M1 with boundary (domain)
and extend all tensors as zero there. Now, study N in M1 acting on tensors supported in
M. So we can think of N as the operator

N : L2(M) 7→ L2(M1).

Again, no real loss of generality. S-injectivity of N is equivalent to s-injectivity of Ig .
Similarly for stability estimates.
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The Schwartz kernel of N

Example: functions and straight lines

Let us pause for a moment and consider the simplest case: integrals of functions in Rn

over straight lines. Then it is well known that

Nf (x) = I ∗If (x) = cn

Z
f (y)

|x − y |n−1
dy .

Note that the singularity is integrable. Since Nf is a convolution, N is a Fourier
multiplier:

Nf = c ′nF−1|ξ|−1F ,

because, up to a multiplication by a non-zero constant, the Fourier transform of |z |−n+1

is |ξ|−1. Therefore, N is a ΨDO of order −1 with a symbol proportional to |ξ|−1. To
invert it, we just apply c ′′n |D|, that is the ΨDO with symbol |ξ|, i.e.,

f = c ′′n |D|Nf .

Note that this forces us to consider Nf in the whole Rn even if we start with f supported
in a fixed M. The equivalent to that in the Riemannian case will be M1.
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The Schwartz kernel of N

The Schwartz kernel of N

We sketch the main steps in the analysis of N next. What we need is to prove injectivity
under some assumptions, and stability.

Consider the more general weighed geodesic transform

Ig f (γ) =

Z
α(γ(t), γ̇(t))fij(γ(t))γ̇ i (t)γ̇ j(t) dt

Theorem 3 (S-Uhlmann, Duke Math. J. 2004)

For any symmetric 2-tensor f ∈ C(M) we have

(Ng f )kl(x) =
1√

det g

Z
A(x , y)

f ij(y)

ρ(x , y)n−1

∂ρ

∂y i

∂ρ

∂y j

∂ρ

∂xk

∂ρ

∂x l

˛̨̨̨
det

∂2(ρ2/2)

∂x∂y

˛̨̨̨
dy , x ∈ M1,

with

A(x , y) = ᾱ(x ,−∇xρ(x , y))α(y ,∇yρ(x , y)) + ᾱ(x ,∇xρ(x , y))α(y ,−∇yρ(x , y)). (12)

Note that it is enough to prove the theorem for the weighted geodesic X-ray transform of
functions (that are tensors, too, but of order 0) because we can think of
α(γ(t), γ̇(t))γ̇ i (t)γ̇ j(t) as a weight multiplying fij .
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The Schwartz kernel of N

Here is some very brief sketch of the proof. Fix a point x ∈ M1. Then I ∗If (x) is a
weighted integral of f along any geodesic through x (because of If ); integrated
additionally w.r.t. all unit directions of all geodesics through x (because of the presence
of I ∗ there). The latter is also a weighted integral, when α 6= 1. Split the integration of
each geodesic in two parts: starting from x into each of the two possible directions. This
is integration in geodesic polar coordinates but instead of the measure ρn−1 dρ dσx(θ),
we have dρ dσx(θ). Divide and multiply by the factor ρn−1 to get ρ1−n(x , y) after change
of variables y = expx(ρθ) = γx,θ(ρ). The determinant is just the Jacobian of this change.

So for example when α = 1 we get

(Ng f )kl(x) =
2p

det g(x)

Z
f (y)

ρ(x , y)n−1

˛̨̨̨
det

∂2(ρ2/2)

∂x∂y

˛̨̨̨
dy , x ∈ M1,

that is a straightforward generalization of what happens in the Euclidean case.

Remark. Note that the integral in the theorem is not written in an invariant form. For
an invariant formula, we need to replace dy by (det g(y))−1/2 dVol(y). It is easy to see
then that the quantity

1p
det g(x) det g(y)

det
∂2(ρ2/2)

∂x∂y

is invariantly defined.
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Pseudodifferential operators

Pseudodifferential operators

The kernel of N has a singularity of the type

1

|x − y |n−1
.

That suggests that N might be a ΨDO. We are going to prove this now.

What is a ΨDO? Start with the observation that

1

i
∂x j f = (2π)−n

Z
e i(x−y)·ξξj f (y) dy dξ.

We can easily generalize this to differential operators P(x , D) =
P

|α|≤m cα(x)Dα, where

D = 1
i
∂:

Pf = (2π)−n

Z
e i(x−y)·ξp(x , ξ)f (y) dy dξ, (13)

where p(x , ξ) =
P

|α|≤m cα(x)ξα is the symbol of P.

A pseudodifferential operator is given by (13) but p(x , ξ) does not need to be a
polynomial in ξ. Instead, we assume that p belongs to a certain class.
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Pseudodifferential operators

One such class is the class of the polyhomogeneous symbols:

p(x , ξ) ∼ pm(x , ξ) + pm−1(x , ξ) + · · · ,

where pk is homogeneous in ξ of order k for |ξ| � 1. The term pm is called a principal
symbol of P.

Composition of ΨDOs: Let P, Q be ΨDOs of orders m1, m2 in the class above. Then
P(x , D)Q(x , D) is a ΨDO again of order m = m1 + m2. Its principal symbol is given by

pm1(x , ξ)qm2(x , ξ)

but the formula for its (full) symbol is more complicated.

Mapping properties in Sobolev spaces:

P(x , D) : Hs(M) → Hs−m(M), M compact.

Elliptic ΨDOs: P(x , D) is elliptic, if pm(x , ξ) 6= 0 for |ξ| � 1. If P is matrix-valued, then
we want det pm(x , ξ) 6= 0 for |ξ| � 1.

“Negligible Operators”: Those are the ΨDOs of order −∞, sending any Hs to C∞

(smoothing operators).
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Pseudodifferential operators

Amplitudes and symbols. One can replace p(x , ξ) in the definition of P by a(x , y , ξ)
having a similar polyhomogeneous expansion. One can show that modulo smoothing
operators, P is equivalent to an operator of the previous type, with some symbol p(x , ξ)
and

pm(x , ξ) = am(x , x , ξ).

“Inversion” of elliptic ΨDOs. Let P(x , D) be elliptic. One can construct a
“parametrix” by using the following construction. Take Q (of order −m with principal
symbol p−1

m (or p−1) smoothly cut for ξ in a compact where pm may vanish. Then QP
will have principal symbol 1 (as a 1st order ΨDO). That means that

QP = Id + K−1,

where K is 1 degree smoothing (i.e., of order −1). We are not claiming that K−1 is
small! Now, one can iterate this procedure to modify the lower order part of Q and make
K of order −∞. For our purposes however, this will not be necessary.

Compactness. Restricted to any compact, K−1 is a compact operator in L2 (or any Hs).
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Fredholm equations

Fredholm equations

This has the following consequence. Let us say that we want to solve the equation

Pf = h, with h ∈ L2(M) given, and P elliptic.

What we really want is to write something like f = P−1h. What we can do is to
construct a parametrix to get

(Id + K−1)f = Qh.

Since K−1 is compact, this is Fredholm equation (actually, Pf = h is Fredholm, too).
This has the following nice consequences

Uniqueness: Id + K−1 may have a kernel, but is is always finite dimensional.

The cokernel of Id + K−1 is finitely dimensional, too.

If we take away the kernel from L2(M) and consider Id + K−1 as a map from there
to the complement of the cokernel, this map is invertible (with a bounded inverse).

Next,
‖f ‖ ≤ C‖Pf ‖, f ⊥ Ker P.

In particular, if we know somehow that P is injective, then

‖f ‖ ≤ C‖Pf ‖, ∀f .

The estimate above (hence injectivity) is preserved under small perturbations of P.
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Schwartz kernels of ΨDOs

Schwartz kernels of ΨDOs

Let A be a ΨDO

Af (x) =
1

(2π)n

Z
e i(x−y)·ξa(x , y , ξ)f (y) dy dξ.

Perform the ξ integral to get that A has Schwartz kernel

ǎ(x , y , x − y), (14)

where ǎ is the inverse Fourier transform of a w.r.t. ξ.

We are in a situation where we know the Schwartz kernel, and we want to find the
amplitude a (and we hope that a would be an amplitude, indeed). So we just need to
write the kernel of N in the form (14) and take the Fourier transform in the third variable.
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Back to the Integral Geometry Problem

We start with the observation

ρ2(x , y) = Gij(x , y)(x − y)i (x − y)j

with some smooth G so that G(x , x) = gij(x). This allows us to write

1

ρn−1(x , y)
=

b(x , y , x − y)

|x − y |n−1
,

where b(x , y , θ) is smooth and homogeneous of order 0 w.r.t. θ. The coefficient b is the
price that we pay for having variable coefficients (non-Euclidean metric).

We can express now the whole kernel of N (remember, we consider the case when f is a
function now) in the form (with a different b of the same type)

A(x , y)

ρn−1(x , y)
det

∂2(ρ2/2)

∂x∂y
=

b(x , y , x − y)

|x − y |n−1
,

Then N is a formal ΨDO with amplitude

a(x , y , ξ) = Fz→ξ

`
b(x , y , z)/|z |n−1´

.

The Fourier transform above is easy to evaluate in polar coordinates for z to get

a(x , y , ξ) = π

Z
|θ|=1

b(x , y , θ)δ(ξ · θ) dθ
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Back to the Integral Geometry Problem

Note that a(x , y , ξ) is homogeneous of order −1. To get the principal symbol, we set
y = x . Recall that Gij(x , x) = gij(x), and this simplifies considerably the formula for the
principal symbol. The next step is to write the integral over the sphere SxM (in the
metric) instead of the Euclidean one. This can be done with the change
Sn−1 3 θ 7→ g−1/2(x)θ ∈ SxM.

After skipping some details, we summarize what we proved so far for the weighted ray
transform of functions (we will return to tensors later).

Theorem 4

Let

Ig f (γ) =

Z
α(γ(t), γ̇(t))f (γ(t)) dt.

Then I ∗g Ig is a ΨDO of order −1 in some neighborhood M1 of M with principal symbol

p(x , ξ) = 2π

Z
SxM

|α(x , θ)|2δ(ξ · θ) dσ(θ).

Here, the factor 2|α(x , θ)|2 came from (12).
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Back to the Integral Geometry Problem

Is Ig (respectively, I ∗g Ig ) invertible? If so, is it stable?

If α = 1 (and the metric is simple), yes (Mukhometov, Romanov, . . . ). On the other
hand, even if g is Euclidean, there exists α > 0 so that Ig has a non-trivial kernel
(Boman). If g and α are real analytic in M, then - yes.

We however want more — stability. Remember, this is just a model for the tensor
transform, and the later linearizes the boundary rigidity problem. So we need an estimate
as well, not only uniqueness.

The central idea is to find out whether I ∗g Ig is elliptic. If it is, we can apply the Fredholm
theory as above.

Ellipticity Condition

∀(x , ξ) ∈ T ∗M \ 0, ∃θ ⊥ ξ, so that α(x , θ) 6= 0.

In particular, α that never vanishes is enough.

This also confirms a basic fact in integral geometry (under some conditions, in our case:
simplicity):

Ellipticity Condition

Integrals over open sets of geodesics (or geodesic-like curves) determine conormal
singularities to them.
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Back to the Integral Geometry Problem

Wave Front Sets and Integral Geometry

The whole idea of microlocal analysis is to look at functions/distributions not only near
points but near directions. Smoothness is tied to a rapid decay of the Fourier transform.
We first localize f near x0 and then study the behavior of the FT for large ξ in a small
cone near some ξ0. If the decay is rapid, we say that (x0, ξ0) 6∈ WF(f ).

More precisely, (x0, ξ0) 6∈ WF(f ), if

cχf (ξ) ≤ CN |ξ|−N , ∀N > 0,
˛̨̨

ξ

|ξ| −
ξ0

|ξ0|

˛̨̨
� 1

for some χ ∈ C∞
0 with χ(x0) 6= 0.

Lemma 5

Let g be simple in M, and let Ig be the weighted ray transform with α 6= 0. Let
Ig f (γ) = 0 (or let it be smooth) for γ close to some γ0. Then

WF(f ) ∩ N∗γ0 = ∅.
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Back to the Integral Geometry Problem

Theorem 6

let g be simple, and let Ig be the weighted ray transform of functions. Assume the
ellipticity condition (satisfied, if α 6= 0). Then
(a) Ig has a finitely dimensional smooth kernel.
(b)

‖f ‖ ≤ C‖I ∗g Ig f ‖H1(M1), ∀f ∈ (Ker Ig )
⊥.

(c) If Ig is injective, then
‖f ‖ ≤ C‖I ∗g Ig f ‖H1(M1), ∀f .

(d) The estimate in (c) is preserved under a small perturbation of g and α in C k(M),
k � 1.

So, injectivity implies stability (in this case, because we are inverting an elliptic operator).
Moreover, injectivity is preserved under a small perturbation! Therefore,

The set of (g , α) with an injective ray transform is open in some C k .

It is certainly non-empty (Euclidean metric, constant weight). So in particular we get a
stable uniqueness for metrics close to the Euclidean one, and weights close to a constant.
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Back to the Integral Geometry Problem

Injectivity and generic uniqueness

Injectivity is know if g is Euclidean and α(x , θ) is of special type:

α(x , θ) = e−
R∞
0 a(x−sθ) ds

(the attenuated X-ray transform). There are even inversion formulas (Bukgheim,
Novikov). In general it fails. However,

Theorem 7

Let g, α 6= 0 be real analytic in M. Then Ig is injective (and therefore, stable).

Corollary 8

The set of (g , α) (with g simple) for which Ig is injective is an open and dense set in
some C k(M). Moreover, for any (g , α) in this set,

‖f ‖ ≤ C‖I ∗g Ig f ‖H1(M1),

with a constant C > 0 that can be chosen locally uniform.
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