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Back to tensors, The Euclidean case

We now turn our attention to Ig acting on symmetric 2-tensors with gij = δij (Euclidean).
We will work in Rn first, assuming that f is compactly supported. Parameterize the
geodesics (lines) by the direction ω and by the point z on the hyperplane z iωi = 0 where
the line crosses that hyperplane. Then

Ig f (z , ω) =

Z
fij(z + tω)ωiωj dt.

Any f ∈ L2(Rn) can then be orthogonally decomposed uniquely into a solenoidal and
potential part (different from the decomposition above!)

f = f s
Rn + dvRn in Rn,

such that δf s
Rn = 0 in Rn and f s

Rn , dvRn are in L2(Rn). Similarly, we have

vRn = (δd)−1 δf , f s
Rn = f − d (δd)−1 δf , (1)

with δd acting in the whole Rn, and the notation vRn indicates that v is defined in the
whole Rn and does not necessarily satisfy boundary conditions if f is supported in Ω̄. The
inverse (δd)−1 is defined through the Fourier transform. Actually, the latter provides a
more detailed form of this decomposition.
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Back to tensors, The Euclidean case

We have

[cdv ]ij =

√
−1

2
(ξi v̂j + ξj v̂i ) , bδf i =

√
−1 ξj f̂ij .

Then

[dδdv ]i = −1

2

“
|ξ|2v̂i + ξiξ

j v̂j

”
.

The operator δd is elliptic (multiply by v̂i and take the sum). Solving this for v̂ is easy.
As a result, we get

(f̂ s
Rn )kl = λij

kl(ξ)f̂ij(ξ),

where

λij
kl(ξ) =

„
δi
k −

ξkξ
i

|ξ|2

« „
δj
l −

ξlξ
j

|ξ|2

«
.

Note that f s
Rn and dvRn may not be compactly supported even if f is. It follows from our

integral representation that

(Ne f )kl(x) = 2fij ∗
x ix jxkx l

|x |n+3
.

Taking into account that F|x |α = (cn/2)|ξ|−α−n with cn as below, and Fourier
transforming the latter, we get

F(Ne f )kl(ξ) = cn f̂ij(ξ)
∂4

∂ξi∂ξj∂ξk∂ξl
|ξ|3, cn =

π(n+1)/2

3Γ(n/2 + 3/2)
,

and
∂4|ξ|3/∂ξi∂ξj∂ξk∂ξl = 3|ξ|−1σ(εijεkl), εij(ξ) = δij − ξiξj/|ξ|2.
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Back to tensors, The Euclidean case

Here σ(εijεkl) is the symmetrization of εijεkl , i.e., the mean of all similar products with all
possible permutation of i , j , k, l . It is easy to see that δNe f = 0 and that f s

Rn can be
recovered from Ne f by the formula

[f̂ s
Rn ]ij = aijklF(Ne f )kl = akl

ij F(Ne f )kl ,

where aijkl(ξ) is a rational function, homogeneous of order 1 singular only at ξ = 0 with
explicit form

aijkl = |ξ|
“
c1δikδjl + c2(δij − |ξ|−2ξiξj)δkl

”
. (2)

The coefficients c1 and c2 depend on n only. So we get that given Ne f , one can recover
f s
Rn by

f s
Rn = ANe f , (3)

where A = A(D) has the symbol in (2). In particular,

Ie f = 0 =⇒ f s
Rn = 0 =⇒ f = d svRn .

We almost proved the following.
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Back to tensors, The Euclidean case

Theorem 1

Let Ω ⊂ Rn be convex, let g be a Euclidean, and let (Ω, g) be simple (i.e., Ω is strictly
convex). Then I is s-injective.

We claim that if If = 0 and supp f ⊂ Ω̄, then supp vRn ⊂ Ω̄. Indeed, we already showed
that f = dvRn . Next, since v can be obtained from f by applying a ΨDO of order −1
with homogeneous constant (w.r.t. x) symbol, see (1), we easily get that |v | = O(|x |−1),
as |x | → ∞. Now, dvRn = 0 outside Ω. Remember,

d

dt
v(x + tξ) · ξ = [dv ]ijξ

iξj .

So we get
vRn (x) · ξ = vRn (x + sξ) · ξ, ∀(x , ξ) ∈ ∂+SΩ, s > 0. (4)

Take the limit s →∞ to conclude that vRn (x) · ξ = 0. Varying ξ, we get vRn = 0 on ∂Ω.
This also holds if we enlarge ∂Ω, then we get that supp v ⊂ Ω̄. So we get that vRn ,
restricted to Ω, coincides with v in the decomposition f = f s + dv ! Moreover, that
restriction commutes with taking the symmetric differential d because v = 0 on ∂Ω. So
we get f = dv , i.e., f is potential field.

In general, given f and v , vRn related to f , we have vRn 6= v in Ω, and in particular,
vRn 6= 0 on ∂Ω. We got an equality only under the assumption If = 0!
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Back to tensors, The Euclidean case

If our goal is not a proof of s-injectivity of Ie but a recovery of f s from Ne f , then we can
proceed as above. Namely, since f s

Rn = f − dvRn in Ω, d commutes with the extension as
zero, and f = 0 outside Ω, similarly to (4), we can write

vRn (x) · ξ − vRn (x + sξ) · ξ =

Z s

0

(ANe f )(x + tv) dt, ∀(x , ξ) ∈ ∂+SΩ, s > 0. (5)

Take the limit s →∞, to get

vRn (x) · ξ =

Z ∞

0

(ANe f )(x + tv) dt, ∀(x , ξ) ∈ ∂+SΩ, s > 0. (6)

Choose n − 1 linearly independent ξ’s above, and we have recovered h := vRn (x)|∂Ω in
terms of Ne f . Now,

f s
Rn = f − dvRn but vRn |∂M 6= 0.

On the other hand,
f s = f − dv with v |∂M = 0.

Set w = vRn − v . Then w is the solution w of the BVP

δdw = 0 in Ω, wRn |∂Ω = h, (7)

that we can solve (h is known). Then in Ω,

f s = f s
Rn + dw = ANe f + dw , (8)

and w is expressible in terms of Ne f .
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The parametrix for general simple metrics

One can show that the principal symbol of N is the same as in the Euclidean case (!) with
the proper interpretation of raised and lowered indices. However, that is not even needed.
We do not need the formulas, we just need to show ellipticity on solenoidal tensors.

Recall that the principal symbol of N (in case of the weighted ray transform of functions)

p(x , ξ) = 2π

Z
SxM

|α(x , θ)|2δ(ξ · θ) dσ(θ).

For tensors, the “weight” is θiθj . We get that the principal symbol in that case is

σp(N)ijkl(x , ξ) = 2π

Z
SxM

θiθjθkθlδ(ξ · θ) dσ(θ).

(OK, it is not exactly what we have for functions. The reason is that the meaning of
adjoint is somewhat different for tensors).

Let us check the ellipticity of σp(N).

σp(N)ijklhj h̄kl = 2π

Z
SxM

“
hijθ

iθj
” “

h̄klθ
kθl

”
δ(ξ · θ) dσ(θ)

= 2π

Z
SxM

˛̨̨
hijθ

iθj
˛̨̨2
δ(ξ · θ) dσ(θ)
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The parametrix for general simple metrics

For this to be elliptic, we need to show that hijθ
iθj = 0 for θ ⊥ ξ implies h = 0. Of

course, this is not true. But if in addition, we know that

ξihij = 0, (9)

then this would be true.

Since h = f̂ (ξ), the l.h.s. of (9) is the principal part of δf . So we get that

N is elliptic on solenoidal tensors.

Therefore, one can apply a parametrix to recover the solenoidal projection of f . Well, not
exactly because we can only work in the interior of M.

What we actually do is to work in a neighborhood M1 of M, and recover f s
M1

in the
interior of M1. Then we compare f s and f s

M1
to recover (up to a smoothing operator) f s

in M. This allows us to use the Fredholm theory arguments.
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Main results for the linear problem

Main results for the linear problem

Ig has a finitely dimensional smooth kernel in the subspace of solenoidal tensors.

If g is analytic, the kernel is trivial, i.e., Ig is s-injective (requires analytic microlocal
analysis)

If Ig is s-injective, then there is an a priori stability estimate

‖f s‖L2(M) ≤ C‖Nf ‖H1(M1)

with C > 0 that is locally constant under small C k perturbations of g , k � 1.

Therefore, Ig is s-injective for a dense open set of simple metrics.
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Main results for the boundary rigidity problem

Main results for the boundary rigidity problem for simple metrics

Near any g with an s-injective Ig , there is local uniqueness.

Moreover, there is a Hölder stability estimate

Theorem 2

For any µ < 1, there exits k � 1 such that for any simple g0 ∈ C k with an s-injective Ig0 ,
there are ε0 > 0 and C > 0 with the property that that for any two metrics g1, g2 with
‖gm − g0‖C2(M) ≤ ε0, and ‖gm‖Ck (M) ≤ A, m = 1, 2, with some A > 0, we have the
following stability estimate

‖g2 − ψ∗g1‖C2(M) ≤ C(A)‖ρg1 − ρg2‖
µ
C(∂M×∂M)

with some diffeomorphism ψ : M → M fixing the boundary pointwise.

Sharafutdinov and Pestov have shows with different methods s-injectivity under an
explicit upper bound of the curvature.
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