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Radon transform and X-ray tomography: definition X-ray Transform

X-ray transform

X-ray transform of a function f in R™:

XF(0) = /des (1)

along any given (undirected) line £ in R". Here ds is the unit length
measure on £.
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Radon transform and X-ray tomography: definition X-ray Transform

X-ray transform

X-ray transform of a function f in R™:

XF(0) = /des (1)

along any given (undirected) line £ in R". Here ds is the unit length
measure on £. Lines in R" can be parameterized by initial points x € R”
and directions # € S"~1, thus we can write, without changing the notation,

Xf(x,0) = / f(x +s6)ds, (x,0)€R"x S" 1 (2)
R
That parameterization is not unique because for any x, 4, t,

Xf(x,0) = XF(x + t0,0), Xf(x,0) = Xf(x, —0). (3)

The latter identity reflects the fact that we consider the lines as undirected
ones.
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Radon transform and X-ray tomography: definition X-ray Transform

Motivation

Motivating example: X-ray medical imaging. An X-ray point source is
placed at different points around patient’'s body, and the intensity / of the
rays is measured after the rays go through the body. The intensity
depends on the position x and the direction 0 of the rays. It solves the
transport equation

(0-Vx+0o(x))I(x,0) =0, (4)
where ¢ is the absorption of the body. Equation (4) simply says that the
directional derivative of / in the direction 6 equals —o/. A natural
initial /boundary condition is to require that

lim [I(x+s6,0) =,
S§——00
where Iy is the source intensity, that may depend on the line. Since f is of
compact support in this case, the limit above is trivial. Then (4) has the

explicit solution
I(X, 9) — e ffoo O’(X+59,0) dsl().
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Radon transform and X-ray tomography: definition X-ray Transform

The measurement outside patent’s body is modeled by

lim I(x+s6,0) =: h,

5—00

and this limit is trivial as well. Since both /; and Iy are known, we may
form the quantity

[e.9]

—Iog(ll/lo):/ o(x+s6,0)ds

—00

That is exactly Xo(x,6). The problem then reduces to recovery of o given
Xo.
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Count the number of variables that to parameterize Xf. For any 0, it is
enough to restrict x to a hyperplane perpendicular to 8, that takes away
one dimension. One such hyperplane is

0+ = {x|x-6 =0} (5)

Then Xf(x,0) is an even (w.r.t. ) function of 2n — 2 variables, while f
depends on n variables.
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Count the number of variables that to parameterize Xf. For any 0, it is
enough to restrict x to a hyperplane perpendicular to 8, that takes away
one dimension. One such hyperplane is

0+ = {x|x-6 =0} (5)

Then Xf(x,0) is an even (w.r.t. ) function of 2n — 2 variables, while f
depends on n variables. Therefore, if n =2, Xf and f depends on the
same number of variables, 2. We say that the problem of inverting X is
then a formally determined problem. If n > 3, then Xf depends on more
variables, making the problem formally overdetermined. On the other
hand, in dimensions n > 3, if we know Xf(¢) for all lines, we also know
Xf(£) for the n-dimensional family of lines that consists of all ¢ parallel to
a fixed 2-dimensional plane, say the one spanned by (1,0,...,0) and
(0,1,0,...,0). It is then enough to solve the 2-dimensional problem of
inverting R on each such plane. This is one way one can reduce the
problem of inverting X to a formally determined one (that we can solve, as
we will see later) using partial data. For this reason, very often the X-ray
transform in analyzed in two dimensions only.
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Radon transform and X-ray tomography: definition The Radon Transform

The Radon Transform

The Radon transform Rf of a function f: integrals of f over all
hyperplanes 7 in R™:

RF () = / f ds. (6)

Here dS is the Euclidean surface measure on each such hyperplane. Each
such hyperplane can be written in exactly two different ways in the form

7= {x x-w = p} = {x| x- (~w) = —p}
with pe R, w € S"=1 We then write

Rf(p,w) = / ) f dSx. (7)

Then Rf is an even function on R x S"1
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Radon transform and X-ray tomography: definition The Radon Transform

The Radon Transform

The Radon transform Rf of a function f: integrals of f over all
hyperplanes 7 in R™:

RF () = / f ds. (6)

Here dS is the Euclidean surface measure on each such hyperplane. Each
such hyperplane can be written in exactly two different ways in the form

7= {x x-w = p} = {x| x- (~w) = —p}
with pe R, w € S"=1 We then write

Rf(p,w) = / ) f dSx. (7)

Then Rf is an even function on R x S"1

The problem of finding f given Rf is always a formally determined one
since both f and Rf are functions of n variables.
In R?, those two transforms are the same but parameterized differently.
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The transposes X’ and R’; extending X, R to E’(R”) The transpose X’

The transpose X’

Since (x,0) and (x + s6,0) define the same line, a natural
parameterization is

pa {(z,e)\ hesnl ze ei} :
Define a measure do on X:
do(z,0) = dS, d6,

where, df is the standard measure on S"~1, and dS, is the Euclidean
measure on the hyperplane 6. In this parameterization, each directed line
has unique coordinates but each undirected one has two pairs of
coordinates.
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The transposes X’ and R’; extending X, R to E’(R") The transpose X’

The transpose X’

Since (x,0) and (x + s6,0) define the same line, a natural
parameterization is

pa {(z,e)\ hesnl ze ei} :
Define a measure do on X:
do(z,0) = dS, d6,

where, df is the standard measure on S"~1, and dS, is the Euclidean
measure on the hyperplane 6. In this parameterization, each directed line
has unique coordinates but each undirected one has two pairs of
coordinates.

Another parameterization: Assume that we will apply X only to functions
supported in some bounded domain € with a strictly convex smooth
boundary. The strict convexity assumption is not restrictive since we can
always enlarge the domain to a strictly convex one, for example a ball,
that contains the domain of interest.
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The transposes X’ and R’; extending X, R to £’(R") The transpose X’

Set
9-SQ={(x,0) € 900 x S" ! v(x) -0 <0}, (8)

where v is the exterior unit normal to 9€2. On 9_S(, define the measure
du(x,0) = |v(x) - 0]dSx do, (9)
where dS, is the surface measure on 9). There is a natural map
0-50Q 35 (x,0) — (z,0) € ¥, (10)

where z is the intersection of the ray {x + sf| s € R} with . The map
(10) is invertible on its range. Given (z,0), x is the intersection of the ray
{z+ 56| s € R} with 0 having the property that at x, the vector # points
into €.

Plamen Stefanov (Purdue University ) 9 /28



The transposes X’ and R’; extending X, R to £’(R") The transpose X’

Figure: Two ways to parameterize a line

Proposition 1

The map (10) and its inverse are isometries.
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The transposes X’ and R’; extending X, R to £’(R") The transpose X’

Figure: Two ways to parameterize a line

Proposition 1

The map (10) and its inverse are isometries.

The proof is immediate. Fix 8, and project locally 9Q on 6+, in the
direction of 6, near some point x so that (x,6) € 0_SQ. The Jacobian of
that projection is 1/|v(x) - 6].
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The transposes X’ and R’; extending X, R to £’(R") The transpose X’

We can compute now the transpose X’ w.r.t. either parameterization:

X'P(x) = . P(x — (x-6)0,6)dé. (11)

We can interpret this formula in the following way. The function ¢ is a
function on the manifold of lines. Given x € R, for any § € S ! we
evaluate 1 on the line through x in the direction of ¢, and then integrate
over 6. In other words, X'1)(x) is an integral of ¢ = ¢)(¢) over all lines ¢
through x

XP(x) = [ (0)dey,

05

where d/y is the unique measure on {¢ 5 x} invariant under orthogonal
transformations, with total measure |S"7!|, i.e., dfx = df in the
parameterization that we use. Compare this to (1) which can also be
written in the form

XF(0) = / _fl)ds (12)

The transform X’ is often called a backprojection — it takes a function

defined on lines to a function defined on the “x-space” R".
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The transposes X’ and R’; extending X, R to E’(R”) The transpose X’

X can be extended to compactly supported distributions

Note that X’ does not preserve the compactness of the support, i.e., for
Y € C§°, X'1) may not be of compact support!
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The transposes X’ and R’; extending X, R to E’(R”) The transpose X’

X can be extended to compactly supported distributions

Note that X’ does not preserve the compactness of the support, i.e., for
Y € C§°, X'1) may not be of compact support!

By duality, we define X on the space £'(R") of compactly supported
distributions but we cannot do this on D’(R"), as it could be expected
(even for smooth functions we need a certain decay at infinity).
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The transposes X’ and R’; extending X, R to E’(R”) The transpose R’

The transpose of R

There is a natural measure on R x S"~1, where Rf lives. The transpose R’

w..r.t. it is well defined. A simple calculation yields, for
Y e C§°(Rx S"1),

Sn—1

Ru() = [ lx-w,w)dw. J
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The transpose of R

There is a natural measure on R x S"~1, where Rf lives. The transpose R’

w..r.t. it is well defined. A simple calculation yields, for
Y e C§°(Rx S"1),

Sn—1

Ru() = [ lx-w,w)dw. J

Similarly to what we had before, 1) is a function on the set of oriented
hyperplanes (and on the set of hyperplanes when ) is even). Then we can
think of R’ as an integral of 1) = () over the set of all hyperplanes 7
through x. Similarly to X’, R is also called sometimes a backprojection.
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The transposes X’ and R’; extending X, R to £’(R") The transpose R’

The transpose of R

There is a natural measure on R x S"~1, where Rf lives. The transpose R’
w..r.t. it is well defined. A simple calculation yields, for
Y e C§°(Rx S"1),

Sn—1

Ru() = [ lx-w,w)dw. J

Similarly to what we had before, 1) is a function on the set of oriented
hyperplanes (and on the set of hyperplanes when ) is even). Then we can
think of R’ as an integral of 1) = () over the set of all hyperplanes 7
through x. Similarly to X’, R is also called sometimes a backprojection.

We extend R to compactly supported distributions as before.
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The Fourier Slice Theorem
The Fourier Slice Theorem

Theorem 1 (The Fourier Slice Theorem)

For any f € LY(R"),

F(Q) = / e 7CXf(2,0)dS,, VO L, 0e ST
91_
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The Fourier Slice Theorem
The Fourier Slice Theorem

Theorem 1 (The Fourier Slice Theorem)

For any f € LY(R"),

F(Q) = / e 7CXf(2,0)dS,, VO L, 0e ST
91_

Denote by F,. the Fourier transform in the z variable on #+. With this
notation, the Fourier Slice Theorem reads: for any 6, |51 = Fy1 Xf.

The integral on the right equals [, [ e7#¢f(z+ s)dsdS;. Set
X = z + sf and note tAhat x-C=2z-Cwhen ¢ L 6. Then we see that the
integral above equals f((). O
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The Fourier Slice Theorem

Theorem 1 immediately implies injectivity of X on L(R") (also, on
E'(RM)).
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The Fourier Slice Theorem

Theorem 1 immediately implies injectivity of X on L(R") (also, on
E'(RM). T

Also, it says that knowing Xf for a fixed 6 recovers f for & 1L 6. This has a
micolocal equivalent, as we will see later.
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The Fourier Slice Theorem

Theorem 1 immediately implies injectivity of X on L(R") (also, on
E'(RM). T

Also, it says that knowing Xf for a fixed 6 recovers f for & 1L 6. This has a
micolocal equivalent, as we will see later.

In fact, for compactly supported functions, the theorem implies a bit more.
The decisive argument in the proof is the analyticity of the Fourier
transform of compactly supported functions.

Let f € LY(R") have compact support and let Xf(-,0) =0 for § in an
infinite set of (distinct) unit vectors, then f = 0.

Finitely many “roentgenograms” however are not enough to recover f.
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Intertwining properties

Intertwining properties

Intertwining properties for R
RA =d’R, R'd;=AR
on C§°(R™) and on C§°(R x S"~1), respectively.

Proof: straightforward, either by direct computations or by using the
Fourier Slice Theorem.
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Intertwining properties

Intertwining properties

Intertwining properties for R
— A2 2 _
RA=d2?R, R'd?=AR,
on C§°(R™) and on C§°(R x S"~1), respectively.

Proof: straightforward, either by direct computations or by using the
Fourier Slice Theorem.

Let A, denote the Laplacian in the z variable on each 1. Set
|D,| = (—A,)Y2. Similarly,

Intertwining properties for X

XA = A,X, X'A, =AX,
on C§°(R"), and C§°(X), respectively.
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Inversion Formulas ~ The Schwartz kernel of X’X and inversion formulas for X

The Kernel of X’'X

Proposition 2

X'XF(x) = 2 / )4y vresrY)

Ro |x — y["71
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Inversion Formulas ~ The Schwartz kernel of X’X and inversion formulas for X

The Kernel of X’'X

Proposition 2

X'XF(x) =2 / _f)

Y Y ESR

This is a convolution and therefore a Fourier multiplier! We need the
Fourier transform of |x|~("=1) to find it, and the answer is c|¢| 1.
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The Kernel of X’'X

Proposition 2

X'XF(x) = 2 / )4y vresrY)

Ro |x — y["71

This is a convolution and therefore a Fourier multiplier! We need the
Fourier transform of |x|~("=1) to find it, and the answer is c|¢| 1.
Therefore, X'X = c|D|™1, and to invert it, we need to apply c’|D].
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Inversion Formulas ~ The Schwartz kernel of X’X and inversion formulas for X

The Kernel of X’'X

Proposition 2

X'XF(x) = 2 / )4y vresrY)

Ro |x —y|"t

This is a convolution and therefore a Fourier multiplier! We need the
Fourier transform of |x|~("=1) to find it, and the answer is c|¢| 1.
Therefore, X'X = c|D|™1, and to invert it, we need to apply c’|D].

For any f € S(R"),

f = cal DIX'XF, cn=(27]S"2)) 7.

For n=2,|S"2| =2, s0 ¢ = (4m)"L.
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Inversion Formulas ~ The Schwartz kernel of X’X and inversion formulas for X

The Fourier multiplier |D| is a non-local operator. Therefore, if we want to
recover f only in a neighborhood of some xg by means of formula above, it
is not enough to know Xf for all lines £ that intersect that neighborhood.
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The Fourier multiplier |D| is a non-local operator. Therefore, if we want to
recover f only in a neighborhood of some xg by means of formula above, it
is not enough to know Xf for all lines £ that intersect that neighborhood.

In particular, if f is compactly supported, we need to compute X’ Xf for all
x € R" to be able to apply |D|. Numerically, one would just truncate the
computational region but X’'Xf does not decay very fast (only like
|x|~"*1), and the error will be not so small. But such a truncated recovery
would still be a parametrix (more — later).
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Inversion Formulas ~ The Schwartz kernel of X’X and inversion formulas for X

The Fourier multiplier |D| is a non-local operator. Therefore, if we want to
recover f only in a neighborhood of some xg by means of formula above, it
is not enough to know Xf for all lines £ that intersect that neighborhood.

In particular, if f is compactly supported, we need to compute X’ Xf for all
x € R" to be able to apply |D|. Numerically, one would just truncate the
computational region but X’'Xf does not decay very fast (only like
|x|~"*1), and the error will be not so small. But such a truncated recovery
would still be a parametrix (more — later).

This calls for another inversion formula.

Theorem 4 (A filtered back-projection)

For any f € S(R"),

f = coX'|Do|XF, = (2n|S"2)) 7.
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Inversion Formulas ~ The Schwartz kernel of X’X and inversion formulas for X

The non-local operator |D,| now appears between X’ and X. Is that a
progress (for computational purposes)? Yes — if f is compactly
supported, we need to evaluate the result in a compact set, i.e., we need
to know xX'|D,|Xf for some x of compact support.
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Inversion Formulas ~ The Schwartz kernel of X’X and inversion formulas for X

The non-local operator |D,| now appears between X’ and X. Is that a
progress (for computational purposes)? Yes — if f is compactly
supported, we need to evaluate the result in a compact set, i.e., we need
to know xX'|D,|Xf for some x of compact support. This means that we
need to evaluate |D,|Xf on a compact set as well. But Xf is compactly
supported. So we need to apply |D,| from a comact set to a compact set.

In applications, in 2D, most of the time R is preferred to X (they are
equivalent, of course).
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Inversion Formulas ~ The Schwartz kernel of R’ R and inversion formulas for R

The Schwartz kernel of R'R

Proposition 3

For any f € S(R"),

f(y)
Ix =yl

R'Rf(x) = |S"2| / dy.
Rn
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Inversion Formulas ~ The Schwartz kernel of R’ R and inversion formulas for R

The Schwartz kernel of R'R

Proposition 3

For any f € S(R"),

f(y)
Ix =yl

R'Rf(x) = |S"2| / dy.
Rn

We have a convolution again, with the Fourier transform of |x|~1. The
latter is c|¢|~"*1. Therefore,

For any f € S(R"),

1
f = GlD|" *R'Rf,  Cp=(2m)"".

|D|"~1 is local for n odd!
Plamen Stefanov (Purdue University ) 20 / 28



Inversion Formulas ~ The Schwartz kernel of R’ R and inversion formulas for R

Let H be the Hilbert transform
1 8(s)
H, == d 13
g(p) wpv/Rp—s s (13)
where “pv [ stands for an integral in a principal value sense.

Theorem 6 (filtered backprojection)

For any f € S(R"),

C'R'd""1Rf n odd
— n P ) )
f { C,R'HdJ™*Rf,  n even, (14)

where d,, stands for the derivative of Rf (p,w) w.r.t. p, H is the Hilbert
transform w.r.t. p and

o= [ GDUDRC, 0 odd,
5 (= eAAE, n even,

with C, = 3(2m)1=" (as in Theorem 5).
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Inversion Formulas ~ The Schwartz kernel of R’ R and inversion formulas for R

The appearance of the Hilbert transform H for n even, and the different
constants for n odd/even may look strange at first glance, especially when
compared to the inversion formula in Theorem 5, that looks the same for
all n > 2. For n even, note first that H = —isgn(Dp,), Dp = —id),
therefore,

(—1)(n= 2)/2Hd” 1= |D,|™, neven.

On the other hand,
(—1)(D2gn= = |D, "1, n odd.
Therefore, in both cases, (14) can be written as

f = CoR'|Dp|" ' Rf (15)
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Stability Estimates ~ Stability estimates in terms of X and R

Stability estimates

Set
lgllaszy = (1 - Az)s/ngLz

d2 s/2 (16)

gl 7 rocsn1y = [| (1 — gllmxsn 1)
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Stability Estimates ~ Stability estimates in terms of X and R

Stability estimates

Set

5/2

lellzss) = [[(1 - ng_z

gl rs(rocsn1) = [| (1 — d2 S“gHLz(W 1y

Theorem 7 (Stability estimates)

For any bounded domain Q C R"” with smooth boundary, and any s, we
have

[ fllHsrm)/ C < [ XF || gsrazy < CllF[l1s(re), (17)
[ £llHsrm)/ C < |RF || gsso-n/2rxsn-1y < ClIf [ 1s(rr) (18)

for all f € H*(R") supported in Q.
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Stability Estimates ~ Stability estimates in terms of X and R

Stability estimates

lellzss) = [[(1 - S/2gHLz
d2 5/2

gl 7 rocsn1y = [| (1 — gHLz(RXsn 1)

Theorem 7 (Stability estimates)

For any bounded domain Q C R"” with smooth boundary, and any s, we
have

[ fllHsrm)/ C < [ XF || gsrazy < CllF[l1s(re), (17)
[ £llHsrm)/ C < |RF || gsso-n/2rxsn-1y < ClIf [ 1s(rr) (18)

for all f € H*(R") supported in Q.

The appearance of the same norm of f on the left and on the right makes

those estimates sharp.
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Stability Estimates ~ Stability estimates in terms of X and R

Theorem 7 shows that we “gain 1/2 derivative” with the operator X, and
(n — 1)/2 derivatives with the operator R. Each one of those two

operators involves an integration that has a smoothing effect. The gain is
a half of the dimension of the linear submanifolds over which we integrate.

Plamen Stefanov (Purdue University ) 24 /28



Stability Estimates ~ Stability estimates in terms of X and R

Theorem 7 shows that we “gain 1/2 derivative” with the operator X, and
(n — 1)/2 derivatives with the operator R. Each one of those two

operators involves an integration that has a smoothing effect. The gain is
a half of the dimension of the linear submanifolds over which we integrate.

The proof is pretty straightforward, after all, we have explicit inversion
formulas.
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Stability Estimates

Stability estimates in terms of X’ X and R’R

Stability estimates in terms of X’X and R'R

Why X’X (the normal operator)? It is the first step of the inversion; it
lives in the same space; X’'X is injective if and only if X is.

Let Q C R" be open and bounded, and let €1 D Q be another such set.

Then for any integer s =0,1,. .., there is a constant C > 0 so that for
any f € H*(R") supported in 2, we have

1l Hs(rmy/ C < [IX XF (| sy < CIFll s (rnys (19)
[l Hs(rry/ C < [IR'Rf || stn-1(0y) < ClIf[l1s(rr) (20)
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Stability estimates in terms of X’X and R'R

Why X’X (the normal operator)? It is the first step of the inversion; it
lives in the same space; X’'X is injective if and only if X is.

Let Q C R" be open and bounded, and let €1 D Q be another such set.
Then for any integer s =0,1,. .., there is a constant C > 0 so that for
any f € H*(R") supported in 2, we have

1l Hs(rmy/ C < [IX XF (| sy < CIFll s (rnys (19)
[l Hs(rry/ C < [IR'Rf || stn-1(0y) < ClIf[l1s(rr) (20)

The proof (of the inequalities on the left) seems to be straightforward as
well — we have a formula for f in terms of X'Xf and R'Rf. Just apply
c|D| to X'Xf, and we get f. Problem: we need X’Xf on the whole R" for
that! The theorem requires to know this on ©; only. 777
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To prove the first estimate, use the inversion formula £ = ¢,|D|X'Xf and
write

11 (rry < €nll X XN peis mey = Cnll X" XF [fgeca gy + Enll X' XF|Fpeir mm -
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Stability Estimates ~ Stability estimates in terms of X’ X and R'R

To prove the first estimate, use the inversion formula £ = ¢,|D|X'Xf and
write

HfHHS(R") < X’ XfH,_,s+1 R) — = cl| X’ XfHHs+1 (Q1) +CnHX/Xf”%-/s+1(Rn\Ql)-

We want to get rid of the last term. The following lemma solves the
problem:

Lemma 9

Let X, Y, Z be Banach spaces, let A: X — Y be a bounded linear
operator, and K : X — Z be a compact linear operator. Let

Iflix < CUAflly + IKFllz), VfeX. (21)

Assume that A is injective. Then there exists C' > 0 so that

Iflix < C'||Aflly, VfeX.

We do know that X'X : H5(2) — H*T1(Q1) is injective. So we can apply
the lemma and get rid of that term (no control over C though!)
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Support Theorems
Support theorems

Theorem 10 (Support theorem)
Let f € C(R™) be such that
(i) |x|*f(x) is bounded for any integer k,
(ii) there exists a constant A > 0 so that Rf (p,w) = 0 for |p| > A.
Then f(x) =0 for |x| > A.
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Theorem 10 (Support theorem)
Let f € C(R™) be such that
(i) |x|*f(x) is bounded for any integer k,
(ii) there exists a constant A > 0 so that Rf (p,w) = 0 for |p| > A.
Then f(x) =0 for |x| > A. )

Corollary 11

Let K C R" be a convex compact set. Let f € C(R") satisfy the
assumption (i) above. Assume also that Rf(mw) = 0 for any hyperplane 7
not intersecting K. Then f = 0 outside K.

Plamen Stefanov (Purdue University ) 27 / 28



Support Theorems

Support theorems

Theorem 10 (Support theorem)
Let f € C(R") be such that
(i) |x|*f(x) is bounded for any integer k,
(ii) there exists a constant A > 0 so that Rf (p,w) = 0 for |p| > A.
Then f(x) =0 for |x| > A.

Corollary 11

Let K C R" be a convex compact set. Let f € C(R") satisfy the
assumption (i) above. Assume also that Rf(mw) = 0 for any hyperplane 7
not intersecting K. Then f = 0 outside K.

Support theorems for X can be derived directly from those for R by
working in various 2D planes, where R and X are the same transforms. On
the other hand, one can formulate stronger results for X since the lines in
R" are “thinner” and can fit into smaller “holes.”
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Support Theorems

The proof (due to Helgason) is not short — first we prove it for radially
symmetric functions, and then we manage to reduce the general case to
the radial one. Later we will present a microlocal explanation which can be
generalized to more general curves.
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symmetric functions, and then we manage to reduce the general case to
the radial one. Later we will present a microlocal explanation which can be
generalized to more general curves. In some sense, there is kind of analytic
continuation from infinity, where f is assumed to be small, to the exterior
of the ball.

The rapid decay condition is essential. For any N > 0, there is a function

with |f| < C(1+ |x|)~N of infinite support with Radon transform
compactly supported.
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Support Theorems

The proof (due to Helgason) is not short — first we prove it for radially
symmetric functions, and then we manage to reduce the general case to
the radial one. Later we will present a microlocal explanation which can be
generalized to more general curves. In some sense, there is kind of analytic
continuation from infinity, where f is assumed to be small, to the exterior
of the ball.

The rapid decay condition is essential. For any N > 0, there is a function
with |f| < C(1+ |x|)~N of infinite support with Radon transform

compactly supported.

An important part of the theory which we will skip is Range Conditions.
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