Microlocal Methods in X-ray Tomography

Plamen Stefanov

Purdue University

Lecture I: Euclidean X-ray tomography

Mini Course, Fields Institute, 2012

- Sigurdur Helgason, Radon Transform
- Frank Natterer, The Mathematics of Computerized Tomography
- Microlocal Approach to Tensor Tomography and Boundary and Lens Rigidity, Serdica Math. J., 34(1)(2008), 67-112.

X-ray transform

X-ray transform of a function f in \mathbf{R}^n :

$$Xf(\ell) = \int_{\ell} f \,\mathrm{d}s$$
 (1)

along any given (undirected) line ℓ in \mathbb{R}^n . Here ds is the unit length measure on ℓ . Lines in \mathbb{R}^n can be parameterized by initial points $x \in \mathbb{R}^n$ and directions $\theta \in S^{n-1}$, thus we can write, without changing the notation,

$$Xf(x,\theta) = \int_{\mathbf{R}} f(x+s\theta) \,\mathrm{d}s, \quad (x,\theta) \in \mathbf{R}^n \times S^{n-1}.$$
 (2)

That parameterization is not unique because for any x, θ , t,

$$Xf(x,\theta) = Xf(x+t\theta,\theta), \quad Xf(x,\theta) = Xf(x,-\theta).$$
 (3)

The latter identity reflects the fact that we consider the lines as undirected ones.

X-ray transform

X-ray transform of a function f in \mathbf{R}^n :

$$Xf(\ell) = \int_{\ell} f \,\mathrm{d}s$$
 (1)

along any given (undirected) line ℓ in \mathbb{R}^n . Here ds is the unit length measure on ℓ . Lines in \mathbb{R}^n can be parameterized by initial points $x \in \mathbb{R}^n$ and directions $\theta \in S^{n-1}$, thus we can write, without changing the notation,

$$Xf(x,\theta) = \int_{\mathbf{R}} f(x+s\theta) \,\mathrm{d}s, \quad (x,\theta) \in \mathbf{R}^n \times S^{n-1}.$$
 (2)

That parameterization is not unique because for any x, θ , t,

$$Xf(x,\theta) = Xf(x+t\theta,\theta), \quad Xf(x,\theta) = Xf(x,-\theta).$$
 (3)

The latter identity reflects the fact that we consider the lines as undirected ones.

Motivation

Motivating example: X-ray medical imaging. An X-ray point source is placed at different points around patient's body, and the intensity I of the rays is measured after the rays go through the body. The intensity depends on the position x and the direction θ of the rays. It solves the transport equation

$$(\theta \cdot \nabla_x + \sigma(x)) I(x, \theta) = 0, \qquad (4)$$

where σ is the absorption of the body. Equation (4) simply says that the directional derivative of I in the direction θ equals $-\sigma I$. A natural initial/boundary condition is to require that

$$\lim_{s\to-\infty}I(x+s\theta,\theta)=I_0,$$

where I_0 is the source intensity, that may depend on the line. Since f is of compact support in this case, the limit above is trivial. Then (4) has the explicit solution

$$I(x,\theta) = e^{-\int_{-\infty}^{0} \sigma(x+s\theta,\theta) \,\mathrm{d}s} I_0.$$

The measurement outside patent's body is modeled by

$$\lim_{s\to\infty}I(x+s\theta,\theta)=:I_1,$$

and this limit is trivial as well. Since both I_1 and I_0 are known, we may form the quantity

$$-\log(I_1/I_0) = \int_{-\infty}^{\infty} \sigma(x + s\theta, \theta) \, \mathrm{d}s$$

That is exactly $X\sigma(x,\theta)$. The problem then reduces to recovery of σ given $X\sigma$.

Count the number of variables that to parameterize Xf. For any θ , it is enough to restrict x to a hyperplane perpendicular to θ , that takes away one dimension. One such hyperplane is

$$\theta^{\perp} := \{ x \mid x \cdot \theta = 0 \}.$$
(5)

Then $Xf(x,\theta)$ is an even (w.r.t. θ) function of 2n-2 variables, while f depends on *n* variables. Therefore, if n = 2, Xf and f depends on the

Count the number of variables that to parameterize Xf. For any θ , it is enough to restrict x to a hyperplane perpendicular to θ , that takes away one dimension. One such hyperplane is

$$\theta^{\perp} := \{ x | x \cdot \theta = 0 \}.$$
(5)

Then $Xf(x,\theta)$ is an even (w.r.t. θ) function of 2n-2 variables, while f depends on *n* variables. Therefore, if n = 2, Xf and f depends on the same number of variables, 2. We say that the problem of inverting X is then a formally determined problem. If $n \ge 3$, then Xf depends on more variables, making the problem formally overdetermined. On the other hand, in dimensions n > 3, if we know $Xf(\ell)$ for all lines, we also know $Xf(\ell)$ for the *n*-dimensional family of lines that consists of all ℓ parallel to a fixed 2-dimensional plane, say the one spanned by $(1, 0, \ldots, 0)$ and $(0, 1, 0, \ldots, 0)$. It is then enough to solve the 2-dimensional problem of inverting R on each such plane. This is one way one can reduce the problem of inverting X to a formally determined one (that we can solve, as we will see later) using partial data. For this reason, very often the X-ray transform in analyzed in two dimensions only.

The Radon Transform

The Radon transform Rf of a function f: integrals of f over all hyperplanes π in \mathbf{R}^n :

$$Rf(\pi) = \int_{\pi} f \, \mathrm{d}S. \tag{6}$$

Here dS is the Euclidean surface measure on each such hyperplane. Each such hyperplane can be written in exactly two different ways in the form

$$\pi = \{x \mid x \cdot \omega = p\} = \{x \mid x \cdot (-\omega) = -p\}$$

with $p \in \mathbf{R}$, $\omega \in S^{n-1}$. We then write

$$Rf(p,\omega) = \int_{x\cdot\omega=p} f \,\mathrm{d}S_x. \tag{7}$$

Then Rf is an even function on $\mathbf{R} \times S^{n-1}$.

The problem of finding f given Rf is always a formally determined one since both f and Rf are functions of n variables. In \mathbf{R}^2 , those two transforms are the same but parameterized differently.

The Radon Transform

The Radon transform Rf of a function f: integrals of f over all hyperplanes π in \mathbf{R}^n :

$$Rf(\pi) = \int_{\pi} f \, \mathrm{d}S. \tag{6}$$

Here dS is the Euclidean surface measure on each such hyperplane. Each such hyperplane can be written in exactly two different ways in the form

$$\pi = \{x \mid x \cdot \omega = p\} = \{x \mid x \cdot (-\omega) = -p\}$$

with $p \in \mathbf{R}$, $\omega \in S^{n-1}$. We then write

$$Rf(p,\omega) = \int_{x\cdot\omega=p} f \,\mathrm{d}S_x. \tag{7}$$

Then *Rf* is an even function on $\mathbf{R} \times S^{n-1}$.

The problem of finding f given Rf is always a formally determined one since both f and Rf are functions of n variables.

In \mathbf{R}^2 , those two transforms are the same but parameterized differently.

The Radon Transform

The Radon transform Rf of a function f: integrals of f over all hyperplanes π in \mathbf{R}^n :

$$Rf(\pi) = \int_{\pi} f \, \mathrm{d}S. \tag{6}$$

Here dS is the Euclidean surface measure on each such hyperplane. Each such hyperplane can be written in exactly two different ways in the form

$$\pi = \{x \mid x \cdot \omega = p\} = \{x \mid x \cdot (-\omega) = -p\}$$

with $p \in \mathbf{R}$, $\omega \in S^{n-1}$. We then write

$$Rf(p,\omega) = \int_{x\cdot\omega=p} f \,\mathrm{d}S_x. \tag{7}$$

Then Rf is an even function on $\mathbf{R} \times S^{n-1}$.

The problem of finding f given Rf is always a formally determined one since both f and Rf are functions of n variables. In \mathbf{R}^2 , those two transforms are the same but parameterized differently.

The transpose X'

Since (x, θ) and $(x + s\theta, \theta)$ define the same line, a natural parameterization is

$$\Sigma = \left\{ (z, heta) | \ heta \in S^{n-1}, \ z \in heta^{\perp}
ight\}.$$

Define a measure $\mathrm{d}\sigma$ on Σ :

$$\mathrm{d}\sigma(z,\theta)=\mathrm{d}S_{z}\,\mathrm{d}\theta,$$

where, $d\theta$ is the standard measure on S^{n-1} , and dS_z is the Euclidean measure on the hyperplane θ^{\perp} . In this parameterization, each directed line has unique coordinates but each undirected one has two pairs of coordinates.

Another parameterization: Assume that we will apply X only to functions supported in some bounded domain Ω with a strictly convex smooth boundary. The strict convexity assumption is not restrictive since we can always enlarge the domain to a strictly convex one, for example a ball, that contains the domain of interest.

The transpose X'

Since (x, θ) and $(x + s\theta, \theta)$ define the same line, a natural parameterization is

$$\Sigma = \left\{ (z, heta) | \ heta \in S^{n-1}, \ z \in heta^{\perp}
ight\}.$$

Define a measure $\mathrm{d}\sigma$ on Σ :

$$\mathrm{d}\sigma(z,\theta)=\mathrm{d}S_{z}\,\mathrm{d}\theta,$$

where, $d\theta$ is the standard measure on S^{n-1} , and dS_z is the Euclidean measure on the hyperplane θ^{\perp} . In this parameterization, each directed line has unique coordinates but each undirected one has two pairs of coordinates.

Another parameterization: Assume that we will apply X only to functions supported in some bounded domain Ω with a strictly convex smooth boundary. The strict convexity assumption is not restrictive since we can always enlarge the domain to a strictly convex one, for example a ball, that contains the domain of interest.

Set

$$\partial_{-}S\Omega = \left\{ (x,\theta) \in \partial\Omega \times S^{n-1} | \nu(x) \cdot \theta < 0 \right\},$$
(8)

where ν is the exterior unit normal to $\partial\Omega$. On $\partial_{-}S\Omega$, define the measure

$$d\mu(x,\theta) = |\nu(x) \cdot \theta| dS_x d\theta, \tag{9}$$

where dS_x is the surface measure on $\partial\Omega$. There is a natural map

$$\partial_{-}S\Omega \ni (x,\theta) \longmapsto (z,\theta) \in \Sigma,$$
 (10)

where z is the intersection of the ray $\{x + s\theta | s \in \mathbf{R}\}$ with θ^{\perp} . The map (10) is invertible on its range. Given (z, θ) , x is the intersection of the ray $\{z + s\theta | s \in \mathbf{R}\}$ with $\partial\Omega$ having the property that at x, the vector θ points into Ω .

Figure: Two ways to parameterize a line

Proposition 1

The map (10) and its inverse are isometries.

The proof is immediate. Fix θ , and project locally $\partial \Omega$ on θ^{\perp} , in the direction of θ , near some point x so that $(x, \theta) \in \partial_{-}S\Omega$. The Jacobian of that projection is $1/|\nu(x) \cdot \theta|$.

Figure: Two ways to parameterize a line

Proposition 1 The map (10) and its inverse are isometries.

The proof is immediate. Fix θ , and project locally $\partial \Omega$ on θ^{\perp} , in the direction of θ , near some point x so that $(x, \theta) \in \partial_{-}S\Omega$. The Jacobian of that projection is $1/|\nu(x) \cdot \theta|$.

We can compute now the transpose X' w.r.t. either parameterization:

$$X'\psi(x) = \int_{S^{n-1}} \psi(x - (x \cdot \theta)\theta, \theta) \,\mathrm{d}\theta. \tag{11}$$

We can interpret this formula in the following way. The function ψ is a function on the manifold of lines. Given $x \in \mathbf{R}^n$, for any $\theta \in S^{n-1}$ we evaluate ψ on the line through x in the direction of θ , and then integrate over θ . In other words, $X'\psi(x)$ is an integral of $\psi = \psi(\ell)$ over all lines ℓ through x

$$X'\psi(x) = \int_{\ell \ni x} \psi(\ell) \,\mathrm{d}\ell_x,$$

where $d\ell_x$ is the unique measure on $\{\ell \ni x\}$ invariant under orthogonal transformations, with total measure $|S^{n-1}|$, i.e., $d\ell_x = d\theta$ in the parameterization that we use. Compare this to (1) which can also be written in the form

$$Xf(\ell) = \int_{x \in \ell} f(x) \,\mathrm{d}s \tag{12}$$

The transform X' is often called a backprojection — it takes a function defined on lines to a function defined on the "x-space" \mathbf{R}^n .

X can be extended to compactly supported distributions

Note that X' does not preserve the compactness of the support, i.e., for $\psi \in C_0^{\infty}$, X' ψ may not be of compact support!

By duality, we define X on the space $\mathcal{E}'(\mathbf{R}^n)$ of compactly supported distributions but we cannot do this on $\mathcal{D}'(\mathbf{R}^n)$, as it could be expected (even for smooth functions we need a certain decay at infinity).

X can be extended to compactly supported distributions

Note that X' does not preserve the compactness of the support, i.e., for $\psi \in C_0^{\infty}$, X' ψ may not be of compact support!

By duality, we define X on the space $\mathcal{E}'(\mathbf{R}^n)$ of compactly supported distributions but we cannot do this on $\mathcal{D}'(\mathbf{R}^n)$, as it could be expected (even for smooth functions we need a certain decay at infinity).

The transpose of R

There is a natural measure on $\mathbf{R} \times S^{n-1}$, where Rf lives. The transpose R' w..r.t. it is well defined. A simple calculation yields, for $\psi \in C_0^{\infty}(\mathbf{R} \times S^{n-1})$,

$$R'\psi(x) = \int_{S^{n-1}} \psi(x \cdot \omega, \omega) \,\mathrm{d}\omega.$$

Similarly to what we had before, ψ is a function on the set of oriented hyperplanes (and on the set of hyperplanes when ψ is even). Then we can think of $\mathbf{R}'\psi$ as an integral of $\psi = \psi(\pi)$ over the set of all hyperplanes π through x. Similarly to X', R' is also called sometimes a backprojection.

We extend R to compactly supported distributions as before.

The transpose of R

There is a natural measure on $\mathbf{R} \times S^{n-1}$, where Rf lives. The transpose R' w..r.t. it is well defined. A simple calculation yields, for $\psi \in C_0^{\infty}(\mathbf{R} \times S^{n-1})$,

$$R'\psi(x) = \int_{S^{n-1}} \psi(x \cdot \omega, \omega) \,\mathrm{d}\omega.$$

Similarly to what we had before, ψ is a function on the set of oriented hyperplanes (and on the set of hyperplanes when ψ is even). Then we can think of $\mathbf{R}'\psi$ as an integral of $\psi = \psi(\pi)$ over the set of all hyperplanes π through x. Similarly to X', R' is also called sometimes a backprojection.

We extend R to compactly supported distributions as before.

The transpose of R

There is a natural measure on $\mathbf{R} \times S^{n-1}$, where Rf lives. The transpose R' w..r.t. it is well defined. A simple calculation yields, for $\psi \in C_0^{\infty}(\mathbf{R} \times S^{n-1})$,

$$R'\psi(x) = \int_{S^{n-1}} \psi(x \cdot \omega, \omega) \,\mathrm{d}\omega.$$

Similarly to what we had before, ψ is a function on the set of oriented hyperplanes (and on the set of hyperplanes when ψ is even). Then we can think of $\mathbf{R}'\psi$ as an integral of $\psi = \psi(\pi)$ over the set of all hyperplanes π through x. Similarly to X', R' is also called sometimes a backprojection.

We extend R to compactly supported distributions as before.

The Fourier Slice Theorem

Theorem 1 (The Fourier Slice Theorem)

For any $f \in L^1(\mathbb{R}^n)$,

$$\hat{f}(\zeta) = \int_{\theta^{\perp}} e^{-\mathrm{i} z \cdot \zeta} X f(z, \theta) \, \mathrm{d} S_z, \quad \forall \theta \perp \zeta, \; \theta \in S^{n-1}.$$

Denote by $\mathcal{F}_{\theta^{\perp}}$ the Fourier transform in the *z* variable on θ^{\perp} . With this notation, the Fourier Slice Theorem reads: for any θ , $\hat{f}|_{\theta^{\perp}} = \mathcal{F}_{\theta^{\perp}} X f$.

Proof.

The integral on the right equals $\int_{\theta^{\perp}} \int_{\mathbf{R}} e^{-iz \cdot \zeta} f(z + s\theta) ds dS_z$. Set $x = z + s\theta$ and note that $x \cdot \zeta = z \cdot \zeta$ when $\zeta \perp \theta$. Then we see that the integral above equals $\hat{f}(\zeta)$.

The Fourier Slice Theorem

Theorem 1 (The Fourier Slice Theorem)

For any $f \in L^1(\mathbb{R}^n)$,

$$\hat{f}(\zeta) = \int_{\theta^{\perp}} e^{-\mathrm{i} z \cdot \zeta} X f(z, \theta) \, \mathrm{d} S_z, \quad \forall \theta \perp \zeta, \; \theta \in S^{n-1}.$$

Denote by $\mathcal{F}_{\theta^{\perp}}$ the Fourier transform in the *z* variable on θ^{\perp} . With this notation, the Fourier Slice Theorem reads: for any θ , $\hat{f}|_{\theta^{\perp}} = \mathcal{F}_{\theta^{\perp}} X f$.

Proof.

The integral on the right equals $\int_{\theta^{\perp}} \int_{\mathbf{R}} e^{-iz \cdot \zeta} f(z + s\theta) ds dS_z$. Set $x = z + s\theta$ and note that $x \cdot \zeta = z \cdot \zeta$ when $\zeta \perp \theta$. Then we see that the integral above equals $\hat{f}(\zeta)$.

Theorem 1 immediately implies injectivity of X on $L^1(\mathbb{R}^n)$ (also, on $\mathcal{E}'(\mathbb{R}^n)$). \top

Also, it says that knowing Xf for a fixed θ recovers \hat{f} for $\xi \perp \theta$. This has a micolocal equivalent, as we will see later.

In fact, for compactly supported functions, the theorem implies a bit more. The decisive argument in the proof is the analyticity of the Fourier transform of compactly supported functions.

Corollary 2

Let $f \in L^1(\mathbb{R}^n)$ have compact support and let $Xf(\cdot, \theta) = 0$ for θ in an infinite set of (distinct) unit vectors, then f = 0.

Finitely many "roentgenograms" however are not enough to recover f.

Theorem 1 immediately implies injectivity of X on $L^1(\mathbb{R}^n)$ (also, on $\mathcal{E}'(\mathbb{R}^n)$). T

Also, it says that knowing Xf for a fixed θ recovers \hat{f} for $\xi \perp \theta$. This has a micolocal equivalent, as we will see later.

In fact, for compactly supported functions, the theorem implies a bit more. The decisive argument in the proof is the analyticity of the Fourier transform of compactly supported functions.

Corollary 2

Let $f \in L^1(\mathbb{R}^n)$ have compact support and let $Xf(\cdot, \theta) = 0$ for θ in an infinite set of (distinct) unit vectors, then f = 0.

Finitely many "roentgenograms" however are not enough to recover f.

Theorem 1 immediately implies injectivity of X on $L^1(\mathbb{R}^n)$ (also, on $\mathcal{E}'(\mathbb{R}^n)$). T

Also, it says that knowing Xf for a fixed θ recovers \hat{f} for $\xi \perp \theta$. This has a micolocal equivalent, as we will see later.

In fact, for compactly supported functions, the theorem implies a bit more. The decisive argument in the proof is the analyticity of the Fourier transform of compactly supported functions.

Corollary 2

Let $f \in L^1(\mathbf{R}^n)$ have compact support and let $Xf(\cdot, \theta) = 0$ for θ in an infinite set of (distinct) unit vectors, then f = 0.

Finitely many "roentgenograms" however are not enough to recover f.

Intertwining properties

Intertwining properties for R

$$R\Delta = d_p^2 R, \quad R' d_p^2 = \Delta R',$$

on $C_0^\infty(\mathbf{R}^n)$ and on $C_0^\infty(\mathbf{R} \times S^{n-1})$, respectively.

Proof: straightforward, either by direct computations or by using the Fourier Slice Theorem.

Let Δ_z denote the Laplacian in the z variable on each $heta^\perp$. Set $|D_z|=(-\Delta_z)^{1/2}$. Similarly,

Intertwining properties for X

$$X\Delta = \Delta_z X, \quad X'\Delta_z = \Delta X',$$

on $C_0^{\infty}(\mathbf{R}^n)$, and $C_0^{\infty}(\Sigma)$, respectively.

Intertwining properties

Intertwining properties for R

$$R\Delta = d_p^2 R, \quad R' d_p^2 = \Delta R',$$

on $C_0^\infty(\mathbf{R}^n)$ and on $C_0^\infty(\mathbf{R} \times S^{n-1})$, respectively.

Proof: straightforward, either by direct computations or by using the Fourier Slice Theorem.

Let Δ_z denote the Laplacian in the z variable on each θ^{\perp} . Set $|D_z| = (-\Delta_z)^{1/2}$. Similarly,

Intertwining properties for X

$$X\Delta = \Delta_z X, \quad X'\Delta_z = \Delta X',$$

on $C_0^{\infty}(\mathbf{R}^n)$, and $C_0^{\infty}(\Sigma)$, respectively.

Proposition 2

$$X'Xf(x) = 2\int_{\mathbf{R}^n} \frac{f(y)}{|x-y|^{n-1}} \mathrm{d}y, \quad \forall f \in \mathcal{S}(\mathbf{R}^n)$$

This is a convolution and therefore a Fourier multiplier! We need the Fourier transform of $|x|^{-(n-1)}$ to find it, and the answer is $c|\xi|^{-1}$. Therefore, $X'X = c|D|^{-1}$, and to invert it, we need to apply c'|D|.

Theorem 3

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$f = c_n |D| X' X f, \quad c_n = (2\pi |S^{n-2}|)^{-1}$

For n = 2, $|S^{n-2}| = 2$, so $c_2 = (4\pi)^{-1}$.

Plamen Stefanov (Purdue University) Microlocal Methods in X-ray Tomography

Proposition 2

$$X'Xf(x) = 2\int_{\mathbf{R}^n} \frac{f(y)}{|x-y|^{n-1}} \mathrm{d}y, \quad \forall f \in \mathcal{S}(\mathbf{R}^n)$$

This is a convolution and therefore a Fourier multiplier! We need the Fourier transform of $|x|^{-(n-1)}$ to find it, and the answer is $c|\xi|^{-1}$. Therefore, $X'X = c|D|^{-1}$, and to invert it, we need to apply c'|D|.

Theorem 3

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = c_n |D| X' X f$$
, $c_n = (2\pi |S^{n-2}|)^{-1}$.

For
$$n = 2$$
, $|S^{n-2}| = 2$, so $c_2 = (4\pi)^{-1}$.

Plamen Stefanov (Purdue University) Microlocal Methods in X-ray Tomograph

Proposition 2

$$X'Xf(x) = 2\int_{\mathbf{R}^n} \frac{f(y)}{|x-y|^{n-1}} \mathrm{d}y, \quad \forall f \in \mathcal{S}(\mathbf{R}^n)$$

This is a convolution and therefore a Fourier multiplier! We need the Fourier transform of $|x|^{-(n-1)}$ to find it, and the answer is $c|\xi|^{-1}$. Therefore, $X'X = c|D|^{-1}$, and to invert it, we need to apply c'|D|.

Theorem 3

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = c_n |D| X' X f$$
, $c_n = (2\pi |S^{n-2}|)^{-1}$.

For
$$n = 2$$
, $|S^{n-2}| = 2$, so $c_2 = (4\pi)^{-1}$.

Plamen Stefanov (Purdue University) Microlocal Methods in X-ray Tomography

Proposition 2

$$X'Xf(x) = 2\int_{\mathbf{R}^n} \frac{f(y)}{|x-y|^{n-1}} \mathrm{d}y, \quad \forall f \in \mathcal{S}(\mathbf{R}^n)$$

This is a convolution and therefore a Fourier multiplier! We need the Fourier transform of $|x|^{-(n-1)}$ to find it, and the answer is $c|\xi|^{-1}$. Therefore, $X'X = c|D|^{-1}$, and to invert it, we need to apply c'|D|.

Theorem 3

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = c_n |D| X' X f, \quad c_n = (2\pi |S^{n-2}|)^{-1}.$$

For
$$n = 2$$
, $|S^{n-2}| = 2$, so $c_2 = (4\pi)^{-1}$.

Plamen Stefanov (Purdue University) Microlocal Methods in X-I

The Fourier multiplier |D| is a non-local operator. Therefore, if we want to recover f only in a neighborhood of some x_0 by means of formula above, it is not enough to know Xf for all lines ℓ that intersect that neighborhood.

In particular, if f is compactly supported, we need to compute X'Xf for all $x \in \mathbf{R}^n$ to be able to apply |D|. Numerically, one would just truncate the computational region but X'Xf does not decay very fast (only like $|x|^{-n+1}$), and the error will be not so small. But such a truncated recovery would still be a parametrix (more — later).

This calls for another inversion formula.

Theorem 4 (A filtered back-projection)

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = c_n X' |D_z| X f, \quad c_n = (2\pi |S^{n-2}|)^{-1}.$$

The Fourier multiplier |D| is a non-local operator. Therefore, if we want to recover f only in a neighborhood of some x_0 by means of formula above, it is not enough to know Xf for all lines ℓ that intersect that neighborhood.

In particular, if f is compactly supported, we need to compute X'Xf for all $x \in \mathbf{R}^n$ to be able to apply |D|. Numerically, one would just truncate the computational region but X'Xf does not decay very fast (only like $|x|^{-n+1}$), and the error will be not so small. But such a truncated recovery would still be a parametrix (more — later).

This calls for another inversion formula.

Theorem 4 (A filtered back-projection)

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = c_n X' |D_z| X f, \quad c_n = (2\pi |S^{n-2}|)^{-1}.$$

The Fourier multiplier |D| is a non-local operator. Therefore, if we want to recover f only in a neighborhood of some x_0 by means of formula above, it is not enough to know Xf for all lines ℓ that intersect that neighborhood.

In particular, if f is compactly supported, we need to compute X'Xf for all $x \in \mathbf{R}^n$ to be able to apply |D|. Numerically, one would just truncate the computational region but X'Xf does not decay very fast (only like $|x|^{-n+1}$), and the error will be not so small. But such a truncated recovery would still be a parametrix (more — later).

This calls for another inversion formula.

Theorem 4 (A filtered back-projection)

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = c_n X' |D_z| X f$$
, $c_n = (2\pi |S^{n-2}|)^{-1}$.

The non-local operator $|D_z|$ now appears between X' and X. Is that a progress (for computational purposes)? Yes — if f is compactly supported, we need to evaluate the result in a compact set, i.e., we need to know $\chi X'|D_z|Xf$ for some χ of compact support. This means that we need to evaluate $|D_z|Xf$ on a compact set as well. But Xf is compactly supported. So we need to apply $|D_z|$ from a comact set to a compact set

In applications, in 2D, most of the time R is preferred to X (they are equivalent, of course).

The non-local operator $|D_z|$ now appears between X' and X. Is that a progress (for computational purposes)? Yes — if f is compactly supported, we need to evaluate the result in a compact set, i.e., we need to know $\chi X'|D_z|Xf$ for some χ of compact support. This means that we need to evaluate $|D_z|Xf$ on a compact set as well. But Xf is compactly supported. So we need to apply $|D_z|$ from a comact set to a compact set.

In applications, in 2D, most of the time *R* is preferred to *X* (they are equivalent, of course).

The non-local operator $|D_z|$ now appears between X' and X. Is that a progress (for computational purposes)? Yes — if f is compactly supported, we need to evaluate the result in a compact set, i.e., we need to know $\chi X'|D_z|Xf$ for some χ of compact support. This means that we need to evaluate $|D_z|Xf$ on a compact set as well. But Xf is compactly supported. So we need to apply $|D_z|$ from a comact set to a compact set.

In applications, in 2D, most of the time R is preferred to X (they are equivalent, of course).

The Schwartz kernel of R'R

Proposition 3

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$R'Rf(x) = |S^{n-2}| \int_{\mathbf{R}^n} \frac{f(y)}{|x-y|} \mathrm{d}y.$$

We have a convolution again, with the Fourier transform of $|x|^{-1}$. The latter is $c|\xi|^{-n+1}$. Therefore,

Theorem 5

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = C_n |D|^{n-1} R' R f, \quad C_n = \frac{1}{2} (2\pi)^{1-n}.$$

$|D|^{n-1}$ is <u>local</u> for *n* odd!

The Schwartz kernel of R'R

Proposition 3

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$R'Rf(x) = |S^{n-2}| \int_{\mathbf{R}^n} \frac{f(y)}{|x-y|} \mathrm{d}y.$$

We have a convolution again, with the Fourier transform of $|x|^{-1}$. The latter is $c|\xi|^{-n+1}$. Therefore,

Theorem 5

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = C_n |D|^{n-1} R' R f, \quad C_n = \frac{1}{2} (2\pi)^{1-n}.$$

 $|D|^{n-1}$ is <u>local</u> for *n* odd!

Let H be the Hilbert transform

$$Hg(p) = \frac{1}{\pi} \operatorname{pv} \int_{\mathbf{R}} \frac{g(s)}{p-s} \, \mathrm{d}s, \qquad (13)$$

where " $pv \int$ " stands for an integral in a principal value sense.

Theorem 6 (filtered backprojection)

For any $f \in \mathcal{S}(\mathbf{R}^n)$,

$$f = \begin{cases} C'_n R' d_p^{n-1} Rf, & n \text{ odd,} \\ C'_n R' H d_p^{n-1} Rf, & n \text{ even,} \end{cases}$$
(14)

where d_p stands for the derivative of $Rf(p, \omega)$ w.r.t. p, H is the Hilbert transform w.r.t. p and

$$C'_{n} = \begin{cases} (-1)^{(n-1)/2} C_{n}, & n \text{ odd,} \\ (-1)^{(n-2)/2} C_{n}, & n \text{ even,} \end{cases}$$

with $C_n = \frac{1}{2}(2\pi)^{1-n}$ (as in Theorem 5).

The appearance of the Hilbert transform H for n even, and the different constants for n odd/even may look strange at first glance, especially when compared to the inversion formula in Theorem 5, that looks the same for all $n \ge 2$. For n even, note first that $H = -i \operatorname{sgn}(D_p)$, $D_p = -id_p$, therefore,

$$(-1)^{(n-2)/2} H d_p^{n-1} = |D_p|^{n-1}, \quad n \text{ even}.$$

On the other hand,

$$(-1)^{(n-1)/2} d_p^{n-1} = |D_p|^{n-1}, \quad n \text{ odd.}$$

Therefore, in both cases, (14) can be written as

$$f = C_n R' |D_\rho|^{n-1} Rf \tag{15}$$

Stability estimates

Set

$$\|g\|_{\bar{H}^{s}(\Sigma)} = \left\| (1 - \Delta_{z})^{s/2} g \right\|_{L^{2}(\Sigma)},$$

$$\|g\|_{\bar{H}^{s}(\mathbb{R} \times S^{n-1})} = \left\| (1 - d_{p}^{2})^{s/2} g \right\|_{L^{2}(\mathbb{R} \times S^{n-1})},$$
 (16)

Theorem 7 (Stability estimates)

For any bounded domain $\Omega \subset \mathbf{R}^n$ with smooth boundary, and any s, we have

$$\|f\|_{H^{s}(\mathbb{R}^{n})}/C \leq \|Xf\|_{\bar{H}^{s+1/2}(\Sigma)} \leq C\|f\|_{H^{s}(\mathbb{R}^{n})},$$
(17)

$$\|f\|_{H^{s}(\mathbb{R}^{n})}/C \leq \|Rf\|_{\bar{H}^{s+(n-1)/2}(\mathbb{R}\times S^{n-1})} \leq C\|f\|_{H^{s}(\mathbb{R}^{n})}$$
(18)

for all $f \in H^{s}(\mathbb{R}^{n})$ supported in $\overline{\Omega}$.

The appearance of the same norm of f on the left and on the right makes those estimates sharp.

Plamen Stefanov (Purdue University) Microlocal Methods in X-ray Tomography

Stability estimates

Set

$$\|g\|_{\bar{H}^{s}(\Sigma)} = \|(1 - \Delta_{z})^{s/2}g\|_{L^{2}(\Sigma)},$$

$$\|g\|_{\bar{H}^{s}(\mathbb{R}\times S^{n-1})} = \|(1 - d_{p}^{2})^{s/2}g\|_{L^{2}(\mathbb{R}\times S^{n-1})},$$
 (16)

Theorem 7 (Stability estimates)

For any bounded domain $\Omega \subset \mathbf{R}^n$ with smooth boundary, and any s, we have

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|Xf\|_{\bar{H}^{s+1/2}(\Sigma)} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})},$$
(17)

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|Rf\|_{\bar{H}^{s+(n-1)/2}(\mathbf{R}\times S^{n-1})} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})}$$
(18)

for all $f \in H^{s}(\mathbf{R}^{n})$ supported in $\overline{\Omega}$.

The appearance of the same norm of f on the left and on the right makes those estimates sharp. Plamen Stefanov (Purdue University) Microlecal Matheds in X-ray Tangaraphy 23 / 28

Stability estimates

Set

$$\|g\|_{\bar{H}^{s}(\Sigma)} = \|(1 - \Delta_{z})^{s/2}g\|_{L^{2}(\Sigma)},$$

$$\|g\|_{\bar{H}^{s}(\mathbb{R}\times S^{n-1})} = \|(1 - d_{p}^{2})^{s/2}g\|_{L^{2}(\mathbb{R}\times S^{n-1})},$$
 (16)

Theorem 7 (Stability estimates)

For any bounded domain $\Omega \subset \mathbf{R}^n$ with smooth boundary, and any s, we have

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|Xf\|_{\bar{H}^{s+1/2}(\Sigma)} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})},$$
(17)

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|Rf\|_{\bar{H}^{s+(n-1)/2}(\mathbf{R}\times S^{n-1})} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})}$$
(18)

for all $f \in H^{s}(\mathbf{R}^{n})$ supported in $\overline{\Omega}$.

The appearance of the same norm of f on the left and on the right makes those estimates sharp.

Plamen Stefanov (Purdue University) Microlocal Methods in X-ray Tomography

Theorem 7 shows that we "gain 1/2 derivative" with the operator X, and (n-1)/2 derivatives with the operator R. Each one of those two operators involves an integration that has a smoothing effect. The gain is a half of the dimension of the linear submanifolds over which we integrate.

The proof is pretty straightforward, after all, we have explicit inversion formulas.

Theorem 7 shows that we "gain 1/2 derivative" with the operator X, and (n-1)/2 derivatives with the operator R. Each one of those two operators involves an integration that has a smoothing effect. The gain is a half of the dimension of the linear submanifolds over which we integrate.

The proof is pretty straightforward, after all, we have explicit inversion formulas.

Stability estimates in terms of X'X and R'R

Why X'X (the normal operator)? It is the first step of the inversion; it lives in the same space; X'X is injective if and only if X is.

Theorem 8

Let $\Omega \subset \mathbf{R}^n$ be open and bounded, and let $\Omega_1 \supset \overline{\Omega}$ be another such set. Then for any integer s = 0, 1, ..., there is a constant C > 0 so that for any $f \in H^s(\mathbf{R}^n)$ supported in $\overline{\Omega}$, we have

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|X'Xf\|_{H^{s+1}(\Omega_{1})} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})},$$

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|R'Rf\|_{H^{s+n-1}(\Omega_{1})} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})}$$

$$(20)$$

The proof (of the inequalities on the left) seems to be straightforward as well — we have a formula for f in terms of X'Xf and R'Rf. Just apply c|D| to X'Xf, and we get f. Problem: we need X'Xf on the whole \mathbb{R}^n for that! The theorem requires to know this on Ω_1 only. ???

Stability estimates in terms of X'X and R'R

Why X'X (the normal operator)? It is the first step of the inversion; it lives in the same space; X'X is injective if and only if X is.

Theorem 8

Let $\Omega \subset \mathbf{R}^n$ be open and bounded, and let $\Omega_1 \supset \overline{\Omega}$ be another such set. Then for any integer s = 0, 1, ..., there is a constant C > 0 so that for any $f \in H^s(\mathbf{R}^n)$ supported in $\overline{\Omega}$, we have

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|X'Xf\|_{H^{s+1}(\Omega_{1})} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})},$$

$$\|f\|_{H^{s}(\mathbf{R}^{n})}/C \leq \|R'Rf\|_{H^{s+n-1}(\Omega_{1})} \leq C\|f\|_{H^{s}(\mathbf{R}^{n})}$$

$$(20)$$

The proof (of the inequalities on the left) seems to be straightforward as well — we have a formula for f in terms of X'Xf and R'Rf. Just apply c|D| to X'Xf, and we get f. Problem: we need X'Xf on the whole \mathbb{R}^n for that! The theorem requires to know this on Ω_1 only. ???

To prove the first estimate, use the inversion formula $f = c_n |D| X' X f$ and write

$$\|f\|_{H^{s}(\mathbf{R}^{n})}^{2} \leq c_{n}\|X'Xf\|_{H^{s+1}(\mathbf{R}^{n})}^{2} = c_{n}\|X'Xf\|_{H^{s+1}(\Omega_{1})}^{2} + c_{n}\|X'Xf\|_{H^{s+1}(\mathbf{R}^{n}\setminus\Omega_{1})}^{2}.$$

We want to get rid of the last term. The following lemma solves the problem:

Lemma 9

Let X, Y, Z be Banach spaces, let $A : X \to Y$ be a bounded linear operator, and $K : X \to Z$ be a compact linear operator. Let

 $\|f\|_{X} \le C(\|Af\|_{Y} + \|Kf\|_{Z}), \quad \forall f \in X.$ (21)

Assume that A is injective. Then there exists C' > 0 so that

 $\|f\|_X \leq C' \|Af\|_Y, \quad \forall f \in X.$

We do know that $X'X : H_0^s(\Omega) \to H^{s+1}(\Omega_1)$ is injective. So we can apply the lemma and get rid of that term (no control over C though!)

To prove the first estimate, use the inversion formula $f = c_n |D| X' X f$ and write

$$\|f\|_{H^{s}(\mathbf{R}^{n})}^{2} \leq c_{n}\|X'Xf\|_{H^{s+1}(\mathbf{R}^{n})}^{2} = c_{n}\|X'Xf\|_{H^{s+1}(\Omega_{1})}^{2} + c_{n}\|X'Xf\|_{H^{s+1}(\mathbf{R}^{n}\setminus\Omega_{1})}^{2}.$$

We want to get rid of the last term. The following lemma solves the problem:

Lemma 9

Let X, Y, Z be Banach spaces, let $A : X \to Y$ be a bounded linear operator, and $K : X \to Z$ be a compact linear operator. Let

$$\|f\|_{\mathcal{X}} \leq C\left(\|Af\|_{\mathcal{Y}} + \|Kf\|_{\mathcal{Z}}\right), \quad \forall f \in \mathcal{X}.$$
(21)

Assume that A is injective. Then there exists C' > 0 so that

 $\|f\|_X \leq C' \|Af\|_Y, \quad \forall f \in X.$

We do know that $X'X : H_0^s(\Omega) \to H^{s+1}(\Omega_1)$ is injective. So we can apply the lemma and get rid of that term (no control over C though!)

Support theorems

Theorem 10 (Support theorem)

Let $f \in C(\mathbf{R}^n)$ be such that

(i) $|x|^k f(x)$ is bounded for any integer k,

(ii) there exists a constant A > 0 so that $Rf(p, \omega) = 0$ for |p| > A.

Then f(x) = 0 for |x| > A.

Corollary 11

Let $K \subset \mathbf{R}^n$ be a convex compact set. Let $f \in C(\mathbf{R}^n)$ satisfy the assumption (i) above. Assume also that $Rf(\pi) = 0$ for any hyperplane π not intersecting K. Then f = 0 outside K.

Support theorems for X can be derived directly from those for R by working in various 2D planes, where R and X are the same transforms. On the other hand, one can formulate stronger results for X since the lines in \mathbb{R}^n are "thinner" and can fit into smaller "holes."

Support theorems

Theorem 10 (Support theorem)

Let $f \in C(\mathbf{R}^n)$ be such that

(i) $|x|^k f(x)$ is bounded for any integer k,

(ii) there exists a constant A > 0 so that $Rf(p, \omega) = 0$ for |p| > A.

Then f(x) = 0 for |x| > A.

Corollary 11

Let $K \subset \mathbf{R}^n$ be a convex compact set. Let $f \in C(\mathbf{R}^n)$ satisfy the assumption (i) above. Assume also that $Rf(\pi) = 0$ for any hyperplane π not intersecting K. Then f = 0 outside K.

Support theorems for X can be derived directly from those for R by working in various 2D planes, where R and X are the same transforms. On the other hand, one can formulate stronger results for X since the lines in \mathbb{R}^n are "thinner" and can fit into smaller "holes."

Support theorems

Theorem 10 (Support theorem)

Let $f \in C(\mathbf{R}^n)$ be such that

(i) $|x|^k f(x)$ is bounded for any integer k,

(ii) there exists a constant A > 0 so that $Rf(p, \omega) = 0$ for |p| > A.

Then f(x) = 0 for |x| > A.

Corollary 11

Let $K \subset \mathbf{R}^n$ be a convex compact set. Let $f \in C(\mathbf{R}^n)$ satisfy the assumption (i) above. Assume also that $Rf(\pi) = 0$ for any hyperplane π not intersecting K. Then f = 0 outside K.

Support theorems for X can be derived directly from those for R by working in various 2D planes, where R and X are the same transforms. On the other hand, one can formulate stronger results for X since the lines in \mathbb{R}^n are "thinner" and can fit into smaller "holes."

The rapid decay condition is essential. For any N > 0, there is a function with $|f| \le C(1 + |x|)^{-N}$ of infinite support with Radon transform compactly supported.

The rapid decay condition is essential. For any N > 0, there is a function with $|f| \le C(1 + |x|)^{-N}$ of infinite support with Radon transform compactly supported.

The rapid decay condition is essential. For any N > 0, there is a function with $|f| \le C(1 + |x|)^{-N}$ of infinite support with Radon transform compactly supported.

The rapid decay condition is essential. For any N > 0, there is a function with $|f| \le C(1 + |x|)^{-N}$ of infinite support with Radon transform compactly supported.