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Radon transform and X-ray tomography: definition X-ray Transform

X-ray transform

X-ray transform of a function f in Rn:

Xf (`) =

∫
`
f ds (1)

along any given (undirected) line ` in Rn. Here ds is the unit length
measure on `. Lines in Rn can be parameterized by initial points x ∈ Rn

and directions θ ∈ Sn−1, thus we can write, without changing the notation,

Xf (x , θ) =

∫
R

f (x + sθ) ds, (x , θ) ∈ Rn × Sn−1. (2)

That parameterization is not unique because for any x , θ, t,

Xf (x , θ) = Xf (x + tθ, θ), Xf (x , θ) = Xf (x ,−θ). (3)

The latter identity reflects the fact that we consider the lines as undirected
ones.
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Radon transform and X-ray tomography: definition X-ray Transform

Motivation

Motivating example: X-ray medical imaging. An X-ray point source is
placed at different points around patient’s body, and the intensity I of the
rays is measured after the rays go through the body. The intensity
depends on the position x and the direction θ of the rays. It solves the
transport equation

(θ · ∇x + σ(x)) I (x , θ) = 0, (4)

where σ is the absorption of the body. Equation (4) simply says that the
directional derivative of I in the direction θ equals −σI . A natural
initial/boundary condition is to require that

lim
s→−∞

I (x + sθ, θ) = I0,

where I0 is the source intensity, that may depend on the line. Since f is of
compact support in this case, the limit above is trivial. Then (4) has the
explicit solution

I (x , θ) = e−
R 0
−∞ σ(x+sθ,θ) ds I0.
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Radon transform and X-ray tomography: definition X-ray Transform

The measurement outside patent’s body is modeled by

lim
s→∞

I (x + sθ, θ) =: I1,

and this limit is trivial as well. Since both I1 and I0 are known, we may
form the quantity

− log(I1/I0) =

∫ ∞

−∞
σ(x + sθ, θ) ds

That is exactly Xσ(x , θ). The problem then reduces to recovery of σ given
Xσ.
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Radon transform and X-ray tomography: definition X-ray Transform

Count the number of variables that to parameterize Xf . For any θ, it is
enough to restrict x to a hyperplane perpendicular to θ, that takes away
one dimension. One such hyperplane is

θ⊥ := {x | x · θ = 0}. (5)

Then Xf (x , θ) is an even (w.r.t. θ) function of 2n − 2 variables, while f
depends on n variables. Therefore, if n = 2, Xf and f depends on the
same number of variables, 2. We say that the problem of inverting X is
then a formally determined problem. If n ≥ 3, then Xf depends on more
variables, making the problem formally overdetermined. On the other
hand, in dimensions n ≥ 3, if we know Xf (`) for all lines, we also know
Xf (`) for the n-dimensional family of lines that consists of all ` parallel to
a fixed 2-dimensional plane, say the one spanned by (1, 0, . . . , 0) and
(0, 1, 0, . . . , 0). It is then enough to solve the 2-dimensional problem of
inverting R on each such plane. This is one way one can reduce the
problem of inverting X to a formally determined one (that we can solve, as
we will see later) using partial data. For this reason, very often the X-ray
transform in analyzed in two dimensions only.
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Radon transform and X-ray tomography: definition The Radon Transform

The Radon Transform

The Radon transform Rf of a function f : integrals of f over all
hyperplanes π in Rn:

Rf (π) =

∫
π

f dS . (6)

Here dS is the Euclidean surface measure on each such hyperplane. Each
such hyperplane can be written in exactly two different ways in the form

π = {x | x · ω = p} = {x | x · (−ω) = −p}

with p ∈ R, ω ∈ Sn−1. We then write

Rf (p, ω) =

∫
x ·ω=p

f dSx . (7)

Then Rf is an even function on R× Sn−1.

The problem of finding f given Rf is always a formally determined one
since both f and Rf are functions of n variables.
In R2, those two transforms are the same but parameterized differently.
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The transposes X ′ and R′; extending X , R to E′(Rn) The transpose X ′

The transpose X ′

Since (x , θ) and (x + sθ, θ) define the same line, a natural
parameterization is

Σ =
{

(z , θ)| θ ∈ Sn−1, z ∈ θ⊥
}
.

Define a measure dσ on Σ:

dσ(z , θ) = dSz dθ,

where, dθ is the standard measure on Sn−1, and dSz is the Euclidean
measure on the hyperplane θ⊥. In this parameterization, each directed line
has unique coordinates but each undirected one has two pairs of
coordinates.

Another parameterization: Assume that we will apply X only to functions
supported in some bounded domain Ω with a strictly convex smooth
boundary. The strict convexity assumption is not restrictive since we can
always enlarge the domain to a strictly convex one, for example a ball,
that contains the domain of interest.
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The transposes X ′ and R′; extending X , R to E′(Rn) The transpose X ′

Set
∂−SΩ =

{
(x , θ) ∈ ∂Ω× Sn−1| ν(x) · θ < 0

}
, (8)

where ν is the exterior unit normal to ∂Ω. On ∂−SΩ, define the measure

dµ(x , θ) = |ν(x) · θ|dSx dθ, (9)

where dSx is the surface measure on ∂Ω. There is a natural map

∂−SΩ 3 (x , θ) 7−→ (z , θ) ∈ Σ, (10)

where z is the intersection of the ray {x + sθ| s ∈ R} with θ⊥. The map
(10) is invertible on its range. Given (z , θ), x is the intersection of the ray
{z + sθ| s ∈ R} with ∂Ω having the property that at x , the vector θ points
into Ω.
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The transposes X ′ and R′; extending X , R to E′(Rn) The transpose X ′

Figure: Two ways to parameterize a line

Proposition 1

The map (10) and its inverse are isometries.

The proof is immediate. Fix θ, and project locally ∂Ω on θ⊥, in the
direction of θ, near some point x so that (x , θ) ∈ ∂−SΩ. The Jacobian of
that projection is 1/|ν(x) · θ|.
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The transposes X ′ and R′; extending X , R to E′(Rn) The transpose X ′

We can compute now the transpose X ′ w.r.t. either parameterization:

X ′ψ(x) =

∫
Sn−1

ψ(x − (x · θ)θ, θ) dθ. (11)

We can interpret this formula in the following way. The function ψ is a
function on the manifold of lines. Given x ∈ Rn, for any θ ∈ Sn−1 we
evaluate ψ on the line through x in the direction of θ, and then integrate
over θ. In other words, X ′ψ(x) is an integral of ψ = ψ(`) over all lines `
through x

X ′ψ(x) =

∫
`3x

ψ(`) d`x ,

where d`x is the unique measure on {` 3 x} invariant under orthogonal
transformations, with total measure |Sn−1|, i.e., d`x = dθ in the
parameterization that we use. Compare this to (1) which can also be
written in the form

Xf (`) =

∫
x∈`

f (x) ds (12)

The transform X ′ is often called a backprojection — it takes a function
defined on lines to a function defined on the “x-space” Rn.
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The transposes X ′ and R′; extending X , R to E′(Rn) The transpose X ′

X can be extended to compactly supported distributions

Note that X ′ does not preserve the compactness of the support, i.e., for
ψ ∈ C∞

0 , X ′ψ may not be of compact support!

By duality, we define X on the space E ′(Rn) of compactly supported
distributions but we cannot do this on D′(Rn), as it could be expected
(even for smooth functions we need a certain decay at infinity).
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The transposes X ′ and R′; extending X , R to E′(Rn) The transpose R′

The transpose of R

There is a natural measure on R× Sn−1, where Rf lives. The transpose R ′

w..r.t. it is well defined. A simple calculation yields, for
ψ ∈ C∞

0 (R× Sn−1),

R ′ψ(x) =

∫
Sn−1

ψ(x · ω, ω) dω.

Similarly to what we had before, ψ is a function on the set of oriented
hyperplanes (and on the set of hyperplanes when ψ is even). Then we can
think of R′ψ as an integral of ψ = ψ(π) over the set of all hyperplanes π
through x . Similarly to X ′, R ′ is also called sometimes a backprojection.

We extend R to compactly supported distributions as before.
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The Fourier Slice Theorem

The Fourier Slice Theorem

Theorem 1 (The Fourier Slice Theorem)

For any f ∈ L1(Rn),

f̂ (ζ) =

∫
θ⊥

e−iz·ζXf (z , θ) dSz , ∀θ ⊥ ζ, θ ∈ Sn−1.

Denote by Fθ⊥ the Fourier transform in the z variable on θ⊥. With this
notation, the Fourier Slice Theorem reads: for any θ, f̂ |θ⊥ = Fθ⊥Xf .

Proof.

The integral on the right equals
∫
θ⊥

∫
R e−iz·ζ f (z + sθ) ds dSz . Set

x = z + sθ and note that x · ζ = z · ζ when ζ ⊥ θ. Then we see that the
integral above equals f̂ (ζ).
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The Fourier Slice Theorem

Theorem 1 immediately implies injectivity of X on L1(Rn) (also, on
E ′(Rn)). T

Also, it says that knowing Xf for a fixed θ recovers f̂ for ξ ⊥ θ. This has a
micolocal equivalent, as we will see later.

In fact, for compactly supported functions, the theorem implies a bit more.
The decisive argument in the proof is the analyticity of the Fourier
transform of compactly supported functions.

Corollary 2

Let f ∈ L1(Rn) have compact support and let Xf (·, θ) = 0 for θ in an
infinite set of (distinct) unit vectors, then f = 0.

Finitely many “roentgenograms” however are not enough to recover f .
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Intertwining properties

Intertwining properties

Intertwining properties for R

R∆ = d2
pR, R ′d2

p = ∆R ′,

on C∞
0 (Rn) and on C∞

0 (R× Sn−1), respectively.

Proof: straightforward, either by direct computations or by using the
Fourier Slice Theorem.

Let ∆z denote the Laplacian in the z variable on each θ⊥. Set
|Dz | = (−∆z)

1/2. Similarly,

Intertwining properties for X

X∆ = ∆zX , X ′∆z = ∆X ′,

on C∞
0 (Rn), and C∞

0 (Σ), respectively.
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Inversion Formulas The Schwartz kernel of X ′X and inversion formulas for X

The Kernel of X ′X

Proposition 2

X ′Xf (x) = 2

∫
Rn

f (y)

|x − y |n−1
dy , ∀f ∈ S(Rn)

This is a convolution and therefore a Fourier multiplier! We need the
Fourier transform of |x |−(n−1) to find it, and the answer is c |ξ|−1.
Therefore, X ′X = c |D|−1, and to invert it, we need to apply c ′|D|.

Theorem 3

For any f ∈ S(Rn),

f = cn|D|X ′Xf , cn =
(
2π|Sn−2|

)−1
.

For n = 2, |Sn−2| = 2, so c2 = (4π)−1.
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Inversion Formulas The Schwartz kernel of X ′X and inversion formulas for X

The Fourier multiplier |D| is a non-local operator. Therefore, if we want to
recover f only in a neighborhood of some x0 by means of formula above, it
is not enough to know Xf for all lines ` that intersect that neighborhood.

In particular, if f is compactly supported, we need to compute X ′Xf for all
x ∈ Rn to be able to apply |D|. Numerically, one would just truncate the
computational region but X ′Xf does not decay very fast (only like
|x |−n+1), and the error will be not so small. But such a truncated recovery
would still be a parametrix (more — later).

This calls for another inversion formula.

Theorem 4 (A filtered back-projection)

For any f ∈ S(Rn),

f = cnX
′|Dz |Xf , cn =

(
2π|Sn−2|

)−1
.
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Inversion Formulas The Schwartz kernel of X ′X and inversion formulas for X

The non-local operator |Dz | now appears between X ′ and X . Is that a
progress (for computational purposes)? Yes — if f is compactly
supported, we need to evaluate the result in a compact set, i.e., we need
to know χX ′|Dz |Xf for some χ of compact support. This means that we
need to evaluate |Dz |Xf on a compact set as well. But Xf is compactly
supported. So we need to apply |Dz | from a comact set to a compact set.

In applications, in 2D, most of the time R is preferred to X (they are
equivalent, of course).
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Inversion Formulas The Schwartz kernel of R′R and inversion formulas for R

The Schwartz kernel of R ′R

Proposition 3

For any f ∈ S(Rn),

R ′Rf (x) = |Sn−2|
∫

Rn

f (y)

|x − y |
dy .

We have a convolution again, with the Fourier transform of |x |−1. The
latter is c |ξ|−n+1. Therefore,

Theorem 5

For any f ∈ S(Rn),

f = Cn|D|n−1R ′Rf , Cn =
1

2
(2π)1−n.

|D|n−1 is local for n odd!
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Inversion Formulas The Schwartz kernel of R′R and inversion formulas for R

Let H be the Hilbert transform

Hg(p) =
1

π
pv

∫
R

g(s)

p − s
ds, (13)

where “pv
∫

” stands for an integral in a principal value sense.

Theorem 6 (filtered backprojection)

For any f ∈ S(Rn),

f =

{
C ′

nR
′dn−1

p Rf , n odd,
C ′

nR
′Hdn−1

p Rf , n even,
(14)

where dp stands for the derivative of Rf (p, ω) w.r.t. p, H is the Hilbert
transform w.r.t. p and

C ′
n =

{
(−1)(n−1)/2Cn, n odd,

(−1)(n−2)/2Cn, n even,

with Cn = 1
2(2π)1−n (as in Theorem 5).
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Inversion Formulas The Schwartz kernel of R′R and inversion formulas for R

The appearance of the Hilbert transform H for n even, and the different
constants for n odd/even may look strange at first glance, especially when
compared to the inversion formula in Theorem 5, that looks the same for
all n ≥ 2. For n even, note first that H = −i sgn(Dp), Dp = −idp,
therefore,

(−1)(n−2)/2Hdn−1
p = |Dp|n−1, n even.

On the other hand,

(−1)(n−1)/2dn−1
p = |Dp|n−1, n odd.

Therefore, in both cases, (14) can be written as

f = CnR
′|Dp|n−1Rf (15)
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Stability Estimates Stability estimates in terms of X and R

Stability estimates

Set

‖g‖H̄s(Σ) =
∥∥(1−∆z)

s/2g
∥∥

L2(Σ)
,

‖g‖H̄s(R×Sn−1) =
∥∥(1− d2

p)
s/2g

∥∥
L2(R×Sn−1)

,
(16)

Theorem 7 (Stability estimates)

For any bounded domain Ω ⊂ Rn with smooth boundary, and any s, we
have

‖f ‖Hs(Rn)/C ≤ ‖Xf ‖H̄s+1/2(Σ) ≤ C‖f ‖Hs(Rn), (17)

‖f ‖Hs(Rn)/C ≤ ‖Rf ‖H̄s+(n−1)/2(R×Sn−1) ≤ C‖f ‖Hs(Rn) (18)

for all f ∈ Hs(Rn) supported in Ω̄.

The appearance of the same norm of f on the left and on the right makes
those estimates sharp.
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Stability Estimates Stability estimates in terms of X and R

Theorem 7 shows that we “gain 1/2 derivative” with the operator X , and
(n − 1)/2 derivatives with the operator R. Each one of those two
operators involves an integration that has a smoothing effect. The gain is
a half of the dimension of the linear submanifolds over which we integrate.

The proof is pretty straightforward, after all, we have explicit inversion
formulas.
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Stability Estimates Stability estimates in terms of X ′X and R′R

Stability estimates in terms of X ′X and R ′R

Why X ′X (the normal operator)? It is the first step of the inversion; it
lives in the same space; X ′X is injective if and only if X is.

Theorem 8

Let Ω ⊂ Rn be open and bounded, and let Ω1 ⊃ Ω̄ be another such set.
Then for any integer s = 0, 1, . . . , there is a constant C > 0 so that for
any f ∈ Hs(Rn) supported in Ω̄, we have

‖f ‖Hs(Rn)/C ≤ ‖X ′Xf ‖Hs+1(Ω1) ≤ C‖f ‖Hs(Rn), (19)

‖f ‖Hs(Rn)/C ≤ ‖R ′Rf ‖Hs+n−1(Ω1) ≤ C‖f ‖Hs(Rn) (20)

The proof (of the inequalities on the left) seems to be straightforward as
well — we have a formula for f in terms of X ′Xf and R ′Rf . Just apply
c |D| to X ′Xf , and we get f . Problem: we need X ′Xf on the whole Rn for
that! The theorem requires to know this on Ω1 only. ???
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Stability Estimates Stability estimates in terms of X ′X and R′R

To prove the first estimate, use the inversion formula f = cn|D|X ′Xf and
write

‖f ‖2
Hs(Rn) ≤ cn‖X ′Xf ‖2

Hs+1(Rn) = cn‖X ′Xf ‖2
Hs+1(Ω1)

+ cn‖X ′Xf ‖2
Hs+1(Rn\Ω1)

.

We want to get rid of the last term. The following lemma solves the
problem:

Lemma 9

Let X , Y , Z be Banach spaces, let A : X → Y be a bounded linear
operator, and K : X → Z be a compact linear operator. Let

‖f ‖X ≤ C (‖Af ‖Y + ‖Kf ‖Z ) , ∀f ∈ X . (21)

Assume that A is injective. Then there exists C ′ > 0 so that

‖f ‖X ≤ C ′‖Af ‖Y , ∀f ∈ X .

We do know that X ′X : Hs
0(Ω) → Hs+1(Ω1) is injective. So we can apply

the lemma and get rid of that term (no control over C though!)
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Support Theorems

Support theorems

Theorem 10 (Support theorem)

Let f ∈ C (Rn) be such that

(i) |x |k f (x) is bounded for any integer k,

(ii) there exists a constant A > 0 so that Rf (p, ω) = 0 for |p| > A.

Then f (x) = 0 for |x | > A.

Corollary 11

Let K ⊂ Rn be a convex compact set. Let f ∈ C (Rn) satisfy the
assumption (i) above. Assume also that Rf (π) = 0 for any hyperplane π
not intersecting K. Then f = 0 outside K.

Support theorems for X can be derived directly from those for R by
working in various 2D planes, where R and X are the same transforms. On
the other hand, one can formulate stronger results for X since the lines in
Rn are “thinner” and can fit into smaller “holes.”
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Support Theorems

The proof (due to Helgason) is not short — first we prove it for radially
symmetric functions, and then we manage to reduce the general case to
the radial one. Later we will present a microlocal explanation which can be
generalized to more general curves. In some sense, there is kind of analytic
continuation from infinity, where f is assumed to be small, to the exterior
of the ball.

The rapid decay condition is essential. For any N > 0, there is a function
with |f | ≤ C (1 + |x |)−N of infinite support with Radon transform
compactly supported.

An important part of the theory which we will skip is Range Conditions.
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