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Local and Lambda tomography

Local and Lambda tomography

Let us say that we are interested in a certain “region of interest” only (the
heart for example). Regardless of what formula we use, for recovery of f
we need to make global computations. We would like to measure Xf for all
lines through the region only. This problem has no unique solution (there
are counterexamples). In medical imaging, we would like to do it anyway.

We can use for reconstruction

f ∼ X ′Xf

(instead of cn|D|X ′Xf ). Up to a constant, this is |D|−1f — a smoothened
version of f . It has the same singularities (same WF(f )) but of lower
order. Another option is to use

f ∼ −∆X ′Xf .

Up to a constant, this is |D|f . Again, the same singularities but stronger
this time. Note that both formulas are local!
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Local and Lambda tomography

Neither formula is an approximation, and it distorts the constant (smooth)
parts of f . The Lambda tomography Faridani et al. tries to combine both:

f ∼ −∆X ′Xf + µX ′Xf

= |D|f + µ|D|−1f .

Here µ > 0 is a constant depending somehow on the domain where supp f
is, and is chosen experimentally.

In any case, the right-hand side has the same wave front set as f .
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Definition and motivation Definition

Definition

The weighted X-ray transform:

Xw f (x , θ) =

∫
R

w(x + tθ, θ)f (x + tθ) dt, (x , θ) ∈ Rn × Sn−1.

Here w = w(x , θ) is a smooth weight depending in general not only on the
point x but also on the direction θ. We can parametrize Xw by (z , θ) ∈ Σ
as before. In general, Xw f is not an even function of θ any more.

What is the motivation?

The usual X-ray transform with incomplete data can be reduced to a
weighted one, with a weight equal to zero where we have no data.

There are natural examples, like the attenuated X-ray transform.
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Definition and motivation The attenuated X-ray transform

The attenuated X-ray transform

Arises in SPECT: We measure a source outside patient’s body but the
signal attenuates before being measured.

The model is the transport equation:

(θ · ∇+ a(x))u = f (x), u|Γ− = 0.

Here, Γ− = {(x , θ) ∈ ∂Ω× Sn−1; θ points towards the interior}. What we
measure is u|Γ+ (for x ∈ ∂Ω, θ outgoing). Then u|Γ+ is given by the
attenuated X-ray transform with weight

w(x , θ) = exp

(
−

∫ ∞

0
a(x + tθ) dt

)
.

The derivation is simple: the transport equation is a 1st order linear ODE
along the lines parallel to θ, find the integrating factor, etc.

The attenuated X-ray transform is injective (on E ′), and there are explicit
inversion formulas (Bukhgeim, Novikov).
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The transpose and the normal operator The transpose X ′
w

The transpose X ′
w

We use either of the two parameterizations which we used for X .

Proposition 1

X ′
wψ(x) =

∫
Sn−1

w(x , θ)ψ(x − (x · θ)θ, θ) dθ, ∀ψ ∈ C∞(Σ).

The proof is so simple that it fits on one slide (but not so simple to fit in
the rest of this one!)
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The transpose and the normal operator The transpose X ′
w

Proof.

Let φ ∈ C∞
0 (Rn), ψ ∈ C∞(Σ). We have∫

Σ
(Xwφ)ψ dσ =

∫
Σ

∫
R

w(z + sθ, θ)φ(z + sθ)ψ(z , θ) ds dSz dθ. (1)

Set x = z + sθ, where z ∈ θ⊥. For a fixed θ ∈ Sn−1, (z , s) 7→ x is an
isomorphism with a Jacobian equal to 1. The inverse is given by

z = x − (x · θ)θ, s = x · θ.

We therefore have∫
Σ
(Xwφ)ψ dσ =

∫
Sn−1

∫
Rn

w(x , θ)φ(x)ψ(x − (x · θ)θ, θ) dx dθ.

This completes the proof.
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The transpose and the normal operator The normal operator

Proposition 2

For any two L∞ weights a, b,

X ′
bXaf (x) =

∫ W
(
x , y , x−y

|x−y |
)

|x − y |n−1
f (y) dy ,

where
W (x , y , θ) = b(x , θ)a(y , θ) + b(x ,−θ)a(y ,−θ).

Compare this to the w = 1 case; then W = 2.

The proof is now a two slide proof.
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The transpose and the normal operator The normal operator

Proof

By the proposition,

X ′
bXaf (x) =

∫
Sn−1

b(x , θ)

∫
a(x − (x · θ)θ + tθ, θ)f (x − (x · θ)θ + tθ) dt dθ

=

∫
Sn−1

b(x , θ)

∫
a(x + tθ, θ)f (x + tθ) dt dθ.

Split the t-integral in two parts: for t > 0 and for t < 0, and replace t by
−t in the second one to get

X ′
bXaf (x) =

∫
Sn−1

b(x , θ)

∫
a(x + tθ, θ)f (x + tθ) dt dθ

=

∫
Sn−1

b(x , θ)

∫ ∞

0
a(x + tθ, θ)f (x + tθ) dt dθ

+

∫
Sn−1

b(x , θ)

∫ ∞

0
a(x − tθ, θ)f (x − tθ) dt dθ.
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The transpose and the normal operator The normal operator

Proof, continued

Replace −θ by θ in the second integral to get

X ′
bXaf (x) =

∫
Sn−1

∫ ∞

0

[
b(x , θ)a(x + tθ, θ)

+ b(x ,−θ)a(x + tθ,−θ)
]
f (x + tθ) dt dθ.

Pass to polar coordinates y = x + tθ, centered at x to finish the proof.
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The transpose and the normal operator The normal operator

making it a ΨDO

To write X ′
bXa as a ΨDO, recall that if the Schwartz kernel of a linear

operator is given by K (x , y , x − y), then it is a formal ΨDO with an
amplitude given by the Fourier transform of K w.r.t. the third variable.
Therefore, XaXb is a formal ΨDO with amplitude∫

Rn

e−iz·ξ W (x , y , z/|z |)
|z |n−1

dz =

∫
R+×Sn−1

e−irθ·ξW (x , y , θ) dr dθ

= π

∫
Sn−1

W (x , y , θ)δ(θ · ξ) dθ.

We used here the fact that W is an even function of θ and that the
inverse Fourier transform of 1 is δ.
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The transpose and the normal operator The normal operator

If n = 2, we get∫
Rn

e iz·ξ W (x , y , z/|z |)
|z |n−1

dz =
π

|ξ|

(
W (x , y , ξ⊥/|ξ|) + W (x , y ,−ξ⊥/|ξ|)

)
=

2π

|ξ|
W (x , y , ξ⊥/|ξ|),

(2)

where ξ⊥ := (−ξ2, ξ1). Since this is a homogeneous function of ξ, with an
integrable singularity that can be cut-off resulting in a smoothing operator,
this completes the proof.

Theorem 1

Let a, b be smooth. Then X ′
bXa is a classical ΨDO of order −1 with

amplitude given by (2) and a principal symbol

σp(X
′
bXa) = π

∫
Sn−1

W (x , y , θ)δ(θ · ξ) dθ.
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The transpose and the normal operator The normal operator

If n = 2, the integral is understood in the sense (2), i.e.,

2π

|ξ|
W (x , y , ξ⊥/|ξ|) =

2π

|ξ|
b(x , ξ⊥/|ξ|)a(y , ξ⊥/|ξ|)

+
2π

|ξ|
b(x ,−ξ⊥/|ξ|)a(y ,−ξ⊥/|ξ|)

Note also that we can write

σp(X
′
bXa) = 2π

∫
Sn−1

b(x , θ)a(x , θ)δ(θ · ξ) dθ.

Our goal now is to recover the wave front set WF(f ) of f given Xw f . A
good choice of “back-projection” is X ∗

w (which equals X ′
w̄ ). If X ∗

wXw is
elliptic, we can use a parametrix for that.

Plamen Stefanov (Purdue University ) Microlocal Methods in X-ray Tomography 13 / 33



The transpose and the normal operator The normal operator

If n = 2, the integral is understood in the sense (2), i.e.,

2π

|ξ|
W (x , y , ξ⊥/|ξ|) =

2π

|ξ|
b(x , ξ⊥/|ξ|)a(y , ξ⊥/|ξ|)

+
2π

|ξ|
b(x ,−ξ⊥/|ξ|)a(y ,−ξ⊥/|ξ|)

Note also that we can write

σp(X
′
bXa) = 2π

∫
Sn−1

b(x , θ)a(x , θ)δ(θ · ξ) dθ.

Our goal now is to recover the wave front set WF(f ) of f given Xw f . A
good choice of “back-projection” is X ∗

w (which equals X ′
w̄ ). If X ∗

wXw is
elliptic, we can use a parametrix for that.

Plamen Stefanov (Purdue University ) Microlocal Methods in X-ray Tomography 13 / 33



The transpose and the normal operator The normal operator

If n = 2, the integral is understood in the sense (2), i.e.,

2π

|ξ|
W (x , y , ξ⊥/|ξ|) =

2π

|ξ|
b(x , ξ⊥/|ξ|)a(y , ξ⊥/|ξ|)

+
2π

|ξ|
b(x ,−ξ⊥/|ξ|)a(y ,−ξ⊥/|ξ|)

Note also that we can write

σp(X
′
bXa) = 2π

∫
Sn−1

b(x , θ)a(x , θ)δ(θ · ξ) dθ.

Our goal now is to recover the wave front set WF(f ) of f given Xw f . A
good choice of “back-projection” is X ∗

w (which equals X ′
w̄ ). If X ∗

wXw is
elliptic, we can use a parametrix for that.

Plamen Stefanov (Purdue University ) Microlocal Methods in X-ray Tomography 13 / 33



The transpose and the normal operator The normal operator

Theorem 1 implies a necessary and sufficient condition for ellipticity: X ′
bXa

is an elliptic ΨDO of order −1 at (x , ξ) if and only if the average of
(ab)(x , θ) over the (n − 2)-dimensional sphere |θ| = 1, θ ⊥ ξ is not zero.
If n = 2, there are only two such θ′s, namely ±ξ⊥/|ξ|.

We return the the analysis of the operator X ∗
wXw . Then a = b̄ = w , so

ab = |w |2.

Corollary 2

Let w ∈ C∞(Rn × Sn−1). Then X ∗
wXw is an elliptic ΨDO of order −1 at

(x , ξ) if and only if there exists a unit θ ⊥ ξ so that w(x , θ) 6= 0.
In particular, let Ω ⊂ Rn be open and bounded. Then X ∗

wXw is an elliptic
ΨDO of order −1 in a neighborhood of Ω̄ if and only if

∀(x , ξ) ∈ Ω̄× Rn \ 0,∃θ ⊥ ξ so that w(x , θ) 6= 0. (3)
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Limited angle X-ray transform Example

Limited angle X-ray transform

Let w = 1. Assume that we know Xf (z , θ) for θ restricted to an open set
U ⊂ S1 given by 0 ≤ α < arg θ < β ≤ 2π, and all corresponding z ∈ θ⊥,
knowing a priori that f is continuous and of compact support.

Is that enough to recover f ? By the Fourier Slice Theorem, we can
uniquely determine f̂ (ξ) for all ξ so that ξ · θ = 0 for some θ as above. In
particular, of β − α > π (we have more than “half” of the angles), we can
recover f̂ (ξ) for all ξ. Of course, then we have all the lines as well, and we
have stability.
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Limited angle X-ray transform Example

What if we know Xf (z , θ) for α < arg θ < β with β − α < π? Then we
can still recover easily f̂ (ξ) for all ξ ∈ U⊥ but the latter does not cover the
whole Rn.

If α = 0, β = π/2, for example, then we only get f̂ (ξ) for arg ξ in
[π/2, π] ∪ [3π/2, 2π]. On the other hand, f̂ (ξ) is real analytic, and then by
analytic continuation, we can recover f̂ (ξ) even for ξ in the missing sector.
Therefore, the so restricted Xf recovers f uniquely.

We have an even stronger uniqueness statement (the infinite many θ’s
theorem), and we could have used the support theorem to get the same
conclusion.

The use of analytic continuation is a strong suggestion (but not a proof!)
of possible instability. As we will see below, in the second case, β − α < π,
stability is lost, indeed.
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Limited angle X-ray transform Back to Xw , limited angle

Theorem 3

Let Ω and w be as in Corollary 2, and Ω1 c Ω. Assume that w satisfies
the ellipticity condition (3). Then
(a) Ker Xw ∩ L2(Ω) is a finite dimensional subspace of C∞

0 (Rn).
(b) For any s ≥ 0, there exists constants C > 0 (independent of s) and Cs

so that

‖f ‖L2(Ω) ≤ C‖X ∗
wXw f ‖H1(Ω1) + Cs‖f ‖H−s(Rn), ∀f ∈ L2(Ω).

(c) If Xw is injective on L2(Ω), then the estimate above holds without the
last term (and possibly a different C), i.e.,

‖f ‖L2(Ω) ≤ C‖X ∗
wXw f ‖H1(Ω1), ∀f ∈ L2(Ω).

(d) If the ellipticity condition (3) fails in an open set, then the estimate

‖f ‖Hs1 (Ω) ≤ C‖X ∗
wXw f ‖Hs2 (Ω1), ∀f ∈ L2(Ω).

does not hold regardless of the choice of s1 and s2.
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Limited angle X-ray transform Back to Xw , limited angle

What does this theorem tell us?

Assume w 6= 0 for simplicity and assume that we have an open set of lines.
Choose a weight w constant along each line, supported in that set, and
positive in “a smaller one”. Then apply the theorem to get

In 2D, we need a bit more of “half’ of the lines for stability. Notice
that for general weights, lines are directed.

In 2D, if you are missing an open set of (undirected) lines, there is no
stability, and there is nothing you can do about it.

In higher dimensions (n ≥ 3) a much smaller set of lines is enough for
stability.
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Limited angle X-ray transform Visible Singularities

What do we do if we have limited angle data, and there is no stability?
The common approach is to minimize a certain functional with a
regularizing term. This produces a picture with some blurred “features”
(singularities). This brings us to the notion of the “visible singularities”.

Visible Singularities

Let U be an open set of lines on which Xf is known. The visible
singularities (x , ξ) are the ones (co)-normal to U.

In the more general case (a non-trivial weight), we should in addition
require that w(x , θ) 6= 0 for at least one θ ⊥ ξ.

The analysis so far shows that

What we can recover

Given Xw f , we can recover “in a stable way” the visible singularities only.
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Limited angle X-ray transform Visible Singularities

What does “in a stable way” mean? It means we can do it by a parametrix
construction (not ba analytic continuation, for example). Remember, if
the ΨDO P is elliptic, we can construct a right and a left inverse

QP = I + R1, PQ = I + R2, R1,2 smoothing.

There is a notion of microlocal ellipticity. Fix a conic set V ⊂ T ∗Rn

((x , ξ) ∈ V ⇒ (x , sξ) ∈ V , ∀s > 0). Let the principal symbol pm of P
satisfy

|pm(x , ξ)| ≥ C (1 + |ξ|)m, (x , ξ) ∈ V .

Then we say that P is elliptic on V . Then one can construct a ΨDO Q so
that

QP = I + R1, PQ = I + R2, R1,2 is smoothing in V .

In other words, WF(R1,2f ) ∩ V = ∅ for any f .

Back to Xw f known for lines in U: Multiply w by another smooth weight
χ cutting in U. Then X ∗

χwXχw is elliptic on U⊥ (in a slightly smaller cone,

actually, depending on χ). Then we can construct a parametrix on U⊥.
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Limited angle X-ray transform Sketch of the proof

Sketch of the proof of the theorem

(a): X ∗
wXw is elliptic and has a parametrix, then QX ∗

wXw = I + K , where
K is smoothing and hence compact. If Xw f = 0,

(I + K )f = 0.

This is a Fredholm equation, and has a finitely dimensional kernel. It is
smooth, because f = −Kf .

(b) The estimate follows from f = QX ∗
wXw f − Kf .

(c) follows from the trick in Lecture 1.

(d) requires a bit more work. If that estimate were true, X ∗
wXw f ∈ Hs2

would imply f ∈ Hs1 . But we can take any distribution f with WF(f ) in
the (open) invisible set, of any negative order, and then X ∗

wXw f ∈ C∞

because the whole symbol X ∗
wXw vanishes in the invisible set.
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Further consequences

We had to assume above that Xw was injective. When is that true?

Boman’s example

There is a smooth positive weight w ∈ C∞(B̄(0, 1)× S1) so that Xw is
not injective on B̄(0, 1).

An injectivity example is the attenuated X-ray transform.

Actually, this is a generic property of non-vanishing weights, as we will see
below.

To get there, we will first show that perturbing w of an injective Xw

preserves injectivity.

Starting point:

‖f ‖L2(Ω) ≤ C‖X ∗
wXw f ‖H1(Ω1), ∀f ∈ L2(Ω).

If C k 3 w 7→ X ∗
wXw ∈ L(L2(Ω);H1(Ω1)) is continuous, for some k, we can

just perturb that estimate. It is essential here that the estimate is sharp,
and a perturbation of the kind ε‖f ‖L2(Ω) can be absorbed by the l.h.s.
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Further consequences

There are two ways (at least) to show that X ∗
wXw depends continuously

on w . The first one follows more or less directly from the calculus. X ∗
wXw

is a ΨDO with an amplitude a(x , y , ξ) expressed directly in terms of w .
One can show that X ∗

wXw has a norm bounded by a constant depending
on a finitely many derivatives of w .

Downside: requires too many derivatives, k = 2n + 1.

Another approach: start with

X ∗
wXw f (x) =

∫ W
(
x , y , x−y

|x−y |
)

|x − y |n−1
f (y) dy ,

where
W (x , y , θ) = w̄(x , θ)w(y , θ) + w̄(x ,−θ)w(y ,−θ).

Choose w1 and w2 and estimate (X ∗
w1

Xw1 − X ∗
w2

Xw2)f directly.
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Further consequences

The latter can be done with tools from the Calderón-Zygmund theory.

Proposition 3

Let A be the operator

[Af ](x) =

∫ α
(
x , y , |x − y |, x−y

|x−y |

)
|x − y |n−1

f (y) dy

with α(x , y , r , θ) compactly supported in x , y. Then
(a) If α ∈ C 2, then A : L2 → H1 is continuous with a norm not exceeding
C‖α‖C2 .
(b) Let α(x , y , r , θ) = α′(x , y , r , θ)φ(θ). Then
‖A‖L2→H1 ≤ C‖α′‖C2‖φ‖H1(Sn−1).

Therefore, w ∈ C 2 only is enough for the perturbation trick.
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Further consequences

This implies the following:

Theorem 4

If w0 satisfies the ellipticity condition, and Xw0 is injective on L2(Ω), and
therefore,

‖f ‖L2(Ω) ≤ C‖X ∗
w0

Xw0f ‖H1(Ω1), ∀f ∈ L2(Ω),

then Xw is injective on L2(Ω) for ‖w − w0‖C2 � 1 as well, and the
constant in the stability estimate can be chosen locally uniform in w.

This shows that the set of weights satisfying the ellipticity condition for
which Xw is injective, is open in C 2. For example, if w(x) 6= 0, ∀x , the
ellipticity condition is automatically satisfied.
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Further consequences

Why is this set dense? This is much harder to prove and requires tools
from the Analytic Microlocal Analysis. The bottom line is:

Generic injectivity and stability of Xw

Assume the ellipticity condition (or just assume w(x) 6= 0, ∀x). Then Xw

is injective and stable on Ω for an open dense set of w in C 2 including the
real analytic ones.

Plamen Stefanov (Purdue University ) Microlocal Methods in X-ray Tomography 26 / 33



Analytic ΨDOs

Analytic ΨDOs

The theory of analytic ΨDOs is much more delicate than the classical one.
It can be used, for example, to prove the elliptic analytic regularity
property of (elliptic) differential operators: Pf analytic implies f analytic.

Analytic diff. operators in Ω are the ones with analytic coefficients.
Analytic ΨDOs are the ones with (pseudo) analytic amplitudes. Then the
symbol estimates look like this:∣∣Dα

ξ a(x , y , ξ)
∣∣ ≤ C |α|+1α!|ξ|m−|α|, |ξ| ≥ R0 sup(|α|, 1)

for (x , y) in a complex neighborhood of Ω̄× Ω̄, ξ ∈ Rn.

“Negligible” operators are the ones that send distributions to analytic
functions.
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Analytic ΨDOs

An elliptic analytic ΨDO has a parametrix that inverts it up to an analytic
regularizing operator. Now, suppose that P : L2(Ω) → L2(Ω1) is an elliptic
ΨDO. Then there is a parametrix Q so that QN = I + K when acting of
functions of compact support in Ω, and K is analytic regularizing in Ω. If
Pf = 0, then f = −Kf , where, as always, we extend f as zero outside Ω.
Therefore, f is real analytic in Ω1, and vanishes in Ω1 \ Ω. Therefore,
f = 0 by analytic continuation. So, N has a trivial kernel.

The same idea is applied to X ∗
wXw f , supp f ⊂ Ω̄ under the ellipticity

condition. Then X ∗
wXw is elliptic near Ω̄, therefore, f is analytic there.

But f = 0 away from Ω̄, hence f = 0. This argument goes back to Boman
and Quinto.
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Analytic ΨDOs

Analytic ΨDOs and the support theorem

Analytic ΨDO calculus gives an alternative proof of the support theorem.
Assume that f is compactly supported for simplicity and all integrals over
all lines outside B(0, 1) vanish. We cannot apply directly the arguments
above because the ellipticity condition is not satisfied. On the other hand,
we can prove microlocal analyticity at the visible singularities. This is
related to the notion of the analytic wave front set.

So we are in a situation where, outside B(0, 1), we cannot show that f is
analytic but we can show that it is microlocally analytic at (co)directions
(x , ξ) so that the line through x normal to ξ does not hit B(0, 1). We
need an analytic continuation theorem based on microlocal (only)
analyticity. Such theorem is the Sato-Kawai-Kashiwara theorem. It says
that if S is a hypersurface and f = 0 on one side of it, and f is analytic at
(x , ξ) with x ∈ S , ξ ⊥ S , then f = 0 near x .

By the way, the support theorem is “unstable”. We know that because
there is an open set of invisible singularities.
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The geodesic X-ray transform

The geodesic X-ray transform

One generalization: The geodesic X-ray transform. Let g be a Riemannian
metric on Ω̄. Set

Xf (γ) =

∫
f (γ(s))ds,

where γ is any unit speed maximal geodesic. Can we invert X?

Yes, and this has been done by Mukhometov and other Russian
mathematicians in he 80s. They used the energy method which gives
un-sharp estimates as well. We are interested in partial data problems,
weighted transforms and transforms of tensor fields. For some of them,
energy estimates work well but there are results that we can get with
microlocal methods only.
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The geodesic X-ray transform

Compute fist the Schwartz kernel of X ′X . To be a ΨDO, we need all
singularities to be on the diagonal. It is fairly easy to show that

X ′ψ(x) =

∫
γ3x

ψ(γ)

w.r.t. a “natural” measure. In the Euclidean case, we used polar
coordinates centered at x . Can we do this now?

Only if there are no conjugate points! The essential condition is that the
exponential map expx ξ is a diffeomorphism on Ω. This is an analog of the
Bolker condition. Then we have an analog of the results above. We can
apply the analytic ΨDO calculus, if the metric g and the weight w are
analytic.
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General Family of curves

The X-ray transform over a general family of curves

Assume that we have a general family of “geodesic-like” curves: for any
point x and direction θ, there is a unique curve of that family through x in
the direction θ. One way to define it is to define a generator (a vector
field) in the phase space. Then we set

Xw f (γ) =

∫
w(γ, γ̇)f (γ(s))ds.

An essential requirement for the whole machinery to works is lack of
conjugate points. This means that “polar coordinates” centered at any
point are global coordinates in Ω̄. Then we have similar results.
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General Family of curves

The X-ray transform over a general family of curves:
results

The visible singularities are (x , ξ) with the property that ∃θ ⊥ ξ so
that w(x , θ) 6= 0. Assume next that all singularities are visible (the
ellipticity condition).

The kernel is smooth and finitely dimensional.

If Xw is injective, there is stability.

If w and the family of the curves are analytic, Xw is injective, and
therefore stable.

A small perturbation of w and of the family preserves that property.

Xw is injective, and therefore stable for a dense open set of weights
and families of curves.

If w and the family of the curves are analytic, there are support
theorems.

A result of Bela Frigyik, S, and Gunther Uhlmann; also Venky Krishnan.
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