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Linearizing non-linear inverse problems and an application to inverse
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Thermo- and photo- acoustic Tomography

In thermo/photo-acoustic tomography (PAT/TAT), a short
electro-magnetic pulse/laser beam is sent through a patient’s body. The
tissue reacts and emits an ultrasound wave form any point, that is
measured away from the body. Then one tries to reconstruct the internal
structure of a patient’s body form those measurements.

This imaging method is a “hybrid/multiwave” one. We send one wave
(electromagnetic or laser) and measure another one, acoustic. Other types
of waves might be used to create the ultrasound response, like elastic one,
variable magnetic field. etc.
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Why? We could just use MRI or CT scan, they have wonderful resolution,
what else could we want? CT scans have great resolution but cancer cells
have low contrast w.r.t. X-rays. They do not look so much different than
anything else. Ultrasound waves have very good resolution, too but the
same problem with contrast.

PET/TAT sends waves that heat up the cancer cells and they absorb
photo/EM waves much more that the rest (big contrast). Then those cells
emit ultra-sound waves with good resolution. So we combine the contrast
of the waves that we send with the resolution of the waves that we get
back.

We are interested now in the recovery of the ultrasound source. The next
phase, which we will not discuss is knowing the source, to recover the
tissue properties. This is an inverse problem with internal measurements
taking into account the interaction between the two waves.
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PET: Real life image

Taken from the UCL webpage: Volume rendered in vivo photoacoustic
image of the vascular anatomy in the palm of the hand. Image volume:
20mm x 20mm x 6mm.
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Wikipedia: First 3D thermoacoustic image of breast cancer. From left to
right: images depict axial, coronal and sagittal views of the cancer
(arrows).
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The Mathematical Model

Let c(x) > 0 be the acoustic speed. Let u solve the problem
(∂2

t − c2∆)u = 0 in (0,T )× Rn,
u|t=0 = f ,

∂tu|t=0 = 0,
(1)

where T > 0 is fixed.
Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded
domain. The measurements are modeled by the operator

Λf := u|[0,T ]×∂Ω.

The problem is to reconstruct the unknown f .

Note that the wave equation is solved in the whole space, and ∂Ω is
“invisible” to the solution.
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How good is that model?

Well, it produces nice pictures in real world applications

But what you see often are only the good pictures . . .

The variable nature of the speed is a significant enough factor to be
included

Attenuation is neglected

In brain imaging, the speed is discontinuous, jumps by a factor of two

We may have measurements of a part of the boundary only (does not
change the model, just the data)

We may not know the speed either

All the usual practical annoyances: discrete measurements, noise, etc.
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Why microlocal analysis?

What can microlocal analysis do?

It works equally well for variable coefficients and non-Euclidean
geometry.

It recovers the singularities (called “features” in applications, usually
discontinuities, boundary of layers) in a more or less direct way; there
is a calculus.

Recovery of singularities is an important problem by itself. In
geophysics, this is all they do.

Roughly speaking, it deals with the infinite dimensionality of function
spaces. Elliptic ΨDOs or FIOs, for examples, are invertible modulo
finitely dim. spaces. Ellipticity is much easier to check than injectivity.

In particular, stability of inverse problems is answered by whether one
can recover all singularities.

Analytic microlocal analysis (for analytic coefficients) can prove
injectivity, too.
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Why microlocal analysis? Time reversal

If T = ∞, we can just solve a Cauchy problem backwards with zero initial
data.
One of the most common methods when T < ∞ is to do the same (time
reversal). Solve

(∂2
t − c2∆)v0 = 0 in (0,T )× Ω,
v0|[0,T ]×∂Ω = χh,

v0|t=T = 0,
∂tv0|t=T = 0,

(2)

where h will be taken to be h = Λf . Here χ cuts off smoothly near t = T
so that the 1st order compatibility condition is satisfied.
Then we define the following

Time Reversal

f ≈ A0h := v0(0, ·) in Ω̄, where h = Λf .
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Why microlocal analysis? Time reversal

Most (but not all) works are in the case of constant coefficients, i.e., when
c = 1. If n is odd, and T > diam(Ω), this is an exact method by the
Hyugens’ principle.

In that case, this is actually an integral geometry problem because of
Kirchoff’s formula — recovery of f from integrals over spheres centered at
∂Ω.

When n is even, or when the coefficients are not constant, this is an
“approximate solution” only. As T →∞, the error tends to zero by finite
energy decay. When the geometry is non-trapping, the convergence is
uniform and exponentially fast for n odd and O(t1−n) for n even
([Hristova], based on classical local energy decay estimates).
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Why microlocal analysis? Time reversal

Prior results

Kruger; Agranovsky, Ambartsoumian, Finch,
Georgieva-Hristova, Jin, Haltmeier, Kuchment, Nguyen,
Patch, Quinto, Wang, Xu . . .

The time reversal (but not only) is often used for reconstruction. It is exact
only when T = ∞ but above some critical time T1, it is a parametrix.

When T is fixed, there is no good control over the error (unless n is odd
and c = const). There are other methods, as well, for example a method
based on an eigenfunctions expansion; or explicit formulas if c = const
and Ω is a ball (with T = ∞ in even dimensions).
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Why microlocal analysis? Time reversal

Results for variable coefficients existed but not so many. Finch and
Rakesh (2009) proved uniqueness when T > diam(Ω), based on Tataru’s
uniqueness theorem (that we use, too). Reconstructions for finite T have
been tried numerically, and they “seem to work” at least for non-trapping
geometries.

Another problem of a genuine applied interest is uniqueness and
reconstruction with measurements on a part of the boundary. There were
no results so far for the variable coefficient case, and there is a uniqueness
result in the constant coefficients one by Finch, Patch and Rakesh
(2004).
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Why microlocal analysis? Explicit formulas in special cases

Ω=ball, constant speed

The simplest case is when c = 1 and Ω is the unit ball. Let also n = 3.
Then there are explicit reconstruction formulas (Finch, Haltmeier,
Kunyansky, Nguen, Patch, Rakesh, Xu, Wang).
Let g(x , t) = Λf , x ∈ Sn−1, be the data. Then, in 3D,

f (x) = − 1

8π2
∆x

∫
|y |=1

g(y , |x − y |)
|x − y |

dSy .

Also,

f (x) = − 1

8π2

∫
|y |=1

(
1

t

d2

dt2
g(y , t)

) ∣∣∣∣∣
t=|y−x |

dSy .

Yet another one, a partial case of an explicit formula in any dimension
(Kunyansky):

f (x) =
1

8π2
∇x ·

∫
|y |=1

(
ν(y)

1

t

d

dt

g(y , t)

t

) ∣∣∣∣∣
t=|y−x |

dSy .
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Why microlocal analysis? It is an integral geometry problem if c = 1, n odd

When c = const., an n is odd, this is also an integral geometry problem.
By the Kirchhoff’s formula, up to time derivatives, in odd dimensions,
what we measure are the spherical means of f centered at point on ∂Ω:

Λf ∼
∫
|ω|=1

f (x + tω) dω, t ∈ [0,T ], x ∈ ∂Ω.

Now, we have to invert it. This transform can be (and has been) studied
with microlocal methods that in particular answer some questions about
stability and recovery of singularities, including cases with partial data (but
c still constant). One can also use analytic microlocal analysis for
uniqueness.

Our initial interest in this problem was motivated by extending this
approach to non Euclidean transforms over geodesic spheres.

But we abandoned that approach for something better!
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stability and recovery of singularities, including cases with partial data (but
c still constant). One can also use analytic microlocal analysis for
uniqueness.

Our initial interest in this problem was motivated by extending this
approach to non Euclidean transforms over geodesic spheres.

But we abandoned that approach for something better!
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Analysis of the acoustic equation Energy spaces

Analysis of the acoustic equation

Before we can do an intelligent analysis of the inverse problem, we need a
deep understanding of the direct one.

Is the direct problem solvable in the first place? In what spaces, etc.?

Rewrite the acoustic equation as a system:

∂

∂t

(
u1

u2

)
=

(
0 I

c2∆ 0

) (
u1

u2,

)
⇐⇒ u1 = u, u2 = ut

(∂2
t − c2∆)u = 0.

Cauchy data for the acoustic equation become initial data for the system
above. Set

P =

(
0 I

c2∆ 0

)
, then ut = Pu.

The energy of a solution u in the domain U is given by

EU(t, u) =

∫
U

(
|Du|2 + c−2|ut |2

)
dx .
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Analysis of the acoustic equation Energy spaces

A fundamental property of the energy in the whole space (say, for initial
data in C∞

0 × C∞
0 ) is that it is preserved by the solution (just differentiate

w.r.t. t and integrate by parts).

Energy norm for the Cauchy data (f , h), that we denote by ‖ · ‖H:

‖(f , h)‖2
H =

∫
U

(
|Df |2 + c−2|h|2

)
dx ,

and this defines a Hilbert space H(U) as the completion of
C∞

0 (U)× C∞
0 (U) under that norm.

In particular, when g = 0, we get the space HD(U) with the norm

‖f ‖2
HD(U) =

∫
U
|Df |2 dx .

Next, HD(U) ⊂ H1(U), if U is bounded with smooth boundary, therefore,
HD(U) is topologically equivalent to H1

0 (U). Note that

‖f ‖2
HD(U) = (−Pf , f )HD(U,c−2dx),

where P is the Dirichlet realization of c2∆ in Ω.
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Analysis of the acoustic equation Energy spaces

So the natural setup is to solve

ut = Pu, u(0) = f ∈ H.

P extends to a skew-selfadjoint operator in H. Existence of a solution

u(t) = etPf

follows by Stone’s theorem (usual notation u = e itAf , A∗ = A). Next, etP

is a unitary group (energy conservation).

In the TAT problem, the Cauchy data is (f , 0), and the energy norm of
that is ‖f ‖HD(Ω).

By a result of Lasiecka, Lions and Triggiani,
Λ : HD(Ω) → H1

(0)([0,T ]× ∂Ω) is bounded, where the subscript (0)
indicates the subspace of functions vanishing for t = 0. So the data Λf is
well defined for f ∈ HD(Ω).
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Analysis of the acoustic equation Finite speed of propagation

The wave equation has the finite speed of propagation property: “signals”
propagate with speed no greater that 1, in the metric c−2dx2 (or with
speed c , in the metric dx2); i.e., if u has Cauchy data (f , h) for t = 0, then

u(t, x) = 0 for t > dist(x , supp (f , h)), (3)

where “dist” is the distance in the metric c−2dx2. Another way to say this
is that any solution at (t0, x0) has a domain of dependence given by the
characteristic cone (possibly, non-smooth!)

{(t, x); dist(x , x0) ≤ |t − t0|} . (4)

The forward part of this cone is given by t > t0, and the backward one by
t < t0.

Proof: easy — integration by parts in the characteristic cone (for small
time interval first); then the Cauchy inequality (Evans or Taylor books).

One can generalize this to the wave equation (∂2
t − c2∆g + l.o.t.)u = 0;

then we replace c−2dx2 by c−2g .
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Analysis of the acoustic equation Finite speed of propagation

Recall that given two subsets A and B of a metric space, the distance
dist(A,B) is defined by

dist(A,B) = sup(dist(a,B); a ∈ A). (5)

This function is not symmetric in general, and the Hausdorff distance is
defined as

distH(A,B) = max (dist(A,B), dist(B,A)) .

The finite speed of propagation property can then be formulated in the
following form:

Finite speed of propagation

If u has Cauchy data (f , h) at t = 0 supported in the set U, then
u(t, x) = 0 when dist(x ,U) > |t|.
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Analysis of the acoustic equation Finite speed of propagation

What if c is constant?

When c is constant, and n ≥ 3 is odd, we have:

Huygens’ principle

If u has Cauchy data (f , h) at t = 0 supported in the set U, then

supp u(t, ·) ⊂ {x ; ∃y ∈ U, |x − y | = c |t|}.

The physical interpretation is that signals propagate with speed c (vs. less
or equal than c).
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Analysis of the acoustic equation Unique continuation

Unique continuation

Due mainly to Tataru. Proof: hard. Local version: unique continuation
across every surface non-characteristic for ∂2

t − c2∆; generalizes to
∂2

t − c2∆g + l.o..t.. One of its global versions, presented below, follows
from its local version by Holmgren’s type of arguments.

Theorem 1

Assume that u ∈ H1
loc satisfies

(∂2
t − c2∆g + l.o.t.)u = 0,

near the set in (6) and vanishes in a neighborhood of [−T ,T ]× {x0},
with some T > 0, x0 ∈ Rn. Then

u(t, x) = 0 for |t|+ distc−2g (x0, x) < T . (6)
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Analysis of the acoustic equation Unique continuation

For the partial data analysis we need a version restricted to a bounded
(connected) domain Ω. The inconvenience of the theorem above is that it
requires u to solve the wave equation in a cone that may not fit in R× Ω.
Next theorem shows unique continuation of Cauchy data on R× ∂Ω to
their domain of influence.

Proposition 1

Ω ⊂ Rn: domain; let u ∈ H1 solve the homogeneous wave equation in
[−T ,T ]× Ω. Let u have Cauchy data zero on [−T ,T ]× Γ, where
Γ ⊂ ∂Ω is open. Then u = 0 in the domain of influence
{(t, x) ∈ [−T ,T ]× Ω; dist(x , Γ) < T − |t|}.

A possible proof, using unique continuation: extend u as zero in a one
sided neighborhood of Γ, in the exterior of Ω (by extending g and c there
first), and this extension will still be a solution. Then we apply unique
continuation along a curve connecting that exterior neighborhood with an
arbitrary point x so that dist(x , Γ) < T . To make sure that we always stay
in some neighborhood of that curve in the x space, we need to apply the
unique continuation Theorem 1 in small increments.
Plamen Stefanov (Purdue University ) Microlocal Analysis of TAT, I 24 / 30



Analysis of the acoustic equation Unique continuation

For the partial data analysis we need a version restricted to a bounded
(connected) domain Ω. The inconvenience of the theorem above is that it
requires u to solve the wave equation in a cone that may not fit in R× Ω.
Next theorem shows unique continuation of Cauchy data on R× ∂Ω to
their domain of influence.

Proposition 1

Ω ⊂ Rn: domain; let u ∈ H1 solve the homogeneous wave equation in
[−T ,T ]× Ω. Let u have Cauchy data zero on [−T ,T ]× Γ, where
Γ ⊂ ∂Ω is open. Then u = 0 in the domain of influence
{(t, x) ∈ [−T ,T ]× Ω; dist(x , Γ) < T − |t|}.

A possible proof, using unique continuation: extend u as zero in a one
sided neighborhood of Γ, in the exterior of Ω (by extending g and c there
first), and this extension will still be a solution. Then we apply unique
continuation along a curve connecting that exterior neighborhood with an
arbitrary point x so that dist(x , Γ) < T . To make sure that we always stay
in some neighborhood of that curve in the x space, we need to apply the
unique continuation Theorem 1 in small increments.
Plamen Stefanov (Purdue University ) Microlocal Analysis of TAT, I 24 / 30



New results: Uniqueness Measurements on the whole boundary

Back to TAT: Uniqueness

We have all ingredients in place to prove sharp uniqueness results.
The underlying metric is c−2dx2. Set

T0 := dist(Ω, ∂Ω) = max
x∈Ω̄

dist(x , ∂Ω).

Theorem 2

(i) T ≥ T0 =⇒ uniqueness.
(ii) T < T0 =⇒ no uniqueness. We can recover f (x) for
dist(x , ∂Ω) ≤ T and nothing else.

The proof of (i) is based on the unique continuation property. The proof
of (ii) (the second statement) is just finite speed of propagation.

The explanation is simple. We can recover f (x) on the maximal set that
signals from ∂Ω can reach at times t ≤ T (by unique continuation), and
nothing else (by finite speed of propagation).
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New results: Uniqueness Measurements on the whole boundary

Sketch of the proof

Observation: knowing Λf on [0,T ]× ∂Ω, we know the Dirichlet data only.
For unique continuation, we need the Neumann data as well. Can we
recover it? Yes! Note that u is not just any solution in Ω — it actually
extends to a solution in the whole space! Solve the wave equation outside
Ω with Dirichlet data Λf and zero initial data. That will give us u outside
Ω. Take the normal derivative — and we get the Neumann data as well.

In other words, solve
(∂2

t −∆)w = 0 in (0,T )× Rn \ Ω̄,
w |[0,T ]×∂Ω = h,

w |t=0 = 0,
∂tw |t=0 = 0.

(7)

Then set

Nh =
∂w

∂ν

∣∣∣
[0,T ]×∂Ω

.
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For unique continuation, we need the Neumann data as well. Can we
recover it? Yes! Note that u is not just any solution in Ω — it actually
extends to a solution in the whole space! Solve the wave equation outside
Ω with Dirichlet data Λf and zero initial data. That will give us u outside
Ω. Take the normal derivative — and we get the Neumann data as well.

In other words, solve
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New results: Uniqueness Measurements on the whole boundary

This is known as the outgoing exterior Neumann operator. When h = Λf
we get NΛf = ∂u/∂ν.

The uniqueness proof is immediate now. The solution u extends in an
even way w.r.t. t in [−T ,T ] as a solution again. On [−T ,T ]× ∂Ω, u has
zero Cauchy data. By unique continuation, for any point x inside, that can
be reached by time T from ∂Ω, we get u = 0 near that point. By finite
speed of propagation, we cannot say anything about the other points.
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New results: Uniqueness Data on a part of ∂Ω

Data on a part of ∂Ω

Let Γ ⊂ ∂Ω be a relatively open subset of ∂Ω. Measurements on

G := {(t, x); x ∈ Γ, 0 < t < s(x)} , (8)

where s is a fixed continuous function on Γ. This corresponds to
measurements taken at each x ∈ Γ for the time interval 0 < t < s(x). The
special case studied so far is s(x) ≡ T , for some T > 0; then
G = [0,T ]× Γ, and this is where our main interest is.

So the partial data problem is: given

Λf |G ,

recover f .
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New results: Uniqueness Data on a part of ∂Ω

We study below functions f with support in some fixed compact K ⊂ Ω̄.
By the finite speed of propagation, to be able to recover all f supported in
K, we want for any x ∈ K, at least one signal from x to reach G, i.e., we
want to have a signal that reaches some z ∈ Γ for t ≤ s(z). In other
words, we should at least require that

∀x ∈ K,∃z ∈ Γ so that dist(x , z) < s(z). (9)

In Theorem 1 below, we show that this is a necessary condition, up to
replacing the < sign by the ≤ one, is sufficient, as well.

Another way to formulate this condition is to say that f = 0 in the domain
of influence

ΩG := {x ∈ Ω; ∃z ∈ Γ so that dist(x , z) < s(z)} .
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New results: Uniqueness Data on a part of ∂Ω

Sharp uniqueness result, that in particular generalizes the result by Finch,
Patch and Rakesh to the variable coefficients case.

Theorem 3

Let P = −∆ outside Ω, and let ∂Ω be strictly convex. Then under the
assumption (9), if Λf = 0 on G for f ∈ HD(Ω) with supp f ⊂ K, then
f = 0.

As above, we can make this more precise.

Proposition 2

Let P = −∆ outside Ω, and let ∂Ω be strictly convex. Assume that
Λf = 0 on G for some f ∈ HD(Ω) with supp f ⊂ Ω that may not satisfy
(9). Then f = 0 in ΩG . Moreover, no information about f in Ω \ Ω̄G is
contained in Λf |G .

Proof: delicate! We can only recover the Neumann derivative on G for
small t. Then we show that f = 0 near Γ only. That however gives us
more data, we repeat the argument, etc.
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