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Abstract. In this paper we analyze the local and global boundary rigidity problem for general Riemannian

manifolds with boundary (M, g). We show that the boundary distance function, i.e. dg |∂M×∂M , known near
a point p ∈ ∂M at which ∂M is strictly convex, determines g in a suitable neighborhood of p in M , up to

the natural diffeomorphism invariance of the problem.

We also consider the closely related lens rigidity problem which is a more natural formulation if the
boundary distance is not realized by unique minimizing geodesics. The lens relation measures the point and

the direction of exit from M of geodesics issued from the boundary and the length of the geodesic. The lens

rigidity problem is whether we can determine the metric up to isometry from the lens relation. We solve the
lens rigidity problem under the assumption that there is a function on M with suitable convexity properties

relative to g. This can be considered as a complete solution of a problem formulated first by Herglotz in

1905. We also prove a semi-global results given semi-global data. This shows, for instance, that simply
connected manifolds with strictly convex boundaries are lens rigid if the sectional curvature is non-positive

or non-negative or if there are no focal points.
The key tool is the analysis of the geodesic X-ray transform on 2-tensors, corresponding to a metric g,

in the normal gauge, such as normal coordinates relative to a hypersurface, where one also needs to allow

weights. This is handled by refining and extending our earlier results in the solenoidal gauge.

1. Introduction and the main result

Boundary rigidity is the question whether the knowledge of the boundary restriction (to ∂M×∂M) of the
distance function dg of a Riemannian metric g on a manifold with boundary M determines g, i.e. whether
the map g 7→ dg|∂M×∂M is injective. Apart from its intrinsic geometric interest, this question has major real-
life implications, especially if also a stability result and a reconstruction procedure are given. Riemannian
metrics in such practical applications represent anisotropic media, for example a sound speed which, relative
to the background Euclidean metric, depends on the point, and the direction of propagation. Riemannian
metrics in the conformal class of a fixed background metric represent isotropic wave speeds. While many
objects of interest are isotropic to a good approximation, this is not always the case: for instance, the inner
core of the Earth exhibits anisotropic behavior, see, e.g., [3], as does muscle tissue. The restriction of the
distance function to the boundary is then the travel time: the time it takes for waves to travel from one of
the points on the boundary to the other. Recall that most of the knowledge of the interior of Earth comes
from the study of seismic waves, and in particular travel times of seismic waves; the precise understanding
of the boundary rigidity problem is thus very interesting from this perspective as well.

There is a natural diffeomorphism invariance of the boundary rigidity problem: if ψ is a diffeomorphism
fixing the boundary pointwise, the boundary distance functions of g and ψ∗g are the same. Thus, the
precise question is whether dg|∂M×∂M determines g up to this diffeomorphism invariance, i.e. whether there
is an isometry ψ (fixing ∂M) between ĝ and g if the distance functions of ĝ and g have the same boundary
restriction.

There are counterexamples to this problem, and thus one needs some geometric restrictions. The most
common restriction is the simplicity of (M, g): this is the requirement that the boundary is strictly convex
and any two points in M can be joined by a unique minimizing geodesic. (Everywhere in this paper,

Date: Revision: May 11, 2021.
2020 Mathematics Subject Classification. 53C24, 53C65, 35R30, 35S05, 53C21.
The authors gratefully acknowledge partial support by the National Science Foundation.

1



2 PLAMEN STEFANOV, GUNTHER UHLMANN AND ANDRAS VASY

strict convexity means a positive second fundamental form.) Michel [21] conjectured that compact simple
manifolds with boundary are boundary rigid. In this paper we prove boundary rigidity or the closely related
lens rigidity introduced below in dimensions n ≥ 3 under a different assumption of the existence of a function
with strictly convex level sets. Our assumptions hold for simply connected compact manifolds with strictly
convex boundaries such that the geodesic flow has no focal points, or if the sectional curvature is negative
(or just non-positive) or if the sectional curvature is non-negative, see Corollary 1.1. In particular, we prove
boundary rigidity for simple manifolds in those cases, see Corollary 1.2. This result extends our earlier
analogous result which was in a fixed conformal class [34]; recall that the fixed conformal class problem has
no diffeomorphism invariance issues to deal with. We prove local (near a boundary point), semiglobal and
global rigidity results. The manifolds we study can have conjugate points. Contrary to previous results
(except for our conformal result in [34]), we do not assume the metrics to be a priori close before we prove
that they are isometric. In that sense, our results are global in the metrics; and also local in the data.

The conformal case has a long history. In 1905 and 1907, Herglotz [9] and Wiechert and Zoeppritz [43]
showed that one can recover a radial sound speed c(r) (the metric is c−2dx2) in a ball under the condition

(1.1) (r/c(r))′ > 0

by reducing the problem to solving an Abel type of equation. For simple manifolds, recovery of the conformal
factor was proven in [17] and [18], with a stability estimate. We showed in [34] that for n ≥ 3, one has local
and stable recovery near a strictly convex boundary point and semiglobal and global one under the foliation
condition we use here, as well. We also showed there that the Herglotz and Wiechert and Zoeppritz condition
(1.1) is equivalent to requiring the Euclidean spheres |x| = const. to be strictly convex in the metric c−2dx2.

The first two-dimensional results are for non-positively curved surfaces by Croke [4] and Otal [22]. Bound-
ary rigidity of simple surfaces was proved in [25]. In higher dimensions, simple Riemannian manifolds with
boundary are boundary rigid under a priori constant curvature assumptions on the manifold or special sym-
metries [1], [8]. Several local (in the metric) results near the Euclidean metric are known [32], [7]; in [15]
one of the metrics is close to a flat and the other one has an explicit curvature bound; and in [2], one of
the metrics is a priori close to the flat one and the other one is arbitrary. The most general result in this
direction (outside a fixed conformal class, the setting of [34]) is the generic local (with respect to the metric)
one proven in [30], i.e. one is asking whether simple metrics with the same boundary distance function, a
priori close to a given one, are isometric; the authors give an affirmative answer in a generic case. Surveys
of some of the results can be found in [5, 13, 26, 31].

First we analyze the local boundary rigidity problem for compact Riemannian manifolds (M, g) of dimen-
sion n ≥ 3 with a strictly convex boundary. In fact, compactness is not essential for the local results. More
precisely, for suitable relatively open O ⊂M , including appropriate small neighborhoods of any given point
on ∂M or all of ∂M if ∂M is compact, we show that if for two metrics g1, g2 on M , dg1 |U×U = dg2 |U×U
for a suitable open set U containing O ∩ ∂M , then g1 = ψ∗g2 on O for some diffeomorphism ψ fixing ∂M
(pointwise, as we understand throughout this paper).

Theorem 1.1. Suppose that (M, g) is an n-dimensional Riemannian manifold with boundary, n ≥ 3, and
assume that ∂M is strictly convex at some p ∈ ∂M with respect to each of the two metrics g and ĝ.

(i) If dg|U×U = dĝ|U×U , for some neighborhood U of p in ∂M , then there is a neighborhood O of p in M
and a diffeomorphism ψ : O → ψ(O) fixing ∂M ∩O pointwise such that g|O = ψ∗ĝ|O.

(ii) Furthermore, if the boundary is everywhere strictly convex with respect to each of the two metrics
g and ĝ and dg|∂M×∂M = dĝ|∂M×∂M , then there is a neighborhood O of ∂M in M and a diffeomorphism
ψ : O → ψ(O) fixing ∂M ∩O pointwise such that g|O = ψ∗ĝ|O.

This theorem becomes more precise regarding the open sets discussed above if we consider M (not nece-

ssarily compact) as a subset of a manifold without boundary M̃ , extend g to M̃ ; see Figure 1. Our more
precise theorem then, to which the above theorem reduces, is the following.

Theorem 1.2. Suppose that (M, g) is an n-dimensional Riemannian manifold with boundary, considered as

a domain in (M̃, g), n ≥ 3, H a hypersurface, and x̃ the signed distance function from H, defined near H.
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H = {x̃ = 0}

{x̃ = �c}

Figure 1. The geometry of the local boundary rigidity problem.

Suppose that {x̃ ≥ 0} ∩M ⊂ ∂M , and for some δ > 0, M ∩ {x̃ ≥ −δ} is compact, ∂M is strictly convex in
M ∩ {x̃ > −δ}, the zero level set of x̃ is strictly concave from the superlevel sets in a neighborhood of M .

Suppose also that ĝ is a Riemannian metric on M with respect to which ∂M is also strictly convex in
M ∩ {x̃ > −δ}.

Then there exists c0 > 0 such that for any 0 < c < c0, with O = Oc = {x̃ > −c}∩M , if dg|U×U = dĝ|U×U
for some open set U in ∂M containing {x̃ > −c} ∩ ∂M , then there exists a diffeomorphism ψ : O → ψ(O)
fixing ∂M pointwise such that g|O = ψ∗ĝ|O.

Thus, relative to the level sets of x̃, the signed distance function of H, we have a very precise statement
of where dg and dĝ need to agree on ∂M for us to be able to conclude their equality, up to a diffeomorphism,
on O = Oc = {x̃ > −c} ∩M .

We remark that c, thus O, can be chosen uniformly for a class of g and ĝ with uniformly bounded Ck

norms with some k. One can define Ck norms of functions and tensor fields by using a fixed finite atlas or
by covariant differentiation w.r.t. a fixed metric, as in [15]. From now on, we measure closeness of metrics
or boundedness in Ck, k � 1.

The slight enlargement, U of O ∩ ∂M plays a role because we need to extend ĝ to M̃ in a compatible
manner, for which we need to recall that if U is an open set in ∂M such that dg|U×U = dĝ|U×U then for any

compact subset K of U (such as O ∩ ∂M) there is a diffeomorphism ψ0 on M such that ψ0 is the identity
on a neighborhood of K in ∂M and such that ψ∗0 ĝ and g agree to infinite order on a neighborhood of K in

M [15, 33]. Replacing ĝ by ψ∗0 ĝ, then one can extend ĝ to M̃ in an identical manner with g. In fact, the
diffeomorphism ψ is constructed explicitly: it is locally given by geodesic normal coordinates of ĝ relative
to H = {x̃ = 0}; due to the extension process from M to M̃ , ψ is the identity outside M . We refer to
section 7.1 for more details.

The second problem we study is the lens rigidity one. To define the lens data, we first introduce the
manifolds ∂±SM , defined as the sets of all vectors (p, v) with p ∈ ∂M , v unit in the metric g, and pointing
outside/inside M . We define the scattering relation

L : ∂−SM −→ ∂+SM

in the following way: for each (p, v) ∈ ∂−SM , L(p, v) = (q, w), where (q, w) are the exit point and direction,
if exist, of the maximal unit speed geodesic γp,v in the metric g, issued from (p, v). Strict convexity of ∂M
is not needed [33] but it is a convenient assumption for a unambiguous definition of L, as a continuous map
at least, and we assume it from now on. Let

` : ∂−SM −→ R ∪∞
be its length, possibly infinite. If ` <∞, we call M non-trapping. The maps (L, `) together are called lens
relation (or lens data). We identify vectors on ∂±SM with their projections on the unit ball bundle B∂M
(each one identifies the other uniquely) and think of L, ` as defined on the latter with values in itself again,
and in R∪∞, respectively. With this modification, any diffeomorphism fixing ∂M pointwise does not change
the lens relation.
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The lens rigidity problem is whether the scattering relation L (and possibly, `) determine (M, g) up to an
isometry. The lens rigidity problem with partial data is whether we can determine the metric near some p
from L known near the unit sphere Sp∂M considered as a subset of ∂−SM , i.e., for vectors with base points
close to p and directions pointing into M close to ones tangent to ∂M , up to an isometry as above.

Assuming that ∂M is strictly convex at p ∈ ∂M with respect to g, the boundary rigidity and the lens
rigidity problems with partial data are equivalent: knowing d = dg near (p, p) is equivalent to knowing L in
some neighborhood of Sp∂M . The size of that neighborhood depends on a priori bounds of the derivatives
of the metrics with which we work. This equivalence was first noted by Michel [21], since the tangential
gradients of d(p, q) on ∂M × ∂M give us the tangential projections of −v and w, see also [33, sec. 3] and
[28, sec. 2]. Note that knowledge of ` may not be needed for the lens rigidity problem (if L is given only,
then the problem is called scattering rigidity in some works) in some situations. For example, for simple
manifolds, ` can be recovered from either d or L; and this includes non-degenerate cases of non-strictly
convex boundaries, see for example the proof of [34, Theorem 5.2]; see [42] for a more general result. Also,
in [34] it is shown that the lens rigidity problem makes sense even if we do not assume a priori knowledge of
g|T∂M .

In fact, that relation of the two rigidity problems is used in our proofs of the first two boundary rigidity
theorems. The explicit way we use the equality of dg|U×U and dĝ|U×U is via the pseudolinearization formula
of Stefanov and Uhlmann [32], see Lemma 7.2, which relies on the equality of the partial lens data.

Vargo [39] proved that non-trapping real-analytic manifolds satisfying an additional mild condition are
lens rigid. Croke has shown that if a manifold is lens rigid, a finite quotient of it is also lens rigid [5].
He has also shown that the torus is lens rigid [6]. Stefanov and Uhlmann have shown lens rigidity locally
near a generic class of non-simple metrics [33] satisfying an additional microlocal assumption. In a recent
work, Guillarmou [11] proved that the lens data determine the conformal class for Riemannian surfaces with
hyperbolic trapped sets, no conjugate points and strictly convex boundary, and deformational rigidity in all
dimensions under these conditions. The only result we know for the lens rigidity problem with incomplete
(but not local) data is for real-analytic metric and metric close to them satisfying the microlocal condition
in the next sentence [33]. While in [33], the lens relation is assumed to be known on a subset only, the
geodesics issued from that subset cover the whole manifold and their conormal bundle is required to cover
T ∗M . In contrast, in this paper, we have localized information.

We then prove the following global consequence of our local results, in which (and also below) we assume
that each connected component of M has non-trivial boundary, or, which is equivalent in terms of proving
the result, M is connected with non-trivial boundary. As above, we assume M ⊂ M̃ with some open M̃ .

Theorem 1.3. Assume that (M, g) is a compact n-dimensional Riemannian manifold, n ≥ 3, with strictly
convex boundary; x is a smooth function with non-vanishing differential whose level sets are strictly concave
from the superlevel sets; and {x ≥ 0} ∩M ⊂ ∂M . Suppose also that ĝ is another Riemannian metric on M
so that ∂M is strictly convex w.r.t. ĝ as well and suppose that the lens relations of g and ĝ are the same.

Then there exists a diffeomorphism ψ : M →M fixing ∂M such that g = ψ∗ĝ.

The assumptions of the theorem are for instance satisfied if x is the distance function for g from a point
outside M , near M , in M̃ , minus the supremum of this distance function on M , on a simply connected
manifold M̃ and if (M̃, g) has no focal points (near M), see Corollary 1.1.

Theorem 1.3 can be viewed as a complete solution of the problem initiated by Herglotz [9] since, as we
mentioned above, his condition (1.1) is a foliation condition.

We formulate a semiglobal result as well, whose proof is actually included in the proof of the global
Theorem 1.3 below in Section 7. We refer to Figure 2 for an illustration of the theorem.

Theorem 1.4. Suppose that M is a compact n-dimensional Riemannian manifold with a strictly convex
boundary, n ≥ 3. Let x be a smooth function on M with [−T, 0] in its range with T > 0, {x = 0} ⊂ ∂M and
dx 6= 0 on {−T ≤ x ≤ 0}. Assume that each hypersurface {x = t}, −T ≤ t ≤ 0, is strictly convex and let
M0 be their union. Let D ⊂ ∂−SM be a neighborhood of the compact set of all β ∈ ∂−SM which are initial
points of geodesics γβ tangent to the level surfaces of the foliation.



LOCAL AND GLOBAL BOUNDARY RIGIDITY 5

Suppose also that ĝ is a Riemannian metric on M with respect to which ∂M is also strictly convex
and suppose that the lens relations of g and ĝ are the same on D. Then there exists a diffeomorphism
ψ : M0 → ψ(M0) fixing ∂M pointwise such that g = ψ∗ĝ.

The strict convexity of ∂M is used only to show that the jets of g and ĝ in boundary normal coordinates
coincide. This is true, without convexity, under the mild assumption of no conjugate pairs of points on
∂M [33] which holds automatically for points close enough on a fixed geodesic, which, with a more general
definition of the lens relation for non-strictly convex boundaries as in [33] would allow us to remove the strict
convexity assumption of ∂M in the theorem but we will not pursue this.

M0

∂M = {x = 0}

{x = −T}
p

v

q w

Figure 2. The scattering relation (p, v) 7→ (q, w) restricted to geodesics in the foliation for
the semi-global result.

A special important case arises when there exists a strictly convex function, which may have a critical
point x0 in M (if so, it is unique). Then we can apply Theorem 1.4 in the exterior of x0; which would
create a priori a possible singularity of the diffeomorphism at x0. In Section 8, we show that this singularity
is removable and obtain a global theorem under that assumption, see Theorem 8.1. This condition was
extensively studied in [23] (see also the references there). In particular Lemma 2.1 of [23] shows that such
a function exists if the sectional curvature of the manifolds is non-negative or if the manifold is simply
connected and the curvature is non-positive. Manifolds satisfying one of these conditions are lens rigid:

Corollary 1.1. Let (M, g) be a compact Riemannian manifold with a strictly convex boundary of dimension
n ≥ 3 satisfying any of the conditions

(a) (M, g) is simply connected with a non-positive sectional curvature;
(b) (M, g) is simply connected and has no focal points;
(c) (M, g) has non-negative sectional curvature.

Then if g1 is another metric on M with respect to which ∂M is also strictly convex and with the same lens
data, (M, g) is isometric to (M, g1) with an isometry fixing the boundary pointwise.

Note that (c) can be replaced by the weaker condition of a lower negative bound of the sectional curvature;
depending on some geometric invariants of (M, g), see [23].

As mentioned earlier, the lens rigidity problem and the boundary rigidity problem are equivalent for
simple manifolds (which are simply connected). Therefore we have proved Michel’s conjecture in dimension
n ≥ 3 under conditions corresponding to those of Corollary 1.1. More precisely:

Corollary 1.2. Let (M, g) be a compact simple Riemannian manifold with a strictly convex boundary of
dimension n ≥ 3 satisfying any of the conditions

(a) (M, g) has non-positive sectional curvature;
(b) (M, g) has no focal points;
(c) (M, g) has non-negative sectional curvature.

If g1 is another metric on M with respect to which ∂M is also strictly convex and with the same boundary
distance function, (M, g) is isometric to (M, g1) with an isometry fixing the boundary pointwise. Thus, these
classes of Riemannian manifolds are boundary rigid.
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2. The approach

This paper relies crucially on the papers [38, 34, 36] both in terms of the approach and in terms of the
results; indeed, these three papers can be thought of as being part of a process that culminates with the
present result. Thus, we start by discussing these briefly.

The rough picture is that via a linearization procedure, the boundary rigidity problem connects to the
geodesic X-ray transform. In the general problem we study here this is the X-ray transform on symmetric
2-tensors explored in [36]. However, in the simpler case of boundary rigidity in a fixed conformal class of
metrics, which was proved in [34], it connects to the X-ray transform on functions. The key analytic ideas
in the latter setting were introduced in [38]. Relative to [38], the fixed conformal class boundary rigidity
problem, [34], required moving to a nonlinear setting. On the other hand, the symmetric 2-tensor X-ray
problem is still linear but has a gauge invariance; dealing with this was the key point in [36]. Finally the
present paper must combine the ability to deal with the gauge invariance with the ability to work on a
non-linear problem. We go through these ingredients one by one.

2.1. The X-ray transform on functions, à la [38]. On a Riemannian manifold (M, g), the geodesic
X-ray transform of 2-tensors is a map C∞(M)→ C∞(SM)

If(β) =

∫
γβ

f(γβ(s)) ds,

where for β ∈ SM , γβ is the lifted geodesic through β. A key question is if from If we can recover f , which
can take various forms: injectivity, stability estimates, or perhaps even a construction of a left inverse. Since
I is a Fourier integral operator, one general approach is to consider the normal operator, I∗I. The operator

L0v(z) =

∫
SzM

v(γz,ζ) dζ

is actually I∗ with a suitable natural parameterization of the space of the geodesics [28]

Under the assumption that M has no conjugate points, and working on the extension M̃ , L0I is a
pseudodifferential operator of order −1, and moreover it is elliptic for n ≥ 2, see [29, 30]. (These requirements
can be somewhat relaxed by microlocalization, see [33].) Then there is a parametrix G such that GL0I differs
from the identity operator (when restricted to distributions supported in M) by a smoothing operator.
While this is sufficient for a semi-Fredholm theory, it does not rule out a potentially large finite dimensional
nullspace.

The key advance of [38] was to consider a localized problem, which introduced a small parameter, as we
now explain. This small parameter is what enables us to rule out the potential large nullspace and thus to
construct a left inverse of L0I, where L0 is a localized version of the L0 above. Concretely then, suppose
we have a convex foliation, concave from the super-level sets, given by the level sets of a function x of non-
vanishing differential. For a fixed value c (we use the typeface c here to distinguish it from the conformal
class factor we discuss next), we consider the level set x = −c as an artificial boundary, and consider the
region Ωc = {x > −c}∩M for the purpose of finding f |Ωc from the information given by the If(β) for those
β for which the geodesic through β stays in Ωc until it hits ∂M , i.e. for Ωc-localized geodesics. Let xc = x+c
be a boundary defining function for {x > −c} in M̃ . In order to implement this analytically, we need to add
a cutoff to the definition of L0:

L0v(z) =

∫
SzM

χ(z, ζ)v(γz,ζ) dζ.

Here χ localizes to a subset of geodesics that are ‘almost tangent’ to level sets of x. The precise type of
operator one obtains depends on the precise way one implements the almost tangency. We take this so that
on the support of χ, the tangent vector to γz,ζ at z encloses an angle . xc with the level sets of x, i.e. the
geodesics become tangent to the level sets as one approaches the artificial boundary at a rate that is roughly
proportional to the distance to the artificial boundary. The concavity assumption on the super-level sets
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implies that these geodesics are indeed Ωc local. One could in fact take a somewhat larger angle from tangency
just for the concavity considerations, but our choice ensures that L0I, or more precisely e−z/xcL0Ie

z/xc ,
where z > 0, is a particularly well-behaved elliptic pseudodifferential operator: it is in Melrose’s scattering
pseudodifferential algebra which has a powerful symbolic structure and which we discuss in some detail in
Section 3. Effectively this means that analytically the artificial boundary acts like a region near infinity in
Euclidean space. On the other hand, the parameter z means that we are working on exponentially weight
spaces, so the estimates on f (from If) will be exponentially weak as one approaches the artificial boundary
since e−z/xcL0Ie

z/xc should be thought of as being applied to e−z/xcf . The key point is that the level set
parameter c becomes a new tool: by taking c sufficiently small, one can assure that not only is the error
of a parametrix ‘smoothing’ (really, ‘Schwartzifying’ in the asymptotically Euclidean interpretation) but is
actually small as an operator, so the identity plus this error can be inverted.

Note that the ellipticity now requires n ≥ 3 because we deal with “almost tangent” (to the actual or to
the artificial boundary) geodesics only. If n = 2, we get ellipticity on codirections close to normal ones only.

In order to invert the X-ray transform globally then one has a layer stripping procedure, in which first
one recovers f in x ≥ −c1, c1 > 0 small, then in −c1 ≥ x ≥ −c2, c2 − c1 > 0 small, etc. Since we can control
the step size, compactness considerations result in global injectivity, stability, etc.

2.2. Boundary rigidity in a fixed conformal class, à la [34]. If we have a fixed conformal class, i.e.
we study multiples c−2g0 of a background metric g0, then the linearization (in c) of the boundary distance
function around a certain c0 is an X-ray transform of δc.

As mentioned already in the introduction, we actually use the lens information. This gives rise to a
formula, called the pseudolinearization formula in [32], for the difference of the cotangent bundle coordinates

of the point Z̃(t, z), resp. Z(t, z), of the time t Hamilton flows emanating from a boundary point in the same
direction, i.e. from z = (x, ξ), ξ = gx(ζ):

(2.1) Z̃(t, z)− Z(t, z) =

∫ t

0

∂Z̃

∂z
(t− s, Z(s, z))

(
Ṽ − V

)
(Z(s, z)) ds;

here Ṽ and V are the Hamilton vector fields given by c̃−2g0 and c−2g0. If the lens relations are the same,
then taking t as the time τ(x, ξ) at which the respective flows both reach the boundary at the same point,
the left hand side vanishes. Expressing the Hamilton vector field in terms of the factors c̃, c and their first
derivatives, and taking the momentum (i.e. ξ) component of Z, we obtain a formula for the integral of the
first derivatives of c̃ − c and c̃ − c itself. Since (2.1) integrates the difference of the Hamilton vector fields
along the trajectory Z(., z) = Z(., x, ξ), i.e. along a bicharacteristic, i.e. a lifted geodesic, this turns to be an
X-ray transform with a weight (essentially given by the prefactor in (2.1)). Namely if we write f = c2 − c̃2,
we obtain

(2.2) Jif(γ) :=

∫ (
Aji (X(t),Ξ(t))(∂xjf)(X(t)) +Bi(X(t),Ξ(t))f(X(t))

)
dt = 0, i = 1, . . . , n,

for any bicharacteristic γ = (X(t),Ξ(t)) (related to the speed c) in our set Ωc, where

Aji (x, ξ) =− 1

2

∂Ξ̃i
∂ξj

(τ(x, ξ), (x, ξ))c−2(x),

Bi (x, ξ) =
∂Ξ̃i
∂xj

(τ(x, ξ), (x, ξ))gik0 (x)ξk −
1

2

∂Ξ̃i
∂ξj

(τ(x, ξ), (x, ξ))(∂xjg
−1
0 (x))ξ · ξ.

This way, we deal with the geometry of a single metric directly, and the geometry of the other one affects
the weight. At the boundary of M we have Aji (x, ξ) = − 1

2c
−2δji . Then the transform given by just the Aji

term gives rise to an elliptic pseudodifferential operator by taking L0 essentially as above (since we have
n components corresponding to the n derivatives, really the n by n matrix version, L0 Idn), while the Bi
terms can be absorbed using a Poincaré-type inequality at least for sufficiently small domains (the foliation
parameter is near 0). This shows that if Jf vanishes then so does f , i.e. c = c̃, proving the local version of
the boundary rigidity in a fixed conformal class.
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2.3. The X-ray transform on tensors, à la [36]. The geodesic X-ray transform of 2-tensors along the
geodesics of a metric g is a map C∞(M ; Sym2T ∗M)→ C∞(SM)

If(β) =

∫
γβ

f(γβ(s))(γ̇β(s), γ̇β(s)) ds,

and in this transform the symmetric 2-tensor f is evaluated on the tangent vector of γβ in both slots.
The key difference between the X-ray transform on tensors and on scalar functions is not that tensors

are sections of a bundle: after all, locally this is just a transform of a matrix function, and these were
analyzed above for the fixed conformal class boundary rigidity. Rather, the issue is the gauge invariance,
which is to say that if f is a potential tensor, i.e. is the symmetric differential of a one-form vanishing on the
boundary, f = dsv, then If = 0. (In the analogous one-form setting, this is simply the fundamental theorem
of calculus.) The standard way of fixing this gauge invariance is adding a gauge condition, and the most
standard (due to the ellipticity we are about to discuss) gauge condition is the solenoidal gauge condition,
δsf = 0, where δs is (negative) divergence. Working globally, taking a background metric g0 (possibly equal
to g, but this is not needed), one uses this by replacing the operator L0 above by

L2v(z) =

∫
SzM

v(γz,ζ)g0(ζ)⊗ g0(ζ) dζ,

and rather than just taking L2I, one considers L2I + dsQδs, where Q is an order −3 pseudodifferential
operator. This is elliptic for a suitable choice of Q, and applied to tensors in the solenoidal gauge the second
term vanishes, so if If = 0, then one concludes that f is smooth, and indeed that there is a finite dimensional
nullspace. There are some additional difficulties near the boundary since solenoidal tensors extended as zero
outside M may not be solenoidal anymore.

The localized version is quite similar, with the main difference that the weighted solenoidal gauge also has
an exponential weight: δs(e−2z/xcf) = 0. Concretely, let δsz = ez/xcδse−z/xc , ds

z = e−z/xcdsez/xc . Then
the analogue of L2I + dsQδs is

Az = Nz + ds
zQδ

s
z, Nz = e−z/xcL2Ie

z/xc ,

where L2 again has a cutoff χ. Again, this can be arranged to be elliptic for suitable χ and Q and suitably
large z > 0, and thus is invertible up to a smoothing (‘Schwartzifying’) error by applying a parametrix Gz.
Now, for again sufficiently small indexed level set, i.e. sufficiently small c, chosen as the artificial boundary,
the error GzAz− Id is not just ‘smoothing’/Schwartzifying, but is actually small, so it can be removed as in
the scalar case, i.e. we may assume GzAz = Id. If f is in this exponential solenoidal gauge, then applying
Az to e−z/xcf gives

Aze
−z/xcf = Nze

−z/xcf = e−z/xcL2If,

which thus is determined by If , hence the same for

e−z/xcf = GzAze
−z/xcf = GzNze

−z/xcf = Gze
−z/xcL2If.

We actually suppressed an issue here: putting a tensor f into solenoidal gauge by adding a potential
term, dsv, requires solving a weighted Laplace-type equation on one forms (with a weight, essentially e−z/xc ,
singular at the artificial boundary), which is almost as involved as the argument we outlined. Part of the
issue is that the solution v of this equation necessarily depends on the whole domain on which we are solving
this Laplace-type equation, and in the actual inversion procedure a few different domains (in xc ≥ 0) are

considered due to the extended (to M̃) nature of the parametrix construction, so these must be related and
the behavior of the Laplace-type operator at artificial boundary (which is also in Melrose’s scattering algebra)
also taken into account in the solution procedure. In particular, as we mentioned above, the extension of
a solenoidal tensor, extended as zero outside M , may not be solenoidal anymore, which is ultimately the
reason that the Laplace-type equation must be solved in a number of domains.
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2.4. Boundary rigidity. One immediate issue with general boundary rigidity (as opposed to the fixed
conformal class one) and localization is that even if we have two metrics g and g̃ with the same lens relation,
it may well happen that g and g̃ are different due to the diffeomorphism invariance (the analogue of the
above gauge invariance for the tensor X-ray transform). Therefore, we cannot really expect to be able to
make a statement that in some fixed region they are the same ‘up to diffeomorphism’: the diffeomorphism
deforms the region itself. The localization however is an essential part of assuring the lack of null space of
the modified normal operators, at least by our methods. This already complicates the general boundary
rigidity problem.

One can try to circumvent this difficulty by putting the metrics in a certain gauge in order to eliminate
the diffeomorphism invariance; then we want to prove that they are equal. Given the symmetric 2-tensor
discussion above, one may want to put them in a (weighted) solenoidal gauge with respect to a background
metric. An immediate issue of arranging the solenoidal gauge for our local problems is that it requires solving
an elliptic PDE, essentially a weighted Laplace-Beltrami equation on one-forms, with the weight singular
at the boundary of Ωc (essentially e−z/xc), which again comes back to the point that one should know the
corresponding regions for the two metrics from the start! Thus the extension of the solenoidal gauge to
non-linear problems appears problematic.

Instead we use the normal gauge in a product-decomposition of the underlying manifold, which for the
linear problem means working with tensors (differences of two metrics) whose normal components vanish (for
2-tensors, this means normal-normal and tangential-normal components; in the 1-form problem discussed
below this means the normal component). We can pull back each metric by a (metric dependent) local
diffeomorphism so that each new metric is in normal coordinates relative to a hypersurface, see section 7.1.
If this is done, then their difference is in the normal gauge. An addition of symmetric derivatives of one-
forms vanishing at ∂M , i.e. of potential tensors, does not change the X-ray transform. In the normal gauge,
this linear invariance disappears and we want to prove injectivity. The operator e−z/xcL′2Ie

z/xc however
is not elliptic even restricted to tangential-tangential tensors, i.e. tensors in this normal gauge, as noticed
already in [32]. Here L′2 is the analogue of L2 replacing g0(ζ)⊗g0(ζ) by its tangential-tangential component,
so that the output is a tangential-tangential tensor. However, there is a major gain: putting an arbitrary
one-form or tensor into the normal gauge by adding a potential tensor requires solving what amounts to an
evolution equation, so this itself is not an elliptic process (though it is much simpler than dealing with the
non-ellipticity of the X-ray transform in this gauge). The evolutionary nature allows one to work locally,
since the property of being in the normal gauge is independent of the choice of the artificial boundary. Thus,
we have a well-behaved gauge condition for the non-linear problem, but at the cost of losing the ellipticity
of our modified normal operator.

Going back to the linear setting, namely that of the X-ray transform on tensors, if one would like to
recover a tensor f which is in the normal gauge from If , it is thus easier to put f in the solenoidal gauge
first, by adding a term dsv. Then we recover f + dsv from Nze

−z/xc(f + dsv) = Nze
−z/xcf , hence from

If , using the solenoidal gauge estimate, i.e. the original tensor f up to a potential term. Then argue that in
fact this determines f due to the vanishing of its normal components. We in fact present this in Section 6.1,
together with actual estimates for f in terms Nze

−z/xc(f + dsv) = Nze
−z/xcf . These estimates are non-

elliptic, with a natural loss of derivatives in the tangential to the foliation direction; see Theorem 6.2 and
its Corollary 6.1, which gives a direct left invertibility statement for Nz on tensors in the normal gauge as
a map between appropriate generalized Sobolev spaces.

This approach of using the solenoidal result for a problem in the normal gauge does not work for the
pseudolinearization directly, however, because with J being the generalized X-ray transform of the Stefanov-
Uhlmann formula in Lemma 7.2, namely the tensorial analogue of J in (2.2) in our fixed conformal class
setting, J is not expected to annihilate potential tensors since J is not the actual tensorial X-ray transform.
Indeed, once the normal coordinates are fixed, and we are working in a fixed region (so we expect g = g̃,
without diffeomorphism issues), we can make the tangential-tangential tensor g − g̃ solenoidal relative to a
reference metric in the fixed region, changing g−g̃ by a potential term dsv by enforcing δsz(e−z/xc(g′−g̃′)) = 0,
but this eliminates the identity J(g′ − g̃′) = 0.
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So for our boundary rigidity problem, relying on the pseudolinearization formula, one needs to argue more
directly for the left invertibility of the weighted transform J in the normal gauge. The most direct way to
proceed would be to deal with the lack of ellipticity of e−z/xcL′2Je

z/xc in some way. While in principle the
latter is relatively benign, it gets worse with the order of the tensor: for one-forms it should be roughly real
principal type, except that it is really real principal type times its adjoint (so quadratic vanishing at the
characteristic set, but with extra structure); in the case of symmetric 2-tensors we have quadratic vanishing
in the first place so quartic once one looks at the operator times its adjoint.

This large degeneracy, however, can be improved as follows. We complement the operator L′2 by a larger
collection of operators L′j , j = 0, 1. All L′j will be similar integrals, but mapping to different spaces, not just
to tangential-tangential 2-tensors; in fact, they can be considered as the parts of the original L2 mapping into
other components, such as normal-tangential, so altogether one considers L2I = (L′0I, L

′
1I, L

′
2I). After the

exponential conjugation this becomes a pseudodifferential operator between different bundles (tangential-
tangential symmetric tensors to all symmetric tensors). This is still not ‘elliptic’ (here meaning having an
injective principal symbol), but the failure of ellipticity is less pronounced than for the conjugate of L′2I.
Indeed, for the related one-form problem (in the normal gauge) this approach easily gives self-contained
results, such as semi-Fredholm theory; we sketch this in Section 4 using the microlocal real principal type and
radial point tools as in [41] and [40]. However, for symmetric 2-tensors in the normal gauge the degeneracy
is still quadratic, and thus harder to deal with for a direct semi-Fredholm theory, though the improved
structure gives rise to precise mapping properties of the operator itself on suitable Sobolev spaces with extra
regularity properties.

So, instead of proceeding this way, in the 2-tensor setting we combine the very direct approach to the
pseudolinearization transform J and the relationship between the solenoidal and normal gauge results for
the actual X-ray transform I. This can be done because for I we have an actual left inverse, and as we show
in Section 6.2, for small c > 0, the operator Nz induced by I is close to the operator Ñz induced by J as
a map between the function spaces of the left invertibility result. Due to the invertibility of Nz, we conclude

the same for Ñz.
Ultimately, this means that the general analysis of tensorial X-ray transforms in a manner that is suitable

for the weighted version, which is done in Sections 5, is used as the regularity theory for the actual X-ray
transform in the normal gauge, to obtain the sharp results in Section 6.1, as well as to have desired mapping
(including perturbation stability) properties of the weighted transform. These results are then used in
Section 7 to prove the actual boundary rigidity results.

A notational warning: from Section 4, the maps L′j of this last section are denoted by Lj, and L takes
the place of L2 (or L1 in the one-form setting).

3. The transform in the normal gauge

3.1. The scalar operator L. We first recall the definition of L from [36] and [38]. For this, it is convenient

to consider M as a domain in a larger manifold without boundary M̃ by extending M and the metric across
∂M . The basic input is a function x̃ whose level sets near the zero level set are strictly concave, from the side
of superlevel sets (at least near the 0-level set) (it suffices if this only holds on the intersection of these level
sets with M) whose 0 level set only intersects M at ∂M ; an example would be the negative of a boundary
defining function of our strictly convex domain. We also need that {x̃ ≥ −c} ∩M is compact for c ≥ 0
sufficiently small, and we let

Ω = Ωc = {x̃ > −c} ∩M
be the region in which, for small c > 0, we want to recover a tensor in normal gauge from its X-ray transform.
In the context of the elliptic results, both for functions, as in [38], and in the tensor case, as in [36], this
function x̃ need not have any further connections with the metric g for which we study the X-ray transform.
However, for obtaining optimal estimates in our normal gauge, which is crucial for a perturbation stable
result, it will be important that the metric itself is in the normal gauge near {x̃ = 0} ∩ M , i.e. writing
the region as a subset of (−δ0, δ0)x̃ × Y with respect to a product decomposition, the metric is of the form
g = dx̃2 + h(x̃, y, dy).
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Concretely L is defined as follows in [36]. Near ∂Ω, one can use coordinates (x, y), with x = xc = x̃+ c as
before, y coordinates on ∂Ω, or better yet H = {x̃ = 0}. Correspondingly, elements of TpM can be written
as λ∂x + ω ∂y. The unit speed geodesics which are close to being tangential to level sets of x̃ (with the
tangential ones being given by λ = 0) through a point p = (x, y) can be parameterized by say (λ, ω) (with
the actual unit speed being a positive multiple of this) where ω is unit length with respect to a metric on H
(say a Euclidean metric if one is working in local coordinates). These have the form (cf. [38, Equation (3.17)])

(3.1) (x+ λt+ α(x, y, λ, ω)t2 +O(t3), y + ωt+O(t2);

the strict concavity of the level sets of x̃, as viewed from the super-level sets means that α(x, y, 0, ω) is

positive. Thus, by this concavity, (for λ sufficiently small) d2

dt2 x̃ ◦ γ is bounded below by a positive constant
along geodesics in Ωc, as long as c is small, which in turn means that, for sufficiently small C1 > 0, geodesics
with |λ| < C1

√
x indeed remain in x ≥ 0 (as long as they are in M). Thus, if If is known along Ω-local

geodesics, meaning geodesic segments with endpoints on ∂M , contained within Ω, it is known for geodesics
(x, y, λ, ω) in this range. As in [38] we use a smaller range |λ| < C2x because of analytic advantages, namely
the ability work in the well-behaved scattering algebra even though in principle one might obtain stronger
estimates if the larger range is used (polynomial rather than exponential weights). Thus, for χ smooth, even,
non-negative, of compact support, to be specified, in the function case [38] considered the operator

Lv(z) = x−2

∫
χ(λ/x)v(γx,y,λ,ω) dλ dω,

where v is a (locally, i.e. on suppχ, defined) function on the space of geodesics, here parameterized by
(x, y, λ, ω). (In fact, L had a factor x−1 only in [38], with another x−1 placed elsewhere; here we simply
combine these, as was also done in [34, Section 3]. Also, the particular measure dλ dω is irrelevant; any
smooth positive multiple would work equally well.) The key result was that LI is a pseudodifferential
operator of a certain class on

(3.2) X = {x ≥ 0},
considered as a manifold with boundary; note that only a neighborhood of Ω in M̃ actually matters here
due to the support of the functions to which we apply I. An important point is that the artificial boundary
that we introduced, {x = 0}, is what is actually important, the original boundary of M simply plays a role
via constraining the support of the functions f we consider.

3.2. Scattering pseudodifferential operators. More precisely then, the pseudodifferential operator class
is that of scattering pseudodifferential operators, introduced by Melrose in [19] in this generality, but having
precedents in Rn in the works of Parenti and Shubin [24, 27], and in this case it is also a special case of
Hörmander’s Weyl calculus with product type symbols [10]. Thus, on Rn the class of symbols a ∈ Sm,l one
considers are ones with the behavior

|Dα
zD

β
ζ a(z, ζ)| ≤ Cα,β〈z〉l−|α|〈ζ〉m−|β|, α, β ∈ Nn,

quantized in the usual way, for instance as

Au(z) = (2π)−n
∫
ei(z−z

′)·ζa(z, ζ)u(z′) dz′ dζ,

understood as an oscillatory integral; one calls A a scattering pseudodifferential operator of order (m, l).
A typical example of such an A is a scattering differential operator of order m, thus of order (m, 0) as a
scattering pseudodifferential operator: A =

∑
|α|≤m aα(z)Dα

z , where for each α, aα is a 0-th order symbol

on Rn: |Dγaα(z)| ≤ Cαγ〈z〉−|γ|, γ ∈ Nn. A special case is when each aα is a classical symbol of order
0, i.e. it has an expansion of the form

∑∞
j=0 aα,j(z/|z|)|z|−j in the asymptotic regime |z| → ∞. These

operators form an algebra, i.e. if a ∈ Sm,l, b ∈ Sm′,l′ , with corresponding operators A = Op(a), B = Op(b),

then AB = Op(c) with c ∈ Sm+m′,l+l′ ; moreover c − ab ∈ Sm+m′−1,l+l′−1. Correspondingly it is useful to
introduce the principal symbol, which is just the class [a] of a in Sm,l/Sm−1,l−1, suppressing the orders m, l
in the notation of the class; then [c] = [a][b]. Notice that this algebra is commutative to leading order both



12 PLAMEN STEFANOV, GUNTHER UHLMANN AND ANDRAS VASY

in the differential and decay sense, i.e. if a ∈ Sm,l, b ∈ Sm
′,l′ , with corresponding operators A = Op(a),

B = Op(b), then [A,B] = Op(c), c ∈ Sm+m′−1,l+l′−1,

c− 1

i

n∑
j=1

( ∂a
∂ζj

∂b

∂zj
− ∂a

∂zj

∂b

∂ζj

)
∈ Sm+m′−2,l+l′−2.

We introduce

Hab =

n∑
j=1

( ∂a
∂ζj

∂b

∂zj
− ∂a

∂zj

∂b

∂ζj

)
,

where Ha =
∑n
j=1

(
∂a
∂ζj

∂
∂zj
− ∂a
∂zj

∂
∂ζj

)
, is the Hamilton vector field of a. These operators also act on weighted

Sobolev spaces, Hs,r = 〈z〉−rHs(Rn) in the sense that for a ∈ Sm,l, Op(a) : Hs,r → Hs−m,r−l in a continuous
linear manner.

In order to extend this to manifolds with boundary, it is useful to compactify Rn radially (or geodesically)
as a ball Rn; different points on ∂Rn correspond to going to infinity in different directions in Rn. Concretely
this is achieved by identifying, say, the exterior of the closed unit ball with (1,∞)r × Sn−1

ω via ‘spherical
coordinates’, which in turn is identified with (0, 1)x × Sn−1

ω via the map r 7→ r−1, to which we glue the
boundary x = 0, i.e. we consider it as a subset of [0, 1)x×Sn−1

ω . (More formally, one takes the disjoint union
of [0, 1)x×Sn−1 and Rn, and identifies (0, 1)×Sn−1 with the exterior of the closed unit ball, as above.) Note
that for this compactification of Rn a classical symbol of order 0 on Rn is simply a C∞ function on Rn; the
asymptotic expansion

∑∞
j=0 aα,j(z/|z|)|z|−j above is actually Taylor series at x = 0:

∑∞
j=0 x

jaα,j(ω).
It is also instructive to see what happens to scattering vector fields in this compactification: V =∑
|α|=1 aαD

α. A straightforward computation shows that Dj becomes a vector field on Rn which is of

the form xV ′, where V ′ a smooth vector field tangent to ∂Rn. In fact, when aα is classical of order 0, such V
correspond exactly to the vector fields on Rn of the form xV ′, V ′ a smooth vector field tangent to ∂Rn. We use
the notation Vsc(Rn) for the collection of these vector fields on Rn. The corresponding scattering differential
operators are denoted by Diffsc(Rn), and the scattering pseudodifferential operators by Ψm,l

sc (Rn). Finally,
the weighted Sobolev spaces become weighted scattering Sobolev spaces, Hs,r

sc (Rn) = Hs,r; for s ≥ 0 integer
thus elements are tempered distributions u with x−rV1 . . . Vku ∈ L2(Rn) for all Vj ∈ Vsc(Rn), 1 ≤ j ≤ k and
k ≤ s (including k = 0).

If a ∈ S0,0 is classical (both in the z and ζ sense), i.e. it is (under the identification above) an element of
C∞(Rnz × Rnζ ), the principal symbol [a] can be considered as the restriction of a to

∂(Rnz × Rnζ ) = (Rnz × ∂Rnζ ) ∪ (∂Rnz × Rnζ ),

since if its restriction to the boundary vanishes then a ∈ S−1,−1. Here Rnz × ∂Rnζ is fiber infinity and

∂Rnz × Rnζ is base infinity. Then the principal symbol of Op(a) Op(b) is ab. The case of general orders m, l

can be reduced to this by removing fixed elliptic factors, such as 〈ζ〉m〈z〉l. The commutator version is that
is a ∈ S1,1, classical, then Ha is a smooth vector field on Rnz ×Rnζ tangent to all boundary faces. In general,

we define the rescaled Hamilton vector field scHa by removing the elliptic factor 〈ζ〉m−1〈z〉l−1:

scHa = 〈ζ〉−m+1〈z〉−l+1Ha.

In addition to the leading order behavior captured by the principal symbol, one can also talk about the
behavior of a modulo S−∞,−∞ microlocally; this is most natural from our compactified perspective. Thus,
the operator wave front set, WF′sc(Op(a)), is a subset of ∂(Rnz ×Rnζ ), with a point α ∈ ∂(Rnz ×Rnζ ) not being

in WF′sc(Op(a)) if there exists a neighborhood of α in Rnz × Rnζ restricted to which a is in S−∞,−∞. This
notion then possesses the usual properties of wave front sets, for instance

WF′sc(Op(a) Op(b)) ⊂WF′sc(Op(a)) ∩WF′sc(Op(b)).

In the same vein, one can talk about ellipticity at a point α ∈ ∂(Rnz × Rnζ ), meaning that a is invertible, in

S−m,−l, when restricted to a neighborhood of α.
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One similarly has a wave front set WFsc(u) for tempered distributions u: α ∈ ∂(Rnz × Rnζ ) is not in

WFsc(u) if there is a symbol a ∈ S0,0 such that a is elliptic at α and Op(a)u is Schwartz.
The extension of Ψsc(Rn) to manifolds with boundary X, with the result denoted by Ψsc(X), is then via

local coordinate charts, identifying open sets of X and Rn (as in the standard theory of pseudodifferential
operators on manifolds for X◦ and Rn), with the following additional requirement. When we restrict the
Schwartz kernel of any element of Ψsc(X) to the product of disjoint open sets in the left and right factors
X of X ×X, it vanishes to infinite order at the boundary of either factor, i.e. is, when localized to such a
product, in Ċ∞(X×X). Note that open subsets of Rn near ∂Rn behave like asymptotic cones in view of the
compactification. Notice that in the context of our problem this means that even though for g, {x = 0} is at
a ‘finite’ location (finite distance from ∂M , say), analytically we push it to infinity by using the scattering
algebra. Returning to the general discussion, one also needs to allow vector bundles; this is done as for
standard pseudodifferential operators, using local trivializations, in which one simply has a matrix of scalar
pseudodifferential operators. For more details in the present context we refer to [38, 36]. For a complete
discussion we refer to [19] and to [40].

This is also a good point to introduce the notation Vb(X) on a manifold with boundary: this is the
collection, indeed Lie algebra, of smooth vector fields on X tangent to ∂X. Thus, Vsc(X) = xVb(X) if x
is a boundary defining function of X. This class will play a role in the appendix. Note that if yj are local
coordinates on ∂X, j = 1, . . . , n − 1, then x∂x, ∂y1 , . . . , ∂yn−1

are a local basis of elements of Vb(X), with
C∞(X) coefficients; the analogue for Vsc(X) is x2∂x, x∂y1 , . . . , x∂yn−1

. These vector fields are then exactly

the local sections of vector bundles bTX, resp. scTX, with the same bases. The dual bundles bT ∗X, resp.
scT ∗X, then have bases dx

x , dy1, . . . , dyn−1, resp. dxx2 ,
dy1
x , . . . , dyn−1

x . Thus, scattering covectors have the form

ξ dxx2 +
∑n−1
j=1 ηj

dyj
x . Tensorial constructions apply as usual, so for instance one can construct Sym2scT ∗X;

for p ∈ X, α ∈ Sym2scT ∗X gives a bilinear map from scTpX to C. Notice also that with this notation scHa

is an element of Vb(Rnz × Rnζ ), or in general scHa ∈ Vb(scT ∗X), where scT ∗X is the fiber-compactification of
scT ∗X, i.e. the fibers of scT ∗X (which can be identified with Rn) are compactified as Rn. Again, see [40] for
a more detailed discussion in this context.

3.3. The tensorial operator L. In [36], with v still a locally defined function on the space of geodesics,
for one-forms we considered the map L

(3.3) Lv(z) =

∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ∂x + ω ∂y) dλ dω,

while for 2-tensors

(3.4) Lv(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ∂x + ω ∂y)⊗ gsc(λ∂x + ω ∂y) dλ dω,

so in the two cases L maps into one-forms, resp. symmetric 2-cotensors. Here gsc, of no relation to g, is a
scattering metric (smooth section of Sym2scT ∗X) used to convert vectors into covectors, of the form

gsc = x−4 dx2 + x−2h,

with h being a boundary metric in a warped product decomposition of a neighborhood of the boundary.
Recall that the Euclidean metric becomes such a scattering metric when Rn is radially compactified; indeed,
this was the reason for Melrose’s introduction of this pseudodifferential algebra: generalizing asymptotically
Euclidean metrics. While the product decomposition near ∂X relative to which gsc is a warped product did
not need to have any relation to the underlying metric g we are interested in, in our normal gauge discussion
we use gsc which is warped product in the product decomposition in which g is in a normal gauge.

We note here that geodesics of a scattering metric gsc are the projections to X of the integral curves of
the Hamilton vector field Hgsc ; it is actually better to consider scHgsc (which reparameterizes these), for one

has a non-degenerate flow on scT ∗X (and indeed scT ∗X). Note that if one is interested in finite points at
base infinity, i.e. points in scT ∗∂XX, it suffices to renormalize Hgsc by the weight, i.e. consider x−1Hgsc which
we also denote by scHgsc .
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With L defined as in (3.3)-(3.4), it is shown in [36] that the exponentially conjugated operator

Nz = e−z/xLIez/x

is an element of Ψ−1,0
sc (X) (with values in scT ∗X or Sym2scT ∗X), and for (sufficiently large, in the case of

two tensors) z > 0, it is elliptic both at finite points at spatial infinity ∂X, i.e. points in scT ∗pX, p ∈ ∂X,
and at fiber infinity on the kernel of the principal symbol of the adjoint, relative to gsc, of the conjugated
symmetric gradient

ds
z = e−z/xdsez/x

of g (so ds is the symmetric gradient of g), namely on the kernel of the principal symbol of

δsz = ez/xδse−z/x, δs = (ds)∗.

This allows one to conclude that

Nz + ds
zQδ

s
z ∈ Ψ−1,0

sc (X; Sym2scT ∗X,Sym2scT ∗X)

is elliptic, over a neighborhood of Ω (which is what is relevant), for suitable Q ∈ Ψ−3,0
sc (X; scT ∗, scT ∗X).

The rest of [36] deals with arranging the solenoidal gauge and using the parametrix for this elliptic operator;
this actually involves two extensions from Ω. It also uses that when c > 0 used in defining Ω is small, the
error of the parametrix when sandwiched between relevant cutoffs arising from the extensions is small, and
thus the appropriate error term can actually be removed by a convergent Neumann series. The reason this
smallness holds is that, similarly to the discussion in the scalar setting in [38], the map

c 7→ Nz + dszQδ
s
z ∈ Ψ−1,0

sc (Xc)

is continuous, meaning that if one takes a fixed space, say X0, and identifies Xc (for c small) with it via a
translation, then the resulting map into Ψ−1,0

sc (X0) is continuous. Furthermore, the ellipticity (over a fixed
neighborhood of the image of Ωc) also holds uniformly in c, and thus one has a parametrix with an error
which is uniformly bounded in Ψ−∞,−∞sc (X0), thus when localized to x < c (the image of Ωc under the
translation) it is bounded by a constant multiple of c in any weighted Sobolev operator norm, and thus is
small when c is small.

As in the proof of boundary rigidity in the fixed conformal class setting of [34], it is also important to
see how Nz (and ds

zQδ
s
z) depend on the metric g. Completely analogously to the scalar case, see [34,

Proposition 3.2] and the remarks preceding it connecting g to Γ± in the notation of that paper, we have
the following. That dependence is continuous in the same sense as above, as long as g is close in a Ck-sense
(for suitable k) to a fixed metric g0 (in the region we are interested in), i.e. any seminorm in Ψ−1,0

sc (X0) is
controlled by some seminorm of g in C∞ in the relevant region.

3.4. Ellipticity of Nz at finite points, i.e. at points in scT ∗∂XX. An inspection of the proof of [36,
Lemma 3.5] shows that Nz is elliptic at finite points even on tangential tensors (the kernel of the restriction
to the normal component, rather than the kernel of the principal symbol of δsz); in the case of symmetric
2-cotensors this holds for sufficiently large z > 0 as in Lemma 3.5 of [36]. Indeed, in the case of one-forms,
in Lemma 3.5 of [36] the principal symbol of Nz (at x = 0) is calculated to be (see also the next paragraph
below regarding how this computation proceeds)

(3.5)

(ξ2 + z2)−1/2∫
Sn−2

ν−1/2

(
−ν(ξ+iz)

ξ2+z2 (Ŷ · η)

Ŷ

)
⊗
(
−ν(ξ−iz)

ξ2+z2 (Ŷ · η) 〈Ŷ , ·〉
)
e−(Ŷ ·η)2/(2ν(ξ2+z2)) dŶ

for an appropriate choice of χ (exponentially decaying, not compactly supported, which is later fixed, as
discussed below), up to an overall elliptic factor, and in coordinates in which at the point y, where the
symbol is computed, the metric h is the Euclidean metric. Here the block-vector notation corresponds to the
decomposition into normal and tangential components, and where ν = z−1α, α = α(0, y, 0, Ŷ ), α as in (3.1).
Thus, this is a superposition of positive (in the sense of non-negative) operators, which is thus itself positive.
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Moreover, when restricting to tangential forms, i.e. those with vanishing first components, and projecting to
the tangential components, we get

(3.6) (ξ2 + z2)−1/2

∫
Sn−2

ν−1/2Ŷ ⊗ 〈Ŷ , ·〉e−(Ŷ ·η)2/(2ν(ξ2+z2)) dŶ ,

which is positive definite: indeed, it is certainly non-negative, and when applied to v, if v 6= 0 is tangential,
taking Ŷ = v/|v| shows the non-vanishing of the integral. The case of symmetric 2-cotensors is similar;

when restricted to tangential-tangential tensors one simply needs to replace Ŷ ⊗ 〈Ŷ , ·〉 by its analogue

(Ŷ ⊗ Ŷ )⊗ 〈Ŷ ⊗ Ŷ , ·〉; since tensors of the form Ŷ ⊗ Ŷ span all tangential-tangential tensors, the conclusion
follows. Note that one actually has to approximate a χ of compact support by these exponentially decaying
χ = χ0, e.g. via taking χk = φ(./k)χ0, φ ≥ 0 even identically 1 near 0, of compact support, and letting
k → ∞; we then have that the principal symbols of the corresponding operators converge; thus given any
compact subset of scT ∗∂XX, for sufficiently large k the operator given by χk is elliptic. (This issue does
not arise in the setting of [36], for there one also has ellipticity at fiber infinity, thus one can work with
the fiber compactified cotangent bundle, scT ∗∂XX.) Of course, once we arrange appropriate estimates
at fiber infinity to deal with the lack of ellipticity of the principal symbol there in the current setting
(tangential forms/tensors), the estimates also apply in a neighborhood of fiber infinity, thus this compact
subset statement is sufficient for our purposes.

3.5. The Schwartz kernel of scattering pseudodifferential operators. Given the results just recalled,
it remains to consider the principal symbol, and ellipticity, at fiber infinity. In [38, 36] this was analyzed
using the explicit Schwartz kernel; indeed this was already the case for the analysis at finite points considered
in the previous paragraph. In order to connect the present paper with these earlier works we first recall
some notation. Instead of the oscillatory integral definition (via localization, in case of a manifold with
boundary) discussed above, Ψsc(X) can be equally well characterized by the statement that the Schwartz
kernel of A ∈ Ψsc(X), which is a priori a tempered distribution on X2, is a conormal distribution on a
certain resolution of X2, called the scattering double space X2

sc; again this was introduced by Melrose in
[19]. Here conormality is both to the (lifted) diagonal and to the boundary hypersurfaces, of which only
one sees non-trivial, i.e. non-infinite order vanishing, behavior, namely the scattering front face. In order to
make this more concrete, we consider coordinates (x, y) on X, x a (local) boundary defining function and
y = (y1, . . . , yn−1) as before, and write the corresponding coordinates on X2 = X × X as (x, y, x′, y′), i.e.
the primed coordinates are the pullback of (x, y) from the second factor, the unprimed from the first factor.
Coordinates on X2

sc near the scattering front face then are

x, y, X =
x′ − x
x2

, Y =
y′ − y
x

, x ≥ 0;

the lifted diagonal is {X = 0, Y = 0}, while the scattering front face is x = 0. In [38, 36] the lifted diagonal
was also blown up, which essentially means that ‘invariant spherical coordinates’ were introduced around it.
Thus, the conormal singularity to the diagonal, which corresponds to the exponential conjugate of L0I being
a pseudodifferential operator of order −1, becomes a conormal singularity at the new front face. Concretely,
in the region where |Y | > c|X|, c > 0 fixed (but arbitrary), which is the case on the support of L0I for

sufficiently small c when the cutoff χ is compactly supported, valid ‘coordinates’ (Ŷ below is in Sn−2) are

(3.7) x, y,
X

|Y | , Ŷ =
Y

|Y | , |Y |.

In these coordinates |Y | = 0 is the new front face, namely the lifted diagonal, and x = 0 is still the scattering

front face, and
∣∣ X
|Y |
∣∣ = |X|

|Y | < c in the region of interest. The principal symbol at base infinity, x = 0, of an

operator A ∈ Ψm,0
sc (X), evaluated at (0, y, ξ, η), is simply the (X,Y )-Fourier transform of the restriction of

its Schwartz kernel to the scattering front face, x = 0, evaluated at (−ξ,−η); the computation giving (3.5)
and its 2-tensor analogue is exactly the computation of this Fourier transform.
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We also introduce the notation

S =
X − α(Ŷ )|Y |2

|Y | , Ŷ =
Y

|Y | ,

and remark that S is a smooth function of the coordinates in (3.7). Then the Schwartz kernel of Nz at the
scattering front face x = 0 is, as in [36, Lemma 3.4], given by

e−zX |Y |−n+1χ(S)
((
S
dx

x2
+ Ŷ · dy

x

)(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

))
on one forms, respectively

e−zX |Y |−n+1χ(S)(((
S
dx

x2
+ Ŷ · dy

x

)
⊗
((
S
dx

x2
+ Ŷ · dy

x

))))
((

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
)
⊗
(

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
))

on 2-tensors, where Ŷ is regarded as a tangent vector which acts on covectors. Here

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

maps one forms to scalars, thus(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
⊗
(

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
)

maps symmetric 2-tensors to scalars, while S dxx2 + Ŷ · dyx maps scalars to one forms, so(
S
dx

x2
+ Ŷ · dy

x

)
⊗
(
S
dx

x2
+ Ŷ · dy

x

)
maps scalars to symmetric 2-tensors. In order to make the notation less confusing, we employ a matrix
notation, (

S
dx

x2
+ Ŷ · dy

x

)(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
=

(
S(S + 2α|Y |) S〈Ŷ , ·〉
Ŷ (S + 2α|Y |) Ŷ 〈Ŷ , ·〉

)
,

with the first column and row corresponding to dx
x2 , resp. x2∂x, and the second column and row to the

(co)normal vectors. For 2-tensors, as before, we use a decomposition

dx

x2
⊗ dx

x2
,
dx

x2
⊗ dy

x
,
dy

x
⊗ dx

x2
,
dy

x
⊗ dy

x
,

where the symmetry of the 2-tensor is the statement that the 2nd and 3rd (block) entries are the same. For
the actual endomorphism we write

S2

S〈Ŷ , ·〉1
S〈Ŷ , ·〉2

〈Ŷ , ·〉1〈Ŷ , ·〉2

((S + 2α|Y |)2Ŷ1Ŷ2 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉1 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉2 Ŷ1Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2
)
.

Here we write subscripts 1 and 2 for clarity on Ŷ to denote whether it is acting on the first or the second
factor, though this also immediately follows from its position within the matrix.

In the next two sections we further analyze these operators first in the 1-form, and then in the 2-tensor
setting, although the oscillatory integral approach will give us the precise results we need.
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4. One-forms and Fredholm theory in the normal gauge

We first consider the X-ray transform on 1-forms in the normal gauge. The overall form of the transform
is similar in the 2-tensor case, but it is more delicate since it is not purely dependent on a principal symbol
computation, so the 1-form transform will be a useful guide.

Since we intend to work with tangential forms and tensors, we start by defining L0 analogously to L, but
without the normal component in the output. Thus,

(4.1) L0v(z) =

∫
χ(λ/x)v(γx,y,λ,ω)gsc(ω ∂y) dλ dω,

while for 2-tensors

L0v(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)gsc(ω ∂y)⊗ gsc(ω ∂y) dλ dω.

Hence in the two cases L0 maps into tangential one-forms, resp. tangential-tangential symmetric 2-cotensors,
where gsc is a scattering metric (smooth section of Sym2scT ∗X) used to convert vectors into covectors, of
the form

gsc = x−4 dx2 + x−2h,

with h being a boundary metric in a warped product decomposition of a neighborhood of the boundary, and
with gsc of no relation to g. Then we have

gsc(ω ∂y) = x−2h(ω ∂y),

explaining the appearance of the diverse powers of x in the above formulae. In other words, L0 is the
composition of L, see (3.3) and (3.4), with projection to the tangential forms, resp. tangential-tangential
tensors, using the product structure.

Then we define

N0,z = e−z/xL0Ie
z/x

acting on tangential one forms, resp. symmetric 2-tensors. Thus, N0,z is the restriction of Nz to tangential
one forms or two tensors, composed with projection to the tangential forms, resp. tangential-tangential
tensors.

4.1. The lack of ellipticity of the principal symbol in the one-form case. The standard principal
symbol of Nz is that of the conormal singularity at the diagonal, i.e. X = 0, Y = 0. Writing (X,Y ) = Z,
(ξ, η) = ζ, we would need to evaluate the Z-Fourier transform of the Schwartz kernel of Nz as |ζ| → ∞.
This was discussed in [38] around Equation (3.8), including connecting it to the earlier computation of
Stefanov and Uhlmann [29]. Concretely, the leading order behavior, as |ζ| → ∞, of this Fourier transform

can be obtained by working on the blown-up space of the diagonal, with coordinates |Z|, Ẑ = Z
|Z| (as well as

z = (x, y)), and integrating the restriction of the Schwartz kernel to the front face, |Z|−1 = 0, after removing

the singular factor |Z|−n+1, along the equatorial sphere corresponding to ζ, and given by Ẑ · ζ = 0. Now,
in our setting, in view of the infinite order vanishing, indeed compact support, of the Schwartz kernel as
X/|Y | → ∞ (and Y bounded), we may work in semi-projective coordinates, i.e. in spherical coordinates in Y ,
but X/|Y | as the additional tangential variable, |Y | the defining function of the front face. The equatorial

sphere then becomes (X/|Y |)ξ + Ŷ · η = 0, with the integral relative to an appropriate positive density.

With S̃ = X/|Y |, keeping in mind that terms with extra vanishing factors at the front face, |Y | = 0 can be
dropped, we thus need to integrate(

S̃2 S̃〈Ŷ , ·〉
S̃Ŷ Ŷ 〈Ŷ , ·〉

)
χ(S̃) =

(
S̃

Ŷ

)
⊗
(
S̃ Ŷ

)
χ(S̃),

on this equatorial sphere in the case of one-forms. Now, for χ ≥ 0 this matrix is a positive multiple of
the projection to the span of (S̃, Ŷ ). As (S̃, Ŷ ) runs through the (ξ, η)-equatorial sphere, we are taking a
positive (in the sense of non-negative) linear combination of the projections to the span of the vectors in this

orthocomplement, with the weight being strictly positive as long as χ(S̃) > 0 at the point in question.
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Now, for tangential one forms, if we project the result to tangential one forms, i.e. if we replace Nz by
N0,z, this matrix simplifies to

Ŷ 〈Ŷ , ·〉χ(S̃).

Hence, working at a point (0, y, ξ, η) (considered as a homogeneous object, i.e. we are working at fiber

infinity) if we show that for each non-zero tangential vector w there is at least one (S̃, Ŷ ) with χ(S̃) > 0 and

ξS̃ + η · Ŷ = 0 and Ŷ ·w 6= 0, we conclude that the integral of the projections is positive, thus the principal
symbol of our operator is elliptic, on tangential forms. But this is straightforward if χ(0) > 0 and ξ 6= 0:

(1) if w 6= 0 and w is not a multiple of η, then take Ŷ orthogonal to η but not to w, S̃ = 0,

(2) if w = cη with w 6= 0 (so c and η do not vanish) then Ŷ · w = cŶ · η = −cξS̃ under the constraint

so we need non-zero S̃; but fixing any non-zero S̃ choosing Ŷ such that Ŷ · η = −ξS̃ (such Ŷ exists

again as η ∈ Rn−1, n ≥ 3), Ŷ · w 6= 0 follows. We thus choose S̃ small enough in order to ensure

χ(S̃) > 0, and apply this argument to find Ŷ .

This shows that the principal symbol is positive definite on tangential one-forms for ξ 6= 0; indeed it shows
that on Span{η}⊥, the subspace of Rn−1 orthogonal to η, we also have positivity even if ξ = 0. Notice that
if we restrict to Span{η}⊥, but do not project the result to Span{η}⊥, the Span{η} component actually

vanishes at ξ = 0 as the integral is over Ŷ with Ŷ · η = 0, i.e. with Π⊥ the projection to Span{η}⊥,
σ−1,0(N0,z)Π⊥ = Π⊥σ−1,0(N0,z)Π⊥. On the other hand, still for ξ = 0, with Π‖ to projection to Span{η},
as the integral is over Ŷ with Ŷ · η = 0, σ−1,0(N0,z)Π‖ = 0. Thus, in the decomposition of tangential
covectors into Span{η}⊥ ⊕ Span{η}, σ−1,0(N0,z) (mapping into Span{η}⊥) has matrix of the form, with O
denoting behavior as ξ → 0, (

O(1) O(ξ)
O(ξ) O(ξ)

)
,

where all terms are order (−1, 0) (so they have appropriate elliptic prefactors) and the O(1) term is elliptic.
In fact, the (1,1) term Π‖σ−1,0(N0,z)Π‖ is non-negative, so it necessarily is O(ξ2)! Thus, the difficulty in
obtaining a non-degenerate problem is Span{η} when ξ = 0.

4.2. The operator L̃1: first version. To deal with Span{η} when ξ = 0, we also consider another operator.
For this purpose it is convenient to replace χ by a function χ1 which is not even. It is straightforward to
check how this affects the computation of the principal symbol at fiber infinity: one has to replace the result
by a sum over ± signs, where both Ŷ and S are evaluated with both the + sign and the − sign. Thus, for
instance the Schwartz kernel of Nz on one-forms is at the scattering front face∑

±
e−zX |Y |−n+1χ1(±S)

((
± S dx

x2
± Ŷ · dy

x

)(
± (S + 2α|Y |)(x2∂x)± Ŷ · (x∂y)

))
.

Here the ± are all the same, thus the cancel out in the product, and one is left with
∑
± χ1(±S) times an

expression independent of the choice of ±, i.e. only the even part of χ1 enters into Nz and thus non-even χ1

are not interesting for our choice of L. Thus, we need to modify the form of L as well; concretely consider
L̃1 defined by

L̃1v(z) = x−1

∫
χ1(λ/x)v(γx,y,λ,ω) dλ dω,

which maps into the scalars! Here the power of x in front is one lower than that of L on one forms (which
is x0 = 1), because, as discussed in [36], both factors of γ̇ in I, which are still present, and gsc(γ̇), which are
no longer present, give rise to factors of x−1 in the integral expression, and we normalize them by putting
the corresponding power of x into the definition of L, with the function case having an x−2 due to the
localization itself. Then the Schwartz kernel of

Ñ1,z = e−z/xL̃1Ie
z/x
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on the scattering front face is, for not necessarily even χ1,∑
±
e−zX |Y |−n+1χ1(±S)

(
± (S + 2α|Y |)(x2∂x)± Ŷ · (x∂y)

)
= e−zX |Y |−n+1(χ1(S)− χ1(−S))

(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
,

so now odd χ1 give non-trivial results. In particular, on tangential one-forms this is

e−zX |Y |−n+1(χ1(S)− χ1(−S))Ŷ · (x∂y).

The corresponding principal symbol at fiber infinity is still the integral over the equatorial sphere ξS̃+η·Ŷ = 0
of

(χ1(S̃)− χ1(−S̃))Ŷ

up to an overall elliptic factor. Applied to elements of Span{η}, restricted to the equatorial sphere, this is

(χ1(S̃)− χ1(−S̃))ξS̃,

which is twice the even part of S̃χ1(S̃) times ξ. Thus, for odd χ1, as long as χ1(S̃) > 0 for some S̃ > 0 and
χ1 ≥ 0 on (0,∞), the principal symbol at fiber infinity, restricted to Span{η}, is a positive multiple of ξ (up to

an overall elliptic factor). On the other hand, at ξ = 0, the integral is simply over Ŷ orthogonal to η, and the

integral vanishes as the integrand is odd in Ŷ . Correspondingly, in the decomposition Span{η}⊥⊕ Span{η},
σ−1,0(Ñ1,z) at fiber infinity is an elliptic multiple of(

bξ aξ
)

with a > 0.

4.3. The operator L1: second version. There is a different way of arriving at the operator L̃1, or
rather a very similar operator L1 which works equally well. Namely, if one considers L as a map restricted to
tangential one forms, but, unlike L0, mapping not into tangential forms but all one-forms, without projecting
out the normal, dxx2 , component, the normal projection L1 of L is exactly L̃1 with appropriate χ1. Indeed, this
component arises from gsc(λ∂x) (as opposed to gsc(ω∂y), cf. (4.1)) for a warped product scattering metric
gsc, which is λx−4 dx = x−2(λx−2 dx) (as opposed to x−2h(ω∂y) = x−1(x−1h(ω∂y)), with the parenthesized
factor being a smooth scattering one-form; the trivialization factors out x−2 dx. Thus, recalling (3.3), the
normal component of Lv is∫

χ(λ/x)v(γx,y,λ,ω)x−2λ dλ dω = x−1

∫
χ1(λ/x)v(γx,y,λ,ω) dλ dω,

this is exactly L̃1 with χ1(s) = sχ(s). In this paper, from now on, we shall work with L1 only, and not with

L̃1. We also write
N1,z = e−z/xL1Ie

z/x,

acting as a map from tangential one forms to scalars.

4.4. Microlocal projections. Before we proceed with our computations, it is useful to have a decomposi-
tion when one has an orthogonal projection at the principal symbol level, such as Π⊥ and Π‖.

Proposition 4.1. Suppose that over an open subset U of ∂scT ∗X, a symbol Π of order (0, 0) is orthogonal
projection to a subbundle of the pullback of a vector bundle E, with a Hermitian inner product, over X to
scT ∗X by the bundle projection map, so Π2 = Π and Π∗ = Π. Then for any U1 ⊂ U1 ⊂ U , there exists
P ∈ Ψ0,0

sc (X) such that microlocally on U1, the principal symbol of P is Π, and furthermore P 2 = P , P ∗ = P
microlocally, i.e. WF′sc(P 2 − P ) ∩ U1 = ∅, WF′sc(P − P ∗) ∩ U1 = ∅.
Proof. This is a standard iterative construction, which is completely microlocal. We first write down the
argument with U1 = U = ∂scT ∗X, i.e. globally, and then simply remark on its microlocal nature.

One starts by taking any operator P0 ∈ Ψ0,0
sc with principal symbol Π; one can replace P0 by 1

2 (P0 + P ∗0 )

and thus assume that it is self-adjoint. Now let E1 = P 2
0 − P0 ∈ Ψ−1,−1

sc be the error of P0 in being a
projection (note that the principal symbol of P 2

0 − P0 in Ψ0,0
sc is Π2 − Π = 0, hence its membership in
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Ψ−1,−1
sc ). Note that P0E1 = P 3

0 − P 2
0 = E1P0, so if e1 is the principal symbol of E1, then Πe1 = e1Π. Now

we want to correct P0 by adding P1 ∈ Ψ−1,−1
sc so that P ∗1 = P1 and (P0 + P1)2 − (P0 + P1) ∈ Ψ−2,−2

sc has
lower order than E1 = P 2

0 − P0; note that E∗1 = E1. We compute this:

(P0 + P1)2 − (P0 + P1) = P 2
0 − P0 + P0P1 + P1P0 − P1 + P 2

1 = E1 + P0P1 + P1P0 − P1 + F2,

where F2 ∈ Ψ−2,−2
sc , so irrelevant for our conclusion on the improved projection property. Hence, the

membership of (P0 + P1)2 − (P0 + P1) in Ψ−2,−2
sc is equivalent to the principal symbol p1 of P1 satisfying

e1 + Πp1 + p1Π− p1 = 0. So let
p1 = −Πe1Π + (1−Π)e1(1−Π);

notice that p∗1 = p1 since e∗1 = e1 (being the principal symbol of a symmetric operator). Then, as Π2 = Π,
Π(1−Π) = 0,

e1 + Πp1 + p1Π− p1 = e1 −Πe1Π−Πe1Π + Πe1Π− (1−Π)e1(1−Π)

= e1 −Πe1Π− (1−Π)e1(1−Π) = 0

since e1 = Πe1Π + Πe1(1−Π) + (1−Π)e1Π + (1−Π)e1(1−Π) = Πe1Π + (1−Π)e1(1−Π) as e1 commutes
with Π, so Πe1(1−Π) = 0, etc. Thus, e1 + Πp1 + p1Π− p1 = 0 holds. Taking any P1 with principal symbol
p1, replace P1 by 1

2 (P1 + P ∗1 ) so one has self-adjointness as well (and still the same principal symbol), we

have the desired property (P0 + P1)2 − (P0 + P1) ∈ Ψ−2,−2
sc .

The general inductive procedure is completely similar; in step j + 1, j ≥ 0 (so j = 0 above), if (P (j))2 −
P (j) = Ej+1 ∈ Ψ−j−1,−j−1

sc and (P (j))∗ = P (j), one finds Pj+1 ∈ Ψ−j−1,−j−1
sc such that P ∗j+1 = Pj+1, which

one can easily arrange at the end, and such that (P (j) + Pj+1)2 − (P (j) + Pj+1 ∈ Ψ−j−2,−j−2
sc ; for this

one needs (with analogous notation to above) ej+1 + Πpj+1 + Πpj+1 − pj+1 = 0, which is satisfied with
pj+1 = −Πej+1Π + (1−Π)ej+1(1−Π) by completely analogous arguments as above.

An asymptotic summation of
∑∞
j=0 Pj gives the desired operator P in the global case.

In the local case, when U is a proper subset of ∂scT ∗X, one simply notes that all the algebraic steps
are microlocal (i.e. local in ∂scT ∗X modulo Ψ−∞,−∞sc ) including the composition of microlocally defined
operators. One thus obtains a sequence of microlocal operators Pj defined on U ; taking any Q ∈ Ψ0,0

sc with

WF′sc(Q) ⊂ U , WF′sc(Id−Q) ∩ U1 = ∅, one then asymptotically sums
∑∞
j=0QPj (with each term making

sense modulo Ψ−∞,−∞sc ) to obtain the globally defined P with the desired properties. �

Remark 4.1. Proposition 4.1 means that if one has orthogonal projections Π⊥ and Id−Π⊥ to orthogonal
subspaces of, say, scT ∗X, microlocally on U , then one can take P⊥ as guaranteed by the proposition, so
P⊥, Id−P⊥ are microlocal orthogonal projections, write u = u⊥ + u‖ with u⊥ = P⊥v, u‖ = (Id−P⊥)w

microlocally on U1 (i.e. WFsc(u⊥ − P⊥v) ∩ U1 = ∅, etc.), and u⊥, u‖ are microlocally uniquely determined,

i.e. any other u′⊥, u′‖ satisfy WFsc(u′⊥ − u⊥) ∩ U1 = ∅, etc. Indeed, for such u‖, P
⊥u‖ has WFsc disjoint

from U1, so P⊥u = P⊥u⊥ = (P⊥)2v = P⊥v = u⊥ microlocally on U1, and similarly for u‖. Since operators
with wave front sets disjoint from the region we are working on are irrelevant for our considerations, we may
legitimately write one forms as (

u0

u1

)
,

where u0 is microlocally in RanP⊥, u1 in Ran(Id−P⊥): u0 = P⊥u, u1 = (Id−P⊥)u.

4.5. The principal symbol in the one form setting. In order to do the computation of the principal
symbol of LjI in x > 0 in a smooth (thus uniform) manner down to x = 0, in a way that also describes
the boundary principal symbol near fiber infinity (the previous computations were at fiber infinity only!), it
is convenient to utilize a direct oscillatory integral representation of LjI, j = 0, 1. With a slight abuse of
notation we write

Nz =

(
N0,z
N1,z

)
;

this is indeed the previous Nz with domain restricted to tangential one-forms is and with target space
decomposed according to the normal-tangential decomposition of one-forms.

Our initial goal in this section is to prove:
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Proposition 4.2. Let ξz = ξ + iz. The full symbol of the operator

Nz =

(
N0,z
N1,z

)
,

with domain restricted to tangential one-forms is, relative to the Span{η}-based decomposition of the domain,(
a

(0)
00 a

(1)
01 ξz + a

(0)
01

a
(0)
10 a

(1)
11 ξz + a

(0)
11

)
,

where a
(k)
ij ∈ S−1−j,0 for all i, j, k.

Furthermore, a
(k)
ij ∈ S−1−j,0 depend continuously on the metric g (with the C∞ topology on g) as long

as g is Ck-close (for suitable k) to a background metric g0 satisfying the strictly convex assumptions on the
metric, the boundary and the function x.

Remark 4.2. The statement of this proposition would be equally valid with ξz replaced by ξ, since one can
absorb the difference into the lower order, in terms of ξ-power, terms. The reason we phrase it this way is

that in Proposition 4.4 this will no longer be the case due to the order of e.g. a
(0)
01 there, with the decay order

being the issue.

Proof. We in fact do the complete form computation from scratch, initially using a general localizer χ̃
(potentially explicitly dependent on x, y, ω as well, with compact support in λ/x), not just the kind considered
above. Note that we already know that we have a pseudodifferential operator Aj,z = e−z/xLjIe

z/x ∈ Ψ−1,0
sc ,

where we do not restrict I to tangential forms, and with Aj,z the component mapping to tangential (j = 0)
or normal (j = 1) one forms given by

Aj,zf(z) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)

χ̃(z, λ/x, ω)f(γz,λ,ω(t))(γ̇z,λ,ω(t)) dt |dν|.
Here Aj,z is understood to apply only to f with support in M , thus for which the t-integral is in a fixed finite
interval, where h(y)ω is the image of ω under the metric h = h(y) induced on the level sets of x by gsc and
where |dν| is a smooth positive density in (λ, ω), such as |dλ dω|. Then Aj,z will be the left quantization of
the symbol aj,z where aj,z is the inverse Fourier transform in z′ of the integral. If KAj,z is the Schwartz
kernel, then in the sense of oscillatory integrals (or directly if the order of aj,z is sufficiently low)

KAj,z(z, z′) = (2π)−n
∫
ei(z−z

′)·ζaj,z(z, ζ) dζ,

i.e. (2π)−n times the Fourier transform in ζ of (z, ζ) 7→ eiz·ζaj,z(z, ζ), so taking the inverse Fourier transform
in z′ yields (2π)−naj,z(z, ζ)eiz·ζ , i.e.

(4.2) aj,z(z, ζ) = (2π)ne−iz·ζF−1
z′→ζKAj,z(z, z′).

Now,

KAj,z(z, z′) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)χ̃(z, λ/x, ω)

γ̇z,λ,ω(t)δ(z′ − γz,λ,ω(t)) dt |dν|

= (2π)−n
∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)χ̃(z, λ/x, ω)

γ̇z,λ,ω(t)e−iζ
′·(z′−γz,λ,ω(t)) dt |dν| |dζ ′|;

as remarked above, the t integral is actually over a fixed finite interval, say |t| < T , or one may explicitly
insert a compactly supported cutoff in t instead. (So the only non-compact domain of integration is in ζ ′,
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corresponding to the Fourier transform.) Thus, taking the inverse Fourier transform in z′ and evaluating at
ζ gives

aj,z(z, ζ) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(1−j)χ̃(z, λ/x, ω)

γ̇z,λ,ω(t)e−iz·ζeiζ·γz,λ,ω(t) dt |dν|.
Translating into sc-coordinates, writing (x, y) as local coordinates, scattering covectors as ξ dxx2 + η · dyx , and

γ = (γ(1), γ(2)), with γ(1) the x component, γ(2) the y component, we obtain

(4.3)

aj,z(x, y, ξ, η)

=

∫
e−z/xez/γ

(1)
x,y,λ,ω(t)x−jλj(h(y)ω)⊗(1−j)χ̃(x, y, λ/x, ω)γ̇x,y,λ,ω(t)

ei(ξ/x
2,η/x)·(γ(1)

x,y,λ,ω(t)−x,γ(2)
x,y,λ,ω(t)−y) dt |dν|

and

γx,y,λ,ω(t) = (x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t), y + ωt+ t2Γ(2)(x, y, λ, ω, t)).

As a scattering tangent vector, i.e. expressed in terms of x2∂x and x∂y, so as to act on sections of scT ∗X,

recalling that the x coordinate of the point we are working at is γ
(1)
x,y,λ,ω(t),

γ̇x,y,λ,ω(t) = γ
(1)
x,y,λ,ω(t)−1(γ

(1)
x,y,λ,ω(t)−1(λ+ 2αt+ t2Γ̃(1)(x, y, λ, ω, t)), ω + tΓ̃(2)(x, y, λ, ω, t)),

with Γ(1),Γ(2), Γ̃(1), Γ̃(2) smooth functions of x, y, λ, ω, t. We recall from [38] that we need to work in a
sufficiently small region so that there are no geometric complications. Thus the interval of integration in t,
i.e., T , is such that (with the dot denoting t-derivatives) γ̈(1)(t) is uniformly bounded below by a positive
constant in the region over which we integrate, see the discussion in [38] above Equation (3.1). Then T is
further reduced in Equations (3.3)-(3.4) so that the map sending (x, y, λ, ω, t) to the lift of (x, y, γx,y,λ,ω(t))
in the resolved space X2 with the diagonal being blown up, is a diffeomorphism in t ≥ 0, as well as t ≤ 0.
In the present paper the restriction to small T will occur in a closely related manner, when dealing with the
stationary phase expansion.

We change the variables of integration to t̂ = t/x, and λ̂ = λ/x, so the λ̂ integral is in fact over a fixed
compact interval, but the t̂ one is over |t̂| < T/x which grows as x→ 0. We get that the phase is

ξ(λ̂t̂+ αt̂2 + xt̂3Γ(1)(x, y, xλ̂, ω, xt̂)) + η · (ωt̂+ xt̂2Γ(2)(x, y, xλ̂, ω, xt̂)),

while the exponential damping factor (which we regard as a Schwartz function, part of the amplitude, when
one regards t̂ as a variable on R) is

−z/x+ z/γ(1)
x,y,λ,ω(t)

= −z(λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))x−1(x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))−1

= −z(λ̂t̂+ αt̂2 + t̂3xΓ̂(1)(x, y, xλ̂, ω, xt̂)),

with Γ̂(1) a smooth function. The only subtlety in applying the stationary phase lemma is that the domain
of integration in t̂ is not compact, so we need to explicitly deal with the region |t̂| ≥ 1, say, assuming that
the amplitude is Schwartz in t̂, uniformly in the other variables. Notice that as long as the first derivatives
of the phase in the integration variables have a lower bound c|(ξ, η)| |t̂|−k for some k, and for some c > 0, the
standard integration by parts argument gives the rapid decay of the integral in the large parameter |(ξ, η)|.
At x = 0 the phase is ξ(λ̂t̂+αt̂2)+ t̂η ·ω; if |t̂| ≥ 1, say, the λ̂ derivative is ξt̂, which is thus bounded below by
|ξ| in magnitude. The only place where one may not have rapid decay is at ξ = 0 (meaning, in the spherical

variables, ξ
|(ξ,η)| = 0). In this region one may use |η| as the large variable to simplify the notation slightly.

The phase is then with ξ̂ = ξ
|η| , η̂ = η

|η| ,

|η|(ξ̂(λ̂t̂+ αt̂2) + t̂η̂ · ω),
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with parameter differentials (ignoring the overall |η| factor)

ξ̂t̂ dλ̂, (t̂η̂ + t̂2ξ̂∂ωα) · dω, (ξ̂(λ̂+ 2αt̂) + η̂ · ω) dt̂.

With Ξ̂ = ξ̂t̂ and ρ = t̂−1 these are

Ξ̂ dλ̂, t̂(η̂ + Ξ̂∂ωα) · dω, (Ξ̂(ρλ̂+ 2α) + η̂ · ω) dt̂,

and now for critical points Ξ̂ must vanish (as we already knew from above), then the last of these gives
that η̂ · ω vanishes, but then the second gives that there cannot be a critical point (in |t̂| ≥ 1). While this
argument was at x = 0, the full phase derivatives are

(ξ̂t̂(1 + xt̂∂λα+ x2t̂2∂λΓ(1)) + η̂ · x2t̂2∂λΓ(2)) dλ̂,

(t̂η̂ + xt̂2η̂ · ∂ωΓ(2) + t̂2ξ̂∂ωα+ xt̂3ξ̂∂ωΓ(1)) · dω,
(ξ̂(λ̂+ 2αt̂+ 3xt̂2Γ(1) + x2t̂3∂tΓ

(1)) + η̂ · ω + 2xt̂Γ(2) + x2t̂2∂tΓ
(2)) dt̂,

i.e.

(Ξ̂(1 + t∂λα+ t2∂λΓ(1)) + η̂ · t2∂λΓ(2)) dλ̂,

t̂(η̂ + η̂ · t∂ωΓ(2) + Ξ̂∂ωα+ tΞ̂∂ωΓ(1)) · dω,
(Ξ̂(λ̂ρ+ 2α+ 3tΓ(1) + t2∂tΓ

(1)) + η̂ · ω + 2tΓ(2) + t2∂tΓ
(2)) dt̂,

and now all the additional terms are small if T is small (where |t| < T ), so the lack of critical points in the
x = 0 computation implies the analogous statement (in |t̂| > 1) for the general computation.

This implies that one can use the standard parameter-dependent stationary phase lemma, see e.g. [10,

Theorem 7.7.6]. At x = 0, the stationary points of the phase are t̂ = 0, ξλ̂+ η · ω = 0, which remain critical
points for x non-zero due to the xt̂2 vanishing of the other terms, and when T is small, so xt̂ is small, there
are no other critical points. (One can see this in a different way: above we worked with |t̂| ≥ 1, but for any
ε > 0, |t̂| ≥ ε would have worked equally.) These critical points lie on a smooth codimension 2 submanifold
of the parameter space. At x = 0, ξ = 0, in whose neighborhood we are focusing on, since this is where
N0,z is not elliptic, this submanifold is given by the vanishing of (t̂, ω‖), with ω‖ = ω · η̂ the η̂ component

of ω. Moreover, the (t̂, ω‖)-Hessian matrix there is

(
0 |η|
|η| 0

)
, which is elliptic. We thus use the stationary

phase lemma in the (t̂, ω‖) variables. This gives that all terms of the form t̂x times smooth functions will
have contributions which are 1 differentiable and 1 decay order lower than the main terms, while t̂3x-type
terms will have contributions which are 2 differentiable and 1 decay order lower than the main terms. For
us in this section only the principal terms matter, unlike in the 2-tensor case considered in the next section,
so any O(xt̂) terms are actually ignorable for our purposes. Moreover, when evaluated on tangential forms
(which is our interest here, as we are analyzing Nj,z), γ̇x,y,λ,ω(t) can be replaced by

γ̇
(2)
x,y,λ,ω = γ

(1)
x,y,λ,ω(t)−1(ω + t̂xΓ̃(2)(x, y, xλ̂, ω, xt̂))

= x−1(ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂))

with Γ̂(2) smooth.
Notice that Nj,zP

⊥, Nj,zP
‖, with P⊥, resp. P ‖, the microlocal orthogonal projection with principal

symbol Π⊥, resp. Π‖, cf. Proposition 4.1 and Remark 4.1, will have principal symbol given by the composition

of principal symbols. Thus, with χ̃ = χ(λ/x) = χ(λ̂), we have that on

Span{η}⊥ (k = 0), resp. Span{η} (k = 1),



24 PLAMEN STEFANOV, GUNTHER UHLMANN AND ANDRAS VASY

writing the sections in Span{η} factors explicitly as a multiple of η
|η| ,

(4.4)

aj,z(x, y, ξ, η) =

∫
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x)+ηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y))

e−z(λ̂t̂+αt̂2)

λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)k(xγ̇

(2)

x,y,xλ̂,ω
(xt̂)·)⊗(1−k) dt̂ dλ̂ dω

=

∫
ei(ξ(λ̂t̂+αt̂

2+xt̂3Γ(1)(x,y,xλ̂,ω,xt̂))+η·(ωt̂+xt̂2Γ(2)(x,y,xλ̂,ω,xt̂)))e−z(λ̂t̂+αt̂2)

λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(ω · η)k
(
ω ·
)⊗(1−k)

dt̂ dλ̂ dω,

up to errors that are O(x〈ξ, η〉−1) relative to the a priori order, (−1, 0), arising from the 0-th order symbol
in the oscillatory integral and the 2-dimensional space in which the stationary phase lemma is applied.

Now we want to see, for k = 1 (since the k = 0 statement is trivial), that (xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)k , while an

order k symbol, in this oscillatory integral is actually equivalent to the sum of terms over `, 0 ≤ ` ≤ k, each of
which is the product of ξ` and an order 0 symbol, essentially due to the structure of the set of critical points
of the phase. In order to avoid having to specify the latter in x > 0, we proceed with a direct integration by
parts argument. Notice that

(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)e

iηx−1(γ
(2)

x,y,xλ̂,ω
(xt̂)−y)

= x∂t̂e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

,

integration by parts gives that (4.4) is, with k = 1,

aj,z(x, y, ξ, η) =

∫
e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

xk∂k
t̂

(
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

e−z(λ̂t̂+αt̂2)(xγ̇
(2)

x,y,xλ̂,ω
(xt̂)·)

)
λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k dt̂ dλ̂ dω.

Expanding the derivative, if ` derivatives hit the first exponential (the phase factor) and thus k − ` the

second (the amplitude) one obtains ξ` times the oscillatory factor e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

times a symbol of
order 0. Notice that

x∂t̂(x
−2(γ

(1)

x,y,xλ̂,ω
(xt̂)− x)) = λ̂+ 2αt̂+ t̂2xΓ̃(1)(x, y, xλ̂, ω, xt̂),

so in view of the overall weight |η|−k, we deduce that, modulo terms one order down (so subprincipal), in
terms of the differential order, aj,z is a sum of terms of the form of symbols of order (−k − 1, 0) times ξ`,
0 ≤ ` ≤ k. Here the first order is −k − 1 since stationary phase itself, in the two variables, gives an extra
factor of |η|−1, corresponding to the square root of the absolute value of the determinant of the Hessian.

We remark here that γ, and thus Nj,z, depend continuously on the metric g, and furthermore the same
is true for aj and the decomposition into components as in the statement of the proposition. �

Analyzing the proof of Proposition 4.2 at x = 0 more precisely, we have

aj,z(0, y, ξ, η)

=

∫
ei(ξ(λ̂t̂+αt̂

2)+η·(ωt̂))e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(1−k) dt̂ dλ̂ dω

=

∫
ei((ξ+iz)(λ̂t̂+αt̂2)+η·(ωt̂))λ̂j(h(y)ω)⊗(1−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(1−k) dt̂ dλ̂ dω

=

∫
Sn−2

|η|−k(ω · η)k(h(y)ω)⊗(1−j)(ω·)⊗(1−k)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω.

We recall that α = α(x, y, λ, ω) so at x = 0, α(0, y, 0 · λ̂, ω) = α(0, y, 0, ω), and it is a quadratic form in ω.
Some of the computations below become notationally simpler if we assume that the coordinates are such

that at y at which the principal symbol is computed h is the Euclidean metric. We thus assume this from
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now on; note that even the integration by parts arguments are unaffected, as h would not be differentiated,
since it is a prefactor of the integral used in the integration by parts.

We now apply the projection P⊥ (quantization of the projection to Span{η}⊥ as in Proposition 4.1) from
the left: for the tangential, resp. normal components we apply P⊥, resp. Id, which means for the symbol
computation that we compose with Π⊥, resp. I from the left. This replaces (h(y)ω)⊗1−j = ω⊗(1−j) by
((h(y)ω)⊥)⊗(1−j) = (ω⊥)⊗(1−j) with the result

ãj,z(0, y, ξ, η) =

∫
Sn−2

|η|−k(ω · η)k(ω⊥)⊗(1−j)(ω⊥·)⊗(1−k)

×
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω,

where we used that (ω·)⊗(1−k) is being applied to the η-orthogonal factors, so it may be written as (ω⊥·)⊗(1−k).
This means that at ξ = 0 the overall parity of the integrand in ω⊥ is (−1)j+k apart from the appearance of

ω⊥ in the exponent (via α) of e−z(λ̂t̂+αt̂2), which due to the t̂2 prefactor of α, giving quadratic vanishing at
the critical set, only contributes one order lower terms, so modulo these the integral vanishes when j and k
have the opposite parity. This proves that Nz, when composed with the projections as described, has the
following form:

Proposition 4.3. Let ξz = ξ + iz. The symbol of the operator(
P⊥N0,z
N1,z

)
,

with domain restricted to tangential 1-forms, relative to the Span{η}-based decomposition of the domain, at
x = 0 has the form (

a
(0)
00 a

(1)
01 ξz + a

(0)
01

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k. Moreover, this restriction depends continuously on χ in these spaces

when χ is considered as an element of the Schwartz space.

We can compute the leading terms quite easily: for j = k = 0 this is

ã0,z(0, y, ξ, η)

=

∫
Sn−2

ω⊥(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω

=

∫
Sn−2

ω⊥(ω⊥·)
(∫

ei((ξλ̂t̂+αt̂
2)+(η·ω)t̂)e−z(λ̂t̂+αt̂2)χ(λ̂) dt̂ dλ̂

)
dω

which at the critical points of the phase, t̂ = 0, ξλ̂ + η · ω = 0, where ω⊥ and λ̂ give variables along the
critical set, gives, up to an overall elliptic factor,∫

Sn−3

ω⊥(ω⊥·)
(∫

χ(λ̂) dλ̂
)
dω⊥,

which is elliptic for χ ≥ 0 with χ(0) > 0. (Note here that when n = 3, the integral over Sn−3 is a sum over
two points.)

On the other hand, for j = k = 1,

ã1,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1(ω · η)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω,
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Writing i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ and integrating by parts yields

(4.5)

ã1,z(0, y, ξ, η)

= i

∫
Sn−2

|η|−1
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(ξ + iz)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω

= i|η|−1(ξ + iz)

∫
Sn−2

(∫
ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂

)
dω.

Now the integral (the factor after |η|−1(ξ + iz)) at the critical points of the phase t̂ = 0, ξλ̂ + η · ω = 0,
gives, up to an overall elliptic factor,∫

Sn−3

ω⊥(ω⊥·)
(∫

λ̂2χ(λ̂) dλ̂
)
dω⊥,

modulo S−2,0, i.e. for the same reasons as in the j = k = 0 case above, when χ ≥ 0, χ(0) > 0, (4.5) is an
elliptic multiple of |η|−1(ξ + iz)!

Finally, when j = 0, k = 1, we have

ã0,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1ω⊥(ω · η)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω,

which, using i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ as above, gives

ã0,z(0, y, ξ, η)

= i|η|−1(ξ + iz)

∫
Sn−2

(∫
ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)χ(λ̂) dt̂ dλ̂

)
dω.

Now the leading term of the integral, due to the contributions from the critical points, is (up to an overall
elliptic factor) ∫

Sn−3

ω⊥
(∫

λ̂χ(λ̂) dλ̂
)
dω⊥,

modulo S−2,0, which vanishes for χ even, so for such χ, the (0, 1) entry has principal symbol which at x = 0
is a multiple of ξz, and the multiplier is in S−3,0 (one order lower than the previous results).

In summary, we have the following result:

Proposition 4.4. Suppose χ ≥ 0, χ(0) > 0, χ even. Let ξz = ξ + iz. The full symbol of the operator(
P⊥N0,z
N1,z

)
,

with domain restricted to tangential 1-forms, relative to the Span{η}-based decomposition of the domain, at
x = 0 has the form (

a
(0)
00 a

(1)
01 ξz + a

(0)
01

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k, and a

(0)
00 and a

(1)
11 (these are the multipliers of the leading terms

along the diagonal) are elliptic in S−1,0 and S−2,0, respectively and a
(0)
01 , a

(0)
11 ∈ S−2,−1, i.e. in addition to

the statements in the previous propositions vanish at x = 0 and a
(1)
01 also has one lower differential order at

x = 0: a
(1)
01 ∈ S−3,0 + S−2,−1.

Corollary 4.1. By pre- and postmultiplying (
P⊥N0,z
N1,z

)
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by elliptic operators in Ψ0,0
sc , one can arrange that the full principal symbol of the resulting operator is of the

form (
T 0

0 ã(ξ + iz) + b̃

)
,

with T = a
(0)
00 , resp. ã elliptic in S−1,0, resp. S−2,0, near ξ = 0 at fiber infinity, and b̃ ∈ S−2,−1.

Furthermore, ã, b̃, T in the indicated spaces depend continuously on the metric g (with the C∞ topology on
g) as long as g is Ck-close (for suitable k) to a background metric g0 satisfying the strictly convex assumptions
on the metric, the boundary and the function x.

Proof. Let T = a
(0)
00 . By multiplying from the left by the elliptic symbol(

1 0

−(a
(1)
10 ξz + a

(0)
10 )T−1 1

)
we obtain (

T a
(1)
01 ξz + a

(0)
01

0 ã
(1)
11 ξz + ã

(0)
11

)
, ã

(k)
11 = a

(k)
11 − (a

(1)
10 ξz + a

(0)
10 )T−1a

(k)
01 ,

so ã11 has the same properties as a11 for ξ near 0 (the case of interest), in particular the ellipticity of ã
(1)
11

follows from the one differential order lower behavior (at x = 0) than a priori expected for a
(1)
01 , stated in

Proposition 4.4, while the vanishing of ã
(0)
11 from that of a

(0)
01 (at x = 0). Multiplying from the right by(

1 −T−1(a
(1)
01 ξz + a

(0)
01 )

0 1

)
we obtain (

T 0

0 ã
(1)
11 (ξ + iz) + ã

(0)
11

)
,

as desired. �

4.6. Analysis at radial points. We now have a principally diagonal real principal type system, and thus
in x > 0 the standard propagation of singularities results applies. The boundary behavior is also not hard to
see due to the leading order decoupling: one has radial points in the second (index 1) component. We recall
here that radial points for an operator with real scalar principal symbol are points at which the Hamilton
vector field of the (homogeneous with respect to dilations) principal symbol is tangent to the dilation orbits
of the cotangent bundle. This means that Hörmander’s propagation of singularities theorem is vacuous there,
since the bicharacteristic through such a point is exactly the dilation orbit. In the compactified perspective,
in which the fibers of the (here: scattering) cotangent bundle are compactified, so the ‘standard’ (differential
regularity) microlocal analysis takes place on the boundary of the fibers (which in turn can be identified
with the cosphere bundle), the (rescaled) Hamilton vector field vanishes at such radial points.

In general, when the principal symbol is real, for such radial points there is a threshold regularity below
which one can propagate estimates towards the radial points and above which one can propagate estimates
away from the radial points. In our case the standard principal symbol (at fiber infinity) is real, but the
principal symbol at ∂X, while real at fiber infinity, is not so at finite points, thus near fiber infinity. In such
a situation even the weight does not help, and the imaginary part of the principal symbol (which of course is
only non-zero at ∂X) must have the correct sign. Fortunately, this is the case for us since, as we have seen,
the principal symbol of the second component, in both senses, is an elliptic multiple of ξ + iz, z > 0. To
illustrate why this is the correct sign, note that ξ+ iz is the principal symbol of x2Dx+ iz, whose nullspace
contains functions like e−z/xa(y), which are exponentially decaying as z > 0, and indeed these give the
asymptotic behavior of solutions of the inhomogeneous equation as x → 0, i.e. one can expect Fredholm
properties in the polynomially weighted Sobolev spaces. A different connection one can make is with the
standard propagation of singularities: when the imaginary part of the principal symbol is non-negative, one
can still propagate estimates in the backward direction along the bicharacteristics; in this case the usual
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principal symbol in x > 0, where this applies, is real, but this fact illustrates the consistency of our present
result (propagating to x = 0 is backward propagation and z > 0) with other phenomena. That the Fredholm
statement holds for operators of this type follows from the following proposition, which we state for bundle
valued pseudodifferential operators for use in the 2-tensor setting:

Proposition 4.5. Suppose for two vector bundles Ẽ, F̃ , P ∈ Ψ1,0
sc (X; Ẽ, F̃ ) has principal symbol (ξ + iz)p̃

in x < ε0, ε0 > 0, where p̃ is elliptic in S0,0(scT ∗X; Hom(Ẽ, F̃ )) and z > 0.
Suppose first that Bj ∈ Ψ0,0

sc , WF′sc(B1) contained near the radial set L of ξ+ iz at fiber infinity at x = 0,
B2 is elliptic at x = ε0/2, B3 is elliptic at fiber infinity for x ∈ [0, ε0/2] and on WF′sc(B1). Then for all
s, r,M,N we have estimates

‖B1u‖s,r ≤ C(‖B2u‖s,r + ‖B3Pu‖s,r + ‖u‖−N,−M ),

with ‖ · ‖ the norm in Hs,r
sc , etc.

Suppose now instead that Bj ∈ Ψ0,0
sc , WF′sc(B1) contained near L, B3 is elliptic at fiber infinity for

x ∈ [0, ε0/2] and on WF′sc(B1). Then for all s, r,M,N we have estimates

‖B1u‖s,r ≤ C(‖B3P
∗u‖s,r + ‖u‖−N,−M ).

In both cases, u can be any distribution for which the right hand side is finite, understood as u ∈ H−N,−Msc ,
etc.

Remark 4.3. Note that the statements are trivial unless N,M are sufficiently large relative to −s,−r; the
point is that they can be taken arbitrary.

Also, we emphasize that s, r can take any value, unlike in the usual real principal symbol radial point
estimates; this is due to the imaginary part iz of the principal symbol, which is principal in the full scattering
sense (no additional decay relative to ξ).

Proof. By multiplying from the left by an operator whose principal symbol is p̃−1 (recall the ellipticity
assumption), one may assume that p̃ is the identity homomorphism at each point, i.e. that the principal

symbol of P is ξ + iz times the identity operator on the fibers of the vector bundle Ẽ. Equip Ẽ with a
Hermitian fiber metric; since P has scalar principal symbol, so does the adjoint, namely ξ − iz times the
identity. Now write P = PR + iPI , with PR = P+P∗

2 ∈ Ψ1,0
sc formally self-adjoint, with principal symbol

ξ times the identity, PI ∈ Ψ0,0
sc formally skew-adjoint, with principal symbol at ∂X given by z times the

identity, thus is of the form z + xα, α ∈ S0,0.
Due to a standard iterative argument, improving the regularity and decay by 1/2 in each step while

shrinking the support of B1 slightly, it suffices to show the estimates under the a priori assumption that u

is in H
s−1/2,r−1/2
sc on WF′sc(B1). Furthermore, as ξ ± iz have real principal symbol in the standard sense,

the usual propagation of singularities theorem applies in x > 0, which reduces the estimate to the case when
ε0 > 0 is fixed but small; we choose it so that |xα| < z/2 for x ∈ [0, ε0).

To prove the first statement of the proposition, with ρ a defining function of fiber infinity, such as ρ = |η|−1

near L, consider the scalar symbol

a = χ(x)x−rρ−sχ1(ξ/η)χ2(ρ),

where χ1, χ2 are identically 1 near 0 and have compact support, χ ≡ 1 near 0, dχ supported near ε0/2.
Note that on supp d(χ1χ2) we have elliptic estimates (as P is elliptic there since either ξ/η is non-zero, or
one is at finite points where z gives the ellipticity), while on supp dχ we have a priori regularity of u (in

terms of control on B2u). Then with Ã = A∗A, A ∈ Ψs,r
sc having principal symbol a times the identity

homomorphism, consider

(4.6) i(P ∗Ã− ÃP ) = i[PR, Ã] + (PIÃ+ ÃPI).

Now the first term is in Ψ2s,2r+1
sc , the second is in Ψ2s,2r

sc , so while they have the same differential order,
the second actually dominates in the decay sense, thus at finite points of scT ∗∂XX; at fiber infinity of course
they need to be considered comparable. The principal symbol of the second term, in Ψ2s,2r

sc , is 2(z+ xα)a2,
which is positive, bounded below by za2, say, for x small, in particular on supp a by our arrangements.
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The principal symbol of the first term, on the other hand, is 2xaHξa = 2ax(x∂x + η∂η)a. Thus, in view

of x∂x + η∂η being a smooth vector field tangent to all boundaries of scT ∗X, i.e. an element of Vb(scT ∗X),
the principal symbol of the first term can be absorbed into 2za2 away from the boundary of the support of
χ1χ2 and χ; at both of those locations, however, we have a priori/elliptic control. Thus, we have that the
principal symbol of (4.6) is

b2 + e+ e0,

where
b2 = 2(z + xα)a2 + 2axχ(x)χ1(ξ/η)χ2(ρ)(x∂x + η∂η)(x−rρ−s)

e = 2axx−rρ−sχ1(ξ/η)χ2(ρ)(x∂x)χ,

e0 = 2axx−rρ−sχ(x)(x∂x + η∂η)(χ1(ξ/η)χ2(ρ)).

Note that taking the non-negative square root, this indeed gives a smooth a as one can simply factor our
all cutoffs, etc., so one eventually needs to take the square root of 2z plus x times a smooth function,
which is thus strictly positive if χ, χ2 have small supports. Hence, taking B ∈ Ψs,r

sc with principal symbol b,
E ∈ Ψ2s,−∞

sc with principal symbol e, E0 ∈ Ψ2s,2r−1
sc with principal symbol e0,

(4.7) i(P ∗Ã− ÃP ) = B∗B + E + E0 + F,

where E0 has WF′sc(E0) is in the elliptic set of P , while WF′sc(E) is near x = ε and F ∈ Ψ2s−1,2r−1
sc . This

gives
‖Bu‖2 ≤ 2|〈Ãu, Pu〉|+ |〈Eu, u〉|+ |〈E0u, u〉|+ |〈Fu, u〉|.

Now, the first term is handled by the Cauchy-Schwartz inequality in a standard way (cf. below), while the
latter terms (iteratively improving regularity for the F term) are controlled by a priori assumptions, proving

the estimate, a priori for u ∈ Ċ∞(X; Ẽ).
A standard regularization argument, see e.g. [41, Proof of Propositions 2.3-2.4] or [40], which is normally

delicate at radial points, but not in this case, due to the skew-adjoint part, PI , proves the result. To see
this, one replaces a by aε = asεrε throughout this computation, where

sε = (1 + ερ−1)−δ, rε = (1 + εx−1)−δ, ε ∈ (0, 1],

where any δ ≥ 1 suffices. This makes the corresponding Aε ∈ Ψs+δ,r+δ
sc for ε > 0, but uniformly bounded in

Ψs,r
sc , ε ∈ (0, 1], with Aε → A as ε→ 0 in Ψs−δ′,r−δ′

sc for any δ′ > 0. Then in the analogue of (4.6),

(4.8) i(P ∗Ãε − ÃεP ) = i[PR, Ãε] + (PIÃε + ÃεPI), Ãε = A∗εAε,

the principal symbol of the second term, considered uniformly in Ψ2s,2r
sc , is 2(z+xα)a2

ε which is positive for
x small, that of the first term is 2xaεHξaε = 2aεx(x∂x + η∂η)aε. Now,

dsε = (δ + 1)ερ−2(1 + ερ−1)−δ−1 dρ = (δ + 1)sεερ
−1(1 + ερ−1)−1 dρ

ρ
,

with a similar computation also holding for rε. Since x∂x + η∂η ∈ Vb(scT ∗X), dρ
ρ (x∂x + η∂η) is smooth on

scT ∗X, while ερ−1(1 + ερ−1)−1 is uniformly bounded in S0,0, with analogous statements also holding for the
rε contributions, the principal symbol of the first term of (4.8) can be absorbed into 2za2

ε away from the
boundary of the support of χ1χ2 and χ, where aε has a lower bound csεrε for some c > 0. As before, at
both of these remaining locations we have a priori/elliptic control. One then still has the analogue of (4.7),
which gives for ε > 0,

‖Bεu‖2 ≤ 2|〈Ãεu, Pu〉|+ |〈Eεu, u〉|+ |〈E0,εu, u〉|+ |〈Fεu, u〉|,
and now all terms but the first on the right hand side remain bounded as ε → 0 due to the a priori
assumptions and elliptic estimates. On the other hand, one can apply the Cauchy-Schwartz inequality to
the first term of the right hand side, bounding it from above by ε̃‖Aεu‖2 + ε̃−1‖AεPu‖2, absorbing a small
multiple (ε̃ > 0 small) of ‖Aεu‖2 into ‖Bεu‖2 modulo lower order terms (which are bounded by the a priori
assumptions), which is possible as the principal symbol of Bε is an elliptic multiple of aε, and thus one
obtains the uniform boundedness of ‖Bεu‖2, ε ∈ (0, 1]. This proves Bu ∈ L2, completing the proof of the
first half of the proposition.
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For the second case, we take the same commutant, but now making sure that χχ′ = −ψ2 for a smooth
function ψ. Then P ∗ has skew-adjoint part with the opposite sign of that of P , −PI , and

i(PÃ− ÃP ∗) = i[PR, Ã]− (PIÃ+ ÃPI).

has principal symbol

2ax(x∂x + η∂η)a− 2a2z = −2b2 − 2a2(z + xβ) + e,

where e is supported where d(χ1χ2) is (thus in the elliptic set), while

b = ψ(x)x−r+1ρ−sχ1(ξ/η)χ2(ρ)

is elliptic for x ∈ [0, ε0/2]. Since the two terms not controlled by elliptic estimates have matching signs, there
is no need for a priori control of u in the sense of propagation, and we obtain the claimed estimate by going
through the regularization argument as above. �

4.7. Full estimates in the one-form setting. This gives real principal type estimates up to x = 0, which
together with the rest of the preceding discussion gives the coercivity of the system given by L0 and L1,
taking into account that N0,z, N1,z are in Ψ−1,0

sc :

Proposition 4.6. Let ε > 0. For u supported in x < ε, writing u = (u0, u1) for the decomposition relative
to Span{η} as in Remark 4.1, we have estimates

‖u0‖s,r + ‖u1‖s−1,r + ‖x2Dxu1‖s−1,r ≤ C(‖N0,zu‖s+1,r + ‖N1,zu‖s+1,r + ‖u‖−N,−M ).

Remark 4.4. Here the decomposition (u0, u1) is defined only at fiber infinity and even there only near ξ = 0.
However, away from fiber infinity the estimates for u0 and u1 are in the same space, and the same is true at
fiber infinity away from ξ = 0 (in view of the ellipticity of x2Dx there), so this is irrelevant.

Proof. Microlocally away from fiber infinity the estimate holds without ‖N1,zu‖s+1,r even (i.e. ‖B0u‖s,r can
be so estimated if WF′sc(B0) is disjoint from fiber infinity, with B0 ∈ Ψ0,0

sc ), and it also holds at fiber infinity
away from ξ = 0 in the same manner; namely for such B0 we have

‖B0u‖s,r ≤ C(‖N0,zu‖s+1,r + ‖u‖s−2,r−1).

Now we write the pre- and postmultiplied version of(
P⊥N0,z
N1,z

)
,

defined microlocally near fiber infinity, as (
A00 A01

A10 A11

)
with Aij ∈ Ψ−2,−1

sc if i 6= j, A00 ∈ Ψ−1,0
sc elliptic and A11 ∈ Ψ−1,0

sc satisfying the hypotheses of Proposition 4.5.
We write the components of u as (u0, u1) corresponding to the decomposition relative to η, and we write

ũ = (ũ0, ũ1) for the modified decomposition obtained by multiplying u by the postmultiplier of

(
P⊥N0,z
N1,z

)
.

Since the inverse of the premultiplier preserves Hs+1,r
sc ⊕Hs+1,r

sc , we then have(
A00 A01

A10 A11

)(
ũ0

ũ1

)
controlled in Hs+1,r

sc ⊕Hs+1,r
sc by P⊥N0,zu and N1,zu in Hs+1,r

sc . Thus, using the first equation (involving
A0j), writing it as A0ũ = f0, gives the microlocal elliptic estimate

‖B1ũ0‖s,r ≤ C(‖ũ0‖s−1,r−1 + ‖A00ũ0‖s+1,r)

≤ C(‖ũ0‖s−1,r−1 + ‖ũ1‖s−1,r−1 + ‖A0ũ‖s+1,r), A0 =
(
A00 A01

)
,
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where B1 ∈ Ψ0,0
sc has wave front set near ξ = 0 at fiber infinity, elliptic on a smaller neighborhood of ξ = 0 at

fiber infinity. On the other hand, by Proposition 4.5, taking into account the order of A11 ∈ Ψ−1,0
sc and the

support of ũ1 (so that the B2 term of the proposition is irrelevant), the second equation gives the estimate

‖B1ũ1‖s−1,r ≤ C(‖ũ1‖s−2,r−1 + ‖A11ũ1‖s+1,r)

≤ C(‖ũ1‖s−2,r−1 + ‖ũ0‖s−1,r−1 + ‖A1ũ‖s+1,r), A1 =
(
A10 A11

)
,

with B1 as above. Moreover, since A11 is an elliptic multiple or order (−2, 0) of x2Dx + iz microlocally, we
have the microlocal elliptic estimate

‖B1(x2Dx + iz)ũ1‖s−1,r ≤ C(‖ũ1‖s−2,r−1 + ‖A11ũ1‖s+1,r)

≤ C(‖ũ1‖s−2,r−1 + ‖ũ0‖s−1,r−1 + ‖A1ũ‖s+1,r).

Thus, for α ≥ 1,

α‖B0u‖s,r + ‖B1ũ0‖s,r + α‖B1ũ1‖s−1,r + ‖B1(x2Dx + iz)ũ1‖s−1,r

≤ C(α‖N0,zu‖s+1,r + α‖u‖s−2,r−1

+ ‖ũ0‖s−1,r−1 + α‖ũ0‖s−1,r−1 + ‖ũ1‖s−1,r−1 + α‖ũ1‖s−2,r−1

+ ‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r).

Taking α > 1 sufficiently large, C‖ũ1‖s−1,r−1 on the right hand side can be absorbed into the left hand side
modulo ‖ũ1‖s−2,r−2:

‖ũ1‖s−1,r−1 ≤ C ′(‖B0u‖s−1,r−1 + ‖B1ũ1‖s−1,r−1 + ‖ũ1‖s−2,r−2)

if B0 and B1 are so chosen that at each point at least one of them is elliptic, as can be done. This gives the
estimate (with a new constant C, corresponding to any fixed sufficiently large value of α)

‖B0u‖s,r + ‖B1ũ0‖s,r + ‖B1ũ1‖s−1,r + ‖B1x
2Dxũ1‖s−1,r

≤ C(‖ũ0‖s−1,r−1 + ‖ũ1‖s−2,r−1 + ‖N0,zu‖s+1,r + ‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r),

and then the usual iteration in s, r improves the error term to

(4.9)
‖B0u‖s,r + ‖B1ũ0‖s,r + ‖B1ũ1‖s−1,r + ‖B1x

2Dxũ1‖s−1,r

≤ C(‖ũ0‖s−k,r−k + ‖ũ1‖s−1−k,r−k + ‖N0,zu‖s+1,r + ‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r)

for all k.
Now,

‖A0ũ‖s+1,r + ‖A1ũ‖s+1,r ≤ C(‖N0,zu‖s+1,r + ‖N1,zu‖s+1,r),

as explained above. Similarly one has microlocal control of (u0, u1) in terms of ũ0, ũ1, with the key point

being that the premultiplier of

(
P⊥N0,z
N1,z

)
, and its inverse, are upper triangular with top right entry having

principal symbol of the form (ξ + iz)c̃ + d̃, with c̃, d̃ ∈ S−1,0, so the regularity we proved on ũ1 only gives
rise to contributions to u0 in Hs,r

sc , not in the space Hs−1,r
sc as one would a priori expect. Therefore (4.9)

gives the claimed estimate of the proposition. �

For c > 0 small, the error term on the right hand side of the estimate of Proposition 4.6 can be absorbed
into the left hand side, as in [38], [36]. Thus one obtains an invertibility result for 1-forms in the normal
gauge that is analogous to Corollary 6.1 below in the 2-tensor setting, but here without using the solenoidal
gauge results of [36].
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5. The transform on 2-tensors in the normal gauge

5.1. The operators L1 and L2. Now we turn to the 2-tensor setting. Recall the only issue with the
transform in this case is the lack of ellipticity of L0I at fiber infinity. In this case, as for 1-forms, the problem
is still ξ = 0, but we have ellipticity of N0,z only on Span{η}⊥⊗Span{η}⊥. A computation similar to the one
above shows the vanishing of the principal symbol on Span{η}⊥ ⊗s Span{η} and Span{η} ⊗ Span{η}. The
vanishing is simple in the first case and quadratic in the second, essentially because as above in Section 4, on
Span{η} one may replace Ŷ · by ξS̃, so the order of vanishing is given by the number of factors of Span{η}.
Then a similar argument as above directly deals with Span{η}⊥⊗sSpan{η}, namely we just need to consider
the map

L̃1v(z) = x

∫
χ1(λ/x)v(γx,y,λ,ω)gsc(ω ∂y) dλ dω,

where now we are mapping to (tangential) one-forms rather than scalars in the one-forms setting. Again,
this is better considered as the normal-tangential component of the map L restricted to tangential-tangential
tensors, for that is, by (3.4), trivializing the normal 1-forms with x−2 dx as in the 1-form setting,

L1v(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)λx−2gsc(ω ∂y) dλ dω,

which gives exactly this result when χ1(s) = sχ(s). The resulting N1,z still has the same even/odd properties
as the L1 considered in the one form setting due to the odd number 1 + 2 = 3 of vector/one-form factors
appearing. Correspondingly, calculations as above would give a real principal type system if there were no
Span{η}⊥ ⊗ Span{η}⊥ components.

Now, one is then tempted to consider the operator

L̃2v(z) =

∫
χ2(λ/x)v(γx,y,λ,ω) dλ dω,

mapping scalars to scalars to deal with Span{η}⊥⊗Span{η}⊥. This arises as the normal-normal component
of the L restricted to tangential-tangential tensors:

L2v(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)(λx−2)2 dλ dω,

provided we take χ2(s) = s2χ(s) in this case. Unfortunately this produces similar behavior to L0, and while
at the principal symbol level it is not hard to see that the appropriate rows of the resulting matrix are
linearly independent in an relevant (non-elliptic) sense, see the discussions around (5.4), this is not so easy
to see at the subprincipal level, which is needed here.

5.2. The symbol computation. In spite of this, for our perturbation result involving weights, we need
to compute the full symbol of L2I (more precisely, the computation involves the symbol modulo terms
two orders below the leading term in the differential sense, one order in the sense of decay, terms with
more vanishing are irrelevant below). Here, L2I is just the normal-normal component of Nz restricted to
tangential-tangential tensors, and we want to find its form, in particular its precise vanishing properties
at fiber infinity at ξ = 0. To do so, as in the one-form case, we perform the full symbol computation of
[38] without restricting to tangential-tangential tensors, with χ̃ the localizer which is an arbitrary smooth
function on the cosphere bundle (not just the kind considered above for χ), using the oscillatory integral
representation as in Section 4, proceeding from scratch.

We already know that we have a pseudodifferential operator

Aj,z = e−z/xLjIe
z/x ∈ Ψ−1,0

sc ,

with I not restricted to tangential-tangential tensors, and with Aj,z the component mapping to tangential-
tangential (j = 0), tangential-normal (j = 1) or normal-normal (j = 2) tensors given by

Aj,zf(z) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)

χ̃(z, λ/x, ω)f(γz,λ,ω(t))(γ̇z,λ,ω(t), γ̇z,λ,ω(t)) dt |dν|,
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where Aj,z is understood to apply only to f with support in M , thus for which the t-integral is in a fixed
finite interval.

Now,

KAj,z(z, z′) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)χ̃(z, λ/x, ω)

(γ̇z,λ,ω(t)⊗ γ̇z,λ,ω(t))δ(z′ − γz,λ,ω(t)) dt |dν|

= (2π)−n
∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)χ̃(z, λ/x, ω)

(γ̇z,λ,ω(t)⊗ γ̇z,λ,ω(t))e−iζ
′·(z′−γz,λ,ω(t)) dt |dν| |dζ ′|.

As remarked above, the t integral is actually over a fixed finite interval, say |t| < T , or one may explicitly
insert a compactly supported cutoff in t instead. (So the only non-compact domain of integration is in ζ ′,
corresponding to the Fourier transform.) Thus, using (4.2), so taking the inverse Fourier transform in z′ and
evaluating at ζ, gives

(5.1)
aj,z(z, ζ) =

∫
e−z/x(z)ez/x(γz,λ,ω(t))x−jλj(h(y)ω)⊗(2−j)χ̃(z, λ/x, ω)

(γ̇z,λ,ω(t)⊗ γ̇z,λ,ω(t))e−iz·ζeiζ·γz,λ,ω(t) dt |dν|.
Translating into sc-coordinates, writing (x, y) as local coordinates, scattering covectors as ξ dxx2 + η · dyx , and

γ = (γ(1), γ(2)), with γ(1) the x component, γ(2) the y component, we obtain

aj,z(x, y, ξ, η)

=

∫
e−z/xez/γ

(1)
x,y,λ,ω(t)x−jλj(h(y)ω)⊗(2−j)χ̃(x, y, λ/x, ω)(γ̇x,y,λ,ω(t)⊗ γ̇x,y,λ,ω(t))

ei(ξ/x
2,η/x)·(γ(1)

x,y,λ,ω(t)−x,γ(2)
x,y,λ,ω(t)−y) dt |dν|,

as in (4.3). We recall that

γx,y,λ,ω(t) = (x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t), y + ωt+ t2Γ(2)(x, y, λ, ω, t))

while as a scattering tangent vector, i.e. expressed in terms of x2∂x and x∂y,

γ̇x,y,λ,ω(t) = γ
(1)
x,y,λ,ω(t)−1(γ

(1)
x,y,λ,ω(t)−1(λ+ 2αt+ t2Γ̃(1)(x, y, λ, ω, t)), ω + tΓ̃(2)(x, y, λ, ω, t)),

with Γ(1),Γ(2), Γ̃(1), Γ̃(2) smooth functions of x, y, λ, ω, t. Here the interval of integration in t, i.e. T , will be
small due to having to deal with the stationary phase expansion as in the 1-form case.

Still following the argument in the 1-form case, we change the variables of integration to t̂ = t/x, and

λ̂ = λ/x, so the λ̂ integral is in fact over a fixed compact interval, but the t̂ one is over |t̂| < T/x which
grows as x→ 0. We recall that the phase is

ξ(λ̂t̂+ αt̂2 + xt̂3Γ(1)(x, y, xλ̂, ω, xt̂)) + η · (ωt̂+ xt̂2Γ(2)(x, y, xλ̂, ω, xt̂)),

while the exponential damping factor (which we regard as a Schwartz function, part of the amplitude, when
one regards t̂ as a variable on R) is

−z/x+ z/γ(1)
x,y,λ,ω(t)

= −z(λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))x−1(x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t))−1

= −z(λ̂t̂+ αt̂2 + t̂3xΓ̂(1)(x, y, xλ̂, ω, xt̂)),

with Γ̂(1) a smooth function. The only subtlety in applying the stationary phase lemma is still that the
domain of integration in t̂ is not compact, but this is handled exactly as in the 1-form setting, for the 1-form
vs. 2-tensor values play no role in the argument.

Therefore one can use the standard stationary phase lemma, with the stationary points (including the
Hessian) having exactly the same structure as in the 1-form setting. Then at x = 0, the stationary points of
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the phase are t̂ = 0, ξλ̂ + η · ω = 0, which remain critical points for x non-zero due to the xt̂2 vanishing of
the other terms. When T is small, so xt̂ is small, there are no other critical points, so these critical points
lie on a smooth codimension 2 submanifold of the parameter space. This means that all terms of the form
t̂x will have contributions which are 1 differentiable and 1 decay order lower than the main terms, while t̂3x
will have contributions which are 2 differentiable and 1 decay order lower than the main terms, and thus
ignorable for our purposes. Moreover, when evaluated on tangential-tangential tensors (which is our interest
here), γ̇x,y,λ,ω(t) can be replaced by

γ̇
(2)
x,y,λ,ω = γ

(1)
x,y,λ,ω(t)−1(ω + t̂xΓ̃(2)(x, y, xλ̂, ω, xt̂))

= x−1(ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂))

with Γ̂(2) smooth.
We recall from the one form discussion thatNj,zP

⊥, Nj,zP
‖, with P⊥, resp. P ‖, the microlocal orthogonal

projection with principal symbol Π⊥, resp. Π‖, will have principal symbol given by the composition of
principal symbols, but here we need to compute to the subprincipal level. Moreover, as Nj,z is written as a

left quantization, if P ‖, P⊥ are written as right quantizations, the full amplitude is the composition of the full
symbols, evaluated at (x, y) (the left, or ‘outgoing’ variable of Nj,z), resp. (x′, y′) (the right, or ‘incoming’,

variable of P⊥, P ‖). In addition, to get the full left symbol one simply ‘left reduces’, i.e. eliminates (x′, y′)
by the standard Taylor series argument at the diagonal (x, y) = (x′, y′). In the Euclidean notation, to which
the scattering algebra reduces to locally, this involves taking derivatives of aj,z in the momentum variables

and derivatives of the full symbol of P ‖, P⊥ in the position variables, evaluating the latter at (x′, y′) = (x, y),
with each derivative reducing the symbolic order both in the differential and in the decay sense by 1.

Thus, with χ̃ = χ(λ/x) = χ(λ̂), we have that on

Span{η}⊥ ⊗ Span{η}⊥ (k = 0), Span{η} ⊗s Span{η}⊥ (k = 1),

resp. {η} ⊗ Span{η} (k = 2),

writing the sections in Span{η} factors explicitly as multiples of η
|η| ,

(5.2)
aj,z(x, y, ξ, η)

=

∫
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x)+ηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)k(xγ̇

(2)

x,y,xλ̂,ω
(xt̂)·)⊗(2−k) dt̂ dλ̂ dω

=

∫
ei(ξ(λ̂t̂+αt̂

2+xt̂3Γ(1)(x,y,xλ̂,ω,xt̂))+η·(ωt̂+xt̂2Γ(2)(x,y,xλ̂,ω,xt̂)))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k((ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂)) · η)k(
(ω + t̂xΓ̂(2)(x, y, xλ̂, ω, t̂)) ·

)⊗(2−k)
dt̂ dλ̂ dω,

up to errors that are O(x〈ξ, η〉−1) relative to the a priori order, (−1, 0), arising from the 0-th order symbol in
the oscillatory integral and the 2-dimensional space in which the stationary phase lemma is applied. Indeed
the error can be improved to O(x〈ξ, η〉−2) if the composition with the projections P ‖ ⊗ P ‖, etc., is written
out as discussed in the paragraph above. However, we will deal with k = 2, when this improvement would
be important, in a different manner below.

Notice that

(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)e

iηx−1(γ
(2)

x,y,xλ̂,ω
(xt̂)−y)

= x∂t̂e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

,
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when k ≥ 1, integration by parts once gives that this is

aj,z(x, y, ξ, η)

= −
∫
e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

x∂t̂

(
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

e−z(λ̂t̂+αt̂2)(γ̇
(2)

x,y,xλ̂,ω
(xt̂)·)⊗(2−k)(xγ̇

(2)

x,y,xλ̂,ω
(xt̂) · η)k−1

)
λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k dt̂ dλ̂ dω.

If k = 1, expanding the derivative, if ` derivatives (so ` = 0, 1) hit the first exponential (the phase term) and

thus k− ` the second (the amplitude) one obtains ξ` times the oscillatory factor e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

times

a symbol of order 0 (notice that x∂t̂(x
−2(γ

(1)

x,y,xλ̂,ω
(xt̂)− x)) = λ̂+ 2αt̂+ t̂2xΓ̃(1)(x, y, xλ̂, ω, xt̂)). In view of

the overall weight |η|−k, we deduce that, modulo terms two orders down, in terms of the differential order,
aj,z is a sum of terms of the form of symbols of order (−k − 1, 0) times ξ`, 0 ≤ ` ≤ k. Notice that here η
can be replaced by any other element of S1,0 which has the same principal symbol, i.e. differs from η by an

element r of S0,−1, for one then expands (xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · (η + r))k into terms involving (xγ̇

(2)

x,y,xλ̂,ω
(xt̂) · η)k

′

and (xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · r)k−k′ ; for the latter factors one does not need an integration by parts argument to get

the desired conclusion, while for the former it proceeds exactly as beforehand.
If k = 2, there are subtleties because subprincipal terms are involved. So to complete the analysis, we use

that I ◦ ds = 0, so Iez/xds
z = 0; recall that

ds
z = e−z/xdsez/x.

Concretely, we use:

Lemma 5.1. The microlocal projection to Span{η}⊗Span{η}, P ‖⊗P ‖, given by Proposition 4.1, is (modulo
microlocally smoothing terms) (ds

Y dY )G(ds
Y dY )∗, where G ∈ Ψ−4,0

sc (X) is a parametrix for the microlocally
elliptic operator (ds

Y dY )∗ds
Y dY , and where dY ,d

s
Y are considered as elements of Ψ1,0

sc between various scat-

tering bundles, e.g. dY v =
∑

(x∂yjv)
dyj
x .

Proof. We just need to note that (ds
Y dY )G(ds

Y dY )∗ satisfies all the requirements of Proposition 4.1.

Indeed, it has the correct principal symbol, Π‖ ⊗ Π‖, as dY , ds
Y have principal symbol i−1η ⊗ ·, so

ds
Y dY (acting on scalar functions) has principal symbol −η ⊗ η. Thus its adjoint with respect to gsc has

principal symbol given by evaluation on −η⊗η, which is regarded as a 2-tensor via gsc, hence (ds
Y dY )∗ds

Y dY
has principal symbol |η|4 (which is microlocally elliptic away from η = 0). In combination this gives that
(ds
Y dY )G(ds

Y dY )∗ has principal symbol P ‖ ⊗ P ‖.
Note that G is microlocally formally self-adjoint since (ds

Y dY )∗ds
Y dY is such, so (ds

Y dY )G(ds
Y dY )∗ is also

microlocally formally self-adjoint. Finally, using the microlocal parametrix property of G,(
(ds
Y dY )G(ds

Y dY )∗
)2

= (ds
Y dY )

(
G(ds

Y dY )∗(ds
Y dY

)
)G(ds

Y dY )∗

microlocally differs from (ds
Y dY )G(ds

Y dY )∗ by a smoothing operator.
This shows that all the properties in Proposition 4.1 are satisfied, completing the proof of the lemma. �

As a consequence of this lemma, the computation on the range of P ‖⊗P ‖, amounts to that on the range
of ds

Y dY . Now, a computation gives that on tangential (scattering) forms, such as those in the range of dY ,
when g is in the normal gauge,

ds
zu =

(
e−z/x(x2∂x + x2a)ez/xu

)
⊗s

dx

x2
+ ds

Y u

for suitable smooth a, which means that

Iez/xds
Y u = −Iez/x

((
e−z/x(x2∂x + x2a)ez/xu

)
⊗s

dx

x2

)
.
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Composing with dY from the right, i.e. taking u = dY v, and commuting e−z/x(x2∂x + x2a)ez/x through
dY , we have that

(5.3) Iez/xds
Y dY v = −Iez/x

((
dY
(
e−z/x(x2∂x + x2a)ez/x

)
+ x2ã

)
v ⊗s

dx

x2

)
,

with ã smooth. The x2ã term is two orders lower than the a priori order, and thus completely negligible
for our purposes. (Even if a one order lower term had been created, it would not cause any issues: one
would either have a x2Dx factor or a dY factor left, modulo two orders lower terms, and each of these can
be handled as above.) The advantage of this rewriting is that we can work with Iez/x(· ⊗s dxx2 )dY , and we

only need to be concerned about it at the principal symbol level; we obtain an extra factor of ξ + iz− ix2ã
after the composition. Correspondingly, Aj,z(· ⊗s dx

x2 )dY has principal symbol given by, up to a non-zero
constant factor,

bj,z(x, y, ξ, η)

=

∫
e−z/xez/γ

(1)
x,y,λ,ω(t)x−jλj(h(y)ω)⊗(2−j)χ̃(x, y, λ/x, ω)(x2γ̇

(1)
x,y,λ,ω(t))(xγ̇

(2)
x,y,λ,ω(t) · η)

ei(ξ/x
2,η/x)·(γ(1)

x,y,λ,ω(t)−x,γ(2)
x,y,λ,ω(t)−y) dt |dν|;

here x2γ̇
(1)
x,y,λ,ω(t) appears due to ⊗s dxx2 above in (5.3). This gives

bj,z(x, y, ξ, η)

=

∫
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x)+ηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y))

e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−1(xγ̇
(2)

x,y,xλ̂,ω
(xt̂) · η)(x2γ̇

(1)

x,y,xλ̂,ω
(xt̂)·) dt̂ dλ̂ dω.

This can be handled exactly as above, so an integration by parts as above in t̂ gives

bj,z(x, y, ξ, η)

= −
∫
e
iηx−1(γ

(2)

x,y,xλ̂,ω
(xt̂)−y)

x∂t̂

(
e
i(ξx−2(γ

(1)

x,y,xλ̂,ω
(xt̂)−x))

e−z(λ̂t̂+αt̂2)(x2γ̇
(1)

x,y,xλ̂,ω
(xt̂))

)
λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−1 dt̂ dλ̂ dω.

Again the derivative either produces a ξ factor, or a term which is one order lower than the a priori order.
Taking into account to the extra factor of x2Dx + iz− ix2ã we had, as well as G(ds

Y dY )∗ ∈ Ψ−2,0
sc , and also

the same continuity properties as in the 1-form setting, this proves:

Proposition 5.1. Let ξz = ξ + iz. The full symbol of the operator

Nz =

N0,z
N1,z
N2,z

 ,

with domain restricted to tangential-tangential tensors, relative to the Span{η}-based decomposition of the
domain, has the form a

(0)
00 a

(1)
01 ξz + a

(0)
01 a

(2)
02 ξ

2
z + a

(1)
02 ξz + a

(0)
02

a
(0)
10 a

(1)
11 ξz + a

(0)
11 a

(2)
12 ξ

2
z + a

(1)
12 ξz + a

(0)
12

a
(0)
20 a

(1)
21 ξz + a

(0)
21 a

(2)
22 ξ

2
z + a

(1)
22 ξz + a

(0)
22

 ,

where a
(k)
ij ∈ S−1−j,0 for all i, j, k.

Furthermore, a
(k)
ij ∈ S−1−j,0 depend continuously on the metric g (with the C∞ topology on g) as long as

g is Ck-close (for suitable k) to a background metric g0 satisfying the strict convexity assumptions on the
metric, the boundary and x.
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In addition, at x = 0 we have

aj,z(0, y, ξ, η)

=

∫
ei(ξ(λ̂t̂+αt̂

2)+η·(ωt̂))e−z(λ̂t̂+αt̂2)λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(2−k) dt̂ dλ̂ dω

=

∫
ei((ξ+iz)(λ̂t̂+αt̂2)+η·(ωt̂))λ̂j(h(y)ω)⊗(2−j)χ(λ̂)|η|−k(ω · η)k(ω·)⊗(2−k) dt̂ dλ̂ dω

=

∫
Sn−2

|η|−k(ω · η)k(h(y)ω)⊗(2−j)(ω·)⊗(2−k)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω.

We recall that α = α(x, y, λ, ω) so at x = 0, α(0, y, 0 · λ̂, ω) = α(0, y, 0, ω), and it is a quadratic form in ω.
Again, it is notationally convenient to assume, as we do from now on, that at y at which we perform the

computations below, h is the Euclidean metric. As in the one form setting, this does not affect even the
integration by parts arguments below since h(y) would be a prefactor of the integrals.

We now apply the projection P⊥ (quantization of the projection to Span{η}⊥ as in Proposition 4.1)
and its tensor powers from the left: for the tangential-tangential, tangential-normal, resp. normal-normal
components we apply P⊥⊗P⊥, resp. P⊥, resp. Id, which means for the symbol computation (we are working
at x = 0!) that we compose with Π⊥ ⊗ Π⊥, resp. Π⊥ ⊗s I, resp. I from the left. This replaces ω2−j by
(ω⊥)2−j with the result

ãj,z(0, y, ξ, η)

=

∫
Sn−2

|η|−k(ω · η)k(ω⊥)⊗(2−j)(ω⊥·)⊗(2−k)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂jχ(λ̂) dt̂ dλ̂
)
dω,

where we used that (ω·)⊗(2−k) is being applied to the η-orthogonal factors, so it may be written as (ω⊥·)⊗(2−k).
This means that at ξ = 0 the overall parity of the integrand in ω⊥ is (−1)j+k apart from the appearance

of ω⊥ in the exponent (via α) of e−z(λ̂t̂+αt̂2). The latter is due to the t̂2 prefactor of α, giving quadratic
vanishing at the critical set, only contributes one order lower terms, so modulo these the integral vanishes
when j and k have the opposite parity. This proves that the first two rows of Nz, when composed with the
projections as described, have the following form:

Proposition 5.2. Let ξz = ξ + iz. The symbol of the operator(
(P⊥ ⊗ P⊥)N0,z
(P⊥ ⊗s I)N1,z

)
,

with domain restricted to tangential-tangential tensors, relative to the Span{η}-based decomposition of the
domain, at x = 0 has the form(

a
(0)
00 a

(1)
01 ξz + a

(0)
01 a

(2)
02 ξ

2
z + a

(1)
02 ξz + a

(0)
02

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11 a

(2)
12 ξ

2
z + a

(1)
12 ξz + a

(0)
12

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k.

We can compute the leading terms quite easily: for j = k = 0 this is

ã0,z(0, y, ξ, η)

=

∫
Sn−2

(ω⊥)⊗2(ω⊥·)⊗2
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω

=

∫
Sn−2

(ω⊥)⊗2(ω⊥·)⊗2
(∫

ei((ξλ̂t̂+αt̂
2)+(η·ω)t̂)e−z(λ̂t̂+αt̂2)χ(λ̂) dt̂ dλ̂

)
dω.

At the critical points of the phase, t̂ = 0, ξλ̂+ η · ω = 0, where ω⊥ and λ̂ are variables along the critical set,
this gives, up to an overall elliptic factor,∫

Sn−3

(ω⊥)⊗2(ω⊥·)⊗2
(∫

χ(λ̂) dλ̂
)
dω⊥,
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which is elliptic for χ ≥ 0 with χ(0) > 0. On the other hand, for j = k = 1,

ã1,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1(ω · η)(ω⊥)(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω.

Writing i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ and integrating by parts yields

(5.4)

ã1,z(0, y, ξ, η)

= i

∫
Sn−2

|η|−1(ω⊥)(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(ξ + iz)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω

= i|η|−1(ξ + iz)

∫
Sn−2

(ω⊥)(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)λ̂χ(λ̂) dt̂ dλ̂
)
dω,

and now the integral (the factor after |η|−1(ξ + iz)) at the critical points of the phase t̂ = 0, ξλ̂+ η · ω = 0,
gives, up to an overall elliptic factor,∫

Sn−3

(ω⊥)(ω⊥·)
(∫

λ̂2χ(λ̂) dλ̂
)
dω⊥,

i.e. for the same reasons as in the j = k = 0 case above, when χ ≥ 0, χ(0) > 0, (5.4) is an elliptic multiple
of |η|−1(ξ + iz)!

Finally, when j = 0, k = 1, we have

ã0,z(0, y, ξ, η)

=

∫
Sn−2

|η|−1(ω⊥)⊗2(ω⊥·)(ω · η)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)χ(λ̂) dt̂ dλ̂
)
dω.

This, using i(ω · η)ei(η·ω)t̂ = ∂t̂e
i(η·ω)t̂ as above, gives

(5.5)

ã0,z(0, y, ξ, η)

= i|η|−1(ξ + iz)

∫
Sn−2

(ω⊥)⊗2(ω⊥·)
(∫

ei((ξ+iz)(λ̂t̂+αt̂2)+(η·ω)t̂)(λ̂+ 2αt̂)χ(λ̂) dt̂ dλ̂
)
dω.

Now the leading term of the integral, due to the contributions from the critical points, is∫
Sn−3

(ω⊥)⊗2(ω⊥·)
(∫

λ̂χ(λ̂) dλ̂
)
dω⊥,

which vanishes for χ even, so for such χ, the (0, 1) entry has principal symbol which at x = 0 is a multiple
of ξz, and the multiplier is in S−3,0 (one order lower than the previous results).

In summary, we have the following result:

Proposition 5.3. Suppose χ ≥ 0, χ(0) > 0, χ even. Let ξz = ξ + iz. The full symbol of the operator(
(P⊥ ⊗ P⊥)N0,z
(P⊥ ⊗s I)N1,z

)
,

with domain restricted to tangential-tangential tensors, relative to the Span{η}-based decomposition of the
domain, at x = 0 has the form(

a
(0)
00 a

(1)
01 ξz + a

(0)
01 a

(2)
02 ξ

2
z + a

(1)
02 ξz + a

(0)
02

a
(1)
10 ξz + a

(0)
10 a

(1)
11 ξz + a

(0)
11 a

(2)
12 ξ

2
z + a

(1)
12 ξz + a

(0)
12

)
,

where a
(k)
ij ∈ S−1−max(i,j),0 for all i, j, k, and a

(0)
00 and a

(1)
11 (these are the multipliers of the leading terms

along the ‘diagonal’) are elliptic in S−1,0 and S−2,0, respectively and a
(0)
01 , a

(0)
11 ∈ S−2,−1, i.e. in addition to

the above statements vanish at x = 0, and a
(1)
01 ∈ S−3,0.



LOCAL AND GLOBAL BOUNDARY RIGIDITY 39

The problem with this result is that we have too few equations: we would have needed to prove some
non-degeneracy properties of an operator like L2 to have a self-contained result. We deal with this by
using our results in the twisted solenoidal gauge as a background estimate. When doing so, the last column
(corresponding u2) can be regarded as forcing based on the background estimate. This is not the case for
the first two columns, however, so it is useful to note that they can be diagonalized:

Lemma 5.2. The first two columns of

(
(P⊥ ⊗ P⊥)N0,z
(P⊥ ⊗s I)N1,z

)
expanded relative to the Span{η}-based decom-

position of the domain, can be multiplied from the left by an operator with symbol

(
1 0

b(1)ξz + b(0) 1

)
and

from the right by an operator with symbol of the form

(
1 c(1)ξz + c(0)

0 1

)
with b(j) and c(j) in S−1,0, such

that the result has principal symbol of the form(
ã

(0)
00 0

0 ã
(1)
11 ξz + ã

(0)
11

)
,

with ã
(0)
00 = a0

00 elliptic in S−1,0, ã
(1)
11 ∈ S−2,0 elliptic, ã

(0)
11 ∈ S−2,−1.

Furthermore, ã
(0)
00 , ã

(k)
11 depend continuously (in the indicated spaces) on the metric g (with the C∞ topology

on g) as long as g is Ck-close (for suitable k) to a background metric g0 satisfying the strict convexity
assumptions on the metric, the boundary and x.

Proof. The proof is completely parallel to that of Corollary 4.1. �

This lemma will be used below as the input for the regularity theory in the normal gauge.

6. Fredholm theory for 2-tensors in the normal gauge

6.1. Fredholm theory for the geodesic X-ray transform in the normal gauge. We are now ready
to discuss Fredholm properties for the 2-tensor transform in the normal gauge; for this recall that X is
defined by the artificial boundary, see (3.2). The solenoidal gauge approach tells us that one can recover the
solenoidal part of u from Nzu in a lossless, in terms of the order of the weighted Sobolev spaces involved,
manner, at least for c small (where c defines the domain Ω): Recall that

ds
z = e−z/xdsez/x

is the conjugate symmetric gradient, and

δsz = ez/xδse−z/x

is its adjoint relative to scattering metric gsc.

Theorem 6.1. Let s = 0. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0} ∩M , xc = x̃+ c,
one has u = us + ds

zv, where

(6.1) ‖us‖s,r ≤ C‖Nzu‖s+1,r.

Furthermore, the constants c0 and C can be taken to be independent of the metric g as long as g is Ck-close
(for suitable k) to a background metric g0 satisfying the assumptions on the metric.

Remark 6.1. We remark that even the loss, in terms of the order of the weighted Sobolev spaces involved,
in recovering the solenoidal part of u from Nzu would not be an issue if ∂intΩ ∩ ∂X = ∅, for then in (6.2)
below, in the second appearance of PΩ1\Ω, which is the problematic one, γ∂intΩPΩ1\Ω is lossless as the loss
of weight is irrelevant in this case. Here ∂intΩ = ∂M ∩X. Thus, even the lossy estimate would suffice to if
we assumed that ∂intΩ ∩ ∂X = ∅, i.e. we worked globally within the boundary.
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Remark 6.2. It would be straightforward to allow general s ≥ 0, but this would require an improvement of
the results of [36] by developing elliptic boundary regularity theory in the boundary-scattering setting for the
Dirichlet problem for δszds

z for various domains such as Ω. This would proceed by proving b-sc regularity, ‘b’
(i.e. conormal regularity) at ∂intΩ, ‘sc’ at ∂X at first, and then using the operator to improve the regularity
to full standard Sobolev regularity at ∂intΩ, in the appropriate uniform sense to ∂X, analogously to how one
proves first tangential regularity for standard boundary value problems (on compact domains with smooth
boundary), and then obtains normal regularity using the operator. Note that even though Ω is a domain
with corners, there are no additional issues at the corners unlike for standard boundary value problems in
domains with corners, since the scattering operators are very differently behaved from standard operators
at ∂X. Since this theory and improvement are not needed for our main results, we refrain from developing
this theory in the present paper.

Proof. Recall first that ∂intΩ = ∂M ∩X is the internal (in X) part of ∂Ω, and similarly for neighborhoods
of Ω, such as Ω1, considered in [36].

We have the formula

(6.2)
(Id +(r10 − ds

zBΩγ∂intΩPΩ1\Ω)K2)−1

◦ (r10 − ds
zBΩγ∂intΩPΩ1\Ω)Sz,Ω1

r21Sz,Ω2
GNz = Sz,Ω

from [36, Equation (4.20)], with the various operators defined and estimated in that paper, and for s = 0
the discussions of that paper almost give this estimate: Lemma 4.13 of that paper, which controls PΩ1\Ω, a
local left inverse of ds

z on Ω1 \Ω with Dirichlet boundary conditions on ∂intΩ1, loses decay (relevant for the
second appearance of this operator only in this formula, as K2 gains infinite order decay), and the result one
gets directly is

‖us‖s,r−α ≤ C‖Nzu‖s+1,r

for α = 2, which is too weak for the theorem. However, we improve Lemma 4.13 of [36] below in the appendix
in Lemma A.2 to a lossless version, which directly proves (6.1) for s = 0.

Finally the uniformity of the estimate in g follows from the continuous dependence of Nz on g, as noted
at the end of Section 3.3. �

Now, we solve for v in the decomposition u = us + ds
zv when u is in the normal gauge, i.e. its normal

components vanish. As shown in [36], in the decomposition of 1-forms, resp. symmetric 2-tensors, into
normal and tangential, resp. normal-normal, normal-tangential and tangential-tangential components, the
principal symbol of ds

z is ξ + iz 0
1
2η⊗ 1

2 (ξ + iz)
a η⊗s

 ,

where a is a smooth bundle map. In fact, if we use normal coordinates for g, then the full operator in
the top right entry (and not just its principal symbol) is identically 0, as follows from a Christoffel symbol
computation. Indeed, denoting the index corresponding to the normal variable by 0, the Christoffel symbol
needed is Γi00 (where i 6= 0), which is given by 1

2g
ij times ∂0gj0 + ∂0g0j − ∂jg00, and in normal coordinates

(relative to a level set of x) all the components being differentiated are constant. Thus, if u is in the normal
gauge, so uNN = 0 and uNT = 0, we get equations for vN and vT :

(6.3)
usNN +ANNvN = 0,

usNT +ANT vT +BNT vN = 0,

where ANN ∈ Diff1
sc has principal symbol ξ + iz, BNT ∈ Diff1

sc has principal symbol 1
2η⊗, and ANT has

principal symbol 1
2 (ξ + iz). But from the first equation of (6.3), using Proposition 4.5, we deduce that

(6.4) ‖vN‖s,r + ‖x2DxvN‖s,r ≤ C‖usNN‖s,r ≤ C‖Nzu‖s+1,r.
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Then from the second equation of (6.3) we deduce that

(6.5)

‖vT ‖s−1,r + ‖x2DxvT ‖s−1,r

≤ C(‖usNT ‖s−1,r + ‖BNT vN‖s−1,r)

≤ C(‖Nzu‖s,r + ‖vN‖s,r) ≤ C‖Nzu‖s+1,r.

In fact, applying x2Dx to the second equation of (6.3) and using that x2DxvN ∈ Hs,r
sc (with an estimate as

above), we conclude that

ANT (x2Dx)vT = −x2Dxu
s
NT − [x2Dx, BNT ]vN −BNTx2DxvN − [x2Dx, ANT ]vT ,

so, using Proposition 4.5, as well as that x2Dx commutes with ANT at the principal symbol level, so the
commutator is of order (0,−2),

‖x2DxvT ‖s−1,r + ‖(x2Dx)2vT ‖s−1,r

≤ C(‖usNT ‖s,r + ‖vN‖s,r−1 + ‖BNTx2DxvN‖s−1,r + ‖vT ‖s−1,r−2)

≤ C(‖Nzu‖s+1,r + ‖vN‖s,r−1 + ‖x2DxvN‖s,r + ‖Nzu‖s+1,r) ≤ C‖Nzu‖s+1,r,

proving (6.5), and where the last inequality also used (6.4). This gives that u, which is us + ds
zv, satisfies

(6.6) ‖u‖s−2,r ≤ C(‖Nzu‖s+1,r + ‖v‖s−1,r) ≤ C‖Nzu‖s+1,r,

which is a loss of 2 derivatives relative to the solenoidal gauge. Notice also that v satisfies x2Dxv ∈ Hs−1,r
sc ,

thus ds
zv satisfies a similar estimate (here the action of x2Dx on tangential tensors makes sense directly):

(x2Dx)ds
zv = ds

z(x2Dxv) + [ds
z, x

2Dx]v

implies, as the commutator is in xDiff1
sc,

‖(x2Dx)ds
zv‖s−2,r ≤ C(‖x2Dxv‖s−1,r + ‖v‖s−1,r+1) ≤ C‖Nzu‖s+1,r.

Hence, also taking advantage of Theorem 6.1,

‖x2Dxu‖s−2,r ≤ C‖Nzu‖s+1,r

as well. Finally (x2Dx)2v ∈ Hs−1,r
sc as well:

(x2Dx)2ds
zv = ds

z(x2Dx)2v + 2[x2Dx,d
s
z](x2Dxv)− [x2Dx, [d

s
z, x

2Dx]]v,

so
‖(x2Dx)2ds

zv‖s−2,r ≤ C(‖(x2Dx)2v‖s−1,r + ‖x2Dxv‖s−1,r−1 + ‖v‖s−1,r−2).

This gives

(6.7) ‖(x2Dx)2u‖s−2,r ≤ C‖Nzu‖s+1,r,

i.e. u satisfies coisotropic estimates.
Now, v in fact only enters into particular components of u in the decomposition of u as (u0, u1, u2)

corresponding to the decomposition relative to Span{η}, and it is then straightforward to obtain a more
precise estimate directly from the argument above. We, however, proceed differently and instead recover it
from Proposition 5.3 above: Proposition 5.3 is crucial in any case for the microlocally weighted transform
considered below.

Theorem 6.2. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0} ∩M , xc = x̃ + c, with
s = 0, we have for u in the normal gauge, written as u = (u0, u1, u2) relative to the Span{η}-based tensorial
decomposition, that

(6.8)

‖u0‖s,r + ‖u1‖s−1,r + ‖x2Dxu1‖s−1,r

+ ‖u2‖s−2,r + ‖(x2Dx)u2‖s−2,r + ‖(x2Dx)2u2‖s−2,r

≤ C‖Nzu‖s+1,r.

Furthermore, the constants c0 and C can be taken to be independent of the metric g as long as g is Ck-close
(for suitable k) to a background metric g0 satisfying the assumptions on the metric.
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Proof. We use the operator matrix in Proposition 5.3, pre- and postmultiplied as in Lemma 5.2, after
regarding the u2 terms as forcing. Note that the postmultiplication preserves the space Hs+1,r

sc . Write the

new combination of u0 and u1 given by

(
1 C(1)(x2Dx + iz) + C(0)

0 1

)−1(
u0

u1

)
with C(j) in Ψ−1,0

sc as in

Lemma 5.2, as

(
ũ0

ũ1

)
. With B0,z, B1,z ∈ Ψ−1,0

sc as the two rows of the result of Proposition 5.3, and the

tilded versions B̃0,z, B̃1,z ∈ Ψ−1,0
sc arising from the two rows of Lemma 5.2, we obtain pseudodifferential

equations, in which we regard the off-diagonal terms as forcing, i.e. put them on the right hand side of the

equation. Thus, the 0-th row, i.e. that of B̃0,z, yields an elliptic estimate (keeping in mind the order of b̃
(0)
00 )

(6.9)

‖ũ0‖s,r ≤ C(‖ũ0‖s−1,r−1 + ‖ũ1‖s−2,r−1 + ‖x2Dxũ1‖s−2,r−1

+ ‖u2‖s−2,r−1 + ‖(x2Dx)u2‖s−2,r−1 + ‖(x2Dx)2u2‖s−2,r−1 + ‖B̃0,zũ‖s+1,r)

≤ C‖Nzu‖s+1,r,

where we used (6.6)-(6.7).

Turning to the 1st row, i.e. that of B̃1,z, due to the imaginary part of the principal symbol, independently
of the weight r, the combination of Proposition 4.5 and standard real principal type estimates yields

(6.10)

‖ũ1‖s−1,r + ‖x2Dxũ1‖s−1,r ≤ C(‖ũ1‖s−2,r−1 + ‖ũ0‖s−2,r−1 + ‖(x2Dx)ũ0‖s−2,r−1

+ ‖u2‖s−2,r−1 + ‖(x2Dx)u2‖s−2,r−1

+ ‖(x2Dx)2u2‖s−2,r−1 + ‖B̃1,zũ‖s+1,r)

≤ C‖Nzu‖s+1,r.

Together with (6.6)-(6.7), (6.9)-(6.10) imply (6.8) with (u0, u1) replaced by (ũ0, ũ1). Finally,(
u0

u1

)
=

(
1 C(1)(x2Dx + iz) + C(0)

0 1

)(
ũ0

ũ1

)
proves the theorem. �

We now consider
Nz : X → Y

where

(6.11)
X = {u = (u0, u1, u2) : u0 ∈ Hs,r

sc , u1, x
2Dxu1 ∈ Hs−1,r

sc ,

u2, (x
2Dx)u2, (x

2Dx)2u2 ∈ Hs−2,r
sc , suppu ⊂ Ω},

with the natural norm (and inner product: this is a Hilbert space), so elements of X are tangential-tangential
tensors, and

Y = Hs+1,r
sc (X; Sym2scT ∗X).

Notice that this mapping property of Nz follows from Proposition 5.1, and that the spaces are independent
of the metric g, with the dependence of Nz on g continuous as a map between these spaces as long as g is
Ck-close to a metric g0 satisfying the assumptions on the metric (with both in the normal gauge).

We then have from Theorem 6.2:

Corollary 6.1. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0} ∩M , xc = x̃+ c, and with
X ,Y as above, the operator Nz : X → Y satisfies

(6.12) ‖u‖X ≤ C‖Nzu‖Y , u ∈ X ,
so Nz injective and has closed range.

Thus, it has a left inverse, which we denote by N−1
z with a slight abuse of notation, which is continuous

Y → X .
Furthermore, the constants c0 and C can be taken to be independent of the metric g as long as g is Ck-close

(for suitable k) to a background metric g0 satisfying the assumptions on the metric.
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Proof. Due to Theorem 6.2, resulting in (6.12), Nz : X → Y is injective and has closed range. Letting R be
this range, being a closed subspace of Y it is a Hilbert space, so Nz : X → R is invertible, with a continuous
inverse, by the open mapping theorem. Composing this inverse from the right with the orthogonal projection
from Y to R we obtain the desired left inverse. �

6.2. Extension to weights. We are also interested in generalizations of I by adding weights:

Ĩf(β) =

∫
γβ

a(γ(s), γ̇(s))f(γ(s))(γ̇(s), γ̇(s)) ds

with the notation of Section 2, so β ∈ S∗M̃ , γβ the geodesic through β, a a given weight function. More
generally consider an N ×N system of transforms, f = (f1, . . . , fN ),

(Ĩf)i(β) =

∫
γβ

Aji (γ(s), γ̇(s))fj(γ(s))(γ̇(s), γ̇(s)) ds

Here we require Aji to be smooth, but rather than imposing Ck estimates on Aji to measure closeness to the

identity weight, we work with weaker estimates. Namely, with ε such that x < ε on Ωc (so ε > c), which

corresponds to a transform with data at x = ε, we assume that the derivatives of Aji = Aji (x, y, λ, ω) have

the property that Aji remains bounded under iterated applications of

(6.13) x∂x, ∂y, x∂λ, ∂ω,

where e.g. ∂λ stands for derivative in the third slot. (These are called “edge derivatives” by Mazzeo [16].)
We write ‖.‖Cksc for the norm on the space of C∞ functions a given by the maximum, over products of up

to k vector fields on the list (6.13), of the supremum of these products applied to a evaluated on Ωc in the
(x, y) variables, |λ| ≤ λ0, ω ∈ Sn−1 with λ0 chosen so that all the geodesics used in LI have |λ| ≤ λ0 (so the
support of the cutoff χ lies in [−cλ0, cλ0]). The reason for so weakening the requirements is that the weights
that arise in the pseudolinearization discussed in the next section are well-behaved in this sense, with the key
point being that these weights are a priori C0 close to (half of) δji which would suffice for elliptic problems,
but not Ck close for k ≥ 1. This is an issue because for our non-elliptic problem closeness in a Ck-type norm
is needed, with the crucial gain, however, that the derivatives only need to be taken relative to the vector
fields (6.13).

Then, with L defined identically to the case of I in the first case, and the N × N diagonal matrix with
the previous L as the diagonal entry in the second case, we have

Theorem 6.3. There exists c0 > 0 such that for 0 < c < c0, on Ωc = {xc > 0}∩M , xc = x̃+c, the operator

Ñz = L ◦ Ĩ maps

Ñz : XN → YN .
Moreover, there exist A0 > 0 and c0 > 0 such that if 0 < c < c0 and ‖Aji − δji ‖Cksc < A0 (or the analogous

statement holds for a constant multiple of δji , such as − 1
2δ
j
i ) then we have

(6.14) ‖u‖XN ≤ C‖Ñzu‖YN , u ∈ XN ,
so Ñz injective and has closed range.

Thus, it has a left inverse, which we denote by Ñ−1
z with a slight abuse of notation, which is continuous

YN → XN .
Furthermore, the constants A0, c0, and C in (6.14), can be taken to be independent of the metric g as

long as g is Ck-close (for suitable k) to a background metric g0 satisfying the assumptions on the metric.

Remark 6.3. The space Cksc is the natural one appearing in the actual application, see Lemma 7.4, and
cannot be replaced there with the classical Ck.

Proof. The first part is almost immediate by explicitly writing out Ñz as in Section 5. For instance, the

additional weight does not affect the phase function, so the fact that Ñz is in Ψ−1,0
sc is unaffected, as is the
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structure of the principal symbol computation. Note that in the oscillatory integral computation leading to
the principal symbols the weights Aji are evaluated at

(γ(t), γ̇(t)) =
(
x+ λt+ αt2 + t3Γ(1)(x, y, λ, ω, t), y + ωt+ t2Γ(2)(x, y, λ, ω, t),

λ+ 2αt+ t2Γ̃(1)(x, y, λ, ω, t), ω + tΓ̃(2)(x, y, λ, ω, t)
)
,

with Γ(1),Γ(2), Γ̃(1), Γ̃(2) smooth functions of x, y, λ, ω, t. Then one introduces t̂ = t/x, λ̂ = λ/x, so the
evaluation is at

(γ(xt̂), γ̇(xt̂)) =
(
x+ x2(λ̂t̂+ αt̂2 + xt̂3Γ(1)(x, y, xλ̂, ω, xt̂)), y + x(ωt̂+ xt̂2Γ(2)(x, y, xλ̂, ω, xt̂)),

x(λ̂+ 2αt̂+ xt̂2Γ̃(1)(x, y, xλ̂, ω, t)), ω + xt̂Γ̃(2)(x, y, xλ̂, ω, xt̂)
)
.

The stationary phase lemma shows that as long as iterated derivatives of Aji (γ(xt̂), γ̇(xt̂)) in x∂x, ∂y, ∂λ̂, ∂ω, ∂t̂
are bounded, the operator is in the same class as the unweighted one. By the chain rule these are bounded
by the x∂x, ∂y, x∂λ, ∂ω derivatives of Aji , which are exactly the derivatives giving rise to the Ak-norms.

There is only one real subtlety, namely where Ids = 0 was used in the k = 2 case (range of P ‖ ⊗ P ‖) to

deal with subprincipal terms; this is not satisfied for Ĩ. However, Ids = 0 relies on XιXu = dsu(X,X) for all
u, where X is the tangent vector field of a geodesic, see the discussion in the appendix; the integral of Xv
along the geodesic vanishes for any function v (such as v = ιXu) of compact support by the fundamental
theorem of calculus. Thus, if fj = dsuj , X = γ̇,

(6.15)

(Ĩf)i(β) =

∫
γβ

Aji (γ(s), γ̇(s))X(γ(s))ιX(γ(s))uj(γ(s)) ds

=

∫
γβ

X(γ(s))
(
Aji (γ(s), γ̇(s))(γ(s))ιX(γ(s))uj(γ(s))

)
ds

−
∫
γβ

X(γ(s))(Aji (γ(s), γ̇(s)))ιX(γ(s))uj(γ(s)) ds

= −
∫
γβ

X(γ(s))(Aji (γ(s), γ̇(s)))ιX(γ(s))uj(γ(s)) ds

= −
∫
γβ

Ãji (γ(s), γ̇(s))uj(γ(s))(γ̇(s)) ds,

Ãji (γ(s), γ̇(s)) = (X(γ(s)))(Aji (γ(s), γ̇(s)))

and now notice that the right hand side is a microlocally weighted 1-form X-ray transform. Crucially this
means that Ñj,zds

z, while not 0, is a transform of the same form with the same γ̇, resp. xγ̇(2) appearing

in the argument as in (5.1) and (5.2), albeit only to the first power. Notice that a priori, Ñzds
z ∈ Ψ0,0

sc ,
but (6.15) shows that it is in Ψ−1,0

sc , and then the appearance of γ̇ as mentioned means that the principal
symbol has the same vanishing at ξ = 0, since the same integration by parts is possible. This shows that the
analogue of Proposition 5.1 holds (with an N ×N matrix of operators, each with the same structure as in
that proposition), which gives the claimed mapping property just as in the case of Nz.

Moreover, if the weight is close to the identity in the Ak norm for k sufficiently large, then Nz⊗ IN − Ñz
is small as an operator between these Hilbert spaces, and Nz⊗ IN : XN → YN has a left inverse N−1

z ⊗ IN .
Correspondingly,

Ñ−1
z = (Id +(N−1

z ⊗ IdN )(Ñz − (Nz ⊗ IdN )))−1(N−1
z ⊗ IdN ),

is the desired left inverse. �

7. Boundary rigidity

7.1. Preliminaries. Before proceeding with boundary rigidity, we recall from [15] that if the boundary
distance functions of two metrics g, ĝ are the same on an open set U0 of ∂M and ∂M is strictly convex
with respect to these metrics (indeed, convexity suffices), then for any compact subset K of U0 there is a
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diffeomorphism of M fixing ∂M such that the pull back of ĝ by this diffeomorphism agrees with g to infinite
order at K. For a more general result not requiring convexity, see [33]. Concretely, the local statement is:

Lemma 7.1 ([15]). Let ∂M be convex at p0 with respect to g and ĝ. Let d = d̃ on ∂M × ∂M near (p0, p0).
Then there exists a local diffeomorphism ψ of a neighborhood of p0 in M to another such neighborhood with
ψ = Id on ∂M near p0 so that ∂αg = ∂α(ψ∗ĝ) on ∂M near p0 for every multiindex α.

The diffeomorphism ψ is constructed by identifying the semigeodesic coordinates, also called boundary
normal coordinates, for both metrics. More specifically, let z′ = (z1, . . . , zn−1) be local coordinates on ∂M
near p0, and let for a moment denote by γz′,ν(s) the unit speed geodesic in the metric g with initial point
p = p(z′) ∈ ∂M and direction the unit outward normal ν at p. Then φ : z = (z′, zn) 7→ γz′,ν(zn) is a local
diffeomorphism, and then z are local coordinates near p0. Then φ∗g is g in the normal gauge to ∂M and it
satisfies (φ∗g)in = δin, i = 1, . . . , n and ∂M is given locally by zn = 0. The distance function restricted to

∂M × ∂M near (p0, p0) recovers the full jet of φ∗g at ∂M near p0 uniquely. Let φ̂ be the diffeomorphism

related to ĝ. Then ψ := φ̂ ◦ φ−1 is the diffeomorphism in the lemma above. In the (common) coordinates z,

they both satisfy gin = ĝin = δin; more precisely, (φ∗g)in = (φ̂∗ĝ)in = δin, see, e.g., [26, sec. 4.1]. In other
words, they are both in the normal gauge.

The local statement of the lemma immediately implies the semiglobal statement we made above it, namely
the existence of a single diffeomorphism ψ for compact subsets K of U0 ⊂ ∂M such that ∂αg = ∂α(ψ∗ĝ) on
K for every multiindex α.

We simply denote the pullback ψ∗ĝ by ĝ, i.e. we assume, as we may, that g and ĝ agree to infinite order
on K. Applying this with an open smooth subdomain U1 3 p0 of ∂M with Ū1 ⊂ U0 compact, we can then
extend g and g̃ to a neighborhood of M in the ambient manifold without boundary M̃ so that the extensions
are identical in a neighborhood O1 of U1; from this point on we work in such a neighborhood of U1.

Recall also that the above linear results in the normal gauge required that the metric itself, whose geodesics
we consider, is in the normal gauge. So for the non-linear problem we proceed as follows. First, we are given
a smooth function x with dx 6= 0 and strictly concave level sets from the side of its superlevel sets at least
near the 0-level set H, assume that the zero level set only intersects M at p0 ∈ ∂M , then {x ≥ −c} ∩M
is compact for c > 0 small. A unique point of contact with ∂M can be achieved, as in [38], if we chose
the concavity of H to be strictly greater than that of ∂M at p0. Then {x ≥ −c} ∩M becomes small when
0 < c� 1 and converges to p0 as c→ 0+.

In fact, only the zero level set of the function x near p0 will be relevant for local boundary rigidity. Thus,
the open set U0 above is a neighborhood of p0 in ∂M , and the open set on which the metric is recovered will
be a neighborhood of p0 in M , see also Figure 3.

Namely, using H = {x = 0} as the initial hypersurface (rather than ∂M as above), we put the metrics g, ĝ
into normal coordinate form relative to H in a neighborhood of p0. In other words, we pull each one back by
a diffeomorphism fixing H, so, dropping the diffeomorphism from the notation (as it will not be important

from now on), they are of the form g = dx̃2 +h(x̃, y, dy), ĝ = dx̃2 + h̃(x̃, y, dy), and correspondingly the dual

metrics are of the form g−1 = ∂2
x̃ +h−1(x̃, y, ∂y), ĝ−1 = ∂2

x̃ + h̃−1(x̃, y, ∂y). Note that those diffeomorphisms,
constructed by identifying semigeodesic coordinates normal to H map ∂M (near p0) to the same hypersurface
(pointwise) which we still call ∂M since the two metrics are equal outside M . It is with the so obtained x̃
that we apply our linear normal gauge result; note that as {x̃ = 0} = H, and {x̃ ≥ −c} ∩M is small when
c � 1, we still have the concavity (as well as the other) assumptions satisfied for the level sets {x̃ = −c}
when c is small. In addition, g− ĝ, as well as g−1− ĝ−1, have support whose intersection with O1 is a subset
of M .

7.2. Pseudolinearization. Our normal gauge result then plugs into the pseudolinearization formula based
on the following identity which appeared in [32], see also [34]. Let V , Ṽ be two vector fields on a manifold

M which will be replaced later with T ∗M . Denote by P (s, P (0)) the solution of Ṗ = V (P ), P (0) = P (0),

and we use the same notation for Ṽ with the corresponding solution are denoted by P̃ .
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Lemma 7.2. For any t > 0 and any initial condition P (0), if P̃
(
·, P (0)

)
and P

(
·, P (0)

)
exist on the interval

[0, t], then

P̃
(
t, P (0)

)
− P

(
t, P (0)

)
=

∫ t

0

∂P̃

∂P (0)

(
t− s, P (s, P (0))

)(
Ṽ − V

)(
P (s, P (0))

)
ds.

The proof is based on the application of the Fundamental Theorem of Calculus to the function

F (s) = P̃
(
t− s, P (s, P (0))

)
, 0 ≤ s ≤ t.

Let g, ĝ be two metrics. The corresponding Hamiltonians and Hamiltonian vector fields are

(7.1) H =
1

2
gijξiξj , V =

(
g−1ξ,−1

2
∂p|ξ|2g

)
,

and the same ones related to ĝ. Here, |ξ|2g := gijξiξj .
In what follows, we denote points in the phase space T ∗M , in a fixed coordinate system, by z = (p, ξ).

We denote the bicharacteristic with initial point z by Z(t, z) = (P (t, z),Ξ(t, z)).
Then we obtain the identity already used in [32, 34]:

(7.2) Z̃(t, z)− Z(t, z) =

∫ t

0

∂Z̃

∂z
(t− s, Z(s, z))

(
Ṽ − V

)
(Z(s, z)) ds.

We can naturally think of the scattering relation L and the travel time ` as functions on the cotangent
bundle instead of the tangent one, which yields the following.

Proposition 7.1. Assume

(7.3) L(x0, ξ
0) = L̃(x0, ξ

0), `(x0, ξ
0) = ˜̀(x0, ξ

0)

for some z0 = (x0, ξ
0) ∈ ∂−S∗M . Then

(7.4)

∫ `(z0)

0

∂Z̃

∂z
(`(z0)− s, Z(s, z0))

(
V − Ṽ

)
(Z(s, z0)) ds = 0

with V as in (7.1).

Recall from the introduction that the boundary distance function determines the lens data locally, thus
Proposition 7.1 is the geometric input of Theorems 1.1-1.2 establishing the connection between the given
geometric data and a transform (which depends on g and ĝ) of V − Ṽ , namely (7.4).

7.2.1. Linearization near g Euclidean. As a simple exercise, we first consider the special case of the Euclidean
metric to develop a feel for this identity. So let gij = δij and linearize for ĝ near g first under the assumption
ĝij = δij outside an open region Ω ⊂ Rn. Then

Z(s, z) =

(
In sIn
0 In

)
z,

∂Z(s, z)

∂z
=

(
In sIn
0 In

)
,

with In being the identity n× n matrix, and we get the following formal linearization of (7.4)

(7.5)

∫ t

0

(
fξ − 1

2
(t− s)∂pf ijξiξj , −

1

2
∂pf

ijξiξj

)
(p+ sξ, ξ) ds = 0,

for t� 1 with
f ij(p) := δij(p)− ĝij(p).

Equation (7.5) is obtained by replacing ∂Z̃/∂z in (7.2) by ∂Z/∂z. The last n components of (7.5) imply∫
∂pf

ij(p+ sξ)ξiξj ds = 0.

We integrate over the whole line s ∈ R because the integrand vanishes outside the interval [0, `(p, ξ)]. We
can remove the derivative there and get that the X-ray transform If of the tensor field f vanishes. Now,
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assume that this holds for all (p, ξ). Then f = dsv for some covector field v vanishing at ∂M . This is a
linearized version of the statement that ĝ is isometric to g with a diffeomorphism fixing ∂M pointwise. Even
in this simple case we see that we actually obtained at first that I(∂pf) = 0 rather than If = 0 and needed
to integrate.

7.2.2. The general case. We take the second n-dimensional component on (7.2). We get, with f = g−1− ĝ−1,∫
∂Ξ̃

∂p
(`(z)− s, Z(s, z))(fξ)(Z(s, z)) ds

− 1

2

∫
∂Ξ̃

∂ξ
(`(z)− s, Z(s, z))(∂pfξ · ξ)(Z(s, z)) ds = 0

for any z ∈ ∂−SM for which (7.3) holds. As before, we integrate over s ∈ R because the support of the
integrand vanishes for s 6∈ [0, `(p, ξ)] (for that, we extend the bicharacteristics formally outside so that they
do not come back).

Introduce the exit times τ(p, ξ) defined as the minimal (and the only) t > 0 so that P (t, p, ξ) ∈ ∂M . They
are well defined near Sp∂M , if ∂M is strictly convex at p0. We have

∂Z̃

∂z
(`(z)− s, Z(s, z)) =

∂Z̃

∂z
(τ(Z(s, z))).

Then we get, with fkl = gkl − ĝkl,

Jif(γ) :=

∫ (
Aji (P (t),Ξ(t))(∂pjf

kl)(P (t))Ξk(t)Ξl(t)

+Bi(P (t),Ξ(t))fkl(P (t))Ξk(t)Ξl(t)
)
dt = 0

(7.6)

for any bicharacteristic γ = (P (t),Ξ(t)) related to the metric g in our set, where

(7.7) Aji (p, ξ) = −1

2

∂Ξ̃i
∂ξj

(τ(p, ξ), (p, ξ)), Bi (p, ξ) =
∂Ξ̃i
∂pj

(τ(p, ξ), (p, ξ))gjk(p)ξk.

The exit time function τ(p, ξ) (recall that we assume strong convexity) becomes singular at (p, ξ) ∈ T ∗∂M .
More precisely, the normal derivative with respect to p when ξ is tangent to ∂M has a square root type of
singularity. This is yet another reason to extend the metrics g and ĝ outside M , in an identical manner.

Based on those arguments, we push the boundary away a bit, to x̃ = δ with some δ > 0. For (p, ξ) with
p near p0, redefine τ(p, ξ) to be the travel time from (p, ξ) to Hδ = {x̃ = δ}. Let U− ⊂ ∂−SHδ be the set
of all points on Hδ and incoming unit directions so that the corresponding geodesic in the metric g is close
enough to one tangent to ∂M at p0. Similarly, let U+ be the set of such pairs with outgoing directions.
Redefine the scattering relation L locally to act from U− to U+, and redefine ` similarly, see Figure 3. Then

under the assumptions of Theorems 1.1-1.2, L = L̃ and ` = ˜̀ on U−. We can apply the construction above
by replacing ∂±SM locally by U±. Equalities (7.6), (7.7) are preserved then. The advantage we have now
is that on U−, the travel time τ is non-singular but its derivatives are still large when δ � 1. To deal with
this, we need the following lemmas.

p0

Ω H

Hδ

Figure 3. The redefined scattering relation.
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Lemma 7.3. For |λ| ≤ Cδ, |x| ≤ δ/2, y bounded, we have, for 0 < δ � 1,

(7.8) τ(x, y, λ, ω) =
√
δ − x τ̃

(√
δ − x, y, λ√

δ − x
, ω
)

with some smooth function τ̃ . Moreover, τ̃ depends continuously on g ∈ Ck for k ≥ 1 under small perturba-
tions of g.

Proof. By (6.13), ignoring the Γ terms, the bicharacteristic meets x = δ when x+ λt+ αt2 = δ, i.e. when

(7.9) t =
−λ±

√
λ2 + 4α(δ − x)

2α
;

for the forward direction one needs to take the + sign. Note that for λ = 0, this means t = 1√
α

√
δ − x. Now,

(7.9), and its λ = 0 case, suggests that we should factor out
√
δ − x from the formula for t, which then (as

α > 0 is bounded below by a positive constant) suggests in turn defining

λ̃ = λ/
√
δ − x, t̃ = t/

√
δ − x,

to get

t̃ =
−λ̃+

√
λ̃2 + 4α

2α
,

which is a smooth function of λ̃ (for which |λ̃| ≤ C
√
δ) and α = α(x, y, λ, ω) for λ̃ small. This then

immediately suggests how to proceed in the general case, without ignoring the Γ terms. Namely, x = δ is
reached when

x− δ + λt+ αt2 + t3Γ(1)(x, y, λ, ω, t)

vanishes. With ρ̃ =
√
δ − x, this is

ρ̃2
(
− 1 + λ̃t̃+ αt̃2 + ρ̃ t̃3Γ(1)(x, y, ρ̃ λ̃, ω, ρ̃ t̃)

)
,

and the vanishing is equivalent (in the relevant region) to that of

h = −1 + λ̃t̃+ αt̃2 + ρ̃ t̃3Γ(1)(x, y, ρ̃ λ̃, ω, ρ̃ t̃).

But h vanishes when ρ̃ = 0, λ̃ = 0, t̃ = 1√
α

, and it is a C∞ function of ρ̃, y, λ̃, ω, t̃, with ∂t̃h at these points

given by 2
√
α 6= 0. Hence the implicit function theorem applies and shows that, for sufficiently small |ρ̃| and

|λ̃|, say both being < δ̃, x = δ is crossed at

t̃ = τ̃(ρ̃, y, λ̃, ω),

where τ̃ is C∞, and hence at t = τ as in (7.8). Then the smallness requirements for |ρ̃| and |λ̃| are satisfied
for λ, and x as in the lemma as long as δ � 1. Finally, α and Γ(1) depend continuously of g in the sense of
the lemma, then so does τ̃ . �

Lemma 7.4. For every k,

(7.10) Aji (p, ξ) = −1

2
δji +O(

√
δ), Bi(p, ξ) = O(1) in Cksc

as δ � 1 for (p, ξ) ∈ T ∗M near S∗p0∂M satisfying the smallness assumptions of Lemma 7.3. Moreover, Aji
and Bi with values in Cksc, depend continuously on ĝ ∈ Ck for k ≥ 1 under small perturbations of ĝ.

Recall that Cksc was defined after (6.13). Estimate (7.10) is not true in general in the conventional Ck

norms.

Proof. By Lemma 7.3, τ = O(
√
δ) in Cksc. Passing to the coordinates x, y, λ, ω, we write

Aji = −1

2
δji + τ(x, y, λ, ω)Ãji (x, y, λ, ω, τ(x, y, λ, ω))

with some smooth function Ãji (x, y, λ, ω, t) with derivatives uniformly bounded (and independent of δ) in

the region in Lemma 7.3 and |t| � 1. Then (7.10) for Aji follows by (7.7). The proof for Bi is similar. �



LOCAL AND GLOBAL BOUNDARY RIGIDITY 49

7.3. Local boundary rigidity. Proof of Theorem 1.2. The equality of the distance functions dg and
dĝ for pairs of points on ∂M close to a fixed one implies equality of the lens relations as redefined in the
paragraph preceding Lemma 7.3, see also Figure 3. A priori, minimizing paths may not be in a small
neighborhood of ones tangent to p0 but by shrinking U in Theorem 1.2 if needed, we can arrange that they
are. Note that the size of U can be chosen uniform under small perturbations of g and ĝ in Ck with k � 1.

Since in Section 6 we analyzed the X-ray transform on symmetric cotensors with weights, it is convenient
to replace f in (7.6) by its cotensor version. Thus, with fkl = gkl − ĝkl, we have

Jif(γ) :=

∫ (
Aji (P (t),Ξ(t))gkr(P (t))gls(P (t))(∂xjf

rs)(P (t))

gkr
′
(P (t))Ξr′(t)g

ls′(P (t))Ξls′(t)

+Bi(P (t),Ξ(t))gkr(P (t))gls(P (t))frs(P (t))

gkr
′
(P (t))Ξr′(t)g

ls′(P (t))Ξls′(t)
)
dt = 0,

where now g−1Ξ(t) in the arguments of gkrgls∂xjf
rs and gkrglsf

rs is the tangent vector of the geodesic

(projected bicharacteristic) at P (t). The equality is true for every z for which `(z) = ˜̀(z) near S∗p0∂M .
In order to fit into the framework of Section 6, we further want to consider this as a transform on the

n + 1 functions (fj)ik = girgks∂j(g
rs − ĝrs), (f0)ik = girgks(g

rs − ĝrs); thus ultimately the transform we
consider is

(7.11)
Ĩi(β)(f0, f1, . . . , fn) =

∫
γβ

Aji (P (t),Ξ(t))fj(P (t))(X ′(t), X ′(t))

+Bi(P (t),Ξ(t))f0(P (t))(X ′(t), X ′(t))) dt,

where γβ is the geodesic through β ∈ S∗X. Moreover, for every k, by Lemma 7.4, −2Aji is O(δ1/2) close to δji
in Cksc, if the initial points and directions are δ close to Tp0∂M . Thus, considering the resulting transform Ñz
on the n components u′ = (u1, . . . , un), with u = e−z/xf , we get, as in [36], in this case using Theorem 6.3,
that there is c0 > 0 such that for 0 < c < c0,

(7.12) ‖u′‖Xn ≤ C(‖Ñzu
′‖ + ‖u0‖X );

here Xn is the n-fold product space based on X (i.e. each uj ∈ X , j = 1, . . . , n, and is estimated in that
space). We note that here c0 and C can be taken to be independent of g as long g is Ck-close to a background
metric (satisfying the assumptions) for suitable k. We also need that

Lemma 7.5. Suppose δ̃ > 0. There exists c0 > 0 such that for 0 < c < c0, ‖u0‖X ≤ δ̃‖u′‖Xn . Furthermore,
c0 can be taken to be independent of g as long as, for suitable k, g is Ck-close to a background metric g0

satisfying our assumptions.

Proof. Recall that (uj)ik = e−z/xgirgks∂j(g
rs − ĝrs), (u0)jk = e−z/xgirgks(g

rs − g̃rs), i.e. uj = (g ⊗
g)e−z/x∂j(g

−1− g̃−1), u0 = (g⊗g)e−z/x(g−1− g̃−1). Thus, uj = (g⊗g)e−z/x∂je
z/x(g−1⊗g−1)u0. Writing

the first n − 1 coordinates as the y variables and the nth as the x variable, the result is proved if we can
show that ‖u0‖X ≤ δ̃‖un‖X when c is suitably small.

Now

−ix2un = (g ⊗ g)e−z/x(x2Dx)ez/x(g−1 ⊗ g−1)u0,

and (g⊗ g)e−z/x(x2Dx)ez/x(g−1 ⊗ g−1) has principal symbol ξ+ iz times the identity. By Proposition 4.5
we have

(7.13) ‖u0‖s,r ≤ C(‖x2un‖s,r + ‖u0‖−N,−M ),

with C uniform in g in the sense of the statement of the lemma.
We take s > 0, N > 0 as we may, and note that the error term on the right hand side satisfies

‖u0‖−N,−M ≤ ‖u0‖0,−M = ‖xr+Mu0‖0,r ≤ cr+M0 ‖u0‖0,r ≤ cr+M0 ‖u0‖s,r
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if u is supported in x < c0. Substituting into (7.13), this can be absorbed into the left hand side of the same

equation for sufficiently small c0, which is uniform in g; for instance Ccr+M0 < 1/2 suffices.
Therefore, if u is supported in x < c0, we deduce that ‖u0‖s,r ≤ 2c20C‖un‖s,r.
Now, recall from (6.11) that the X spaces are just spaces where similar estimates are made also for x2Dxu

and (x2Dx)2u (more precisely, of the microlocal projections of u), so this proves the lemma. �

Then as in [36], for δ̃ > 0 sufficiently small, one can absorb the u0 term from the right hand side of
(7.12) in the left hand side. This proves the stable recovery of u, thus f , from the transform, and thus local
boundary rigidity: restricted to x̃ ≥ −c, the metrics are the same.

This concludes the proof of Theorem 1.2.

7.4. Semiglobal and global lens rigidity. Proof of Theorem 1.3 and Theorem 1.4. Our approach
also allows us to prove a global rigidity result. The key point for this is to make the local boundary rigidity
argument uniform in how far from an initial hypersurface H the metrics g and ĝ can be shown to be identical
in geodesic normal coordinates.

We note that the normal gauge relative to a hypersurface provides a local diffeomorphism at a uniform
distance to it if one has a uniform estimate for the second fundamental form of the hypersurface and of the
curvature of the manifold. We do it by proving differential injectivity first at a uniform distance, i.e. giving
a lower bound for the flow parameter for non-zero Jacobi fields to vanish. This follows from comparison
geometry (essentially the Rauch comparison theorem), namely comparing the ODE for Jacobi fields to that
of the constant curvature case, when it is explicitly solvable. To prove that this map is a diffeomorphism
to its image, notice that the geodesic flow from the unit normal bundle of the hypersurface is globally well
defined (if M̃ is complete, as one may assume). The question is if it is injective. For points a fixed distance
apart, geodesics cannot intersect in short times and there is a uniform lower bound and that bound depends
on the second fundamental form and on the curvature. Concretely:

Lemma 7.6.
(a) Suppose H is an embedded hypersurface in a Riemannian manifold without boundary (M̃, g), the

sectional curvature of g is ≤ µ, µ > 0, and suppose that the second fundamental form II of H satisfies
|II| ≤ K. Then the normal geodesic exponential map is a local diffeomorphism on the 1√

µ cot−1K (two

sided) collar neighborhood of H, and the there is a uniform bound for the differential of the local inverse on
collars of strictly smaller radii.

(b) Moreover, if H is a compact subset of Hc = {x = c} with dx 6= 0 on Hc, there exists δ0 > 0 depending
on x, g and uniform under small perturbations of c so that the normal geodesic exponential map is a (global)
diffeomorphism on the ε0 collar neighborhood of H; and hypersurfaces dist(·, Hc) = s are strictly convex for
|s| ≤ ε0 under a small perturbation of c and g.

Proof. We use the result of [14, Theorem 4.5.1], which shows that if J is a Jacobi field, µ > 0, and fµ =
|J(0)| cos(

√
µt)+ |J |·(0) sin(

√
µt) and fµ(t) > 0 for 0 < t < τ then fµ(t) ≤ |J(t)| for 0 ≤ t ≤ τ ; here · denotes

derivatives in t. In particular, if J(0) 6= 0, the first zero of J(t) cannot happen before the first zero of fµ, at

which | cot(
√
µt)| = ||J|·(0)|

|J(0)| , i.e. |t| = 1√
µ cot−1 ||J|·(0)|

|J(0)| .

Furthermore, the discussion of [14, Section 4.6], which is directly stated for the distance spheres from a
point, more generally applies to geodesic normal coordinates to a submanifold. Thus, using the computation
following Equation (4.6.12), considering a Jacobi field arising from varying the initial point in H of the

normal geodesic along a curve in H, one has J̇(0) = S(J(0), N) where N is the unit normal vector to H,
where S is the second fundamental form considered as a map TpH ×NpH → TpH, with NpH denoting the
normal bundle.

Now, (|J |2)· = 2|J ||J |· (where J 6= 0), but also (|J |2)· = 2〈J̇ , J〉, so |J|
·(0)

|J(0)| = 1
|J(0)|2 〈J̇(0), J(0)〉. Substi-

tuting in the above expression for J̇(0), we have

|J |·(0)

|J(0)| =
1

|J(0)|2 〈S(J(0), N), J(0)〉 =
1

|J(0)|2 II(J(0), J(0))
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since II is related to S by II(X,Y ) = 〈S(X,N), Y 〉. Correspondingly, with the assumed bound on II, we have
||J|·(0)|
|J(0)| ≤ K and thus, as cot is decreasing on (0, π/2], so its inverse is such on [0,∞), |t| = 1√

µ cot−1 ||J|·(0)|
|J(0)| ≥

1√
µ cot−1K.

Hence the normal geodesic exponential map is a local diffeomorphism up to distance 1√
µ cot−1K from H.

One has a uniform bound for the differential of the inverse map if one obtains a uniform bound for |J(t)|;
this is provided for by the explicit bound involving fµ above for a strictly smaller collar.

To prove the second statement, notice first that we can find c0 > 0 so that if p, q ∈ H with distH(p, q) < c0,
then p and q have distinct images under the normal exponential map ψ; and c0 depends on K and µ only.
The complement K of such pairs is compact and dist(p, q) > 1/C0 there with C0 > 0 depending on H, g, K
and µ but the latter two depend on x and g. Then such p and q would have distinct images under ψ if the
latter is limited to dist(·, H) ≤ ε0 < 1/(2C0). Under a small perturbation of c and g, the constant c0 can be
chosen uniform, and then by a perturbation argument for distH(p, q) ≥ c0, p and q have distinct images if
ε0 < 1/(4C0). The strong convexity statement follows from the fact that we can perturb the strict inequality
II > 0 on a compact set. �

Proof of Theorem 1.3. As before, since we can recover all derivatives of the metric at ∂M in boundary normal
coordinates [15, 33], we may assume that M is a domain in M̃ , and g and ĝ are defined on M̃ , identically equal

outside M . It is convenient to work with open sets U0, U1 in M̃ with U0 compact and M ⊂ U0 ⊂ U0 ⊂ U1

with x smoothly extended to U1 so that the concavity and the condition {x ≥ 0} ∩M ⊂ ∂M hold for this
extension, and so that all derivatives of x are bounded. Notice that either g or ĝ geodesics cannot reach the
complement of U1 from U0 before a uniformly bounded time, namely the geodesic distance between these
two disjoint sets, one of which is compact, and the other closed.

We prove below that there is a diffeomorphism ψ : M → M (defined on a larger region in M̃ as a
diffeomorphism), fixing ∂M pointwise so that g = ψ∗ĝ. We do it step by step (by “layer stripping”) by going
down along the level sets of x. At each step, the corresponding foliation surface plays the role of ∂M above,
and the advance further, we can take small a bit less convex surfaces near each point as we did in Section 7.4.
The proof actually show that ψ is a diffeomorphism from M to its image but the a priori assumption that
M is connected easily implies that the ψ is surjective, as well.

We start with preliminary observations. By Lemma 7.6 (b), applied to g, there is a uniform (independent
of c) constant ε0 > 0 such that g-geodesic normal coordinates around H = Hc = {x = −c} are valid on the
ε0-collar neighborhood, i.e. for an open subset V of Hc containing U0∩Hc, the g-normal geodesic exponential
map φ : V × (−ε0, ε0) → M̃ is a diffeomorphism onto its image. By reducing ε0 if needed, we may assume
that the image is included in U1. Similarly, by Lemma 7.6 (a), there is a uniform (independent of c as well

as ψ) constant ε̂0 > 0 such that for any diffeomorphism ψ such that ψ∗ĝ = g on one side of Ĥc = ψ(Hc), the

ĝ-normal exponential map φ̂ : V̂ × (−ε̂0, ε̂0)→ M̃ is a local diffeomorphism onto its image included in U1. It
can be made global, i.e., injective for ε̂0 � 1 but a priori, we do not know that this ε̂0 can be chosen uniform,
i.e., independent of Ĥc to achieve the latter because Lemma 7.6 (b) requires control over ψ∗g uniformity (on

both sides of Ĥ), and we do not have such a control yet. A priori, Hc may have points p, q arbitrary close
to each other in M even if K is fixed, and distHc(p, q) > 1/C. This would reduce the maximal ε̂0 we can
choose if we want the ĝ-normal exponential map to be a diffeomorphism there. For that reason, we work
in V̂ × (−ε̂0, ε̂0) as an intermediate manifold for now, instead of working on its image under the ĝ-normal
exponential map, see Figure 4.

By shrinking ε0 or ε̂0 if necessary, we can assume that they are equal and will denote it by ε. We denote
the g-signed distance function (corresponding to the normal coordinates around Hc) by x̃ = x̃c as above.

Note also that for δ̃ > 0 there exists δ0 > 0 such that for all c, {0 ≥ x̃c ≥ −δ̃} ∩ U0 contains {−c ≥
x ≥ −c− δ0} ∩ U0; notice that by the compactness of U0, x is bounded on U0 so we only need to consider a
compact set of c’s. But this is straightforward, for if this does not hold, then there exists a sequence cj and

points pj ∈ U0 such that x̃cj (pj) < −δ̃ but −cj ≥ x(pj) ≥ −cj − 1/j. We may now extract a subsequence
indexed by jk such that cjk as well as pjk converge to c, resp. p; then x(p) = −c on the one hand, but

x̃c(p) ≤ −δ̃, so p /∈ Hc = {x = −c}, on the other, giving a contradiction. Hence the desired δ0 > 0 exists.
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φ φ̂

Hc

ĤcHc
∼= Ĥc

0

−ε

(M, g) (M, ĝ)

Figure 4. The incremental step in the proof of the global rigidity. In the middle, Hc×[−ε, 0]

is shown. A priori, (Hc, g) and (Ĥc, ĝ) are isometric and equal outside M . The identification

between Hc and Ĥc is ψ|Hc .

As the next observation, suppose that we have a diffeomorphism ψ : U → ψ(U) ⊂ U1, where U is a
neighborhood of x−1([−c,∞)) ∩ U0, such that ψ∗ĝ and g agree in {x ≥ −c}. This means that if φ is the g-
normal geodesic exponential map around H = {x = −c} (more precisely around a neighborhood of H ∩ U0),
then φ∗g = φ∗ψ∗ĝ in x̃ = x̃c ≥ 0, and now both metrics are of the form dx̃2 + h(x̃, y, dy) on Vy × [0, ε)x̃,

i.e. (ψ ◦ φ ◦ (ψ|−1
Hc
× id))−1 gives geodesic normal coordinates for ĝ around ψ(H ∩ U0), at least in x̃ ≥ 0

(here ψ|−1
Hc

enters to identify ψ(H ∩ U0) and H ∩ U0, and in ψ|−1
Hc
× id, id is the identity map on (−ε, ε)),

and thus is the same as φ̂−1 in x̃ ≥ 0 (where we use the notation x̃ for the first factor variable both for

V × (−ε, ε) and V̂ × (−ε, ε)). Since we have a uniform (independent of c) bound of the collar neighborhood of
the geodesic normal coordinates as long as the second fundamental form, which is diffeomorphism invariant,
is bounded, and is determined from x̃ ≥ 0, thus the same as that of g at H, the normal geodesic exponential

map gives a uniform extension of ψ, via φ̂ ◦ (ψ|Hc × id) ◦ φ−1, to x̃ ≥ −ε (note that by the above remarks

the map φ̂ ◦ (ψ|Hc × id) ◦ φ−1 is ψ in x̃ ≥ 0, so we really have an extension); we continue to denote this

by ψ. Notice that if φ̌ is the ψ∗ĝ-normal exponential map on H (instead of that of ĝ on Ĥ, which is φ̂),

then ψ ◦ φ̌ = φ̂ ◦ (ψ|H × id). As explained above, the so extended ψ is a local diffeomorphism to its image
by construction but a priori, we do not know if it is global (i.e. if it is injective) due to the appearance of

φ̂ in its definition. If g and ψ∗ĝ have the same lens data at H, then φ∗g and φ∗ψ∗ĝ = (ψ|Hc × id)∗φ̂∗ĝ
have the same data on V × {0}, and are in the normal gauge, i.e. are tangential-tangential tensors plus
dx̃2. Then the pseudolinearization formula holds, and by (7.12) and Lemma 7.5, they are the same within a
uniform (independent of c: this uses that in the semi-product coordinates the metric depends continuously
on c) ε-collar neighborhood around it, or more precisely around V as above, in respective geodesic normal

coordinates, i.e. φ∗g = φ∗ψ∗ĝ in V ×(−ε, ε). We show below that φ̂ is a global (vs. just local) diffeomorphism.
Then this says exactly that the extension of ψ which we just gave is indeed an isometry between these two
metrics: g = ψ∗ĝ in x̃ ≥ −ε.

We prove that φ̂ is a global diffeomorphism from V̂ × (−ε, ε) to its image based on two arguments: (1)

if it is not, there should be a hypersurface St := φ̂
(
V̂ × {t}

)
with one piece of it tangent to another one;

and (2) this cannot happen because those pieces are strictly convex and are touching each other from their
concave sides. Below we denote the variable on (−ε, ε) by t (rather than x̃). Indeed, assume that there exist

pairs of points (yi, ti), ti < 0, yi ∈ V̂ , i = 1, 2 with the same image in M under φ̂, with t1 and t2 in [−ε, 0].
If the set of such pairs is non-empty, we can always restrict t to a slightly smaller closed interval, and y to
a compact subset of V̂ , and then there, the pairs with the same image would form a compact set. Let t0
be the maximal value t0 for min(t1, t2). We can assume t1 = t0. Then t2 ≥ t1 and t1 is the maximal value

with that property. If this inequality is strict, since φ̂(y1, t1) = φ̂(y2, t2), we can perturb t1 and increase

it slightly to t′1 and find a new point (y′2, t
′
2) near (y2, t2) by the inverse function theorem (as φ̂ is a local

diffeomorphism) with φ̂(y′1, t
′
1) = φ̂(y2, t

′
2) (and t′1 > t1 = t0 still). This would contradict the maximality
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property of t0 because t′1 would be a new candidate for it. Therefore, t1 = t2 = t0. By the maximality

property, St0 near (y1, t1) (meaning the image S(1) of a neighborhood of (y1, t0) under φ̂) is tangent to
its piece S(2) near (y2, t2) (in the same image sense), which proves (1). Then S(1) and S(2) have common

tangent vectors at q := φ̂(y1, t1) = φ̂(y2, t2), and opposite outer unit normals (along which t, say, decreases,
which determines an orientation for each one of them). Any geodesic starting from that point in a fixed

tangential direction would stay on the concave side of each piece, which corresponds to φ̂
(
V̂ × (t0, ε)

)
, for a

sufficiently short time. If φ̂j are the localized φ̂ near (yj , tj), j = 1, 2, so that they are actually invertible,

then on any such geodesic γ, the first component of φ̂−1
j (which is just the localized signed distance to V̂ )

will increase as it leaves q. That leads to a contradiction because that means existence of points (namely

γ(s) for small s 6= 0) with two preimages with tj > t0. Therefore, φ̂ is a global diffeomorphism as stated.

Then so is φ̂ ◦ (ψ|Hc × id) ◦ φ−1 above and the extended ψ is a diffeomorphism, as well.
Finally, in the step described in the previous paragraph, one cannot encounter the boundary in (M, ĝ)

without encountering it in (M, g), i.e. if ψ(p) ∈ ∂M for some p ∈ M , with ψ the extended map of the
previous paragraph then p ∈ ∂M , provided that this property already held for the original map ψ of that
paragraph. Indeed, the lens relations of (M, g) and (M̃, g) being the same plus ψ being a diffeomorphism
in a neighborhood of x−1([−c,∞)) ∩ U0, shows that if for the extended ψ we have ψ(p) ∈ ∂M , then taking
in the normal coordinates a constant-y (normal to ψ(Hc)!) geodesic segment through p, within the range

of the ĝ-geodesic normal coordinate map φ̃, it will go through a point q in ψ(Hc). But the equality of
lens relations shows that the g-geodesic through ψ−1(q) (again, normal to Hc) will then also hit ∂M in the
range of the g-geodesic normal coordinate map φ since the two lens relations are the same, and since in
x−1([−c,∞)) ∩ U0 the metrics are already the same (thus lens data connecting Hc, resp. ψ(Hc), to ∂M , are

the same). Correspondingly, ψ|M actually maps into M , for ∂M separates the interior of M from M̃ \M .
Finally, on the “illuminated” part of ∂M , where dx makes an acute angle with the outer conormal at ∂M ,
ψ is identity. On the “un-illuminated” part of ∂M this is still true because the lens relations are the same.

Now we turn to the actual proof. Let

S = {c ≥ 0 : ∃ψ : U → ψ(U) ⊂ U1 diffeo, ψ|∂M∩U = id,

U neighborhood of x−1([−c,+∞)) ∩ U0,

ψ∗ĝ|x−1([−c,+∞)) = g|x−1([−c,+∞)}.

Then 0 ∈ S by hypothesis, with ψ the identity map. By the discussion of the paragraph above, if c ∈ S,
the ψ that exists by definition of c ∈ S can be extended to a neighborhood of Hc ∩ U0 so that ψ∗ĝ and g
agree near H = Hc, namely in x̃ > −c, c > 0. Taking into account the observations above, this means that
ψ is defined in x > −c − δ0 for some δ0 > 0. Thus, the set S is open, as [0, c + δ0) ⊂ S. Finally S is also
closed since by the discussion of the paragraph above, if c ∈ S, the ψ that exists by definition of c ∈ S can
be extended to a uniform (c-independent) neighborhood of Hc ∩ U0 so that ψ∗ĝ and g agree near H = Hc,
namely in x̃ > −c, c > 0. The observation above shows then that g and ψ∗ĝ are the same in x ≥ −c − δ0,
with δ0 > 0 independent of c, proving that S is closed (if c /∈ S, cj ∈ S, cj → c, then take j such that
cj > c− δ0 to obtain a contradiction), and thus the theorem. �

Note that the function x need not satisfy the properties globally on M ; in this case a completely analogous
argument implies that if in x > −T the assumptions of the theorem hold, then the conclusions hold on x ≥ −t,
t < T . Moreover, the 0 level set condition may be replaced by an arbitrary level set (if needed, shift x by a
constant).

Thus, for instance, if x is the distance function from a point in M◦, this gives that under the hypotheses
of the theorem, which hold if g has no focal points, for any ε > 0, in x ≥ ε, ĝ is the pullback of g by a
diffeomorphism. In particular, this proves Theorem 1.4.
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8. The foliation condition and corollaries

The assumption of an existence of a strictly convex function appears also in some works on Carleman
estimates, see, e.g., [37] and the references there. Existence of such a function is also assumed in the recent
work [23] on integral geometry. We will connect such functions with our foliation condition below.

A C2 function f on M is called strictly convex on some set, if Hess f > 0 as a form on that set, where
Hess is the Riemannian Hessian defined through covariant derivatives. Such a function can have at most
one critical point which is a local minimum. It was shown in [23] that if the foliation condition holds with
{x = 0} = ∂M , then there exists a strictly convex function f in M . We will show that the converse is true,
which is actually an easier statement to prove.

Lemma 8.1. Let f be a strictly convex function on (M, g) near a non-critical point p = p0. Then the level
hypersurfaces f(p) = c are strictly convex near x0 when viewed from f > c.

Proof. We have

(8.1)
d2

dt2
f(γ(t)) = Hess (f)(γ̇, γ̇)) ≥ c0 > 0

for any geodesic γ as long as γ(t) is close to p0 where f is strictly convex. We can always assume f(p0) = 0;
we will prove strict convexity of S := {f = 0} near p0. Take γ(0) = p0, with γ̇(0) tangent to the level set
f(p) = 0. Then

(8.2) f(γ(t)) ≥ (c0/4)t2 for |t| � 1

for any such tangent geodesic through p0. Since f is a defining function of S, (8.2) implies strict convexity

of the latter. Indeed, (8.1) when (d/dt)f(γ(t)) = 0 at t = 0 is preserved for any other defining function f̃

of S preserving the orientation, which is easy to check, since f̃ = fh with h > 0 on S. If we take f̃ to be
the signed distance to S, positive on {f > c}, (8.1) becomes just the second fundamental form of S, up to a
positive multiplier. �

Therefore, existence of a strictly convex function implies our foliation condition away from the possibly
unique critical point (when M is connected). In particular, if the sectional curvature is positive or negative,
our foliation condition is satisfied on M \ {x0} by [23, section 2] , where x0 is the critical point, if exists;
otherwise, on M .

We show next that existence of a critical point of f still allows us to prove global lens rigidity.

Theorem 8.1. Let (M, g) be a compact n-dimensional Riemannian manifold, n ≥ 3, with a strictly convex
boundary so that there exists a strictly convex function f on M with {f = 0} = ∂M . Let ĝ be another
Riemannian metric on g, and assume that ∂M is strictly convex w.r.t. ĝ as well. If g and ĝ have the same
lens relations, then there exists a diffeomorphism ψ on M fixing ∂M pointwise such that g = ψ∗ĝ.

Proof. The interesting case we have not covered so far is when f can have a critical point, x0, in (the interior
of) M , which is also the minimum of f in M . For 0 < ε� 1, let M0 = {p| f(p) ≤ f(p0) + ε}. If ε� 1, then
M0 can be covered by a single chart and it is diffeomorphic to a closed ball. By the semiglobal Theorem 1.4,

(M \M0, g) is isometric to (M \ M̂0, ĝ), with some compact connected M̂0 with smooth boundary in the
interior of M , and the diffeomorphism realizing the isometry fixes ∂M pointwise. If ε� 1, then M0 is simple
and it can be foliated by strictly convex surfaces without a critical point in its closure, for example by the
Euclidean spheres centered at a point a bit away from its boundary. Then by our global Theorem 1.3, (M0, g)

and (M̂0, ĝ) are isometric. Since one can perturb ε a bit, the diffeomorphism from outside can be extended a
bit inside. On the other hand, if two metrics are isometric near the boundary, with a diffeomorphism fixing
the latter, that diffeomorphism is determined uniquely near the boundary by identifying boundary normal
coordinates. Therefore, the two diffeomorphisms coincide in the overlapping region. �

This result implies Corollary 1.1 of the introduction:

Proof of Corollary 1.1. The proof follows directly from [23], where it is shown that under either of those
conditions, there exists a smooth strictly convex function x with {x = 0} = ∂M . �
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Finally, we give some sufficient conditions for the foliation condition to hold. As shown in [34, 35], for
metrics c−2dx2 in a domain in Rn, the generalized Herglotz [9] and Wiechert and Zoeppritz [43] condition
∂r(r/c(rω)) > 0, where r, ω are polar coordinates (compare to (1.1)), is equivalent to the requirement that
the Euclidean spheres |x| = C are strictly convex in the metric c−2dx2. If M is given locally by xn > 0, if
∂xnc > 0, then the hyperplanes xn = C ≥ 0 form a strictly convex foliation. Then our results prove rigidity
for such metrics in the class of all metrics, not necessarily conformal to the Euclidean.

Appendix A. An improvement of a lemma from [36].

We need a new version of Lemma 4.13 of [36] which is lossless in terms of decay in order to apply the
perturbation argument above in Section 6 culminating in the proof of Theorem 6.3, namely that the X-ray
transform of g with weights (as opposed to the standard X-ray transform) is invertible, in the sense of a left
inverse on Ω, when the weight is close to the identity. Recall that this lemma gives an estimate of u in terms
of ds

zu on Ω1 \Ω for u vanishing at ∂intΩ1, but not necessarily at ∂intΩ (i.e. ∂M ∩Ω). The loss of the lemma
is in the decay at ∂X, which we now fix. In order to obtain this improved version, we first prove a similar
lemma for the symmetric gradient of a scattering metric.

A.1. A lossless estimate for scattering metrics. Thus, we consider scattering metrics of the form

gsc = dx2

x4 + h
x2 with respect to a product decomposition of a neighborhood of the boundary x = 0, where h

is a metric on the boundary: h = h(y, dy), and let ds
sc be the symmetric gradient of gsc, and let

ds
sc,z = e−z/xds

sce
z/x : Hs,r

sc (X; scT ∗X)→ Hs−1,r
sc (X; Sym2scT ∗X).

Then we have a lossless estimate for expressing u in terms of ds
sc,zu:

Lemma A.1. Let Ḣ1,0
sc (Ω1 \Ω) be as in Lemma 4.12 of [36], but with values in one-forms, and let ρΩ1\Ω be a

defining function of ∂intΩ as a boundary of Ω1\Ω, i.e. it is positive in the latter set. Suppose that ∂xρΩ1\Ω > 0
at ∂intΩ (with ∂x understood with respect to the product decomposition); note that this is independent of the
choice of ρΩ1\Ω satisfying the previous criteria (so this is a statement on x being increasing as one leaves Ω
at ∂intΩ). Then there exists z0 > 0 such that for z ≥ z0, on one-forms the map

ds
sc,z : Ḣ1,r

sc (Ω1 \ Ω)→ H0,r
sc (Ω1 \ Ω)

is injective, with a continuous left inverse Psc,Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω).

Moreover, for z ≥ z0, the norms of zPsc,Ω1\Ω : H0,r
sc (Ω1 \Ω)→ H0,r

sc (Ω1 \Ω), Psc,Ω1\Ω : H0,r
sc (Ω1 \Ω)→

H1,r
sc (Ω1 \ Ω) are uniformly bounded.

Proof. In [36, Proof of Lemma 4.13] the following formula from [26, Chapter 3.3] played a key role:

(A.1)
∑
i

[v(γ(s))]iγ̇
i(s) =

∫ s

0

∑
ij

[ds
scv(γ(t))]ij γ̇

i(t)γ̇j(t) dt,

where γ is a unit speed geodesic of the metric whose symmetric gradient we are considering (so the scattering
metric gsc in the present case) with γ(0) ∈ ∂intΩ1 (so v(γ(0)) vanishes) and γ(τ) ∈ ∂intΩ∪∂X, with γ|(0,τ) in

Ω1\Ω. The identity (A.1) is just an application of the Fundamental Theorem of Calculus with the s-derivative
of the l.h.s. computed using the rules of covariant differentiation. In this formula we use [ds

scv(γ(t))]ij for
the components in the symmetric 2-cotensors corresponding to the standard cotangent bundle, and similarly
for [v(γ(s))]i. Notice that this formula gives an explicit left inverse for ds

sc,z.
Here we use the differential version of this (i.e. prior to an application of the fundamental theorem of

calculus):
d

ds

∑
i

[v(γ(s))]iγ̇
i(s) =

∑
ij

[ds
scv(γ(s))]ij γ̇

i(s)γ̇j(s),

and note that the left hand side is simply

γ̇(.)
(∑

i

[v(γ(.))]iγ̇
i(.)
)∣∣∣
s
,
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with the first γ̇ considered as a vector field differentiating the function to which it is applied. Thus, taking
any smooth family of such geodesics emanating from ∂intΩ1, parameterized by ∂intΩ1, and letting their
tangent vectors define a vector field X on Ω1, we have on Ω1 \ Ω:

XιXv = (ds
scv)(X,X),

which we consider a PDE for ũ = ιXv. We can then proceed as in Lemma 4.12 of [36].
We first need to discuss the geometry. For a general scattering metric, see [20, Lemma 2], the limiting

geodesics on ∂X (which make sense directly as projected integral curves of the rescaled Hamilton vector field
scHgsc on scT ∗X) are geodesics on ∂X connecting distance π points (i.e. they have length π). More precisely,
the projection of these integral curves in scT ∗∂XX is either a single point, or a length π h-geodesic. (Note
that in the case of Euclidean space this is simply the statement that geodesics at infinity tend to antipodal
points on the sphere at infinity, and this remains true if the geodesics move uniformly to infinity.) Since our
metric gsc is homogeneous of degree −2 under dilations in x, the analogous statement remains true for all
geodesics, i.e. they are either radial, so that y is fixed along them, or their projection to the ∂X factor of
[0, δ)x × ∂Xy is a length π geodesic of h, with appropriate behavior in x.

Now, recalling the basic b- and sc- objects (vector fields, bundles, etc.) from Section 3, the tangent vector
of a reparameterized (corresponding to the renormalization of the Hamilton vector field, by a factor x−1,
used to define scHgsc) geodesic, considered as a point in bTγ(s)X, is the pushforward of the rescaled Hamilton
vector field scHgsc (which is a vector field on scT ∗X tangent to its boundary) under the bundle projection
scT ∗X → X. The actual tangent vector to the geodesic is an element of scTγ(s)X (corresponding to reinserting
the x-factor). If coordinates on scT ∗X are written as (x, y, ξ, η), corresponding to 1-forms being written as

ξ dxx2 +
∑
j ηj

dyj
x , then the explicit formula for this pushed forward vector field is ξ(x2∂x) +

∑
hij(y)ηi(x∂yj )

modulo terms that push forward to 0, see [19, Equation (8.17)]. The second term is coming from the
Hamilton vector field of the dual boundary metric h−1, and ξ2 + |η|2hy = 1 by virtue of the geodesic flow

being the Hamilton flow on the unit cosphere bundle (a factor of 2 has been removed from the vector field
to make the geodesics unit speed).
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⌦

⌦1

X

Figure 5. Geodesics of gsc tending towards the point p, including the limiting boundary geodesic.

For instance, as an illustration (we use a different family below for the actual proof) take geodesics tending
to a fixed point p ∈ ∂X ∩ Ω◦ (corresponding to a family of parallel lines in Euclidean space). They give
a family of geodesics we could consider below in many cases, e.g. if we are working in a suitable small
neighborhood of a point on ∂M (see Figure 5). Then −ξ (thus the x2∂x component of the tangent vector)
is cosine of the distance from γ(s) to p within (i.e. for the projection to) the ∂X factor, while −η is the
tangent vector of the h-geodesic given by the ∂X projection times (1− ξ2)1/2 (i.e. sine of the distance within
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∂X); see again [20, Lemma 2]. We consider cases when ∂X is large metrically but ∂X ∩ Ω1 is small, so all
points in ∂X ∩ Ω1 are distance < ε̃ < π/2 distance from each other; this is relevant because of the length
π-behavior of the projected geodesics and the appearance of sine and cosine above. In this case, varying p,
taking finitely many appropriate nearby choices gives rise to geodesics whose tangent vectors span scTqX for
each q as is immediate from the above discussion. For instance if h is the flat metric, the η component is
simply the unit vector (up to sign) from the projection of q to ∂X to p times the sine of the distance, and
the −ξ component is, as always, the cosine of the distance, so it is straightforward to arrange finitely many
choices of p’s with spanning geodesic tangent vectors. In general for ε̃ > 0 small, a similar conclusion holds.

.

.................................

................................

...............................

.............................

............................

..........................

.........................

.............................

.............................

.............................
.............................

.............................
............................. ............................. ............................. ............................. ............................. .............................

.........................
....

.....................
........

..................
...........

................
.........

...............
...........

...............
.............

..............
..............
.

..............
..............
...

.............
.............
......

.............
.............
.......

.
..................................................

............
............................................................. ............................................................ ............................................................

.............................................................
..............................................................

.
...............................................................

................
.............................................................................. ............................................................................ ............................................................................

..............................................................................
...............................................................................

⌦

⌦1

X

.

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

........
........
........
........
........
........
........
.

.........
.........
.........
.........
.........
.........
...

.........
.........
.........
.........
.........
.........
..

.........
.........
.........
.........
.........
.........
..

.

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

........

........

........

........

........

........

.....

........

........

........

........

........

........

...

.

.........
.........
.........
.........
......

.........
.........
.........
.........
....

.........
.........
.........
.........
...

.........
.........
.........
.........
..

........
........
........
........
....

........

........

........

........

...

.

..........
..........
..........
....

..........
..........
..........
...

..........
..........
..........
..

.........
.........
.........
....

.........
.........
.........
..

.........
.........
.........
.

........

........

........

...

........

........

........

..

.

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

........
........
........
........
........
........
........
.

.........
.........
.........
.........
.........
.........
...

.........
.........
.........
.........
.........
.........
..

.........
.........
.........
.........
.........
.........
..

.

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

........

........

........

........

........

........

.....

........

........

........

........

........

........

...

.

.........
.........
.........
.........
......

.........
.........
.........
.........
....

.........
.........
.........
.........
...

.........
.........
.........
.........
..

........
........
........
........
....

........

........

........

........

...

.

..........
..........
..........
....

..........
..........
..........
...

..........
..........
..........
..

.........
.........
.........
....

.........
.........
.........
..

.........
.........
.........
.

........

........

........

...

........

........

........

..

S S
.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.. .

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

Figure 6. Geodesics of gsc tending towards the submanifold S (here shown as 2 points),
with the family extended by radial geodesics to cover ∂intΩ

◦. For n ≥ 3 (as is the case here),
for a better illustration, the picture should be imagined rotationally symmetric around the
vertical axis through the middle of the figure, so the indicated two points on S are in the
same rotation orbit.

In fact, for the general considerations below (as opposed to certain special cases), it is best to take a
codimension 1 submanifold S in ∂X ∩ Ω near ∂intΩ, namely a slight inward perturbation of ∂intΩ, e.g. a
short time flow by the h-normal geodesics on ∂X from ∂intΩ, and use a 1-dimensional family of geodesics
tending to each of the points on it locally near ∂X (for a total (n−1)-dimensional family). For example, one
can pick a vector field on S close to the h-normal vector field of S, and use geodesics whose ∂X-projection
is a length π h-geodesic with this given tangent vector at the end point in S; see Figure 6. These form a one
parameter family since the normal to ∂X component of the tangent vector is arbitrary (but we will take it
relatively small). Then the geodesics all intersect ∂intΩ close to their limiting point on S (close e.g. in the
sense that the affine parameter in the projection to ∂X, when considered as a unit speed h-geodesic, is close
to that on S, i.e. the h-geodesic segment is short) and in particular near ∂X. Thus they do so transversally,
so the derivative of ρΩ1\Ω along the tangent vector of the geodesics (when rescaled by x−1) has a definite
(negative) sign at ∂intΩ. (The actual tangent vector of the gsc-geodesic will give a derivative ≤ −Cx, C > 0,
corresponding to the x∂y-component of the pushforward of scHgsc .) One can then smoothly combine this
with geodesics crossing ∂intΩ farther away from ∂X (e.g. specifying their tangent vectors at ∂intΩ smoothly
extending the already specified tangent vectors near ∂X ∩ ∂intΩ) to obtain the full (n − 1)-dimensional
family of geodesics in such a manner that, when rescaled by x−1, the derivative of ρΩ1\Ω along the family
has a negative definite sign at ∂intΩ. For instance, one can use radial geodesics or their small perturbations
(changing the direction at ∂intΩ

◦ slightly) in the extension, i.e. ones in which the ∂X component is constant;
these behave as desired due to the assumption on ∂xρΩ1\Ω. We then eventually take finitely many such
families of geodesics as discussed above to span the scattering tangent space (starting by varying the vector
field specified on S). Note that the latter is just the standard tangent space away from ∂X, hence the usual
considerations apply there. On the other hand, near ∂X our previous discussion applied to geodesics close
to the initial point (now on S) applies, with only the h-distance along the ∂X-projections of these geodesics
from the initial point to ∂intΩ1 required to be small (so for any h, if Ω1 is chosen so that Ω1 \Ω is small, the
construction works). (This contrasts with the discussion of the previous paragraph, where geodesics tending
to a single fixed point p were used, in which the h-diameter of Ω1 had to be small.)
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Now, to use these observations, first notice that as we consider geodesics of a scattering metric, X ∈ Diff1
sc.

Thus, let V = 1
iX, P = e−z/xV ez/x ∈ Diff1

sc and consider ‖Pu‖2 again keeping in mind that we need to be
careful at ∂intΩ since u does not vanish there (though it does vanish at ∂intΩ1). Thus, there is an integration
by parts boundary term, which we express in terms of the characteristic function χΩ1\Ω:

‖Pu‖2L2(Ω1\Ω) = 〈χΩ1\ΩPu, Pu〉L2(Ω1) = 〈P ∗χΩ1\ΩPu, u〉L2(Ω1)

= 〈P ∗Pu, u〉L2(Ω1\Ω) + 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1).

Writing P = PR + iPI (as in Lemma 4.2 of [36]), PR = P+P∗

2 ,

‖PRu‖2L2(Ω1\Ω) = 〈P ∗RPRu, u〉L2(Ω1\Ω) + 〈[P ∗R, χΩ1\Ω]PRu, u〉L2(Ω1).

On the other hand, with PI = P−P∗
2i being 0-th order, the commutator term vanishes for it. Correspondingly,

‖Pu‖2L2(Ω1\Ω) = 〈P ∗Pu, u〉L2(Ω1\Ω) + 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1)

= 〈P ∗RPRu, u〉L2(Ω1\Ω) + 〈P ∗I PIu, u〉L2(Ω1\Ω) + 〈i[PR, PI ]u, u〉L2(Ω1\Ω)

+ 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1)

= ‖PRu‖2L2(Ω1\Ω) + ‖PIu‖2L2(Ω1\Ω) + 〈i[PR, PI ]u, u〉L2(Ω1\Ω)

+ 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1) − 〈[P ∗R, χΩ1\Ω]PRu, u〉L2(Ω1).

Now, as P − PR is 0-th order, [P ∗, χΩ1\Ω] = [P ∗R, χΩ1\Ω], so the last two terms on the right hand side give

(A.2) 〈[P ∗, χΩ1\Ω]iPIu, u〉L2(Ω1) = 〈(XχΩ1\Ω)PIu, u〉L2(Ω1).

Now, P = V −zx−2V x with V −V ∗ ∈ xDiff0
sc (since it has real principal symbol in the full scattering sense),

and hence PI = zx−2Xx + a, a ∈ xC∞. Thus, (A.2) is non-negative, at least if x is sufficiently small (or
z large) on ∂intΩ since χΩ1\Ω is χ(0,∞) ◦ ρΩ1\Ω times a similar composite function of the defining function
of ∂intΩ1 (which however plays no role as u vanishes there by assumption), XρΩ1\Ω and Xx can be arranged

to be negative (i.e. x decreasing along the geodesics being considered) in the strong ≤ −Cx2 sense (with
C > 0). Correspondingly, this term can be dropped. In addition, [PR, PI ] ∈ xC∞, so the corresponding
term can be absorbed into the ‖PIu‖2 terms, and one obtains

(A.3) ‖u‖L2(Ω1\Ω) ≤ C‖Pu‖L2(Ω1\Ω),

at least if x is small on Ω1 just as in the proof of [36, Lemma 4.2]. (In fact, z large also works as [PR, PI ] =
O(z), while ‖PIu‖2 gives an upper bound for c2z2‖u‖2 if z ≥ z0, z0 > 0 sufficiently large, see below for
more detail.) This in turn gives with u = e−z/xũ,

‖e−z/xũ‖L2(Ω1\Ω) ≤ C‖Pe−z/xũ‖L2(Ω1\Ω) = C‖e−z/xXũ‖L2(Ω1\Ω)

i.e. with ũ = ιXv, using XιXv = (ds
scv)(X,X),

‖ιX(e−z/xv)‖L2(Ω1\Ω) = ‖e−z/xιXv‖L2(Ω1\Ω)

≤ C‖e−z/x(ds
scv)(X,X)‖L2(Ω1\Ω) = C‖ds

sc,z(e−z/xv)‖L2(Ω1\Ω)

in this case. The case of x not necessarily small on Ω1 (though small on Ω) follows exactly as in [36,
Lemma 4.13] discussed above, using the standard Poincaré inequality, and even the case where x is not small
on Ω can be handled similarly since one now has an extra term at ∂intΩ, away from x = 0, which one can
control using the standard Poincaré inequality. (Again, one can instead simply take z sufficiently large.)

Taking a finite number of families of geodesics with tangent vectors spanning scT ∗X then gives, with
ṽ = e−z/xv,

(A.4) ‖ṽ‖L2(Ω1\Ω) ≤ C‖ds
sc,zṽ‖L2(Ω1\Ω).

To obtain the H1 estimate, we use Lemma 4.5 of [36]. It is stated there for ds
z (symmetric gradient with

respect to a standard metric) but it works equally well for ds
sc,z since it treats the 0-th order term, by which

these symmetric gradients differ from that of a flat metric, as an error term, which in both cases is a 0-th
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order scattering differential operator between the appropriate bundles; see below for more detail in the large
parameter discussion. This gives, for ṽ ∈ H̄1,r

sc (Ω1 \ Ω),

‖ṽ‖2
H̄1,r

sc (Ω1\Ω)
≤ C(‖ds

sc,zṽ‖2H0,r
sc (Ω1\Ω)

+ ‖ṽ‖2
H0,r

sc (Ω1\Ω)
),

which combined with (A.4) proves

‖ṽ‖Ḣ1,r
sc (Ω1\Ω) ≤ C‖ds

sc,zṽ‖H0,r
sc (Ω1\Ω), ṽ ∈ Ḣ1,r

sc (Ω1 \ Ω),

where recall that our notation is that membership of Ḣ1,r
sc (Ω1 \ Ω) only implies vanishing at ∂intΩ1, not at

∂intΩ. In particular, this shows the claimed injectivity of ds
sc,z. Further, this gives a continuous inverse from

the range of ds
sc,z, which is closed in L2(Ω1 \Ω); one can use an orthogonal projection to this space to define

the left inverse PΩ1\Ω, completing the proof when k = 0.

For general k, one can proceed as in [36, Lemma 4.4], conjugating ds
sc,z by xk, which changes it by x

times a smooth one form; this changes P by an element of xC∞(X), with the only effect of modifying the a
term in (A.2), which does not affect the proof.

To see the final claim, observe that ‖PIu‖2 ≥ c2z2‖u‖2L2(Ω1\Ω) for some c > 0, when z ≥ z0, and thus

the estimate (A.3) actually holds with cz‖u‖L2(Ω1\Ω) on the left hand side, which in turn gives the estimate

z‖ṽ‖L2(Ω1\Ω) ≤ C‖ds
sc,zṽ‖L2(Ω1\Ω).

Finally, the proof of the modified Korn’s inequality, Lemma 4.5 of [36], gives the estimate, for u ∈ H̄1,r
sc (Ω1\Ω),

‖u‖H̄1,r
sc (Ω1\Ω) ≤ C(‖ds

sc,zu‖H0,r
sc (Ω1\Ω) + z‖u‖H0,r

sc (Ω1\Ω)).

Indeed the proof there has a direct estimate for the symmetric gradient of the flat metric and then regards
the 0-th order terms, by which a general symmetric gradient differs from this flat symmetric gradient as error
terms to be absorbed into the second term on the right hand side. In our case these 0-th order terms have
Cz bounds (corresponding to the exponential conjugation), so the conclusion follows, proving the claim.
Applying it in our setting we have

‖ṽ‖H1,0
sc (Ω1\Ω) ≤ C‖ds

sc,zṽ‖L2(Ω1\Ω).

Again, adding polynomial weights proceeds without difficulties. �

A.2. The extension of the results to ‘standard’ metrics. Now, a straightforward calculation of the
Christoffel symbols shows that they do not contribute to the full principal symbol of the gradient relative
to gsc, in Diff1

sc(X; scT ∗X; scT ∗X ⊗ scT ∗X), and thus this principal symbol is, as a map from one-forms to
2-tensors (which we write in the four block form as before) is

ξ 0
η⊗ 0
0 ξ
0 η⊗

 ,

and thus that of ds
sc in Diff1

sc(X; scT ∗X; Sym2scT ∗X) (with symmetric 2-tensors considered as a subspace of
2-tensors) is 

ξ 0
1
2η⊗ 1

2ξ
1
2η⊗ 1

2ξ
0 η⊗s

 .

Thus the symbol of ds
sc,z = e−z/xds

sce
z/x, which conjugation effectively replaces ξ by ξ+iz (as e−z/xx2Dxe

z/x =

x2Dx + iz), is 
ξ + iz 0

1
2η⊗ 1

2 (ξ + iz)
1
2η⊗ 1

2 (ξ + iz)
0 η⊗s

 .
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It is useful to consider this as a semiclassical operator with Planck’s constant h = z−1, i.e. to analyze
what happens when h is small, i.e. z is large. Thus, consider the semiclassical operator hds

sc = z−1ds
sc; its

full (i.e. at h = 0, fiber infinity and base infinity all included) semiclassical principal symbol (since it only
depends on z via this explicit prefactor) is, writing ξh = hξ = ξ/z and ηh = hη = η/z as the semiclassical
variables 

ξh 0
1
2ηh⊗ 1

2ξh
1
2ηh⊗ 1

2ξh
0 ηh⊗s

 .

Correspondingly, the full (i.e. at h = 0, fiber infinity and base infinity all included) semiclassical principal
symbol of hds

sc,z is 
ξh + i 0
1
2ηh⊗ 1

2 (ξh + i)
1
2ηh⊗ 1

2 (ξh + i)
0 ηh⊗s

 .

On the other hand, the proof of Lemma 3.2 of [36] shows that the full principal symbol of ds, relative to
a standard metric g, in Diff1

sc(X; scT ∗X; Sym2scT ∗X) is
ξ 0

1
2η⊗ 1

2ξ
1
2η⊗ 1

2ξ
a η⊗s

 ,

with a a symmetric 2-tensor, so the full semiclassical principal symbol of hds = z−1ds is
ξh 0

1
2ηh⊗ 1

2ξh
1
2ηh⊗ 1

2ξh
ha ηh⊗s

 .

and thus that of hds
z = e−z/xhdsez/x is 

ξh + i 0
1
2ηh⊗ 1

2 (ξh + i)
1
2ηh⊗ 1

2 (ξh + i)
ha ηh⊗s

 .

This proves that, with the subscript h on Diffsc denoting semiclassical operators,

(A.5) R = hds
z − hds

sc,z ∈ hDiff0
sc,h(X; scT ∗X; Sym2scT ∗X).

This allows us to prove the following sharp form of Lemma 4.13 of [36]:

Lemma A.2. Let Ḣ1,0
sc (Ω1 \Ω) be as in Lemma 4.12 of [36], i.e. with dot implying vanishing at ∂intΩ1 only,

but with values in one-forms, and let ρΩ1\Ω be a defining function of ∂intΩ as a boundary of Ω1 \ Ω, i.e.
it is positive in the latter set. Suppose that ∂xρΩ1\Ω > 0 at ∂intΩ (with ∂x defined relative to the product
decomposition reflecting the warped product structure of gsc); note that this is independent of the choice of
ρΩ1\Ω satisfying the previous criteria (so this is a statement on x being increasing as one leaves Ω at ∂intΩ).
Then there exists z0 > 0, such that for z ≥ z0, the map

ds
z : Ḣ1,r

sc (Ω1 \ Ω)→ H0,r
sc (Ω1 \ Ω)

is injective, with a continuous left inverse PΩ1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω).

Proof. We let Psc;Ω1\Ω be the left inverse given in Lemma A.1; then with R as in (A.5),

Psc;Ω1\Ωds
z = Psc;Ω1\Ωds

sc,z + Psc;Ω1\Ωh
−1R = Id +Psc;Ω1\Ωh

−1R.
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Now

h−1Psc;Ω1\Ω = zPsc;Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ H0,r

sc (Ω1 \ Ω)

and

Psc;Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω)

are uniformly bounded in z ≥ z0 by Lemma A.1, which means in terms of semiclassical Sobolev spaces
(recall that H0,r

sc (Ω1 \ Ω) = H0,r
sc,h(Ω1 \ Ω)) that

h−1Psc;Ω1\Ω = zPsc;Ω1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc,h(Ω1 \ Ω).

On the other hand, R ∈ hDiff0
sc,h(X; scT ∗X; Sym2scT ∗X) shows that h−1R bounded Ḣ1,r

sc,h(Ω1 \ Ω) →
Ḣ1,r

sc,h(Ω1\Ω). In combination, Psc;Ω1\Ωh
−1R = h(h−1Psc;Ω1\Ω)(h−1R) is bounded by Ch as a map Ḣ1,r

sc,h(Ω1\
Ω)→ Ḣ1,r

sc,h(Ω1 \ Ω), and thus Id +Psc;Ω1\Ωh
−1R is invertible for h > 0 sufficiently small. Then

PΩ1\Ω = (Id +Psc;Ω1\Ωh
−1R)−1Psc;Ω1\Ω

gives the desired left inverse for ds
z with the bound

h−1PΩ1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc,h(Ω1 \ Ω),

which in particular means for finite (sufficiently large) z that

PΩ1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r

sc (Ω1 \ Ω)

is bounded, proving the lemma. �
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