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Abstract. We characterize the non-uniqueness in the inverse problem for the
stationary transport model, in which the absorption a and the scattering coefficient
k of the media are to be recovered from the albedo operator. We show that “gauge
equivalent” pairs (a, k) yield the same albedo operator, and that we can recover
uniquely the class of the gauge equivalent pairs. We apply this result to show
unique determination of the media when the absorption a depends on the line of
travel through each point while scattering k obeys a symmetry property. Previously
known results concerned directional independent absorption a.

1. Introduction

This paper considers the problem of recovering the absorption and scattering prop-
erties of a bounded, convex medium Ω ⊂ Rn, n ≥ 3 from the spatial-angular mea-
surements of the density of particles at the boundary ∂Ω. Provided that the particles
interact with the medium but not with each other, the radiation transfer in the
steady-state can be modeled by the transport equation

(1) −θ · ∇u(x, θ)− a(x, θ)u(x, θ) +

∫
Sn−1

k(x, θ′, θ)u(x, θ′)dθ′ = 0,

for x ∈ Ω and θ ∈ Sn−1; see, e.g. [9, 22]. The function u(x, θ) represents the density
of particles at x traveling in the direction θ, a(x, θ) is the absorption coefficient at x
for particles traveling in the direction of θ, and k(x, θ′, θ) is the scattering coefficient
(or the collision kernel) which accounts for particles from an arbitrary direction θ′

which scatter in the direction of travel θ.
The medium is probed with the given radiation

(2) u|Γ− = f−

and the exiting radiation

(3) u|Γ+ =: A[f−]

is detected; where

(4) Γ± = {(x, θ) ∈ ∂Ω× Sn−1 : ±θ · n(x) > 0}
with n(x) denoting the outer unit normal at a boundary point x. The equation (3)
defines the albedo operator A which takes the incoming flux f− to the outgoing flux
u|Γ+ at the boundary.
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In general, the boundary value problem (1) and (2) may not be uniquely solvable
but it has a unique solution for generic (a, k); see [26] and Proposition 3.1 below.
Unique solvability can also be obtained under some physically relevant subcritical
conditions like (6) or (7) below. We assume that (a, k) is such that the direct problem
(1) and (2) is well posed.

The inverse boundary value problem of radiative transfer is to recover the absorp-
tion a(x, θ) and the scattering kernel k(x, θ′, θ) from knowledge of the albedo operator
A. One could also study the time-dependent version of (1), and then the kernel of A
contains one more variable that gives us more information. This problem has been
solved under some restrictive assumptions (e.g. k of a special type or independent of
a variable) in [1, 2, 3, 5, 16, 17, 18, 27, 28]. In three or higher dimensions, uniqueness
and reconstruction results for general k and a = a(x) were established in [11]. The
approach there is based on the study of the singularities of the fundamental solution
of (1) (see also [8]), and the singularities of the Schwartz kernel of A. Stability es-
timates for k of special type were established in [24, 29]; and recently, for general
k, in [6]. Uniqueness and reconstruction results in a Riemannian geometry setting,
including recovery of a simple metric, were established in [19]. Similar results for
the time-dependent model were established in [10], and in [13] for the Riemannian
case. In planar domains the work in [25] shows stable determination of the isotropic
absorption and small scattering, and extensions to simple Riemannian geometry is
given in [20]. Also in two dimensional domains we point out that the recovery of
k is only known under smallness conditions which are more restrictive than what
is needed to solve the direct problem; e.g. more restrictive than (6) or (7) below.
On the other hand, in the time-dependent case, the extra variable allows us to treat
the planar case without such restrictions, see [10]. We also mention here the recent
works [7, 14, 15], in which the coefficients are recovered from angularly averaged
measurements rather than from knowledge of the whole the albedo operator A.

The above mentioned results concern media with directionally independent absorp-
tion property; for transport with variable velocity v, which now belongs to an open
subset of Rn, the absorption may depend on the speed a = a(x, |v|) .

In general, in media with an anisotropic absorption, the albedo operator does
not determine the coefficients uniquely. For example, if k ≡ 0 the obstruction to
unique determination can be readily seen. The most one can recover from the albedo
operator A are the integrals

∫
R a(x + tθ, θ)dt, see [11]. In [6], they are shown to be

stably recovered independently of k. In other words, for each fixed direction θ ∈ Sn−1,
we know the integral of the map a(·, θ) over the parallel lines in the direction of θ.
This is insufficient data, since one can smoothly change the x-variable in the direction
of θ while preserving the integral; see also the theorem below.

The non-uniqueness described above and the need to assume that a is isotropic
left the theory of the inverse radiative problem in a somewhat unsatisfactory state.
It was not clear whether the uniqueness failed if k 6≡ 0, neither it was known what
information about (a, k) can still be recovered. The purpose of this work is to fill
this gap. We show that a certain family of “gauge transformations” of (a, k) does
not change the albedo operator A; and that, given A, one can recover uniquely the
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class of gauge equivalent pairs (a, k). The recovery of the gauge equivalent class is
explicit, as the recovery of a = a(x) and k in [11] is explicit.

2. Main Results

The pair (a, k) is assumed to satisfy the admissibility condition

(5) sup
(x,θ)∈Ω×Sn−1

(
|a(x, θ)|+

∫
Sn−1

|k(x, θ, θ′)|dθ′
)

< ∞.

Let T be the operator defined by the l.h.s. of (1). For (a, k) admissible, the second
and the third terms of T are bounded operators on L1(Ω × Sn−1), while the first
term is unbounded. We view T as an unbounded operator on L1(Ω×Sn−1) with the
domain

D(T ) = {f ∈ L1(Ω× Sn−1); θ · ∇f ∈ L1(Ω× Sn−1), f |Γ− = 0},
see also [11]. Since the direct problem (1) and (2) can always be reduced to a non-
homogeneous problem with a homogeneous boundary condition, invertibility of T
implies well-posedness. We say that the direct problem is well posed, if T−1 exists as
a bounded operator.

As an example, we have the following two subcritical conditions that yield well-
posedness; see, e.g., [6, 11, 12, 21, 22] and Proposition 3.1 below. Either

(6) sup
(x,θ)∈Ω×Sn−1

∣∣∣∣τ(x, θ)

∫
Sn−1

k(x, θ, θ′)dθ′
∣∣∣∣ < 1,

where τ(x, θ) is the total free path of a particle at (x, θ), see the beginning of the
next section, or

(7) a(x, θ)−
∫

Sn−1

k(x, θ, θ′)dθ′ ≥ 0, a.e. Ω× Sn−1.

both a and k outside Ω to
We start with a simple observation, that seems to be new. We will show that

there is non-uniqueness even if k 6≡ 0, too. Let φ(x, θ) > 0 be such that φ = 1 on
Γ := ∂Ω× Sn−1. Set ã = a− θ · ∇x log φ. Then we can rewrite (1) as

−θ · ∇xu− φ−1(θ · ∇xφ)u− ãu +

∫
Sn−1

k(·, θ′, θ)u(·, θ′)dθ′ = 0.

Multiply by φ to get

−θ · ∇x(φu)− ãφu + φ

∫
Sn−1

k(·, θ′, ·)u(·, θ′)dθ′ = 0.

The function ũ = φu thus solves (1) with (a, k) replaced by (ã, k̃), where those two
pairs are related by the “gauge transformation”

(8) ã = a− θ · ∇x log φ, k̃(x, θ′, θ) =
φ(x, θ)

φ(x, θ′)
k(x, θ′, θ).

Since φ = 1 on Γ, the boundary data do not change. Therefore, if Ã is the albedo

operator corresponding to the pair (ã, k̃), then A = Ã.
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Our main result is that this is the only obstruction to non-uniqueness.

Theorem 2.1. Let (a, k) and (ã, k̃) be two admissible pairs for which the direct

problem is well-posed, and let A and Ã be the corresponding albedo operators. Then

A = Ã if and only if there exists a positive φ ∈ L∞(Ω × Sn−1) with θ · ∇xφ(x, θ) ∈
L∞(Ω× Sn−1) and φ = 1 for x ∈ ∂Ω, so that (8) hold.

The proof of the theorem is based on the analysis of the singularities of the Schwartz
kernel of A, as in [11].

Theorem 2.1 allows us to obtain a few new uniqueness results under additional
conditions. One of them concerns the case where we have anisotropic media with
absorption a(x, θ) that depends on the line of travel through each point (but not on
the direction):

(9) a(x, θ) = a(x,−θ), x ∈ Ω, θ ∈ Sn−1,

and a scattering coefficient k > 0 satisfying the following symmetry condition

(10) k(x, θ, θ′) = k(x, θ′, θ), x ∈ Ω, θ, θ′ ∈ Sn−1.

Corollary 2.2. Let (a, k), (ã, k̃) be two admissible and subcritical pairs which yield

the same albedo operator. Assume that k and k̃ > 0 satisfy (10).

(i) Then k = k̃ and a = ã + θ · ∇v(x) for some function v(x) vanishing on
∂Ω. In particular, one can recover the total absorption at a.e. x, i.e.,

∫
a(x, θ)dθ =∫

ã(x, θ)dθ.
(ii) If, in addition, a and ã satisfy (9), then a = ã.

Note that any two pairs as in (i) yield the same albedo operator, so this is the most
we can say in this case. The symmetry assumption (10) occurs naturally in some
models of Optical Tomography, where the scattering of light in a tissue depends on
the angle between the two directions: k(x, θ, θ′) = k(x, θ · θ′).

One can formulate and prove similar results in the case where the velocity belongs
to an open subspace of Rn, i.e., the speed can change, as in [11]. We restrict ourselves
to the fixed speed case (|θ| = 1) for the sake of simplicity of the exposition. Also, the
fixed speed model is the one that is most often discussed in the literature.

The paper is organized as follows. Section 3 recalls some results from [11] that
we use later. In Section 4 we prove Theorem 2.1 and its Corollary 2.2. In section
5 we give the reconstruction formulae for continuous a and k in the symmetric case
covered by Corollary 2.2. Section 6 contains concluding remarks.

3. Preliminaries

In this section we recall some results from [11] recast to the one-speed velocities
and introduce notations.

Let τ±(x, θ) be the travel time it takes a particle at x to reach the boundary
while moving in the direction of ±θ and define τ(x, θ) = τ−(x, θ) + τ+(x, θ). Since
we work with unit-speed velocities, note that τ(x, θ) ≤ diam(Ω). Let dξ(x, θ) =
|n(x) · θ|dµ(x)dθ where dµ(x) is the induced Lebesgue measure on the boundary and
dθ is the normalized measure on the sphere. Also let δ{x}(x

′) represent the delta
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distribution with respect to the boundary measure dµ(x′) supported at x ∈ ∂Ω and
δ{θ}(θ

′) represents the delta distribution with respect to dθ centered at θ ∈ Sn−1.
Also, for (x, θ) ∈ Ω × Sn−1, let x+

θ denote the exiting point if traveling from x in
the θ-direction and x−θ′ be the entrance point at the boundary to reach the inside
point x by traveling in the θ′-direction, i.e.

(11) x+
θ := x + τ+(x, θ) and x−θ′ := x− τ−(x, θ′)θ′.

For the proposition below, we introduce the class of regular scattering kernels
k ∈ C(Ω̄, L∞(Sn−1, L1(Sn−1))). Then the map

∫
k(x, θ′, θ)φ(θ′)dθ′ is bounded on

L1(Sn−1) continuously depending on x. Our notion of regular k is stronger than that
in [21], and, in particular, it allows us to use the results in there.

Proposition 3.1. The direct problem is well-posed, i.e., T has a bounded inverse on
L1(Ω × Sn−1), if either (6) or (7) holds. Moreover, the direct problem is well-posed
for an open dense set of (a, k) ∈ L∞(Ω× Sn−1)× C(Ω̄, L∞(Sn−1, L1(Sn−1))).

Proof. We will first discuss the well-posedness under the conditions (6) or (7). Assume
(6) first. By [11, Proposition 2.3], and since τ is bounded, we get that T−1 is bounded.
The subcritical case (7) is covered in [6, Section 2].

The generic statement is proven in L2(Ω× Sn−1) for C2 coefficients in [26]. In the
L1 spaces under consideration, we proceed in a similar way. Let K be the integral
operator in (1) and T1 = T −K. Then KT−1

1 K is weakly compact in L1(Ω× Sn−1),
see [21]. Therefore, (KT−1

1 )2 is weakly compact, and its square is compact. For
a fixed a, consider the family λk, where λ is a real parameter. By the analytic
Fredholm alternative in Banach spaces [23], λ 7→ (I− (λKT−1

1 )4)−1 is a meromorphic
family. This implies that λ 7→ (I − λKT−1

1 )−1 is also meromorphic, and thus T−1 =
(I − λKT−1

1 )−1T−1
1 exists for all but a discrete set of λ’s. This shows that there is a

dense set of pairs yielding a well-posed problem. The fact that this set is also open
follows from a perturbation argument around each (a, k), for which T−1 is bounded;
thus (I − λKT−1

1 )−1 corresponding to nearby pairs exists. �

Note that one can set a(x, θ) = a0(x, θ) +
∫

k(x, θ, θ′)dθ′, where the integral rep-
resents the attenuation due to the change of direction, while a0 is the absorption.
Then one can prove in the same way that the direct problem is well posed for generic
(a0, k), and moreover, for any a0, this is true for generic k’s.

Proposition 3.2. Assume that the direct problem is well-posed. Then the albedo
operator A : L1(Γ−, dξ) → L1(Γ+, dξ) is bounded and its Schwartz kernel α is given
by α = α1 + α2 + α3, where

α1(x, θ, x′, θ′) =e
R τ−(x,θ)

0 aθ(x−tθ)dtδ{x−θ }
(x′)δ{θ}(θ

′)(12)

α2(x, θ, x′, θ′) =

∫ τ−(x,θ)

0

e−
R s
0 a(x−tθ,θ)dte−

R τ−(x−sθ,θ′)
0 a(x−sθ−tθ′,θ′)dt(13)

× k(x− sθ, θ′, θ)δ{x−sθ−τ−(x−sθ,θ′)θ′}(x
′)ds

|n(x′) · θ′|−1α3 ∈L∞(Γ−; L1(Γ+, dξ)).(14)
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This proposition is formulated in [11] under the assumption that the system is
subcritical, i.e., either (6) or (7) holds. We remark that those conditions are only
used in the proof in the analysis of α3, to guarantee that T−1 exists in L1; something
that we assume here.

Let φ ∈ C∞
0 (B(0; 1)) with 0 ≤ φ ≤ 1 and φ ≡ 1 near the origin be a cut-off

function. Given ε > 0 we define for x, x′ ∈ Rn and θ, θ′ ∈ Sn−1

(15) φε(x, θ, x′, θ′) = φ

(
x−θ − x′

ε

)
φ

(
θ − θ′

ε

)
.

Proposition 3.3. Assume that the direct problem is well posed. Then the limit below
holds in L1(Γ+, dξ)

(16) lim
ε→0

∫
Γ−

α(x, θ, x′, θ′)φε(x, θ, x′, θ′)dµ(x′)dθ = e−
R∞
−∞ a(x+tθ,θ)dt > 0 a.e. Γ+;

For linearly independent θ, θ′ ∈ Sn−1, let πθ,θ′(x) denote the projection of x onto the
plane through the origin spanned by θ and θ′. Let θ′⊥ be a unit vector in span{θ, θ′}
orthogonal to θ′: θ′⊥ ·θ′ = 0. Let ϕ ∈ C∞

0 (−1, 1) with 0 ≤ ϕ ≤ 1 and
∫

R ϕ(t)dt = 1 be
a cut-off function in R and φ be the cut-off function in Rn introduced earlier. Define
the test function

φε,δ(x; θ, θ′) =
1

ε
ϕ

(
x · θ′⊥
εθ · θ′⊥

)
φ

(
x− πθ,θ′(x)

δ

)
.(17)

With x+
θ and x−θ′ given by (11) and φε,δ given by (17), we define in Ω× Sn−1 × Sn−1

Iε,δ(x, θ′, θ) :=

∫
∂Ω

α(x+
θ , θ, x′, θ′)φε,δ(x

′ − x−θ′ , θ, θ
′)dµ(x′).(18)

Proposition 3.4. Assume that the direct problem is well posed. Then the following
limit holds in L1(Ω; L1

loc(I
/))

I0,0(x, θ′, θ) := lim
ε→0

lim
δ→0

Iε,δ(x, θ′, θ) = e−
R 0
−∞ a(x+tθ′,θ′)dt−

R∞
0 a(x+tθ,θ)dtk(x, θ′, θ),(19)

where I/ := {(θ, θ′) ∈ Sn−1 × Sn−1 : θ′ 6= ±θ}.

4. Proof of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1. From Proposition 3.3, we can recover

(20)

∫ ∞

−∞
a(x + sθ, θ)ds, (x, θ) ∈ Ω× Sn−1.

In particular, the integrals above for f = a− ã vanish:∫ ∞

−∞
f(x + sθ, θ)ds = 0, ∀(x, θ) ∈ Ω× Sn−1.(21)

The kernel of the linear transform (20) is easy to describe. Set

v(x, θ) =

∫ 0

−∞
f(x + sθ, θ)ds, (x, θ) ∈ Ω× Sn−1.(22)
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Then v ∈ L∞(Ω× Sn−1) with θ · ∇xv = f ∈ L∞(Ω× Sn−1) and v = 0 on Γ−. From
(21) we get also that v = 0 on Γ+, therefore v(x, θ) = 0 for x ∈ ∂Ω and a.e. θ ∈ Sn−1.

Set

φ(x, θ) = ev(x,θ)(23)

to get a− ã = θ · ∇x log φ as claimed. This shows the first part of (8).
Now, from Proposition 3.4 we get

e−
R 0
−∞ a(x+tθ′,θ′)−

R∞
0 a(x+tθ,θ)k(x, θ′, θ) = e−

R 0
−∞ ea(x+tθ′,θ′)−

R∞
0 ea(x+tθ,θ)k̃(x, θ′, θ).

Using the first equality in (8) that we already proved, after a simple calculation, we
derive

(24) k̃(x, θ′, θ) =
φ(x, θ)

φ(x, θ′)
k(x, θ′, θ).

�

Proof of Corollary 2.2. Next we use the characterization above to prove uniqueness
in the symmetric case. By swapping θ and θ′ in (24) we get

k̃(x, θ, θ′) =
φ(x, θ′)

φ(x, θ)
k(x, θ, θ′) =

φ(x, θ′)

φ(x, θ)
k(x, θ′, θ)

=
φ(x, θ′)2

φ(x, θ)2
k̃(x, θ′, θ) =

φ(x, θ′)2

φ(x, θ)2
k̃(x, θ, θ′).

For the second and fourth equality we used (10), while for the third one we used

(24). Since k̃ does not vanish, we conclude that φ(x, θ′) = φ(x, θ) for all θ, θ′ ∈ Sn−1.
Therefore φ = φ(x) is independent of θ and applying (24) again we conclude that

k = k̃.
So far we showed that a(x, θ)− ã(x, θ) = θ · ∇xφ(x). If the symmetry relation (9)

holds then a(x, θ)− ã(x, θ) = −θ · ∇xφ(x). Therefore a− ã = 0. �

5. Reconstruction formulas in the symmetric case

We showed in the previous section that under the symmetry hypotheses (10) and
(9) there is uniqueness for a, k. The proof is constructive but it still leads to the
problem of recovering a(x, θ) first, up to θ · ∇ log φ, from its underdetermined X-
ray transform, see the l.h.s. of (21). In this section, we show that under the same
assumptions, there is an explicit reconstruction of a different, simpler type. Namely,
we recover the integrals in (21) first, that measure the total absorption along straight
lines, but we are not trying to determine a from them. Then by (13) we recover

e−
R 0
−∞ a(x+tθ′,θ′)dt−

R∞
0 a(x+tθ,θ)dtk(x, θ′, θ),

see (28) below. We do not know the attenuation term above because we know the
attenuation along straight but not broken lines. We can however swap θ and θ′ and
multiply the results. Then we get k2 multiplied by the attenuation along the two
lines through x parallel to θ, and θ′, respectively, and we know that attenuation.
This recovers k, and then we recover a.
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We need to strengthen the regularity assumptions on the coefficients to

a ∈ C(Ω× Sn−1), k ∈ C(Ω× Sn−1 × Sn−1).(25)

Firstly, we extend the limit in Proposition 3.3 valid for maps in Γ+ to maps in
Ω× Sn−1. For (x, θ) ∈ Ω× Sn−1 and ε > 0, let us denote

Jε(x, θ) :=

∫
Γ−

α(x+
θ , θ, x′, θ′)φε(x, θ, x′, θ′)dµ(x′)dθ′,(26)

where x+
θ is given in (11). We remark here that Jε is constant with x varying in the

direction of θ, i.e. Jε(x + tθ, θ) = Jε(x, θ) for all t.

Lemma 5.1. The limit below holds in L1(Ω× Sn−1; τ(x, θ)−1dxdθ)

(27) J0(x, θ) := lim
ε→0

Jε(x, θ) = exp

(
−

∫ ∞

−∞
a(x + tθ, θ)dt

)
> 0 a.e. Ω× Sn−1.

Proof. We use the change of variable formula∫
Ω×Sn−1

f(x, θ)dxdθ =

∫
Γ+

∫ τ−(x+,θ)

0

f(x+ − sθ)dsdξ(x+, θ)

for f(x, θ) =
∣∣∣Jε(x, θ)− exp

(∫∞
−∞ a(x + tθ, θ)dt

)∣∣∣ τ(x, θ)−1 to estimate∫
Ω×Sn−1

∣∣∣∣Jε(x, θ)− exp

(∫ ∞

−∞
a(x + tθ, θ)dt

)∣∣∣∣ τ(x, θ)−1dxdθ

=

∫
Γ+

∫ τ−(x+,θ)

0

∣∣∣Jε(x
+ − sθ, θ)− e(

R∞
−∞ a(x+−sθ+tθ,θ)dt)

∣∣∣
τ(x+ − sθ, θ)

dsdξ(x+, θ)

=

∫
Γ+

∣∣∣∣Jε(x
+, θ)− exp

(∫ ∞

−∞
a(x+ + tθ, θ)dt

)∣∣∣∣ dξ(x+, θ).

The last identity holds due to the fact that τ(x+ − sθ, θ) = τ(x+, θ) = τ−(x+, θ) and
that the integrand is constant in s. An application of Proposition 3.3 finishes the
proof. �

Following from Proposition 3.4 for a.e. (x, θ, θ′) ∈ Ω× I/ we get that

e−
R 0
−∞ a(x+tθ′,θ′)dt−

R∞
0 a(x+tθ,θ)dtk(x, θ′, θ) = I0,0(x, θ′, θ),(28)

e−
R 0
−∞ a(x+tθ,θ)dt−

R∞
0 a(x+tθ′,θ′)dtk(x, θ, θ′) = I0,0(x, θ, θ′).(29)

Using the symmetry assumption (10) on k, by multiplication of (28) and (29) we
obtain

e−
R∞
−∞ a(x+tθ′,θ′)dt−

R∞
−∞ a(x+tθ,θ)dtk2(x, θ′, θ) = I0,0(x, θ′, θ)I0,0(x, θ, θ′).(30)

Now using Lemma 5.1 we recover

k(x, θ′, θ) =

(
I0,0(x, θ′, θ)I0,0(x, θ, θ′)

J0(x, θ)J0(x, θ′)

) 1
2

.(31)
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Using the formula (31) in (29) we get for a.e. (x, θ, θ′) ∈ Ω× I/ that

∫ 0

−∞
a(x + tθ, θ)dt +

∫ ∞

0

a(x + tθ′, θ′)dt =
1

2
log

(
I0,0(x, θ′, θ)

I0,0(x, θ, θ′)J0(x, θ)J0(x, θ′)

)
.

(32)

The continuity assumption (25) imply that the identity above extends pointwise in
Ω × Sn−1 × Sn−1. By looking at backscattering θ′ = −θ and making one change of
variables t ↔ −t we obtain

∫ 0

−∞
a(x + tθ, θ)dt +

∫ 0

−∞
a(x + tθ,−θ)dt =

1

2
log

(
I0,0(x,−θ, θ)

I0,0(x, θ,−θ)J0(x, θ)J0(x,−θ)

)
.

(33)

The left hand side is differentiable in x in the direction of θ, hence so is the right
hand side. By differentiating (33) in the direction of θ we obtain

a(x, θ) + a(x,−θ) =
1

2
θ · ∇x log

(
I0,0(x,−θ, θ)

I0,0(x, θ,−θ)J0(x, θ)J0(x,−θ)

)
.(34)

Since the absorption depends on the line through x, we have a(x, θ) = a(x,−θ) and
thus it can be recovered from the formula:

a(x, θ) =
1

4
θ · ∇x log

(
I0,0(x,−θ, θ)

I0,0(x, θ,−θ)J0(x, θ)J0(x,−θ)

)
.(35)

6. Remarks

6.1. The isotropic absorption case. The previously known uniqueness result [11]
for isotropic absorption follow from Theorem 2.1 combined with the injectivity of the
X-ray transform. If f = a− ã depends on the position only, then (21) implies f = 0.

From the definition (23) we get φ ≡ 1, which by (8) yields k = k̃.

6.2. Other conditions that imply uniqueness. Assuming (10), we can only re-
cover a up to θ · ∇v(x) as above. For unique recovery, the condition (9) suffices
but it can be replaced by something weaker. For example, we may require that a is
orthogonal to all such functions w.r.t. some measure dµ(θ). This is equivalent to∫

Sn−1

θ · ∇xa(x, θ)dµ(θ) = 0.

Note that the symmetry assumption (9) implies such a condition if dµ(θ) is even.
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