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Preface

This volume grew out of lectures that I gave on several occasions. First versions
of the manuscript were prepared as handouts for students and later, in 2005,
became a preprint of the Collaborative Research Center Geometrical Structures in
Mathematics at the University of Münster.

The present Lecture Notes Volume is a revised and slightly expanded version
of the earlier preprint. Although I kept the lecture-style presentation, I added more
motivation on basic ideas as well as some fundamental examples. To make the text
virtually self-contained, the theory of completed tensor products was included in a
separate appendix.

It is a pleasure for me to express my gratitude to students, colleagues and,
particularly, to M. Strauch for their valuable comments and suggestions. Also I
would like to thank the referees for their constructive remarks which, finally, made
the text more complete and easier to digest.

Münster, Germany Siegfried Bosch
February 2014
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Chapter 1
Introduction

Analytic Functions over Non-Archimedean Fields

Classical rigid geometry may be viewed as a theory of analytic functions over local
fields or, more generally, over fields that are complete under a non-Archimedean
absolute value; complete means that every Cauchy sequence is converging. For
example, choosing a prime p, the field Qp of p-adic numbers is such a field. To
construct it, we start out from the field Q of rational numbers and complete it with
respect to its p-adic absolute value j�jp , which is defined as follows: we set j0jp D 0,
and jxjp D p�r for x 2 Q� with x D pr a

b
where a; b; r 2 Z and p − ab. Then

j � jp exhibits the usual properties of an absolute value, as it satisfies the following
conditions:

jxjp D 0” x D 0;
jxyjp D jxjpjyjp;

jx C yjp � max
˚jxjp; jyjp

�
:

Furthermore, j � jp extends to an absolute value on Qp with the same properties.
The third condition above is called the non-Archimedean triangle inequality, it is a
sharpening of the usual Archimedean triangle inequality jx C yj � jxj C jyj.

This way, the field Qp of p-adic numbers might be viewed as an analog of
the field R of real numbers. There is also a p-adic analog Cp of the field C of
complex numbers. Its construction is more complicated than in the Archimedean
case. We first pass from Qp to its algebraic closure Q

alg
p . The theory of extensions

of valuations and absolute values shows that there is a unique extension of j � jp to
this algebraic closure. However, as Q

alg
p is of infinite degree over Qp , we cannot

conclude that Qalg
p is complete again. In fact, it is not, and we have to pass from Q

alg
p

to its completion. Fortunately, this completion remains algebraically closed; it is the
field Cp we are looking for.

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction

After the p-adic numbers had been discovered by Hensel in 1893, there were
several attempts to develop a theory of analytic functions over p-adic fields. At
the beginning, people were just curious about the question if there would exist a
reasonable analog of classical function theory over C. However, later when algebraic
geometry had progressed so that applications to number theory were possible, a
good theory of analytic functions, say over Cp , became sort of a necessity. To
explain this, let us look at a typical object of arithmetic algebraic geometry like
a scheme X of finite type over Q or Z. Extending coefficients, we can derive from
it an R-scheme XR as well as a Qp-scheme XQp for each prime p. There is a local–
global principle, which was already envisioned by Hensel when discovering p-adic
numbers. It says that, in many cases, problems over Q can be attacked by solving
them over R as well as over each field Qp . Some evidence for this principle is given
by the formula

Y

c2P[f1g
jxjc D 1 for x 2 Q�

where P stands for the set of all primes and j � j1 is the usual Archimedean absolute
value on Q. So, in the case we are looking at, we have to consider the schemes XR

and XQp for each p. Sometimes it is desirable to leave the algebraic context and to
apply analytical methods. For example, extending coefficients from R to C, we can
pass from XR to XC and then apply methods of classical complex analysis to XC. In
the same way it is desirable to develop analytic methods for handling the schemes
XCp obtained from XQp by extending Qp to Cp .

There is a nice motivating example, due to J. Tate, showing that analytical meth-
ods in the non-Archimedean case can give new insight, when dealing with objects
of algebraic geometry. Let K be an algebraically closed field with a complete non-
Archimedean absolute value j � j, which is assumed to be non-trivial in the sense that
there are elements a 2 K with jaj ¤ 0; 1; for example, we may take K D Cp .
Then, using � as a variable, look at the algebra

O.K�/ D
nX

�2Z
c��

� I c� 2 K; lim
j�j!1

jc� jr� D 0 for all r > 0
o

of all Laurent series that are globally convergent on K�. Viewing O.K�/ as the
ring of analytic functions on K�, we can construct its associated field of fractions
M.K�/ D Q.O.K�// and think of it as of the field of meromorphic functions
on K�.

Now choose an element q 2 K� with jqj < 1, and write Mq.K�/ for all
meromorphic functions that are invariant under multiplication by q on K�, i.e.

Mq.K�/ D ˚
f 2M.K�/ I f .q�/ D f .�/�:

Tate made the observation that Mq.K�/ is an elliptic function field with a non-
integral j -invariant, i.e. with jj j > 1. Furthermore, he saw that the set of K-valued
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points of the associated elliptic curve EK coincides canonically with the quotient
K�=qZ. Elliptic curves that are obtained in this way have been called Tate elliptic
curves since then. As quotients of type K�=qZ are not meaningful in the setting of
algebraic geometry, Tate begun to develop a theory of so-called rigid analytic spaces
where such quotients make sense; cf. [T]. In fact, the existence of an analytical
isomorphism of type EK ' K�=qZ is a characterizing condition for Tate elliptic
curves. The construction of such quotients in terms of rigid spaces will be discussed
in Sect. 9.2.

The nature of Tate elliptic curves becomes more plausible if we look at the
classical complex case. Choose ! 2 C � R and consider � D Z ˚ Z! as
a subgroup of the additive group of C; it is called a lattice in C. The quotient
C=� makes sense as a Riemann surface; topologically it is a torus, like a life-
belt. Furthermore, the field of meromorphic functions on C=� may be identified
with the field of � -periodic meromorphic functions on C. It is well-known that
the set of isomorphism classes of Riemann surfaces of type C=� is in one-to-one
correspondence with the set of isomorphism classes of elliptic curves over C. In
fact, if }.z/ denotes the Weierstraß }-function associated to the lattice � , we can
consider the map

C � P2
C
; z � .}.z/; }0.z/; 1/;

from C into the projective plane over C. It factors through C=� and induces an
isomorphism C=� �� EC onto an elliptic curveEC � P2

C
. The defining equation

of EC in P2
C

is given by the differential equation of the Weierstraß }-function.
Thus, we see that C=� is, in fact, an algebraic object. Since the isomorphism
C=Z �� C� provided by the exponential function induces an isomorphism
C=� �� C�=qZ for q D e2�i! , we can also represent EC as the quotient C�=qZ,
which is the analog of what we have in the case of Tate elliptic curves.

Returning to the non-Archimedean case, one can prove that, just as in the
classical complex case, isomorphism classes of elliptic curves correspond one-
to-one to isomorphism classes of Riemann surfaces of genus 1 in the sense of
rigid analytic spaces. However, among these precisely the elliptic curves with non-
integral j -invariant are Tate elliptic; all others are said to have good reduction. Tate
elliptic curves may be viewed as the correct analogs of complex tori. However, they
can only be represented from the multiplicative point of view as quotients K�=qZ,
since the additive point of view, as used in the complex case, does not work. The
reason is that the exponential function, if defined at all, does not converge well
enough.

The discovery of Tate elliptic curves was only the beginning of a series of
breathtaking further developments where rigid analytic spaces, or their equivalents,
played a central role. Mumford generalized the construction of Tate elliptic curves
to curves of higher genus [M1], as well as to abelian varieties of higher dimension
[M2], obtaining the so-called Mumford curves in the first and totally degenerate
abelian varieties in the second case. Sort of a reverse, Raynaud worked on the
rigid analytic uniformization of abelian varieties and their duals over complete
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non-Archimedean fields [R2]. As a culminating point, the results of Mumford and
Raynaud served as essential ingredients for the compactification of moduli spaces of
abelian varieties in the book of Faltings and Chai [FC]. All this amply demonstrates
the usefulness of analytic methods in the non-Archimedean case.

However, looking closer at the analytic methods themselves, we will see from
the next section on that it is by no means clear how to define general analytic
functions over non-Archimedean fields. There have been several attempts, among
them Krasner’s theory of analytical elements in dimension 1, but the only approach
that really has survived, is the one chosen by Tate in his fundamental paper Rigid
analytic spaces [T]. This theory was further developed by Grauert, Remmert, Kiehl,
Gerritzen, and others, and is today referred to as classical rigid geometry. It will be
the subject of the first part of these lectures and is described in detail in the book
[BGR], Parts B and C.

From the beginning on it was quite clear that rigid geometry is much closer
to algebraic geometry than to the methods from complex analysis. Therefore it is
not surprising that rigid analytic spaces can be approached via so-called formal
schemes, which are objects from formal algebraic geometry. This point of view
was envisioned by Grothendieck, but has really been launched by Raynaud, who
explained it in the lecture [R1]. The basic idea is to view a rigid space as the generic
fiber of suitable formal R-schemes, so-called formal R-models, where R is the
valuation ring of the base field under consideration. For a systematic foundation
of this point of view see the papers [F I, F II, F III, F IV], as well as the monograph
by Abbes [EGR].

Rigid geometry in terms of formal schemes will be dealt with in the second part
of these lectures. In contrast to classical rigid geometry, this approach allows quite
general objects as base spaces. But more important, one can apply a multitude of
well-established and powerful techniques from algebraic geometry. As a simple
example, the concept of (admissible) blowing-up on the level of formal schemes,
as dealt with in Sect. 8.2, is well suited to replace the manual calculus involving
rational subdomains, one of the corner stones of classical rigid geometry. Another
striking example is the openness of flat morphisms in classical rigid geometry,
see 9.4/2. The proof of this fact is unthinkable without passing to the formal point
of view. One uses the existence of flat formal models for flat morphisms of classical
rigid spaces, see 9.4/1, and then applies the openness of flat morphisms in algebraic
geometry.

To complete the picture, let us have a brief look at the main further branches
that grew out of classical rigid geometry, although these are beyond the scope of
our lectures. The situation is a bit like in algebraic geometry over a field K where,
in the early days, one has looked at points with values in an algebraic closure of
K and then, on a more advanced level, has passed to points with values in more
general domains over K. In fact, a classical rigid space X over a complete non-
Archimedean field K consists of points with values in an algebraic closure of K.
Furthermore, X carries a canonical topology inherited from the base field K

which, however, is totally disconnected. It is a consequence of Tate’s Acyclicity
Theorem 4.3/10 that any reasonable notion of structure sheaf on X requires the
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selection of certain admissible open subsets of X and of certain admissible open
coverings of the admissible open subsets of X by sets of the same type. Sheaves
on X are then considered relative to this additional structure, referred to as a
Grothendieck topology, that completely replaces the use of ordinary topologies. It
is this concept of employing Grothendieck topologies that corresponds to Tate’s use
of the label rigid for his analytic spaces.

The need to consider a Grothendieck topology instead of an ordinary topology
entails certain inconveniences. For example, there can exist non-zero abelian
sheaves on a rigid space, although all their stalks are zero. This is a clear indication
for the fact that there are not enough points on such a rigid space and that additional
points should be included. The first one to pursue the idea of looking for more
general points was Berkovich; see [Be1]. He started considering points with values
in fields that are equipped with a non-Archimedean R-targeted absolute value, also
referred to as a rank 1 absolute value. Thereby one gets a Hausdorff topology with
remarkable properties on the resulting rigid spaces that nowadays are referred to
as Berkovich spaces. In view of their pleasant topological properties such spaces
have become quite popular, although the construction of global Berkovich spaces
by means of gluing local parts is not as natural as one would like; see [Be2]. A more
rigorous approach to enlarge the point set underlying a rigid space was launched by
Huber [H], who replaced rank 1 absolute values by those of arbitrary rank. Just as
before, the resulting rigid spaces, called Huber spaces, come equipped with a true
topology which, however, will be non-Hausdorff in general.

There is a totally different approach to the problem of setting up an appropriate
scene on a classical rigid space. It is based on the formal point of view and remedies
many of the shortcomings we have to accept otherwise. Namely, starting out from
a classical rigid space X one considers the projective limit hXi D lim �X over all
formal models X of X . This is the so-called Zariski–Riemann space associated to
X , as suggested by Fujiwara [F] and Fujiwara–Kato in the forthcoming book [FK].
In a certain sense, the Zariski–Riemann space of X is equivalent to the Huber space
associated to X , while the corresponding Berkovich space may be viewed as the
biggest Hausdorff quotient of hXi. This way we can say that the approach to rigid
geometry through formal schemes, as presented in the second part of these lectures,
is at the heart of all derivatives of classical rigid geometry, although the books
of Berkovich [Be1] and of Huber [H] provide direct access to the corresponding
theories without making use of methods from formal geometry. But let us point out
that, in order to access any advanced branch in rigid geometry, a prior knowledge of
Tate’s classical theory is indispensable or, at least, highly advisable.
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Chapter 2
Tate Algebras

2.1 Topology Induced from a Non-Archimedean
Absolute Value

We start by recalling the definition of a non-Archimedean absolute value.

Definition 1. LetK be a field. A map j � jWK � R�0 is called a non-Archimedean
absolute value if for all a,b 2 K the following hold:

(i) jaj D 0” a D 0 ,
(ii) jabj D jajjbj ,

(iii) jaC bj � max
˚jaj,jbj� .

One can immediately verify trivialities such as j1j D 1 and j � aj D jaj. To an
absolute value as above one can always associate a valuation of K. This is a map
vWK � R [ f1g satisfying the following conditions:

(i) v.a/ D1” a D 0
(ii) v.ab/ D v.a/C v.b/

(iii) v.aC b/ � min
˚
v.a/; v.b/

�

Just let v.a/ D � log jaj for a 2 K. This sets up a one-to-one correspondence
between non-Archimedean absolute values and valuations, as we can pass from
valuations v back to absolute values by setting jaj D e�v.a/ for a 2 K. Frequently,
we will make no difference between absolute values and valuations, just saying that
K is a field with a valuation. An absolute value j � j is called trivial if it assumes
only the values 0; 1 2 R. It is called discrete if jK�j is discrete in R>0. Likewise
a valuation is called trivial if v.K�/ D f0g, and discrete if v.K�/ is discrete in R.
Unless stated otherwise, we will always assume that absolute values and valuations
on fields are non-trivial.

In the following, let K be a field with a non-Archimedean absolute value j � j. As
usual, the absolute value gives rise to a distance function by setting d.a; b/ D ja�bj

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__2,
© Springer International Publishing Switzerland 2014
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10 2 Tate Algebras

and, thus, to a topology on K. Furthermore, we can consider sequences or infinite
series of elements in K and define their convergence as in the Archimedean case.
In particular, K is called complete if every Cauchy sequence converges in K.

It has to be pointed out, however, that the non-Archimedean triangle inequality in
Definition 1 (iii) has far reaching consequences.

Proposition 2. Let a,b 2 K satisfy jaj ¤ jbj. Then

jaC bj D max
˚jaj,jbj�:

Proof. Assume jbj < jaj. Then jaC bj < jaj implies

jaj D j.aC b/ � bj � max
˚jaC bj; jbj� < jaj;

which is impossible. So we must have jaCbj D jaj D maxfjaj; jbjg as claimed. ut

Lemma 3. A series
P1

�D0 a� of elements a� 2 K is a Cauchy sequence if and only
if the coefficients a� form a zero sequence, i.e. if and only if lim�!1 ja� j D 0.

Hence, if K is complete, the series is convergent if and only if lim�!1 ja� j D 0.

Proof. Choose " > 0. We have to show there exists an integer N 2 N such that
jPj

�Di a� j < " for all j � i � N . As lim�!1 ja� j D 0, we know there is an
N 2 N such that ja� j < " for all � � N . But then, for any integers j � i � N ,
an iterated application of the non-Archimedean triangle inequality yields

ˇ̌ jX

�Di
a�

ˇ̌ � max
�Di :::j ja� j < ";

which had to be shown. ut
In terms of distances between points in K, the non-Archimedean triangle

inequality implies

d.y; z/ � max
˚
d.x; y/; d.x; z/

�
for x; y; z 2 K;

where this inequality is, in fact, an equality if d.x; y/ is different from d.x; z/; cf.
Proposition 2. In particular, given any three points in K, there exists one of them
such that the distances between it and the two remaining points coincide. In other
words, any triangle in K is isosceles. Furthermore, we can conclude that each point
of a disk in K can serve as its center. Thus, if an intersection of two disks is non-
empty, we can choose a point of their intersection as common center, and we see
that they are concentric.
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For a center a 2 K and a radius r 2 R>0 we can consider the disk around a
without periphery

D�.a; r/ D ˚
x 2 K I d.x; a/ < r�;

which is open as well as closed in K; it is symbolically referred to as the open disk
around a with radius r . Similarly, we can consider the same disk with periphery,
namely

DC.a; r/ D ˚
x 2 K I d.x; a/ � r�:

It is open and closed just as well and symbolically referred to as the closed disk
around a of radius r . In addition, there is the periphery itself, namely

@D.a; r/ D ˚
x 2 K I d.x; a/ D r�:

Certainly, it is closed, but it is also open since, due to Proposition 2, we have
D�.x; r/ � @D.a; r/ for any x 2 @D.a; r/. It is for this reason that the periphery
@D.0; 1/ is sometimes called the unit tire in K.

The preceding considerations show another peculiarity of the topology of K:

Proposition 4. The topology of K is totally disconnected, i.e. any subset in K
consisting of more than just one point is not connected.

Proof. Consider an arbitrary subsetA � K consisting of at least two different points
x; y. For ı D 1

2
d.x; y/, set A1 D D�.x; ı/ \ A and A2 D A � A1. Then A1 is

relatively open and closed in A, and the same is true for A2. Furthermore, A is the
disjoint union of the non-empty open parts A1 and A2. Consequently, A cannot be
connected with respect to the topology induced from K on A. ut

We may draw some conclusions from the latter observation. Writing db0; 1ec for the
unit interval in R, there cannot exist non-constant continuous paths db0; 1ec � K.
Consequently, there is no obvious way to define line integrals, and it is excluded
that there exists a straightforward replacement for classical complex Cauchy theory,
providing the link between holomorphic and analytic functions. In fact, the concept
of holomorphic functions, defined through differentiability, and that of analytic
functions, defined via convergent power series expansions, differs largely. On the
other hand, it should be admitted that in certain contexts notions of integrals and
also line integrals have been developed.

Without making it more precise, we mention that a definition of holomorphic
functions via differentiability is not very rewarding. The class of such functions is
very big and does not have good enough properties. So the only approach towards
a reasonable “function theory” over non-Archimedean fields that might be left, is
via analyticity, i.e. via convergent power series expansions. However, it is by no
means clear how to proceed with analyticity. Let us call a function f WU � K
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defined on some open subset U � K locally analytic if it admits a convergent
power series expansion locally around each point x 2 U . Then we cannot expect
any identity theorem for such functions, since non-empty open subsets of K are
not connected. For example, let us look at the case where U is a disk D�.0; 1/ or
DC.0; 1/. Choosing a radius r with 0 < r < 1, we may write

U D
[

a2U
D�.a; r/

and get from it a partition of U into disjoint disks. On each of these disks, let’s
call them Di , i 2 I , we can consider an arbitrary convergent power series fi . Then
f WU � K defined by f jDi D fi is locally analytic. In particular, we can take
the fi to be constant, and it follows that, on disks, locally analytic functions do
not necessarily admit globally convergent power series expansions. This shows that
locally analytic functions cannot enjoy reasonable global properties.

The basic principle of rigid analytic geometry is to require that analytic functions
on disks admit globally convergent power series expansions. We will discuss the
details of the precise definition in subsequent sections.

2.2 Restricted Power Series

As always, we consider a field K with a complete non-Archimedean absolute
value that is non-trivial. Let K be its algebraic closure. We will use the results of
Appendix A, namely that the absolute value of K admits a unique extension to K
and that, although K itself might not be complete, this absolute value nevertheless
is complete on each finite subextension of K=K. For integers n � 1 let

Bn.K/ D ˚
.x1; : : : ; xn/ 2 Kn I jxi j � 1

�

be the unit ball in Kn.

Lemma 1. A formal power series

f D
X

�2Nn
c��

� D
X

�2Nn
c�1:::�n�

�1
1 : : : �

�n
n 2 Kdbdb�1, : : : ,�necec

converges on Bn.K/ if and only if limj�j!1 jc� j D 0.

Proof. If f is convergent at the point .1; : : : ; 1/ 2 Bn.K/, the series
P

� c� is
convergent, and we must have limj�j!1 jc� j D 0 by 2.1/3. Conversely, considering
a point x 2 Bn.K/, there is a finite and, hence, complete subextension K 0 of K=K
such that all components of x belong to K 0. Then, if limj�j!1 jc� j D 0, we have
limj�j!1 jc� jjx� j D 0, and f .x/ is convergent in K 0 � K by 2.1/3, again. ut
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Definition 2. The K-algebra Tn D Kh�1, : : : ,�ni of all formal power series

X

�2Nn
c��

� 2 Kdbdb�1, : : : ,�necec, c� 2 K, lim
j�j!1

jc� j D 0,

thus, converging on Bn.K/, is called the Tate algebra of restricted, or strictly
convergent power series. By convention we write T0 D K.

That Tn is, in fact, aK-algebra is easily checked. Also it is clear that the canonical
map from Tn to the set of maps Bn.K/ � K is a homomorphism of K-algebras.
We define the so-called Gauß norm on Tn by setting

jf j D max jc� j for f D
X

�

c��
�:

It satisfies the conditions of aK-algebra norm, i.e. for c 2 K and f; g 2 Tn we have

jf j D 0” f D 0;
jcf j D jcjjf j;
jfgj D jf jjgj;

jf C gj � max
˚jf j; jgj�;

where, strictly speaking, only the submultiplicativity jfgj � jf jjgj would be
required for a K-algebra norm. In particular, it follows from the multiplicativity
in the third line that Tn is an integral domain. The stated properties of the norm j � j
are easy to verify, except possibly for the multiplicativity. Note first that we have
jfgj � jf jjgj for trivial reasons. To show that this estimate is, in fact, an equality,
we look at the valuation ring R D fa 2 K I jaj � 1g of K; it is a subring of K
with a unique maximal ideal m D fa 2 K I jaj < 1g. Thus, k D R=m is a field,
the residue field of K, and there is a canonical residue epimorphism R � k,
which we will indicate by a � za. Denoting by Rh�1; : : : ; �ni the R-algebra of
all restricted power series f 2 Tn having coefficients in R or, equivalently, with
jf j � 1, the epimorphism R � k extends to an epimorphism

� WRh�1; : : : ; �ni � kdb�1; : : : ; �nec;
X

c��
� �

X
zc���:

For an element f 2 Rh�1; : : : ; �ni we will call zf D �.f / the reduction of f . Note
that zf D 0 if and only if jf j < 1. Now consider f; g 2 Tn with jf j D jgj D 1.
Then f; g, and fg belong to Rh�1; : : : ; �ni, and we have

�.fg/ D zf zg ¤ 0;

since kdb�1; : : : ; �nec is an integral domain. But then we must have jfgj D 1.
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For general f; g 2 Tn the assertion jfgj D jf jjgj holds for trivial reasons if f
or g are constant. If both, f and g are non-constant, we can write f D cf 0 and
g D dg0 with jf j D jcj, jgj D jd j, and jf 0j D jg0j D 1. Then

jfgj D jcdf 0g0j D jcdjjf 0g0j D jcjjd j D jf jjgj;

which we had to show.

Proposition 3. Tn is complete with respect to the Gauß norm. So it is a Banach
K-algebra, i.e. a K-algebra that is complete under the given norm.

Proof. Consider a series
P1

iD0 fi with restricted power series fi DP
� ci��

� 2 Tn
satisfying limi!1 fi D 0. Then, as jci� j � jfi j, we have limi!1 jci� j D 0 for all
� so that the limits c� D P1

iD0 ci� exist. We claim that the series f D P
� c��

� is
strictly convergent and that f DP1

iD0 fi .
Choose " > 0. As the fi form a zero sequence, there is an integer N such that

jci� j < " for all i � N and all �. Furthermore, as the coefficients of the series
f0; : : : ; fN�1 form a zero sequence, almost all of these coefficients must have an
absolute value smaller than ". This implies that almost all of the absolute values
jci� j with arbitrary i and � are smaller than " and, hence, that the elements ci�
form a zero sequence in K (under any ordering). Now, using the fact that the non-
Archimedean triangle inequality generalizes for convergent series to an inequality
of type

ˇ̌
ˇ

1X

iD0
a�

ˇ̌
ˇ � max

iD0:::1 ja� j;

we see immediately that the power series f belongs to Tn and that f DP1
iD0 fi .

ut
With the help of Proposition 3 we can easily characterize units in Tn.

Corollary 4. A series f 2 Tn with jf j D 1 is a unit if and only if its reduction
zf 2 kdb�1, : : : ,�nec is a unit, i.e. if and only if zf 2 k�. More generally, an arbitrary

series f 2 Tn is a unit if and only if jf � f .0/j < jf .0/j, i.e. if and only if the
absolute value of the constant coefficient of f is strictly bigger than the one of all
other coefficients of f .

Proof. It is only necessary to consider elements f 2 Tn with Gauß norm 1. If f
is a unit in Tn, it is also a unit in Rh�1; : : : ; �ni. Then zf is a unit in kdb�1; : : : ; �nec
and, hence, in k�. Conversely, if zf 2 k�, the constant term f .0/ of f satisfies
jf .0/j D 1, and we may even assume f .0/ D 1. But then f is of type f D 1 � g
with jgj < 1, and

P1
iD0 gi is an inverse of f . ut
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Proposition 5 (Maximum Principle). Let f 2 Tn. Then jf .x/j � jf j for all points
x 2 Bn.K/, and there exists a point x 2 Bn.K/ such that jf .x/j D jf j.

Proof. The first assertion is trivial. To verify the second one, assume jf j D 1 and
consider again the canonical epimorphism � WRh�1; : : : ; �ni � kdb�1; : : : ; �nec.
Then zf D �.f / is a non-trivial polynomial in n variables, and there exists a point
zx 2 kn with k the algebraic closure of k, such that zf .zx/ ¤ 0. The theory of
valuations and absolute values shows that k may be interpreted as the residue field
ofK, the algebraic closure ofK. WritingR for the valuation ring ofK and choosing
a lifting x 2 Bn.K/ of zx, we can consider the commutative diagram

where the first vertical map is evaluation at x and the second one evaluation at zx.
As f .x/ 2 R is mapped onto zf .zx/ 2 k and the latter is non-zero, we obtain
jf .x/j D 1 D jf j, which had to be shown. ut

The Tate algebra Tn has many properties in common with the polynomial ring
in n variables over K, as we will see. The key tool for proving all these properties
is Weierstraß theory, which we will explain now and which is quite analogous to
Weierstraß theory in the classical complex case. In particular, we will establish
Weierstraß division, a division process similar to Euclid’s division on polynomial
rings. In Weierstraß theory the role of monic polynomials is taken over by so-called
distinguished restricted power series, or later by so-called Weierstraß polynomials.

Definition 6. A restricted power series g D P1
�D0 g���n 2 Tn with coefficients

g� 2 Tn�1 is called �n-distinguished of some order s 2 N if the following hold:

(i) gs is a unit in Tn�1.
(ii) jgsj D jgj and jgsj > jg� j for � > s.

In particular, if g D P1
�D0 g���n satisfies jgj D 1, then g is �n-distinguished of

order s if and only if its reduction zg is of type

zg D zgs�sn C zgs�1�s�1n C : : :C zg0�0n
with a unit zgs 2 k�; use Corollary 4. Thereby we see that an arbitrary series g 2 Tn
is �n-distinguished of order 0 if and only if it is a unit. Furthermore, for n D 1, every
non-zero element g 2 T1 is �1-distinguished of some order s 2 N.
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Lemma 7. Given finitely many non-zero elements f1, : : : ,fr 2 Tn, there is a
continuous automorphism

� WTn � Tn, �i �
(
�i C �˛in for i < n

�n for i D n

with suitable exponents ˛1, : : : ,˛n�1 2 N such that the elements �.f1/, : : : ,�.fr/
are �n-distinguished.1 Furthermore, j�.f /j D jf j for all f 2 Tn.

Proof. It is clear that we can define a continuous K-homomorphism � of Tn by
mapping the variables �i as indicated in the assertion. Then

Tn � Tn; �i �
(
�i � �˛in for i < n

�n for i D n

defines an inverse ��1 of � , and we see that both homomorphisms are isomor-
phisms. As j�.f /j � jf j for all f 2 Tn and a similar estimate holds for ��1, we
have, in fact, j�.f /j D jf j for all f 2 Tn.

We start with the case where we are dealing with just one element f 2 Tn.
Assuming jf j D 1, we can consider the reduction zf of f , say zf D P

�2N zc���
where N is a finite subset of Nn. Discarding all trivial terms of this sum, we may
assume that N is minimal, i.e. that zc� ¤ 0 for all � 2 N . Now choose t greater than
the maximum of all �i occurring as a component of some � 2 N , and consider the
automorphism � of Tn obtained from ˛1 D tn�1, . . . , ˛n�1 D t . Its reduction z� on
kdb�1; : : : ; �nec satisfies

z�. zf / D
X

�2N
zc�.�1 C �˛1n /�1 : : : .�n�1 C �˛n�1

n /�n�1��nn

D
X

�2N
zc��˛1�1C:::C˛n�1�n�1C�n

n C zg;

where zg 2 kdb�1; : : : ; �nec is a polynomial whose degree in �n is strictly less than
the maximum of all exponents ˛1�1 C : : : C ˛n�1�n�1 C �n with � varying over
N . Due to the choice of ˛1; : : : ; ˛n�1, these exponents are pairwise different and,
hence, their maximum s is assumed at a single index � 2 N . But then

z�. zf / D zc��sn C a polynomial of degree < s in �n:

As zc� ¤ 0, it follows that �.f / is �n-distinguished of order s.

1Later, in 3.1/20, we will see that homomorphisms of Tate algebras are automatically continuous.
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The general case of finitely many non-zero elements f1; : : : ; fr 2 Tn is dealt with
in the same way. One just has to choose t big enough such that it works for all fi
simultaneously. ut

The reason for considering distinguished elements in Tn is that there is Weierstraß
division by such elements, which is the analog of Euclid’s division on polynomial
rings.

Theorem 8 (Weierstraß Division). Let g 2 Tn be �n-distinguished of some order s.
Then, for any f 2 Tn, there are a unique series q 2 Tn and a unique polynomial
r 2 Tn�1db�nec of degree r < s satisfying

f D qgC r:

Furthermore, jf j D max.jqjjgj,jr j/.

Proof. Without loss of generality we may assume jgj D 1. First, let us consider an
equation f D qg C r of the required type. Then, clearly, jf j � max.jqjjgj; jr j/.
If, however, jf j is strictly smaller than the right-hand side, we may assume that
max.jqjjgj; jr j/ D 1. Then we would have zqzgCzr D 0with zq ¤ 0 or zr ¤ 0, and this
would contradict Euclid’s division in kdb�1; : : : ; �n�1ecdb�nec. Therefore we must have
jf j D max.jqjjgj; jr j/, and uniqueness of the division formula is a consequence.

To verify the existence of the division formula, we write g D P1
�D0 g���n with

coefficients g� 2 Tn�1 where gs is a unit and where jg� j < jgsj D jgj D 1 for
� > s. Set " D max�>s jg� j so that " < 1. We want to show the following slightly
weaker assertion:

(W) For any f 2 Tn, there exist q; f1 2 Tn and a polynomial r 2 Tn�1db�nec of
degree < s with

f D qgC r C f1;
jqj; jr j � jf j; jf1j � "jf j:

This is enough, since proceeding inductively and starting with f0 D f , we obtain
equations

fi D qig C ri C fiC1; i 2 N;

jqi j; jri j � "i jf j; jfiC1j � "iC1jf j;

and, hence, an equation

f D
� 1X

iD0
qi

�
g C

� 1X

iD0
ri

�
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as required. To verify the assertion (W), we may approximate f by a polynomial
in Tn�1db�nec and thereby assume f 2 Tn�1db�nec. Furthermore, set g0 D Ps

iD0 gi �in,
where now g0 is a polynomial in �n that is �n-distinguished of order s and satisfies
jg0j D 1. Then Euclid’s division in Tn�1db�nec yields a decomposition

f D qg0 C r

with an element q 2 Tn and a polynomial r 2 Tn�1db�nec of degree < s. As shown
above, jf j D max.jqj; jr j/. But from this we get

f D qgC r C f1
with f1 D qg0 � qg. As jg � g0j D " and jqj � jf j, we have jf1j � "jf j, and we
are done. ut

Corollary 9 (Weierstraß Preparation Theorem). Let g 2 Tn be �n-distinguished of
order s. Then there exists a unique monic polynomial ! 2 Tn�1db�nec of degree s such
that g D e! for a unit e 2 Tn. Furthermore, j!j D 1 so that ! is �n-distinguished
of order s.

Proof. Applying the Weierstraß division formula, we get an equation

�sn D qgC r

with a series q 2 Tn and a polynomial r 2 Tn�1db�nec of degree< s that satisfies jr j �
1. Writing ! D �sn � r , we see that ! D qg satisfies j!j D 1 and is �n-distinguished
of order s. To verify the existence of the asserted decomposition of g, we have to
show that q is a unit in Tn. Assuming jgj D jqj D 1, we can look at the equation
z! D zqzg obtained via reduction. Then both, z! and zg, are polynomials of degree s in
�n, and it follows that zq is a unit in k�, as z! is monic. But then q is a unit in Tn by
Corollary 4.

To show uniqueness, start with a decomposition g D e!. Defining r D �sn � !,
we get

�sn D e�1g C r;

which by the uniqueness of Weierstraß division shows the uniqueness of e�1 and r
and, hence, of e and !. ut

Corollary 10. The Tate algebra T1 D Kh�1i of restricted power series in a single
variable �1 is a Euclidean domain and, in particular, a principal ideal domain.

Proof. Every non-zero element g 2 T1 is �1-distinguished of a well-defined order
s 2 N. Thus, in view of Weierstraß division, the map T1�f0g � N that associates
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to g its order s of being distinguished is a Euclidean function. It follows that T1 is a
Euclidean domain and, in particular, a principal ideal domain. ut

Monic polynomials ! 2 Tn�1db�nec with j!j D 1, as occurring in Corollary 9, are
called Weierstraß polynomials in �n. So each �n-distinguished element f 2 Tn is
associated to a Weierstraß polynomial. Furthermore, if f is an arbitrary non-zero
element in Tn, we can assume by Lemma 7 that the indeterminates �1; : : : ; �n 2 Tn
are chosen in such a way that f is �n-distinguished of some order s.

Corollary 11 (Noether Normalization). For any proper ideal a ¨ Tn, there is a
K-algebra monomorphism Td � Tn for some d 2 N such that the composition
Td � Tn � Tn=a is a finite monomorphism. The integer d is uniquely
determined as the Krull dimension of Tn=a.

Proof. Assuming a ¤ 0, we can choose an element g ¤ 0 in a. Furthermore,
applying a suitable automorphism to Tn, we can assume by Lemma 7 that g is
�n-distinguished of some order s � 0. By Weierstraß division we know that any
f 2 Tn is congruent modulo g to a polynomial r 2 Tn�1db�nec of degree < s. In
other words, the canonical morphism Tn�1 � Tn � Tn=.g/ is finite; in fact
using the uniqueness of Weierstraß division, Tn=.g/ is a free Tn�1-module generated
by the residue classes of �0n; : : : ; �

s�1
n .

Now consider the composition Tn�1 � Tn=.g/ � Tn=a and write a1 for its
kernel. If a1 D 0, we are done. Else we can proceed with a1 and Tn�1 in the same
way as we did with a and Tn. Then, as the composition of finite morphisms is finite
again, we will get a finite monomorphism Td � Tn=a after finitely many steps.

Finally, it follows from commutative algebra, see [Bo], 3.3/6, that the Krull
dimension of Tn=a coincides with the one of Td . However, the latter equals d , as
we will see below in Proposition 17. ut

Looking at the proof of Corollary 11, it should be pointed out that the resulting
monomorphism Td � Tn=a does not necessarily coincide with the canonical one
sending �i 2 Td to the residue class of �i in Tn=a. In fact, this canonical morphism
will, in general, be neither injective nor finite, as can be seen from simple examples.

Corollary 12. Let m � Tn be a maximal ideal. Then the field Tn=m is finite over K:

Proof. Using Noether normalization, there is a finite monomorphism Td � � Tn=m
for a suitable d 2 N. As Tn=m is a field, the same is true for Td . So we must have
d D 0 and, hence, Td D K. ut

A direct consequence of Corollary 12 is the following:

Corollary 13. The map

Bn.K/ � MaxTn, x � mx D
˚
f 2 Tn ; f .x/ D 0�,

from the unit ball in Kn to the set of all maximal ideals in Tn is surjective.
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Proof. Evaluation of functions f 2 Tn at a point x D .x1; : : : ; xn/ 2 Bn.K/

defines a continuous epimorphism 'x WTn � K.x1; : : : ; xn/. Thus its kernel,
which equals mx , is a maximal ideal in Tn.

Conversely, given any maximal ideal m � Tn, the field K 0 D Tn=m is finite
over K by Corollary 12, and we can choose an embedding K 0

� � K. We claim
that the resulting map 'WTn � K is contractive in the sense that j'.a/j � jaj
for all a 2 Tn. Proceeding indirectly, we assume there is an element a 2 Tn with
j'.a/j > jaj. Then a ¤ 0, and we may assume jaj D 1. Write ˛ D '.a/, and let

p.�/ D �r C c1�r�1 C : : :C cr 2 Kdb�ec

be the minimal polynomial of ˛ over K. If ˛1; : : : ; ˛r denote the (not necessarily
pairwise different) conjugates of ˛ over K, we have

p.�/ D
rY

jD1
.� � ˛j /:

All fields K.˛j / are canonically isomorphic to K.˛/. As K is complete and the
absolute value of K extends uniquely to K.˛/, we get j˛j j D j˛j for all j . In
particular, we have jcr j D j˛jr and

jcj j � j˛jj < j˛jr D jcr j for j < r;

as j˛j > 1. Then, by Corollary 4, the expression p.a/ D ar C c1ar�1C : : :C cr is a
unit in Tn and, consequently, it must be mapped under ' to a unit inK 0 � K. On the
other hand, the image '.p.a// is trivial, as it equals '.p.a// D p.˛/ D 0. Thus, we
obtain a contradiction and therefore have j'.a/j � jaj for all a 2 Tn. From this it
follows in particular, that 'WTn � K is continuous. But then, setting xi D '.�i /
for i D 1; : : : ; n, it is clear that the point x D .x1; : : : ; xn/ belongs to Bn.K/, that
' coincides with 'x and, hence, that m D m.x1;:::;xn/. ut

We want to end this section by deriving some standard properties of Tn.

Proposition 14. Tn is Noetherian, i.e. each ideal a � Tn is finitely generated.

Proof. Proceeding by induction, we can assume that Tn�1 is Noetherian. Now,
consider a non-trivial ideal a � Tn. Then we can choose a non-zero element g 2 a
that, using Lemma 7, can be assumed to be �n-distinguished. By Weierstraß division,
Tn=.g/ is a finite Tn�1-module and, hence, a Noetherian Tn�1-module, as Tn�1
is Noetherian. Consequently, a=.g/ is finitely generated over Tn�1 and, thus, a is
finitely generated on Tn. ut

Proposition 15. Tn is factorial and, hence, normal, i.e. integrally closed in its field
of fractions.
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Proof. Proceeding by induction, we may assume that Tn�1 is factorial and, hence,
by the Lemma of Gauß, that Tn�1db�nec is factorial. Consider a non-zero element
f 2 Tn that is not a unit. Again, by Lemma 7, we may assume that f is
�n-distinguished and, by Corollary 9, that f is, in fact, a Weierstraß polynomial.
Now consider a factorization f D !1 : : : !r into prime elements !i 2 Tn�1db�nec.
As f is a monic polynomial in �n, we can assume the same for !1; : : : ; !r . Then,
as j!i j � 1, we have necessarily j!i j D 1 for all i , since jf j D 1. So the !i are
Weierstraß polynomials.

It remains to show that the !i , being prime in Tn�1db�nec, are prime in Tn as well.
To verify this, it is enough to show for any Weierstraß polynomial ! 2 Tn�1db�nec of
some degree s that the canonical morphism

Tn�1db�nec=.!/ � Tn=.!/

is an isomorphism. However this is clear, since both sides are free Tn�1-modules
generated by the residue classes of �0n; : : : ; �

s�1
n , the left-hand side by Euclid’s

division and the right-hand side by Weierstraß’ division. So Tn is factorial.
To see that this implies Tn being normal, consider an integral equation

�
f

g

�r
C a1

�
f

g

�r�1
C : : :C ar D 0

for some fraction f

g
2 Q.Tn/ of elements f; g 2 Tn and coefficients ai 2 Tn. Using

the fact that Tn is factorial, we may assume that the gcd of f and g is 1. But then,
since the equation

f r C a1f r�1g C : : :C argr D 0

shows that any prime divisor of g must also divide f , it follows that g is a unit and,
hence, that f

g
2 Tn. ut

Proposition 16. Tn is Jacobson, i.e. for any ideal a � Tn its nilradical rad a equals
the intersection of all maximal ideals m 2 MaxTn containing a.

Proof. One knows from commutative algebra that the nilradical rad a of any ideal
a � Tn equals the intersection of all prime ideals in Tn containing a. So we have
only to show that any prime ideal p � Tn is an intersection of maximal ideals.

First, let us consider the case where p D 0. Let f 2 T
m2MaxTn m. Then, by

Corollary 13, f vanishes at all points x 2 Bn.K/, and it follows f D 0 by
Proposition 5.

Next assume that p is not necessarily the zero ideal. Then, using Noether
normalization as in Corollary 11, there is a finite monomorphism Td � � Tn=p
for some d 2 N. One knows from commutative algebra that over each maximal
ideal m � Td there is a maximal ideal m0 � Tn=p with m0 \ Td D m. Thus,
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if q � Tn=p is the intersection of all maximal ideals in Tn=p, we know q \ Td D 0.
Now, if q is non-zero, we can choose a non-zero element f 2 q. Let

f r C a1f r�1 C : : :C ar D 0

be an integral equation of minimal degree for f over Td . Then ar ¤ 0. On the other
hand, we see that

ar D �f r � a1f r�1 � : : : � ar�1f 2 q \ Td D 0

and, hence, is trivial. Thus, we must have f D 0 and therefore q D 0, which
concludes our proof. ut

Proposition 17. Every maximal ideal m � Tn is of height n and can be generated
by n elements. In particular, the Krull dimension of Tn is n.

Proof. Assume n � 1 and let m � Tn be a maximal ideal. We claim that
n D m \ Tn�1 is a maximal ideal in Tn�1. Indeed, look at the derived injections
K � � Tn�1=n � � Tn=m. Since Tn=m is finite over K by Corollary 12, the
same is true for Tn�1=n. Then it follows from commutative algebra that Tn�1=n is a
field. Therefore n is a maximal ideal in Tn�1.

As the field Tn�1=n is finite over K, it carries a unique complete absolute value
j � j extending the one of K, just as is the case for Tn=m. Furthermore, we see
from Corollary 13 and its proof that the projections '0WTn�1 � Tn�1=n and
'WTn � Tn=m are contractive in the sense that j'0.a0/j � ja0j and j'.a/j � jaj
for all a0 2 Tn�1 and a 2 Tn. Therefore we can look at the following canonical
commutative diagram of continuous K-algebra homomorphisms

(�)

where � maps �n onto its residue class in Tn=m. We claim that '0 is surjective
and that its kernel is the ideal nTn generated by n in Tn�1h�ni D Tn. Then, since
.Tn�1=n/h�ni is an integral domain, it follows that nTn is a prime ideal in Tn.

For the surjectivity of '0 we need to know that any zero sequence in Tn�1=n can
be lifted to a zero sequence in Tn�1. This assertion can be derived from general
arguments on affinoid K-algebras in Sect. 3.1, or it can be obtained by a direct
argument as follows. Since Tn�1=n is a finite-dimensional K-vector space, we can
choose a K-basis u1; : : : ; ur on it. Defining a norm on Tn�1=n by setting

ˇ̌
ˇ
rX

iD1
ciui

ˇ̌
ˇ D max

iD1;:::;r jci j; ci 2 K;
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we conclude from Theorem 1 of Appendix A that this norm is equivalent to the
given absolute value on Tn�1=n. But then, choosing representatives of u1; : : : ; ur in
Tn�1, it is easy to lift zero sequences in Tn�1=n to zero sequences in Tn�1. Therefore
the homomorphism '0 of the above diagram will be surjective.

It remains to look at the kernel of '0. It consists of all restricted power series
f DP1

�D0 f���n 2 Tn�1h�ni with coefficients f� 2 n. In particular, we see that the
inclusion n � Tn�1h�ni � ker'0 is trivial. On the other hand, consider a restricted
power series f DP1

�D0 f���n 2 Tn�1h�ni such that f� 2 n for all �. We know from
Proposition 14 that the ideal n � Tn�1 is finitely generated, but we need the stronger
result 2.3/7 implying that there are generators a1; : : : ; ar of n with jai j D 1 such
that for each � 2 N there are elements f�1; : : : ; f�r 2 Tn�1 satisfying

jf�i j � jf� j; f� D
rX

iD1
f�iai :

Then, for fixed i , the elements f�i , � 2 N, form a zero sequence in Tn�1, and we
see that

f D
1X

�D0
f��

�
n D

1X

�D0

� rX

iD1
f�iai

�
��n D

rX

iD1

� 1X

�D0
f�i �

�
n

�
ai 2 n � Tn�1h�ni:

Therefore ker'0 D n � Tn�1h�ni, as desired.
Now it is easy to see that every maximal ideal m � Tn is generated by n elements.

Proceeding by induction on n, we may assume that n D m \ Tn�1 is generated by
n � 1 elements a1; : : : ; an�1 2 Tn�1 and, hence, that the same is true for the kernel
of the surjection '0 in the above diagram (�). Since .Tn�1=n/h�ni is a principal
ideal domain by Corollary 10, the kernel of the surjection � is generated by a single
element. Lifting the latter to an element an 2 Tn�1h�ni, it follows that m is generated
by the n elements a1; : : : ; an.

Next, to show htm D n, we look at the strictly ascending chain T0 ¨ : : : ¨ Tn
and set ni D m\Ti for i D 0; : : : ; n. Then, since ni�1 D ni\Ti�1 for i D n; : : : ; 1,
we can conclude inductively as before that ni is a maximal ideal in Ti for all i . We
want to show that

0 ¨ n1Tn ¨ : : : ¨ nn�1Tn ¨ nnTn D m (��)

is a strictly ascending chain of prime ideals in Tn. To do this, we look at diagrams
of type (�) and construct for each i D 1; : : : ; n a canonical commutative diagram of
continuous K-algebra homomorphisms by just adding variables:
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As before, the maps '0
i and 'i are surjections with kernels generated by ni�1,

respectively ni , while �i is a surjection having a certain non-trivial kernel. From
this we conclude that

ni�1Tn D ker'0
i � ker'i D ni Tn

is a strict inclusion of prime ideals in Tn and, thus, that (��) is, indeed, a strictly
ascending chain of prime ideals. In particular, we see that htm � n. On the other
hand, m can be generated by n elements, as we have seen, and this implies htm � n
by Krull’s Dimension Theorem; cf. [Bo], 2.4/6. Thus, we get htm D n, as desired.

ut

2.3 Ideals in Tate Algebras

We know already from 2.2/14 that all ideals a � Tn are finitely generated.
Considering such an ideal a D .a1; : : : ; ar /, say with generators ai of absolute
value jai j D 1, we can ask if any f 2 a admits a representation f D Pr

iD1 fiai
with elements fi 2 Tn satisfying jfi j � jf j. If this is the case, we can easily deduce
that a is complete under the Gauß norm of Tn and, hence, that a is closed in Tn.
To establish these and other assertions, we will use a technique involving normed
vector spaces.

Definition 1. Let R be a ring. A ring norm on R is a map j � jWR � R�0
satisfying

(i) jaj D 0” a D 0,
(ii) jabj � jajjbj,

(iii) jaC bj � max
˚jaj,jbj�,

(iv) j1j � 1.

The norm is called multiplicative if instead of (ii) we have

(ii0) jabj D jajjbj.

We claim that, instead of condition (iv), we actually have j1j D 1 if R is non-
zero. In fact, we have j1j � j1j2 due to (ii) and, thus, j1j D j1j2, since j1j � 1 by
(iv). This implies j1j D 1 or j1j D 0. As 1 ¤ 0 and, hence, j1j ¤ 0 by (i) if R is
non-zero, we can conclude that j1j D 1 in this case.

Definition 2. Let R be a ring with a multiplicative ring norm j � j such that jaj � 1
for all a 2 R.

(i) R is called a B-ring if

˚
a 2 R ; jaj D 1� � R�:
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(ii) R is called bald if

sup
˚jaj ; a 2 R with jaj < 1� < 1:

We want to show the following assertion:

Proposition 3. Let K be a field with a valuation and R its valuation ring. Then the
smallest subring R0 � R containing a given zero sequence a0,a1, : : : 2 R is bald.

Proof. The smallest subring S � R equals either Z=pZ for some prime p, or Z.
It is bald, since any valuation on the finite field Z=pZ is trivial and since the ideal
fa 2 Z I jaj < 1g � Z is principal. If there is an " 2 R such that janj � " < 1 for
all n 2 N, we see for trivial reasons that Sdba0; a1; : : : ec is bald. Thus, it is enough
to show that, for a bald subring S � R and an element a 2 R of value jaj D 1,
the ring Sdbaec is bald. To do this, we may localize S by all elements of value 1 and
thereby assume that S is a B-ring. Then S contains a unique maximal ideal m, and
zS D S=m is a field. If the reduction za 2 k is transcendental over zS , it follows that
Sdbaec is bald for trivial reasons. Indeed, for any polynomial p DPr

iD0 ci �i 2 Sdb�ec,
we have jp.a/j < 1 if and only if

Pr
iD0 zci zai D 0, i.e. if and only if zci D 0 for all i .

Thus, jp.a/j < 1 implies

jp.a/j � sup
˚jcj I c 2 S; jcj < 1� < 1

and we are done.
It remains to consider the case where za is algebraic over zS . Choose a polynomial

g D �n C c1�
n�1 C : : : C cn 2 Sdb�ec of minimal degree such that its reduction

zg annihilates za or, in equivalent terms, such that jg.a/j < 1. Let " < 1 be the
supremum of jg.a/j and of all values jcj for c 2 S and jcj < 1. Now consider
a polynomial f 2 Sdb�ec with jf .a/j < 1; we want to show jf .a/j � ". Using
Euclid’s division, we get a decomposition f D qg C r with q; r 2 Sdb�ec and
deg r < n D degg. Since jg.a/j � ", we may assume f D r . If all coefficients of
r have value < 1, this value must be � " and we are done. On the other hand, if one
of the coefficients of r has value 1, the reduction zr of r is non-trivial. But then we
have zr.za/ D 0, and this contradicts the definition of g, since deg zr < deg zg and zg,
annihilating za, was chosen of minimal degree. Thus, jf .a/j < 1 implies jf .a/j � ",
and we are done. ut

Given a bald subring R0 � R, for example as constructed in the situation of
Proposition 3, we can localize R0 by all elements of value 1 and thereby obtain
a B-ring R00 � R that contains R0 and is bald. Furthermore, assuming R to be
complete, we may even pass to the completion ofR00. As the completion of a B-ring
yields a B-ring again, we see that the smallest complete B-ring in R containing a
given bald subring of R, will be bald again.
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Next we want to look at vector spaces and norms on them. As a prototype, we
can consider a Tate algebra Tn with its Gauß norm and forget about multiplication.
In the following, let K be a field with a complete non-Archimedean valuation.

Definition 4. Let V be a K-vector space. A norm on V is a map j � jWV � R�0,
such that

(i) jxj D 0” x D 0,
(ii) jx C yj � max

˚jxj,jyj�,
(iii) jcxj D jcjjxj for c 2 K and x 2 V .

Definition 5. Let V be a complete normed K-vector space. A system .x�/�2N of
elements in V , where N is finite or at most countable, is called a (topological)
orthonormal basis of V if the following hold:

(i) jx� j D 1 for all � 2 N .
(ii) Each x 2 V can be written as a convergent series x D P

�2N c�x� with
coefficients c� 2 K.

(iii) For each equation x D P
�2N c�x� as in (ii) we have jxj D max�2N jc� j. In

particular, the coefficients c� in (ii) are unique.

For example, the monomials �� 2 Tn form an orthonormal basis if we consider
Tn D Kh�i as a normed K-vector space. For any normed K-vector space V , we
will use the notations

V ı D ˚
x 2 V I jxj � 1�

for its “unit ball” and

zV D V ı=˚x 2 V I jxj < 1�

for its reduction.

Theorem 6. Let K be a field with a complete valuation and V a complete normed
K-vector space with an orthonormal basis .x�/�2N . Write R for the valuation ring
of K, and consider a system of elements

y� D
X

�2N
c��x� 2 V ı, � 2M ,

where the smallest subring of R containing all coefficients c�� is bald. Then, if the
residue classes zy� 2 zV form a k-basis of zV , the elements y� form an orthonormal
basis of V .
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Proof. The systems .zx�/�2N and .zy�/�2M form a k-basis of zV . So M and N have
the same cardinality, and M is at most countable. In particular, .y�/�2M is an
orthonormal basis of a subspace V 0 � V . Now let S be the smallest complete
B-ring in R containing all coefficients c�� . Then S is bald by our assumption; let
" D supfjaj I a 2 S; jaj < 1g. Setting

V 0
S D

X̂

�2M
Sy�; VS D

X̂

�2N
Sx�;

where bP means the completion of the usual sum, we have V 0
S � VS , and we claim

that, in fact, V 0
S D VS . To verify this, let us first look at reductions. If m � S denotes

the unique maximal ideal, we set

zS D S=m; V 0
zS D V 0

S=mV
0
S ; VzS D VS=mVS :

Then zS is a subfield of the residue field k of R, and we have

zV 0 D V 0
zS ˝zS k; zV D VzS ˝zS k:

From zV 0 D zV and V 0
zS � VzS we get V 0

zS D VzS . The latter implies that, for any x� ,
there is an element z� 2 V 0

S satisfying jx� � z� j � ". Then, more generally, for any
x 2 VS , there is an element z 2 V 0

S with jzj D jxj and jx � zj � "jxj. But then, as
V 0
S and VS are complete, we get V 0

S D VS by iteration. ut
Now we want to apply Theorem 6 to Tate algebras.

Corollary 7. Let a be an ideal in Tn. Then there are generators a1, : : : ,ar of a
satisfying the following conditions:

(i) jai j D 1 for all i .
(ii) For each f 2 a, there are elements f1, : : : ,fr 2 Tn such that

f D
rX

iD1
fiai , jfi j � jf j:

Proof. Let za be the reduction of a, i.e. the image of a \ Rh�i under the reduction
map Rh�i � kdb�ec where R is the valuation ring of K. Then za is an ideal in
the Noetherian ring kdb�ec and, hence, finitely generated, say by the residue classes
za1; : : : ; zar of some elements a1; : : : ; ar 2 a having norm equal to 1. As the elements
��zai ; � 2 Nn; i D 1; : : : ; r , generate za as a k-vector space, we can find a system
.y�/�2M 0 of elements of type ��ai 2 a such that its residue classes form a k-basis
of za. Adding monomials of type ��; � 2 Nn, we can enlarge the system to a system
.y�/�2M such that its residue classes form a k-basis of kdb�ec.
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On the other hand, let us consider the system .��/�2Nn of all monomials in Tn;
it is an orthonormal basis of Tn and its reduction forms a k-basis of kdb�ec. Now
apply Proposition 3 and Theorem 6. To write the elements y� as (converging) linear
combinations of the �� , we need only the coefficients of the series a1; : : : ; ar . As
these form a zero sequence, we see that .y�/�2M is an orthonormal basis, the same
being true for .��/�2Nn .

We want to show that the elements a1; : : : ; ar have the required properties.
Choose f 2 a. Then, since .y�/�2M is an orthonormal basis of Tn, there is an
equation f D P

�2M c�y� with certain coefficients c� 2 K satisfying jc�j � jf j.
Writing f 0 D P

�2M 0

c�y�, the choice of the elements y�, � 2 M 0, implies that
we can write f 0 DPr

iD1 fiai with certain elements fi 2 Tn satisfying jfi j � jf j.
In particular, f 0 2 a, and we are done if we can show f D f 0. To justify the latter
equality, we may replace f by

f � f 0 D
X

�2M�M 0

c�y� 2 a

and thereby assume c� D 0 for � 2 M 0. Then, if f ¤ 0, there is an index
� 2M �M 0 with c� ¤ 0. Assuming jf j D 1, we would get a non-trivial equation
zf D P

�2M�M 0

zc� zy� for the element zf 2 za, which however, contradicts the
construction of the elements zy�. ut

The proof shows more precisely that elements a1; : : : ; ar 2 a with jai j � 1 satisfy
the assertion of Corollary 7 as soon as the residue classes za1; : : : ; zar generate the
ideal za � kdb�ec. Furthermore, the system .y�/�2M 0 is seen to be an orthonormal
basis of a. The reason is that .y�/�2M 0 is part of an orthonormal basis of Tn
and, as we have seen in the proof above, any convergent series

P
�2M 0

c�y� with
coefficients c� 2 K gives rise to an element of a.

Corollary 8. Each ideal a � Tn is complete and, hence, closed in Tn.

Proof. Choose generators a1; : : : ; ar of a as in Corollary 7. If f D P1
	D0 f	 is

convergent in Tn with elements f	 2 a, there are equations f	 D Pr
iD1 f	iai with

coefficients f	i 2 Tn satisfying jf	i j � jf	j. But then f D Pr
iD1.

P1
	D0 f	i /ai

belongs to a and we are done. ut

Corollary 9. Each ideal a � Tn is strictly closed, i.e. for each f 2 Tn there is an
element a0 2 a such that

jf � a0j D inf
a2a jf � aj:

Proof. Going back to the proof of Corollary 7, we use the orthonormal basis
.y�/�2M of Tn and write f DP

�2M c�y� with coefficients c� 2 K. As M 0 �M
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is a subset such that .y�/�2M 0 is an orthonormal basis of a, the assertion of the
corollary holds for a0 DP

�2M 0

c�y�. ut
For later use, we add a version of Corollary 7 that applies to modules:

Corollary 10. Let N � T sn be a Tn-submodule of a finite direct sum of Tn with
itself , and consider on T sn the maximum norm derived from the Gauß norm of Tn.
Then there are generators x1, : : : ,xr of N as a Tn-module, satisfying the following
conditions:

(i) jxi j D 1 for all i .
(ii) For each x 2 N , there are elements f1, : : : ,fr 2 Tn such that

x D
rX

iD1
fixi , jfi j � jxj:

Proof. Proceeding as in the proof of Corollary 7, we consider the reduction map
.Rh�i/s � .kdb�ec/s where R is the valuation ring of K. Writing zN for the image
of N \ .Rh�i/s , we see that zN is a kdb�ec-submodule of .kdb�ec/s and, hence, finitely
generated, since kdb�ec is Noetherian. Thus, we can choose elements x1; : : : ; xr 2 N
of norm 1 such that their residue classes zx1; : : : ; zxr generate zN as kdb�ec-module.
Consequently, there exists a system .y�/�2M 0 of elements of type ��xi 2 N such
that their residue classes form a k-basis of zN . Let e1; : : : ; es be the “unit vectors”
in T sn . Then it is possible to enlarge the system .y�/�2M 0 to a system .y�/�2M ,
by adding elements of type ��ej in such a way that the residue classes of the y�,
� 2 M , form a k-basis of kdb�ecs . On the other hand, we have the canonical system
Z D .��ej /�2Nn;jD1;:::;s , which is an orthonormal basis of T sn and which induces a
k-basis of .kdb�ec/s .

In order to represent the elements xi , i D 1; : : : ; s, in terms of the orthonormal
basis Z, using converging linear combinations with coefficients in K, we need
finitely many zero sequences in R, and the smallest subring R0 � R containing
all these coefficients is bald by Proposition 3. Since the elements y�, � 2 M 0, are
obtained from x1; : : : ; xr by multiplication with certain monomials �� , � 2 Nn,
we see that y� 2 bP

z2ZR0z for all � 2 M . Thus, by Theorem 6, .y�/�2M is an
orthonormal basis of T sn , and it follows as in the proof of Corollary 7 that .y�/�2M 0

is an orthonormal basis of N . Hence, x1; : : : ; xr are as required. ut



Chapter 3
Affinoid Algebras and Their Associated Spaces

3.1 Affinoid Algebras

So far we have viewed the elements of Tn as functions Bn.K/ � K. If a � Tn
is an ideal, we can look at its zero set

V.a/ D ˚
x 2 Bn.K/ I f .x/ D 0 for all f 2 a

�

and restrict functions on Bn.K/ to V.a/. Thereby we get a homomorphism
vanishing on a from Tn to the K-algebra of all maps V.a/ � K. Thus, we may
interpret the quotientA D Tn=a as an algebra of “functions” on V.a/. However note
that, as we will conclude later from the fact that Tn and, hence, A are Jacobson, an
element f 2 A induces the zero function on V.a/ if and only if f is nilpotent in A.
The purpose of the present section is to study algebras of type A D Tn=a, which we
call affinoid K-algebras.

Definition 1. A K-algebra A is called an affinoid K-algebra if there is an
epimorphism of K-algebras ˛WTn � A for some n 2 N.

We can consider the affinoid K-algebras as a category, together with K-algebra
homomorphisms between them as morphisms. Let us mention right away that this
category admits amalgamated sums:

Proposition 2. Write A for the category of affinoid K-algebras and consider
two morphisms R � A1 and R � A2 in A equipping A1 and A2
with the structure of R-algebras. Then there exists an R-object T together with
R-morphisms �1WA1 � T and �2WA2 � T in A fulfilling the universal
property of an amalgamated sum:

Given R-morphisms '1WA1 � D and '2WA2 � D in A, there exists a
unique R-morphism 'WT � D in A such that the diagram

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__3,
© Springer International Publishing Switzerland 2014
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is commutative.
The R-algebra T , which is uniquely determined up to canonical isomorphism,

is given by the completed tensor product A1 y̋ R A2 of A1 and A2 over R; see the
Appendix B and its Theorem 6 for details on such tensor products.

A full discussion of completed tensor products would not be possible at this early
stage since it requires residue norms on affinoidK-algebras as well as the continuity
of homomorphisms between them, results to be proved only later in this section.
Moreover, it is appropriate to consider completed tensor products within a more
general setting, the one of normed modules, as is done in Appendix B.

We continue on a more elementary level by looking at some immediate conse-
quences of the results 2.2/11, 2.2/14, and 2.2/16:

Proposition 3. Let A be an affinoid K-algebra. Then:

(i) A is Noetherian.
(ii) A is Jacobson.

(iii) A satisfies Noether normalization, i.e. there exists a finite monomorphism
Td � � A for some d 2 N.

Proposition 4. Let A be an affinoid K-algebra and q � A an ideal whose nilradical
is a maximal ideal in A. Then A=q is of finite vector space dimension over K.

Proof. Let m D rad q. Applying Noether normalization, there is a finite monomor-
phism Td � � A=q for some d 2 N. However, we must have d D 0, since dividing
out nilpotent elements yields a finite monomorphism Td � � A=m. As A=m is a
field, the same must be true for Td . ut

Affinoid K-algebras can easily be endowed with a topology (which is unique, as
we will see later). Just note that for any epimorphism ˛WTn � A, the Gauß norm
j � j of Tn induces a residue norm j � j˛ on A given by

ˇ̌
˛.f /

ˇ̌
˛
D inf

a2ker˛
jf � aj:



3.1 Affinoid Algebras 33

We can say that jf j˛ for some f 2 A is the infimum of all values jf j with f 2 Tn
varying over all inverse images of f .

Proposition 5. For an ideal a � Tn, view the quotient A D Tn=a as an affinoid
K-algebra via the projection map ˛WTn � Tn=a. The map j � j˛WTn=a � R�0
satisfies the following conditions:

(i) j � j˛ is a K-algebra norm, i.e. a ring norm and a K-vector space norm, and it
induces the quotient topology of Tn on Tn=a. Furthermore, ˛WTn � Tn=a
is continuous and open.

(ii) Tn=a is complete under j � j˛ .
(iii) For any f 2 Tn=a, there is an inverse image f 2 Tn such that jf j˛ D jf j. In

particular, for any f 2 Tn=a, there is an element c 2 K with jf j˛ D jcj.

Proof. That j � j˛ is a K-algebra norm is easily verified; note that jf j˛ D 0 implies
f D 0, since a is closed in Tn by 2.3/8. It follows more generally from 2.3/9 that
any f 2 Tn=a admits an inverse image f 2 Tn with jf j D jf j˛ . From this we
see immediately that ˛ maps an "-neighborhood of 0 2 Tn onto an "-neighborhood
0 2 Tn=a and, thus, is open. As it is continuous anyway, it induces the quotient
topology on Tn=a. Finally, as we can lift Cauchy sequences in Tn=a to Cauchy
sequences in Tn, we see that Tn=a is complete. ut

Viewing the elements f of an affinoid K-algebra Tn=a as K-valued functions on
the zero set V.a/ � Bn.K/, we can introduce the supremum jf jsup of all values
that are assumed by f . The latter is finite, as can be seen from 2.2/5. However, to
be independent of a special representation of an affinoid K-algebra A as a certain
quotient Tn=a, we prefer to set for elements f 2 A

jf jsup D sup
x2MaxA

ˇ̌
f .x/

ˇ̌
:

Here MaxA is the spectrum of maximal ideals in A and, for any x 2 MaxA, we
write f .x/ for the residue class of f in A=x. The latter is a finite field extension of
K by 2.2/12, and the value jf .x/j is well-defined, since the valuation ofK admits a
unique extension toA=x. Usually j�jsup is called the supremum norm onA. However,
to be more precise, it should be pointed out that, in the general case, j � jsup will only
be a K-algebra semi-norm, which means that it satisfies the conditions of a norm,
except for the condition that jf jsup D 0 implies f D 0. We start by listing some
properties of the supremum norm that are more or less trivial.

Proposition 6. The supremum norm is power multiplicative, i.e. jf njsup D jf jnsup
for any element f of an affinoid K-algebra.

Proposition 7. Let 'WB � A be a morphism between affinoid K-algebras. Then
j'.b/jsup � jbjsup for all b 2 B .



34 3 Affinoid Algebras and Their Associated Spaces

Proof. If m is a maximal ideal in A, the quotient A=m is finite over K by 2.2/12.
Thus, writing n D '�1.m/ we get finite maps K � � B=n � � A=m and we see
that n is a maximal ideal in B . As jb.n/j D j'.b/.m/j, we are done. ut

Proposition 8. On a Tate algebra Tn, the supremum norm j � jsup coincides with the
Gauß norm j � j.

Proof. It follows from the Maximum Principle 2.2/5 that

jf j D sup
˚jf .x/j I x 2 Bn.K/

�

for any f 2 Tn. To x 2 Bn.K/ we can always associate the maximal ideal of Tn
given by mx D fh 2 Tn I h.x/ D 0g, as we have seen in 2.2/13. Then evaluation at
x yields an embedding Tn=mx

� � K, and we see that f .mx/ D f .x/ and, hence,
jf .mx/j D jf .x/j. Since x � mx defines a surjection Bn.K/ � MaxTn
by 2.2/13, we are done. ut

Proposition 9. Let A be an affinoid K-algebra with a residue norm j � j˛ corre-
sponding to some K-algebra epimorphism ˛WTn � A. Then jf jsup � jf j˛ for
all f 2 A. In particular, jf jsup is finite.

Proof. Consider a maximal ideal m � A and its inverse image n D ˛�1.m/ � Tn.
Fixing an element f 2 A, let g 2 Tn be an inverse image satisfying jf j˛ D jgj.
Then

ˇ̌
f .m/

ˇ̌ D ˇ̌
g.n/

ˇ̌ � ˇ̌
g

ˇ̌ D ˇ̌
f

ˇ̌
˛

and, hence, jf jsup � jf j˛ . ut

Proposition 10. Let A be an affinoid K-algebra. Then, for f 2 A, the following
are equivalent:

(i) jf jsup D 0.
(ii) f is nilpotent.

Proof. Condition (i) is equivalent to f 2 T
m2MaxAm. As A is Jacobson by

Proposition 3, the ideal
T

m2MaxAm equals the nilradical ofA. Thus, (i) is equivalent
to (ii). ut

Next we want to relate the supremum norm j �jsup to residue norms j �j˛ on affinoid
K-algebras A. We need some preparations.

Lemma 11. For any polynomial

p.�/ D �r C c1�r�1 C : : :C cr D
rY

jD1
.� � ˛j /
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in Kdb�ec with zeros ˛1, : : : ,˛r 2 K, one has

max
jD1:::r j˛j j D max

iD1:::r jci j
1
i :

Proof. As ci equals the i th elementary symmetric function of the zeros ˛1; : : : ; ˛r ,
up to sign, we get

jci j 1i � max
jD1:::r j˛j j

for i D 1; : : : ; r . On the other hand, assume that j˛j j is maximal precisely for
j D 1; : : : ; r 0. Then jcr 0 j D j˛1j : : : j˛r 0 j and, hence,

jcr 0 j 1r0 D max
jD1:::r j˛j j

so that we are done. ut
If p D �r C c1�r�1 C : : : C cr is a monic polynomial with coefficients ci in a

normed (or semi-normed) ring A, we call

�.p/ D max
jD1:::r jci j

1
i

the spectral value of p. Thus we can say that, in the situation of Lemma 11, the
spectral value �.p/ equals the maximal value of the zeros of p. The assertion of
Lemma 11 is true more generally if the coefficients of p and the zeros of p belong to
a normed ring A, whose absolute value is multiplicative. Without the latter property
we still have �.p/ � maxjD1:::r j˛j j for any polynomial p DQr

jD1.��˛j /, as can
also be seen from the next lemma.

Lemma 12. Let A be a normed (or semi-normed) ring and let p,q 2 Adb�ec be monic
polynomials. Then the spectral value satisfies �.pq/ � max.�.p/,�.q//.

Proof. Let p DPm
iD0 ai �m�i and q DPn

jD0 aj �n�j with a0 D b0 D 1. Then

pq D
mCnX

	D0
c	�

mCn�	; c	 D
X

iCjD	
aibj :

Now jai j � �.p/i for i D 0; : : : ; m and jbj j � �.q/j for j D 0; : : : ; n. Thus,

jc	j � max
iCjD	 jai jjbj j � max

iCjD	 �.p/
i�.q/j � max

�
�.p/; �.q/

�	

for all 	, and we see that �.pq/ � max.�.p/; �.q//. ut
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Lemma 13. Let Td � � A be a finite monomorphism into some K-algebra A.
Let f 2 A and assume that A, as a Td -module, is torsion-free.

(i) There is a unique monic polynomial pf D �r C a1�r�1C : : :C ar 2 Td db�ec of
minimal degree such that pf .f / D 0. More precisely, pf generates the kernel
of the Td -homomorphism

Td db�ec � A, � � f:

(ii) Fixing a maximal ideal x 2 MaxTd , let y1, : : : ,ys 2 MaxA be those maximal
ideals that restrict to x on Td . Then

max
jD1:::s

ˇ̌
f .yj /

ˇ̌ D max
iD1:::r

ˇ̌
ai .x/

ˇ̌ 1
i :

(iii) The supremum norm of f is given by

ˇ̌
f

ˇ̌
sup D max

iD1:::r
ˇ̌
ai

ˇ̌ 1
i

sup:

Proof. First note that A=y, for any y 2 MaxA, is finite over K, due to the fact
that A is finite over Td . Therefore the values jf .y/j and jf jsup are well-defined for
f 2 A, even without knowing that A is, in fact, an affinoid K-algebra.

Starting with assertion (i), let us write F D Q.Td / for the field of fractions of Td
and F.A/ D A˝Td F for the F -algebra obtained from A. Since A is torsion-free
over Td , there is a commutative diagram of inclusions:

Now consider the F -homomorphism F db�ec � F.A/, given by � � f . Its
kernel is generated by a unique monic polynomial pf 2 F db�ec, and we claim that
pf 2 Td db�ec. To justify this, observe that there is a monic polynomial h 2 Td db�ec
satisfying h.f / D 0, since A is finite and, hence, integral over Td . Then pf divides
h in F db�ec, but also in Tddb�ec, due to the lemma of Gauß, which we can apply as
Td is factorial by 2.2/15. But then, by a similar argument, pf must divide any
polynomial h 2 Td db�ec satisfying h.f / D 0. Consequently, pf generates the kernel
of Td db�ec � A, � � f .

Next, let us look at assertion (ii). The theory of integral ring extensions (or a
direct argument) shows that the restriction of maximal ideals yields surjections

MaxA � MaxTddbf ec � MaxTd :
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Thus, we may replace A by Td dbf ec and thereby assume A D Td dbf ec. Now look at

the field L D Td=x, which is finite over K by 2.2/12. Writing f for the residue
class of f in A=.x/ and pf for the residue class of pf in Ldb�ec, we obtain a finite
morphism L � A=.x/ D Ldb�ec=.pf /. Let ˛1; : : : ; ˛r be the zeros of pf in some
algebraic closure of L. Then the kernels of the canonical L-morphisms

A=.x/ D L	
f


 � Ldb˛iec; f � ˛i ;

(which might not be pairwise different) are just the maximal ideals of A=.x/ and,
thus, coincide with the residue classes of the maximal ideals y1; : : : ; ys 2 MaxA
lying over x. Using Lemma 11, we get

max
jD1:::s

ˇ̌
f .yj /

ˇ̌ D max
iD1:::r

ˇ̌
˛i

ˇ̌ D max
iD1:::r

ˇ̌
ai

ˇ̌ 1
i

and we are done.
Finally, assertion (iii) is a consequence of (ii). ut
We need a slight generalization of Lemma 13 (iii).

Lemma 14. Let 'WB � A be a finite homomorphism of affinoid K-algebras.
Then, for any f 2 A, there is an integral equation

f r C b1f r�1 C : : :C br D 0

with coefficients bj 2 B such that jf jsup D maxiD1:::r jbi j
1
i
sup.

Proof. Let us start with the case where A is an integral domain. Using Noether
normalization 2.2/11, there is a morphism Td � B for some d 2 N

inducing a finite monomorphism Td � � B= ker '. Then the resulting morphism
Td � A is a finite monomorphism and, since A is an integral domain, it does
not admit Td -torsion. Applying Lemma 13 (iii), there is an integral equation
f r C a1f

r�1 C : : : C ar D 0 with coefficients ai 2 Td satisfying

jf jsup D maxiD1:::r jai j
1
i
sup. Replacing each ai by its image bi in B we obtain

an integral equation f r C b1f r�1 C : : :C br D 0 of f over B . As jbi jsup � jai jsup

by Proposition 7, we get jf jsup � maxiD1:::r jbi j
1
i
sup. However, the integral equation

of f over B shows that this inequality must, in fact, be an equality. Indeed, there
exists an index i such that

jf r jsup � jbif r�i jsup � jbi jsupjf jr�isup ;

and it follows jf jsup � jbi j
1
i
sup.

Next we consider the general case where A is not necessarily an integral domain.
As A is Noetherian by Proposition 3, it contains only finitely many minimal prime
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ideals, say p1; : : : ; ps , and we can interpret MaxA as the union of the sets MaxA=pj ,
j D 1; : : : ; s. Thus, we have jf jsup D maxjD1:::s jfj jsup, writing fj for the residue
class of f in A=pj .

Now look at the induced maps B � A � A=pj . As we have seen at the
beginning, there are monic polynomials q1; : : : ; qs 2 Bdb�ec such that qj .fj / D 0

and jfj jsup D �.qj / where �.qj / is the spectral value of qj . The product q1 : : : qs
assumes a value at f that is nilpotent in A. Thus, there is a certain power q of
q1 : : : qs such that q.f / D 0 in A, and we have

jf jsup D max
jD1:::s jfj jsup D max

jD1:::s �.qj / � �.q/

by Lemma 12. However, as above, the equation q.f / D 0 shows that this inequality
is, in fact, an equality. ut

There are some important consequences of Lemmata 13 and 14.

Theorem 15 (Maximum Principle). For any affinoid K-algebra A and any f 2 A,
there exists a point x 2 MaxA such that jf .x/j D jf jsup.

Proof. As in the proof of Lemma 14, we consider the minimal prime ideals
p1; : : : ; ps of A. Writing fj for the residue class of f in A=pj , there is an index j
satisfying jf jsup D jfj jsup. Hence, we may replace A by A=pj and thereby assume
that A is an integral domain. But then we can apply Noether normalization 2.2/11
to get a finite monomorphism Td � � A, and derive the Maximum Principle for A
with the help of Lemma 13 from the Maximum Principle 2.2/5 for Tate algebras. In
fact, if

f r C a1f r�1 C : : :C ar D 0
is the integral equation of minimal degree for f over Td , we have

max
jD1:::s

ˇ̌
f .yj /

ˇ̌ D max
iD1:::r

ˇ̌
ai .x/

ˇ̌ 1
i

for any x 2 MaxTd and the points y1; : : : ; ys 2 MaxA restricting to x; cf.
Lemma 13 (ii). Then, by applying the Maximum Principle 2.2/5 to the product
a1 : : : ar 2 Td , we can find a point x 2 MaxTd such that

ˇ̌
a1.x/

ˇ̌
: : :

ˇ̌
ar.x/

ˇ̌ D ˇ̌
.a1 : : : ar /.x/

ˇ̌ D ˇ̌
a1 : : : ar

ˇ̌ D ˇ̌
a1

ˇ̌
: : :

ˇ̌
ar

ˇ̌
:

It follows jai .x/j D jai j for all i and, hence, if y1; : : : ; ys are the points of MaxA
restricting to x,

max
jD1:::s

ˇ̌
f .yj /

ˇ̌ D max
iD1:::r

ˇ̌
ai .x/

ˇ̌ 1
i D max

iD1:::r
ˇ̌
ai

ˇ̌ 1
i D ˇ̌

f
ˇ̌
sup:

Therefore f assumes its supremum at one of the points y1; : : : ; ys . ut
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Proposition 16. Let f be an element of some affinoid K-algebra A. Then there is
an integer n > 0 such that jf jnsup 2 jKj.

Proof. Use Noether normalization 2.2/11 in conjunction with Lemma 14 and the
fact that the Gauß norm on Tate algebras assumes values in jKj. ut

Using the methods developed in the proofs of Lemmata 13 and 14 in a direct way,
one can even show the existence of an integer n 2 N satisfying jf jnsup 2 jKj for all
f 2 A simultaneously.

Theorem 17. Let A be an affinoid K-algebra and let j � j˛ be a residue norm on A.
Then for any f 2 A, the following are equivalent:

(i) jf jsup � 1
(ii) There is an integral equation f r C a1f r�1 C : : : C ar D 0 with coefficients

ai 2 A satisfying jai j˛ � 1.
(iii) The sequence jf nj˛ ,n 2 N, is bounded; we say, f is power bounded (with

respect to j � j˛/.
In particular, the notion of power boundedness is independent of the residue norm
under consideration.

Proof. Let ˛WTn � A be the epimorphism that we use to define the residue norm
j � j˛ on A. By Noether normalization 2.2/11, there is a monomorphism Td � � Tn
such that the resulting morphism Td � � Tn � A is a finite monomorphism.
Then, by Lemma 14, any f 2 A with jf jsup � 1 satisfies an integral equation

f r C a1f r�1 C : : :C ar D 0

with coefficients ai 2 Td where jai jsup D jai j � 1. As Td � � Tn is contractive
with respect to the supremum norm by Proposition 7 and, hence, with respect to
Gauß norms, the images ai 2 A of ai satisfy jai j˛ � 1, and the implication from (i)
to (ii) is clear.

Next, let us assume (ii). Writing Aı D fg 2 A I jgj˛ � 1g, condition (ii) says
that f is integral over Aı. But then Aıdbf ec is a finite Aı-module, and it follows
that the sequence jf nj˛ , n 2 N, must be bounded.

Finally, that (iii) implies (i), follows from the fact that jf jnsup D jf njsup � jf nj˛;
use Propositions 6 and 9. ut

Corollary 18. Let A be an affinoid K-algebra and let j � j˛ be a residue norm on A.
Then for any f 2 A, the following are equivalent:

(i) jf jsup < 1

(ii) The sequence jf nj˛ ,n 2 N, is a zero sequence; we say, f is topologically
nilpotent with respect to j � j˛ .



40 3 Affinoid Algebras and Their Associated Spaces

In particular, the notion of topological nilpotency is independent of the residue norm
under consideration.

Proof. The assertion follows from Proposition 10 if jf jsup D 0. So let us assume
0 < jf jsup < 1. Then, by Proposition 16, there is an integer r > 0 such that
jf r jsup 2 jK�j; let c 2 K� with jf r jsup D jcj so that jcj < 1 and jc�1f r jsup D 1.
As c�1f r is power bounded with respect to j�j˛ by Theorem 17, say jc�nf rnj˛ �M
for n 2 N and some M 2 R, we see that jf rnj˛ � cnM and, hence, that f r is
topologically nilpotent. But then f itself is topologically nilpotent, and we see that
assertion (i) implies (ii). Conversely, assume limn!1 jf nj˛ D 0. Then we must
have jf jsup < 1 since

jf jnsup D jf njsup � jf nj˛
by Proposition 9. ut

We are now in a position to show that all residue norms on an affinoid K-algebra
A are equivalent, i.e. they induce the same topology on A. In particular, this stresses
again the fact that the notions of power boundedness as in Theorem 17 and of
topological nilpotency as in Corollary 18 are independent of the residue norm under
consideration.

Lemma 19. LetA be an affinoidK-algebra and consider elements f1, : : : ,fn 2A.

(i) Assume there is a K-morphism 'WKh�1, : : : ,�ni � A such that '.�i / D fi ,
i D 1, : : : ,n. Then jfi jsup � 1 for all i .

(ii) Conversely, if jfi jsup � 1 for all i , there exists a unique K-morphism
'WKh�1, : : : ,�ni � A such that '.�i / D fi for all i . Furthermore, ' is
continuous with respect to the Gauß norm on Tn and with respect to any residue
norm on A.

Proof. As j�i jsup D j�i j D 1, assertion (i) follows from Proposition 7. To verify (ii),
fix a residue norm j � j˛ on A and define ' by setting

'
� X

�2Nn
c��

�1
1 : : : �

�n
n

�
D

X

�2Nn
c�f

�1
1 : : : f �n

n :

Due to Theorem 17, jfi jsup � 1 implies that the fi are power bounded with respect
to any residue norm on A. From this we see immediately that ' is well-defined and
unique as a continuous morphism mapping �i to fi . Thus, it remains to prove that,
apart from ', there cannot exist any further K-morphism '0WKh�1; : : : ; �ni � A

mapping �i to fi . Let us first consider the case where A, as a K-vector space,
is of finite dimension over K. We show that, in this case, any K-morphism
'0WKh�1; : : : ; �ni � A is continuous. As is known for finite dimensional vector
spaces over complete fields, any K-vector space norm on A induces the product
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topology in the sense that any isomorphism of K-vector spaces A �� Kd , where
d D dimK A, is a homeomorphism; see Theorem 1 of Appendix A. Now viewing
Tn= ker'0 as an affinoid K-algebra with canonical residue norm, it is enough to
show that the induced morphism Tn= ker'0

� � A is continuous. However, the
latter is clear, since linear forms V � K on a finite dimensional normed vector
space V are continuous if V carries the product topology. Thus, '0 is continuous.

To deal with the general case, consider two K-morphisms '; '0WTn � A,
both mapping �i to fi . Then, choosing a maximal ideal m � A and some integer
r > 0, we know from Proposition 4 that A=mr is of finite vector space dimension
over K. Hence, by what we have seen before, the induced maps Tn � A=mr

are continuous and, thus, coincide. Therefore it is enough to show that any f 2 A
satisfying f 	 0 mod mr for all m 2 MaxA and all r > 0 will be trivial. To do
this, apply Krull’s Intersection Theorem (see for example 7.1/2) to all localizations
Am, m 2 MaxA. It states that

T
r2N mrAm D 0. Therefore the image of f in any

localization Am is trivial and, thus, f itself must be trivial. ut

Proposition 20. Any morphism B � A between affinoid K-algebras is continu-
ous with respect to any residue norms on A and B . In particular, all residue norms
on an affinoid K-algebra are equivalent.

Proof. Choose an epimorphism Tn � B and consider the resulting composition
Tn � B � A. By Lemma 19 the latter is continuous with respect to any
residue norm on A. But then also B � A is continuous. ut

Alternatively, one can derive Proposition 20 from the Closed Graph Theorem
and the Open Mapping Theorem for Banach spaces (i.e. complete normed vector
spaces); see [EVT] for these results of functional analysis. The Open Mapping
Theorem can further be used to show that the supremum norm j � jsup on any
reduced affinoid K-algebra A is equivalent to all possible residue norms. However,
also this result can be obtained in a more direct way, using (sophisticated, though)
techniques of affinoid K-algebras. One shows that, after replacing K by a suitable
finite extension, the R-algebra ff 2 A I jf jsup � 1g, divided by its nilradical, is
finite over ff 2 A I jf j˛ � 1g for any residue norm j � j˛ on A.

Let us add that, although affinoid K-algebras have been defined as quotients of
Tate algebras without taking into account any topology, their handling nevertheless
requires the use of a residue norm or topology. Otherwise, convergence will not
be defined, and we run already into troubles when we want to give explicit
constructions of simple things such as a morphism Tn � A from a Tate algebra
Tn into some affinoid K-algebra A.

We end this section by an example underlining the usefulness of Proposition 20.

Example 21. Consider an affinoid K-algebra A and on it the topology given by any
residue norm. Then, for a set of variables 
 D .
1, : : : ,
n/, the K-algebra
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Ah
i D
n X

�2Nn
a�


� 2 Adbdb
ecec ; a� 2 A, lim
�2Nn a� D 0

o

is well-defined, independently of the chosen residue norm on A. It is called the
algebra of restricted power series in 
 with coefficients in A. We can even show that
Ah
i is an affinoid K-algebra. Just choose an epimorphism ˛WKh�i � A for a
set of variables � D .�1, : : : ,�m/ and extend it to a morphism of K-algebras

z̨WTmCn D Kh�,
i � Ah
i,
X

�2Nm

� X

�2Nn
a�,v�

�
�

� �

X

�2Nm
˛

� X

�2Nn
a�,v�

�
�

�,

which is, in fact, an epimorphism. The corresponding residue norm coincides with
the Gauß norm on Ah
i that is derived from the residue norm via ˛ on A:

ˇ
ˇ̌ X

�2Nn
a�


�
ˇ
ˇ̌
z̨ D max

�2Nn
ˇ̌
a�

ˇ̌
˛

3.2 Affinoid Spaces

Let A be an affinoid K-algebra. As we have seen, the elements of A can be viewed
as “functions” on MaxA, the spectrum of maximal ideals of A. To be more specific,
let us define f .x/ for f 2 A and x 2 MaxA as the residue class of f in A=x.
Embedding A=x into an algebraic closure K of K, the value f .x/ 2 K is defined
up to conjugation over K, whereas the absolute value jf .x/j is well-defined, as it is
independent of the chosen embedding A=x � � K.

In the following we will write SpA for the set MaxA together with itsK-algebra
of “functions” A and call it the affinoid K-space associated to A. Frequently, we
will use SpA also in the sense of MaxA and talk about the spectrum of A. Usually,
points in SpA will be denoted by letters x; y; : : :, and the corresponding maximal
ideals in A by mx;my; : : :. One might ask, why we restrict ourselves to maximal
ideals instead of considering the spectrum of all prime ideals in A, as is done in
algebraic geometry. There is a simple reason for this. In the next section, we will
introduce a certain process of localization for affinoid K-algebras, more precisely,
of complete localization, since we do not want to leave the context of affinoid
K-algebras. Similarly as in algebraic geometry, this localization process is used
in order to endow affinoid K-spaces with the structure of a ringed space. As only
maximal ideals behave well with respect to localization in this sense, we must
restrict ourselves to spectra of maximal ideals. For example, considering such a
localization A � AS and a (non-maximal) prime ideal q � AS , it can happen
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that there is no prime ideal p � A satisfying q D pAS ; see 3.3/22 for a detailed
discussion of such a phenomenon.

The Zariski topology on an affinoid K-space SpA can be defined as usual. For
any ideal a � A we consider its zero set

V.a/ D ˚
x 2 SpA I f .x/ D 0 for all f 2 a

� D ˚
x 2 SpA I a � mx

�

and call it a Zariski closed subset of SpA.

Lemma 1. Let A be an affinoid K-algebra, and consider ideals a,b � A as well as
a family .ai /i2I of ideals in A.

(i) a � b H) V.a/ 
 V.b/.
(ii) V.

P
i2I ai / D

T
i2I V .ai /.

(iii) V.ab/ D V.a/ [ V.b/.

The proof of (i) and (ii) is straightforward. So it remains to look at (iii). We have
V.a/ [ V.b/ � V.ab/ by (i). To show the converse, consider a point x 2 SpA that
is neither in V.a/, nor in V.b/. So there are elements f 2 a and g 2 b such that
f .x/ ¤ 0 and g.x/ ¤ 0. Then f; g 62 mx and, hence, fg 62 mx , since mx is a prime
ideal. So fg.x/ ¤ 0, which implies x 62 V.ab/. ut

Assertions (ii) and (iii) show that there really is a topology on SpA, namely the
Zariski topology, whose closed sets are just the sets of type V.a/. Also note that,
for any epimorphism ˛WTn � A, the map SpA � SpTn, m � ˛�1.m/,
yields a homeomorphism with respect to Zariski topologies between SpA and the
Zariski closed subset V.ker˛/ � SpTn.

Proposition 2. Let A be an affinoid K-algebra. Then the sets

Df D
˚
x 2 SpA ; f .x/ ¤ 0�, f 2 A,

form a basis of the Zariski open subsets of SpA.

Proof. First, the sets Df are Zariski open, since they are the complements of the
Zariski closed sets V.f /. Next, consider an ideal a D .f1; : : : ; fr / � A. Then
V.a/ D Tr

iD1 V .fi / by Lemma 1(ii), and its complement equals the union of the
open sets Dfi , i D 1; : : : ; r . ut

As usual, we can associate to any subset Y � SpA the ideal

id.Y / D ˚
f 2 A I f .y/ D 0 for all y 2 Y � D

\

y2Y
my:

Clearly Y � Y 0 implies id.Y / 
 id.Y 0/. We want to show that the maps V.�/ and
id.�/ are inverse to each other in a certain sense.



44 3 Affinoid Algebras and Their Associated Spaces

Proposition 3. Let A be an affinoid K-algebra and Y � SpA a subset. Then
V.id.Y // equals the closure of Y in SpA with respect to the Zariski topology.
In particular, if Y is Zariski closed, we have V.id.Y // D Y .

Proof. Writing a D id.Y /, we have V.id.Y // D T
f 2a V.f / by Lemma 1 (ii).

On the other hand, the closure Y of Y equals the intersection of all closed sets
Y 0 � SpA containing Y . Since, again by Lemma 1 (ii), any such Y 0 may be written
as an intersection of sets of type V.g/, we get

Y D
\

g2A;Y�V.g/
V .g/ D

\

f 2a
V.f / D V �

id.Y /
�
:

ut

Theorem 4 (Hilbert’s Nullstellensatz). Let A be an affinoid K-algebra and a � A
an ideal. Then

id
�
V.a/

� D rad a:

Proof. We have

id
�
V.a/

� D id
�fx 2 SpA I a � mxg

� D
\

a�mx

mx;

and the intersection on the right-hand side equals the nilradical of a, since A is
Jacobson; cf. 3.1/3. ut

Corollary 5. For any affinoid K-algebra A, the maps V.�/ and id.�/ define mutually
inverse bijections between the set of reduced ideals inA and the set of Zariski closed
subsets of SpA.

Corollary 6. Consider a set of functions fi ,i 2 I , of an affinoid K-algebra A. The
following are equivalent:

(i) The fi have no common zeros on SpA.
(ii) The fi generate the unit ideal in A.

As in algebraic geometry, a non-empty subset Y � SpA is called irreducible if Y
(endowed with the topology induced from the Zariski topology on SpA) cannot be
written as a union Y1 [ Y2 of two proper relatively closed subsets Y1; Y2 ¨ Y . One
shows that, under the bijection of Corollary 5, the irreducible Zariski closed subsets
of SpA correspond precisely to the prime ideals in A. Furthermore, as affinoid
K-algebras are Noetherian, any Zariski closed subset Y � SpA admits a unique
decomposition into finitely many irreducible closed subsets.
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Finally, let us point out that any morphism � WB � A of affinoid K-algebras
induces an associated map

a� WSpA � SpB; m � ��1.m/:

We have used this fact already implicitly in Sect. 3.1. Note that ��1.m/ � B is
maximal, since we have a chain of injections

K � � B=��1.m/ � � A=m

and since A=m is a field that is finite over K. The map a� WSpA � SpB
(together with its inducing homomorphism � ) will be called a morphism of
affinoid K-spaces, more precisely, the morphism of affinoid K-spaces associated
to � WB � A. Frequently, we will write 'WSpA � SpB for a morphism
of affinoid K-spaces and '�WB � A for the inherent morphism of affinoid
K-algebras. In fact, '� may be interpreted as pulling back functions from SpB
to SpA via composition with ', as for any x 2 SpA the commutative diagram

implies

'�.g/.x/ D g.'.x//

for all g 2 B .
The affinoid K-spaces together with their morphisms form a category, which can

be interpreted as the opposite of the category of affinoidK-algebras. Since the latter
category admits amalgamated sums, see 3.1/2 and Theorem 6 of Appendix B, we
can conclude:

Proposition 7. For two affinoid K-spaces over a third one Z, the fiber product
X �Z Y exists as an affinoid K-space.

3.3 Affinoid Subdomains

The Zariski topology on an affinoid K-space is quite coarse. In the present section
we want to introduce a finer one that is directly induced from the topology ofK. We
can think of an affinoid K-space SpA as of a Zariski closed subspace of SpTn for
some n 2 N, and the latter can be identified with the unit ball Bn.K/, at least if K
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is algebraically closed. Thereby we see that the topology of the affine n-space Kn

gives rise to a topology on SpA that, as we will see, is independent of the particular
embedding SpA � � SpTn; it will be referred to as the canonical topology of
SpA. If K is not necessarily algebraically closed, we can proceed similarly by
viewing SpTn as the quotient of Bn.K/ by the action of AutK.K/, providing SpTn
with the quotient topology.

To give a more rigorous approach, consider an affinoid K-space X D SpA
and set

X.f I "/ D ˚
x 2 X I jf .x/j � "�:

for f 2 A and " 2 R>0.

Definition 1. For any affinoid K-space X D SpA, the topology generated by all
sets of type X.f ;"/ with f 2 A and " 2 R>0 is called the canonical topology of X .

Thus, a subsetU � X is open with respect to the canonical topology if and only if
it is a union of finite intersections of sets of type X.f I "/. Writing X.f / D X.f I 1/
for any f 2 A and X.f1; : : : ; fr / D X.f1/ \ : : : \ X.fr/ for f1; : : : ; fr 2 A, we
can even say:

Proposition 2. For any affinoid K-space X D SpA, the canonical topology is
generated by the system of all subsets X.f / with f varying over A. In particular,
a subset U � SpA is open if and only if it is a union of sets of type X.f1, : : : ,fr/
for elements f1, : : : ,fr 2 A, r 2 N.

Proof. For any f 2 A, the function jf jWSpA � R�0 assumes values in jKj.
Therefore, if " 2 R>0, we can write

X.f I "/ D
[

"02jK�j; "0�"
X.f I "0/:

For "0 2 jK�j we can always find an element c 2 K� and an integer s > 0 such that
"0s D jcj; see for example Theorem 3 of Appendix A. But then

X.f I "0/ D X.f sI "0s/ D X.c�1f s/

and we are done. ut
We want to establish a basic lemma that will enable us to derive the openness of

various types of sets.

Lemma 3. For an affinoid K-space X D SpA, consider an element f 2 A and a
point x 2 SpA such that " D jf .x/j > 0. Then there is an element g 2 A satisfying
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g.x/ D 0 such that jf .y/j D " for all y 2 X.g/. In particular, X.g/ is an open
neighborhood of x contained in fy 2 X ; jf .y/j D "g.

Proof. Let mx � A be the maximal ideal corresponding to x and write f for the
residue class of f in A=mx . Furthermore, let

P.�/ D �n C c1�n�1 C : : :C cn 2 Kdb�ec

be the minimal polynomial of f over K and let

P.�/ D
nY

iD1
.� � ˛i /

be its product decomposition with zeros ˛i 2 K. Then, choosing an embedding
A=mx

� � K, we have " D jf .x/j D jf j D j˛i j for all i by the uniqueness of the
valuation on K.

Now consider the element g D P.f / 2 A. Then g.x/ D P.f .x// D 0 and we
claim:

y 2 X with jg.y/j < "n H) jf .y/j D "

In fact, assume jf .y/j ¤ " for some y 2 X satisfying jg.y/j < "n. Then, choosing
an embedding A=my

� � K, we have

ˇ
ˇf .y/ � ˛i

ˇ
ˇ D max

�ˇˇf .y/
ˇ
ˇ;

ˇ
ˇ˛i

ˇ
ˇ� � ˇ

ˇ˛i
ˇ
ˇ D "

for all i and, thus,

ˇ
ˇg.y/

ˇ
ˇ D ˇ

ˇP
�
f .y/

�ˇˇ D
nY

iD1

ˇ
ˇf .y/ � ˛i

ˇ
ˇ � "n;

which contradicts the choice of y. Therefore, if c 2 K� satisfies jcj < "n, we have
jf .y/j D " for all y 2 X.c�1g/. ut

As a direct consequence of Lemma 3, we can state:

Proposition 4. Let SpA be an affinoid K-space. Then, for f 2 A and " 2 R>0, the
following sets are open with respect to the canonical topology:

˚
x 2 SpA;f .x/ ¤ 0�

˚
x 2 SpA;jf .x/j � "�

˚
x 2 SpA;jf .x/j D "�

˚
x 2 SpA;jf .x/j � "�
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Proposition 5. Let X D SpA be an affinoid K-space, and let x 2 X correspond
to the maximal ideal mx � A. Then the sets X.f1, : : : ,fr/ for f1, : : : ,fr 2 mx and
variable r form a basis of neighborhoods of x.

Proposition 6. Let '�WA � B be a morphism of affinoid K-algebras, and let
'WSpB � SpA be the associated morphism of affinoid K-spaces. Then, for
f1, : : : ,fr 2 A, we have

'�1�.SpA/.f1, : : : ,fr/
� D .SpB/

�
'�.f1/, : : : ,'�.fr /

�
:

In particular, ' is continuous with respect to the canonical topology.

Proof. Each y 2 SpB gives rise to a commutative diagram

with a monomorphism in the lower row. As we may embed the latter intoK, we see
that jf .'.y//j D j'�.f /.y/j holds for any f 2 A. This implies

'�1�.SpA/.f /
� D .SpB/

�
'�.f /

�

and, hence, forming intersections, we are done. ut
Next we want to introduce certain special open subsets of affinoid K-spaces that,

themselves, have a structure of affinoid K-space again.

Definition 7. Let X D SpA be an affinoid K-space.

(i) A subset in X of type

X.f1, : : : ,fr/ D
˚
x 2 X ; jfi .x/j � 1

�

for functions f1, : : : ,fr 2 A is called a Weierstraß domain in X .
(ii) A subset in X of type

X.f1, : : : ,fr ,g
�1
1 , : : : ,g�1

s / D
˚
x 2 X ;

ˇ
ˇfi .x/

ˇ
ˇ � 1,

ˇ
ˇgj .x/

ˇ
ˇ � 1�

for functions f1, : : : ,fr ,g1, : : : ,gs 2 A is called a Laurent domain in X .
(iii) A subset in X of type

X
�f1
f0

, : : : ,
fr

f0

�
D ˚

x 2 X ;
ˇ
ˇfi .x/

ˇ
ˇ � ˇ

ˇf0.x/
ˇ
ˇ�

for functions f0, : : : ,fr 2 A without common zeros is called a rational domain
in X .
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Note that the condition in (iii), namely that f0; : : : ; fr have no common zero on
SpA, is equivalent to the fact that these functions generate the unit ideal in A.

Lemma 8. The domains of Definition 7 are open in X D SpA with respect to the
canonical topology. The Weierstraß domains form a basis of this topology.

Proof. The openness of Weierstraß and Laurent domains can be read from the
assertion of Lemma 3. In the case of a rational domain the same is true, as for
any x 2 X�

f1
f0
; : : :

fr
f0

�
we must have f0.x/ ¤ 0, due to the fact that the fi are not

allowed to have a common zero on X . ut
Let us point out that the condition in Definition 7 (iii), namely that the elements

f0; : : : ; fr 2 A have no common zeros on X , is necessary to assure that sets of type
X

�
f1
f0
; : : :

fr
f0

�
are open in X D SpA. For example, look at X D SpT1 D SpKh�1i

and choose a constant c 2 K such that 0 < jcj < 1. Then the set

˚
x 2 X I ˇ̌

�1.x/
ˇ̌ � ˇ̌

c�1.x/
ˇ̌�

consists of a single point, namely the one given by the maximal ideal .�1/ � T1.
However, in view of Proposition 5, such a point cannot define an open subset in X .

The domains introduced in Definition 7 are important examples of more general
subdomains, whose definition we will give now.

Definition 9. Let X D SpA be an affinoid K-space. A subset U � X is
called an affinoid subdomain of X if there exists a morphism of affinoid K-spaces
�WX 0 � X such that �.X 0/ � U and the following universal property holds:

Any morphism of affinoid K-spaces 'WY � X satisfying '.Y / � U admits
a unique factorization through �WX 0 � X via a morphism of affinoid K-spaces
'0WY � X 0.

Lemma 10. In the situation of Definition 9, let us write X D SpA and X 0 D SpA0,
and let ��WA � A0 be the K-morphism corresponding to �. Then the following
hold:

(i) � is injective and satisfies �.X 0/ D U . Hence, it induces a bijection of sets
X 0 �� U .

(ii) For any x 2 X 0 and n 2 N, the map �� induces an isomorphism of affinoid
K-algebras A=mn

�.x/
�� A0=mn

x .
(iii) For x 2 X 0 we have mx D m�.x/A

0.

Proof. Choosing a point y 2 U , we get a commutative diagram
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Then SpA=mn
y is a one-point space that is mapped by a� onto the point y 2 U , and

it follows from the universal property of � or �� that � factors through ��WA � A0
via a unique K-morphism ˛WA0 � A=mn

y . Now insert ˛ into the above diagram:

The upper triangle will be commutative, and we claim that the same holds for the
lower triangle, i.e. that � 0 D � ı ˛. To justify this, note that the map of affinoid
K-spaces associated to � ı � has image y 2 U , too. As � ı � factors through
��WA � A0 via both, � 0 and � ı ˛, the uniqueness part of the universal property
of �� yields � 0 D � ı ˛.

Now the surjectivity of � 0 implies the surjectivity of � . Furthermore, ˛ is
surjective since � is surjective, and we have ker� 0 D mn

yA
0 � ker˛. Thus, �

must be injective and, hence, bijective. For n D 1 we see that the ideal myA
0 is

maximal in A0. Thus, the fiber of � over y is non-empty and consists of precisely
one point x 2 X 0 where mx D myA

0. This shows (i) and (iii). Then we get (ii) from
the bijectivity of � and from the fact that mx D myA

0 D m�.x/A
0. ut

When dealing with affinoid subdomains in the sense of Definition 9, we will
use Lemma 10 (i) and always identify the subset U � X with the set of X 0. We
thereby get a structure of affinoid K-space on any affinoid subdomain U � X , and
this structure is unique up to canonical isomorphism. In fact, we can talk about the
affinoid subdomain X 0

� � X . Such a subdomain is called open in X if it is open
with respect to the canonical topology. Later in Proposition 19 we will see that any
affinoid subdomain X 0

� � X is open in X .
We now want to show that the domains listed in Definition 7 define open affinoid

subdomains in the sense of Definition 9.

Proposition 11. For any affinoid K-space X D SpA, Weierstraß, Laurent, and
rational domains in X are examples of open affinoid subdomains. These are called
special affinoid subdomains.

Proof. First, it follows from Lemma 8 that Weierstraß, Laurent, and rational
domains are open in X . To show that they satisfy the defining condition of affinoid
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subdomains, we start with a Weierstraß domain X.f / � X where f stands for a
tuple of functions f1; : : : ; fr 2 A. Let Ah�1; : : : ; �ri be the affinoid K-algebra of
restricted power series in the variables �1; : : : ; �r over A, the topology of A being
provided by some residue norm; see Example 3.1/21. Then consider

Ahf i D Ahf1; : : : ; fri D Ah�1; : : : ; �ri=.�i � fi I i D 1; : : : ; r/:

as an affinoid K-algebra. There is a canonical morphism of affinoid K-algebras
��WA � Ahf i and, associated to it, a morphism between affinoid K-spaces
�WSpAhf i � X . We claim that � has image inX.f / and that all other morphisms
of affinoid K-spaces 'WY � X with im' � X.f / admit a unique factorization
through �.

To check this consider a morphism of affinoid K-spaces 'WY � X and let
it correspond to a morphism of affinoid K-algebras '�WA � B . Then, for any
y 2 Y , we get

ˇ
ˇ'�.fi /.y/

ˇ
ˇ D ˇ

ˇfi
�
'.y/

�ˇˇ; i D 1; : : : ; r;

by looking at the inclusion A=m'.y/
� � B=my between finite extensions ofK, as

induced from '�. Therefore, '.Y / � X.f / is equivalent to j'�.fi /jsup � 1 for all
i . Since ��.fi / equals the residue class of �i in Ahf i, we have jfi jsup � 1 by 3.1/9.
Thus, it follows that � has image in X.f /, and it remains to show the following
universal property for ��:

Each morphism of affinoid K-algebras '�WA � B with j'�.fi /jsup � 1 for
all i admits a unique factorization through ��WA � Ahf i.

However, this is easy to do. Given such a morphism '�WA � B , we can extend
it to a morphism Ah�i � B by mapping �i to '�.fi / for all i . Then the elements
�i � fi belong to the kernel, and we get an induced morphism Ahf i � B that is
a factorization of '�WA � B through ��WA � Ahf i. That this factorization
is unique follows from the fact that the image of A is dense in Ahf i.

Next, let us look at the case of a Laurent domain X.f; g�1/ � X where we use
tuples f D .f1; : : : ; fr / and g D .g1; : : : ; gs/ of elements of A. Then look at the
affinoid K-algebra

Ahf; g�1i D Ahf1; : : : ; fr ; g�1
1 ; : : : ; g

�1
s i

DAh�1; : : : ; �r ; 
1; : : : ; 
si=.�i � fi ; 1 � gj 
j I iD1; : : : ; r I jD1; : : : ; s/:

There is a canonical morphism of affinoid K-algebras ��WA � Ahf; g�1i and,
associated to it, a morphism of affinoid K-spaces �WSpAhf; g�1i � SpA.
Similarly as before, a morphism of affinoid K-spaces 'WY � X corresponding
to a morphism of affinoid K-algebras '�WA � B has image in X.f; g�1/ if and
only if

ˇ̌
'�.fi /.y/

ˇ̌ � 1; ˇ̌
'�.gj /.y/

ˇ̌ � 1; for all y 2 Y; all i and j:
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Of course, the inequalities involving the fi are equivalent to j'�.fi /jsup � 1,
whereas the ones on the gj may be replaced by the condition that the '�.gj / are
units in B satisfying j'�.gj /�1jsup � 1 for all j . Now consider the map � in place of
' and use a bar to indicate residue classes in Ahf; g�1i. Then one concludes from

�i � ��.fi / D 0; j�i jsup � 1; i D 1; : : : ; r;
��.gj /
j D 1; j
i jsup � 1; j D 1; : : : ; s;

similarly as before that � has image in X.f; g�1/. Thus, it remains to show:
Each morphism of affinoid K-algebras '�WA � B , where j'�.fi /jsup � 1,

i D 1; : : : ; r , and '�.gj / is a unit in B with j'�.gj /�1jsup � 1, j D 1; : : : ; s,
admits a unique factorization through ��WA � Ahf; g�1i.

So consider a morphism '�WA � B with the properties listed above. We
can extend it to a morphism Ah�; 
i � B by mapping �i to '�.fi / and 
j to
'�.gj /�1. As the kernel contains all elements �i � fi and all elements 1 � gj 
j ,
we get an induced map Ahf; g�1i � B that is a factorization of '� through ��.
The latter is unique, as the image of Adbg�1ec is dense in Ahf; g�1i.

Finally, let us look at a rational domain X
�
f

f0

� � X where we have written
f D .f1; : : : ; fr / and where f0; : : : ; fr 2 A have no common zero on SpA. We set

A
D f
f0

E
D A

Df1
f0
; : : : ;

fr

f0

E
D Ah�1; : : : ; �ri=.fi � f0�i I i D 1; : : : ; r/

and consider the canonical morphism of affinoid K-algebras ��WA � Ah f
f0
i, as

well as its associated morphism of affinoid K-spaces �WSpAh f
f0
i � SpA.

Next, let 'WY � X be any morphism of affinoidK-spaces with corresponding
morphism of affinoid K-algebras '�WA � B . Then ' maps Y into X

�
f

f0

�
if

and only if we have

ˇ̌
'�.fi /.y/

ˇ̌ � ˇ̌
'�.f0/.y/

ˇ̌
; for all y 2 SpB and all i: (�)

As f0; : : : ; fr generate the unit ideal in A, the same is true for their images in B ,
and we see that (�) is equivalent to

'�.f0/ 2 B�;
ˇ̌
'�.fi / � '�.f0/�1

ˇ̌
sup � 1; for all i; (��)

where B� is the group of units in B . Now consider the map � in place of ' and use
a bar to indicate residue classes in Ah f

f0
i. Then one concludes property (�) for �� in

place of '� from

��.fi / D ��.f0/
i ; j
i jsup � 1; i D 1; : : : ; r;
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and it follows that � has image in X
�
f

f0

�
. As above, it remains to show that

��WA � Ah f
f0
i satisfies the following universal property:

Each morphism of affinoid K-algebras '�WA � B with (��) admits a unique
factorization through ��WA � Ah f

f0
i.

To verify this, start with a morphism '�WA � B satisfying (��) and extend it
to a morphism Ah�1; : : : ; �ri � B by mapping �i to '�.fi / � '�.f0/�1. As the
kernel contains all elements fi � f0�i , we get an induced morphism Ah f

f0
i � B

that is a factorization of '� through ��. The latter is unique as the image of Adbf �1
0 ec

is dense in Ah f
f0
i. ut

Proposition 12 (Transitivity of Affinoid Subdomains). For an affinoid K-space X ,
consider an affinoid subdomain V � X , and an affinoid subdomain U � V . Then
U is an affinoid subdomain in X as well.

Proof. Consider a morphism of affinoidK-spaces 'WY � X having image inU .
Then, asU � V and V is an affinoid subdomain ofX , there is a unique factorization
'0WY � V of ' through V � � X . Furthermore, '0 admits a unique
factorization '00WY � U through U � � V , as U is an affinoid subdomain
of V . Then, of course, '00 is a factorization of ' through U � � V � � X that,
using the uniqueness of factorizations through U � � V and V � � X , is easily
seen to be unique. ut

Proposition 13. Let 'WY � X be a morphism of affinoid K-spaces and let
X 0

� � X be an affinoid subdomain. Then Y 0 D '�1.X 0/ is an affinoid subdomain
of Y , and there is a unique morphism of affinoid K-spaces '0:Y 0 � X 0 such that
the diagram

is commutative. In fact, the diagram is cartesian in the sense that it characterizes
Y 0 as the fiber product of Y and X 0 over X .

If X 0 is Weierstraß, Laurent, or rational in X , the corresponding fact is true
for Y 0 as an affinoid subdomain of Y . More specifically, if '�WA � B is the
morphism of affinoid K-algebras associated to 'WY � X , and if

f D .f1, : : : ,fr/, g D .g1, : : : ,gs/, h D .h0, : : : ,ht /

are tuples of elements in A, such that the hi generate the unit ideal in A, then
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'�1�X.f /
� D Y �

'�.f /
�
,

'�1�X.f ,g�1/
� D Y �

'�.f /,'�.g/�1
�
,

'�1�X
� h
h0

��
D Y

� '�.h/
'�.h0/

�
:

Proof. In the case where X 0 is a general affinoid subdomain of X , we use
the fact 3.2/7 that the category of affinoid K-spaces admits fiber products or,
equivalently, that the category of affinoidK-algebras admits amalgamated sums; cf.
Theorem 6 of Appendix B. Relying on the existence of the fiber product Y �X X 0,
it is easy to see that the first projection pWY �X X 0 � Y defines '�1.X 0/ as an
affinoid subdomain in Y . Just look at the commutative diagram

It shows that p maps Y �X X 0 into '�1.X 0/. Furthermore, consider a morphism of
affinoid K-spaces  WZ � Y having image in '�1.X 0/. Then the composition
' ı  WZ � X factors through X 0

� � X , and the universal property of fiber
products yields a unique factorization of  via pWY �X X 0 � Y . Thus, p defines
Y 0 D Y �X X 0 as an affinoid subdomain of Y and we have Y 0 D '�1.X 0/ by
Lemma 10 (i).

The second projection '0WY 0 D Y �X X 0 � X 0 is a morphism making the
diagram mentioned in the assertion commutative. That '0 is uniquely determined by
this property follows from the universal property of X 0 as an affinoid subdomain of
X .

If '�WA � B is the morphism of affinoid K-algebras corresponding to
'WY � X , we have for any y 2 Y a commutative diagram

with an injection of finite field extensions of K in the lower row. It follows
jf .'.y//j D j'�.f /.y/j for any f 2 A. As in Proposition 6, one deduces the
stated identities for the inverse of Weierstraß, Laurent, and rational domains. In the
case of rational domains we use the fact that the images '�.h0/; : : : ; '�.ht / will
generate the unit ideal in B as soon as the elements h0; : : : ; ht generate the unit
ideal in A. ut
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The morphism of affinoid K-algebras '0�WA0 � B 0 that in the setting of
Proposition 13 is associated to '0WY 0 � X 0, is obtained from '�WA � B

by tensoring the latter with A0 over A, of course in the sense of completed tensor
products. IfX 0 is a special affinoid subdomain, '0� can be described in more explicit
terms. For example, for a Weierstraß domain X 0 D X.f /, the map '0� is obtained
via the canonical commutative diagram

and there are similar diagrams for Laurent and rational domains.

Proposition 14. Let X be an affinoid K-space and let U ,V � X be affinoid
subdomains. ThenU\V is an affinoid subdomain of X . If U and V are Weierstraß,
resp. Laurent, resp. rational domains, the same is true for U \ V .

Proof. Let 'WU � � X be the morphism defining U as an affinoid subdomain
of X . Then U \V D '�1.V / and we see that U \V is an affinoid subdomain of U
by Proposition 13. Hence, by Proposition 12, U \V is an affinoid subdomain of X .

Next let us consider the case where U and V are rational subdomains of X , say

U D X
�f1
f0
; : : : ;

fr

f0

�
; V D X

�g1
g0
; : : : ;

gs

g0

�

with functions fi ; gj satisfying .f0; : : : ; fr / D .1/, as well as .g0; : : : ; gs/ D .1/.
The product of both ideals is the unit ideal again and we see that the functions figj ,
i D 0; : : : ; r , j D 0; : : : ; s have no common zero on X . Therefore

W D X
�figj
f0g0

I i D 0; : : : ; r I j D 0; : : : ; s
�

is a well-defined rational subdomain in X , and we claim that it equals the
intersection U \ V . Clearly, we have U \ V � W since for any x 2 X the
inequalities jfi .x/j � jf0.x/j, i D 0; : : : ; r and jgj .x/j � jg0.x/j, j D 0; : : : ; s

imply j.figj /.x/j � j.f0g0/.x/j for all i; j . Conversely, consider a point x 2 X
such that j.figj /.x/j � j.f0g0/.x/j for all i; j . Then, as the figj have no common
zero on X , we must have .f0g0/.x/ ¤ 0 and, hence, f0.x/ ¤ 0 and g0.x/ ¤ 0. But
then the inequalities
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ˇ̌
.fig0/.x/

ˇ̌ � ˇ̌
.f0g0/.x/

ˇ̌
; i D 1; : : : ; r;

imply jfi .x/j � jf0.x/j for all i and, hence x 2 U . Similarly, we get x 2 V and
therefore x 2 U \ V so that we have W � U \ V and, hence, W D U \ V .

Finally, that the intersection of Laurent or Weierstraß domains inX is of the same
type again is trivial. ut

Corollary 15. Let X D SpA be an affinoid K-space. Each Weierstraß domain in
X is Laurent, and each Laurent domain in X is rational.

Proof. That Weierstraß domains are Laurent is trivial. Furthermore, a Laurent
domain in X is a finite intersection of rational domains of type X

�
f

1

�
and

X
�
1
g

�
for suitable functions f; g 2 A. By Proposition 14, such an intersection is

rational. ut

Proposition 16. Let X D SpA be an affinoid K-space and U � X a rational
subdomain. Then there is a Laurent domain U 0 � X such that U is contained in U 0
as a Weierstraß domain.

Proof. Let U D SpA0 D X�
f1
f0
; : : : ;

fr
f0

�
with functions fi having no common zero

on X . Then, as jfi .x/j � jf0.x/j for all i , we must have f0.x/ ¤ 0 for all x 2 U .
Consequently, the restriction f0jU of f0 toU , which is meant as the image of f inA0
via the morphism A � A0 given by the affinoid subdomain SpA0

� � SpA, is
a unit inA0. Applying the Maximum Principle 3.1/15 to .f0jU /�1, there is a constant
c 2 K� such that jcf0.x/j � 1 for all x 2 U . But then, setting U 0 D X

�
.cf0/

�1�,
we have U � U 0 and, in fact,

U D U 0�f1jU 0 � .f0jU 0/�1; : : : ; fr jU 0 � .f0jU 0/�1
�

where f0jU 0 is a unit on U 0. So U is a Weierstraß domain in U 0 and U 0 is a Laurent
domain in X , as claimed. ut

Proposition 17 (Transitivity of Special Affinoid Subdomains). Let X be an affinoid
K-space, V a Weierstraß (resp. rational) domain in X , and U a Weierstraß (resp.
rational) domain in V . Then U is a Weierstraß (resp. rational) domain inX . In view
of Proposition 16, the assertion does not extend to Laurent domains.

Proof. Let X D SpA. Starting with the case of Weierstraß domains, let us write
V D X.f / and U D V.g/ for a tuple f of functions in A and a tuple g of
functions in Ahf i, the affinoidK-algebra of V . As the image of A is dense in Ahf i
and as we may subtract from g a tuple of supremum norm � 1 without changing
U D V.g/ (use the non-Archimedean triangle inequality), we may assume that g is
(the restriction of) a tuple of functions in A. But then we can write U D X.f; g/

and we are done.
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It remains to look at the case of rational domains. So let V D X�
f1
f0
; : : : ;

fr
f0

�
with

functions f0; : : : ; fr 2 A having no common zero on X . Using the fact that U is a
Weierstraß domain in a Laurent domain of V , cf. Proposition 16, as well as the fact
that the intersection of finitely many rational domains is a rational domain again, cf.
Proposition 14, it is enough to consider the cases where U D V.g/ or U D V.g�1/
with a single function g in Ah f1

f0
; : : : ;

fr
f0
i, the affinoid algebra of V . As the image

of Adbf �1
0 ec is dense in this algebra and as we may subtract from g a function of

supremum norm < 1 without changing V.g/ or V.g�1/, we may assume that there
is an integer n 2 N such that f n

0 g extends to a function g0 2 A. Then, as f0 has no
zero on V , we have

V.g/ D V \ ˚
x 2 X I ˇ̌

g0.x/
ˇ̌ � ˇ̌

f n
0 .x/

ˇ̌�
;

V .g�1/ D V \ ˚
x 2 X I ˇ̌

g0.x/
ˇ̌ � ˇ̌

f n
0 .x/

ˇ̌ˇ̌g:

Now applying the Maximum Principle 3.1/15 to f �n
0 jV , we see that there is a

constant c 2 K� such that jf n
0 .x/j � jcj for all x 2 V . But then we can write

V.g/ D V \X
� g0

f n
0

;
c

f n
0

�
; V .g�1/ D V \X

�f n
0

g0 ;
c

g0
�
;

and it follows from Proposition 14 that V.g/ and V.g�1/ are rational subdomains
of X . ut

Using Proposition 5, we can conclude from Proposition 17 in conjunction with
Corollary 15 that, for any Weierstraß, Laurent, or rational subdomain U of a rigid
K-space X , the canonical topology of X restricts to the canonical topology of U ;
furthermore, U is open in X by Lemma 8. We want to generalize this to arbitrary
affinoid subdomains of rigid K-spaces.

Lemma 18. Let 'WY � X be a morphism of affinoid K-spaces with associated
morphism of affinoid K-algebras '�WA � B , and let x 2 X be a point
corresponding to a maximal ideal m � A.

(i) Assume that '� induces a surjection A=m � B=mB . Then there is a special
affinoid subdomain X 0

� � X containing x such that the resulting morphism
'0WY 0 � X 0 induced from ' on Y 0 D '�1.X 0/ is a closed immersion in the
sense that the corresponding morphism of affinoid K-algebras '0�WA0 � B 0
is surjective.

(ii) Assume that '� induces isomorphisms A=mn �� B=mnB for all n 2 N.
Then there is a special affinoid subdomain X 0

� � X containing x such that
the resulting morphism '0WY 0 � X 0 induced from ' on Y 0 D '�1.X 0/ is an
isomorphism.
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Proof. We start with a general remark. Since A=m is a field, we see that the
surjection A=m � B=mB is either an isomorphism or the zero mapping. Hence,
mB is either a maximal ideal in B or the unit ideal. Using this observation in
conjunction with Lemma 10 and Propositions 13 and 17, we see that we may replace
X without loss of generality by a special affinoid subdomain X 0 � X containing x
and Y by Y 0 D '�1.X 0/.

In the situation of (i) we choose affinoid generators b1; : : : ; bn of B over A.
Thereby we mean power bounded elements bi 2 B giving rise to a surjection

˚�WAh�1; : : : ; �ri � B; �i � bi ; i D 1; : : : ; r;

extending '�. Note that such generators exist, since A ¤ 0 and since B , as an
affinoid K-algebra, admits an epimorphism Tr � B for some r 2 N. Let
m1; : : : ; ms generate the maximal ideal m � A. Then, as '� induces a surjection
A=m � B=mB , there are elements ai 2 A and cij 2 B , i D 1; : : : ; r ,
j D 1; : : : ; s, such that

bi � '�.ai / D
sX

jD1
cijmj ; i D 1; : : : ; r: (�)

Choosing a residue norm j � j on A, we consider on Ah�1; : : : ; �ri the natural
(Gauß) norm derived from j � j and on B the residue norm via ˚�. Further-
more, for any Weierstraß domain X.f / � X , we can consider the morphism
'0WY.'�.f // � X.f / induced from ', as well as the resulting commutative
diagram

Going back to the explicit construction of Ahf i and Bh'�.f /i in the proof of
Proposition 11, we get residue norms on the algebras in the lower row such that
all morphisms of the diagram are contractive. Furthermore, ˚ 0� is surjective, just as
˚� is.

Adjusting norms via constants inK� on the right-hand sides of the equations (�),
we can assume jcij j � 1 for all i; j . As explained in the beginning, we may replace
X by a special affinoid subdomainX 0 � X containing x. For example, we may take
X 0 D X.c�1m1; : : : ; c

�1ms/ for some c 2 K, 0 < jcj < 1 and thereby assume that

ˇ̌
bi � '�.ai /

ˇ̌ � ˇ̌
c
ˇ̌
< 1; i D 1; : : : ; r:
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Then, as jbi j � 1, we have j'�.ai /j � 1 and, in particular, j'�.ai /jsup � 1 for all i .
Now, if the fiber '�1.x/ is empty, there is an equation

Pr
iD1 migi D 1 with certain

elements gi 2 B , and we can take jcj small enough such that '�1.X 0/ is empty.
The assertion of (i) is trivial in this case. On the other hand, if the fiber '�1.x/ is
non-empty, it consists of a single point y 2 Y . Then we have

ˇ̌
ai .x/

ˇ̌ D ˇ̌
ai

�
'.y/

�ˇ̌ D ˇ̌
'�.ai /.y/

ˇ̌ � ˇ̌
'�.ai /

ˇ̌
sup � 1

for all i , and we can, in fact, replace X by X.a1; : : : ; ar ; c
�1m1; : : : ; c

�1ms/,
thereby assuming

ˇ̌
ai

ˇ̌ � 1; ˇ̌
bi � '�.ai /

ˇ̌ � ˇ̌
c
ˇ̌
< 1; i D 1; : : : ; r:

Now by 3.1/5, the estimates above say that we can approximate every element b 2 B
with jbj � jcjt for some t 2 N by an element of type '�.a/ with a 2 A such that

ˇ̌
a
ˇ̌ � ˇ̌

c
ˇ̌t
;

ˇ̌
b � '�.a/

ˇ̌ � ˇ̌
c
ˇ̌tC1

<
ˇ̌
c
ˇ̌t
:

A standard limit argument shows then, that '�WA � B is surjective.
It remains to verify (ii). As the assumption of (ii) includes the one of (i), we may

assume that '�WA � B is surjective. Furthermore, we get

ker'� �
\

n2N
mn:

By Krull’s Intersection Theorem (see 7.1/2), there is an element f 2 A of type
f D 1 � m for some m 2 m such that f annihilates the kernel ker'�. Since
A � Ahf �1i factors throughAdbf �1ec, the kernel of '� is contained in the kernel
of A � Ahf �1i. Thus, there is a canonical diagram

where the square is commutative, as well as the upper triangle, and where '� and
'0� are surjective. But then, using the surjectivity of '�, also the lower triangle is
commutative. Now consider the morphisms

A
'�

� B
˛� Ahf �1i

whose composition equals the canonical morphism A � Ahf �1i. In other
words, the canonical morphism SpAhf �1i � � SpA factors through SpB . By
restriction to inverse images over SpAhf �1i � SpA, we get morphisms

Ahf �1i � Bh'�.f /�1i � Ahf �1i
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whose composition is the identity. As Ahf �1i � Bh'�.f /�1i is still surjective
and necessarily injective, it is an isomorphism. Thus, 'WY � X restricts to an
isomorphism '0WY.'�.f /�1/ �� X.f �1/, and as x 2 X.f �1/, we are done. ut

Proposition 19. Let U � X be a morphism of rigid K-spaces defining U as an
affinoid subdomain of X . Then U is open in X , and the canonical topology of X
restricts to the one of U .

Proof. By Lemma 10 (ii), the morphism U � X satisfies the conditions of
Lemma 18 (ii). ut

To characterize the structure of general affinoid subdomains in more precise
terms, we cite already at this place the following result:

Theorem 20 (Gerritzen–Grauert). Let X be an affinoid K-space and U � X an
affinoid subdomain. Then U is a finite union of rational subdomains of X .

A more general version of this theorem will be proved in Sect. 4.2; see 4.2/10
and 4.2/12. However, it should be noted that, in general, a finite union of affinoid
subdomains ofX , even of Weierstraß domains, does not yield an affinoid subdomain
again.

To end this section, we want to explain why it is not advisable to consider the
spectrum of all prime ideals of a given affinoid K-algebra as the point set of
its associated affinoid K-space, as is the rule when dealing with affine schemes
in algebraic geometry. A first observation shows for a prime ideal p of some
affinoid K-algebra A that its residue field Kp, i.e. the field of fractions of A=p,
will in general be of infinite degree over K. In this case Kp cannot be viewed
as an affinoid K-algebra since, otherwise, Kp would be finite over K by Noether
Normalization 3.1/3 (iii). In addition, there is no obvious absolute value on Kp that
extends the one of K and satisfies the completeness property. So, in particular, it
will not be possible to consider affinoid algebras over Kp. Another, may be more
convincing reason for restricting to maximal ideals as points, consists in the fact that
non-maximal prime ideals do not behave well when we pass back and forth from an
affinoid K-space X to an affinoid subdomain U � X .

To exhibit such a behavior, letA � A0 be the morphism of affinoidK-algebras
corresponding to an affinoid subdomain U � � X . For a prime ideal p � A we
can consider the Zariski closed subset Y D V.p/ � X . Then we see with the
help of Lemma 10 that the restriction of Y to U equals the Zariski closed subset
Y \U D V.pA0/ of U . If p is a maximal ideal in A corresponding to a point x 2 U
then pA0 is maximal in A0. However, for a non-maximal prime ideal p � A, the
ideals pA0 or rad.pA0/ do not need to be prime, even if V.p/ \ U ¤ ;. Just look at
the following example. Let X D SpT1 be the unit disk with coordinate function �
(the variable of T1) and consider the Weierstraß subdomain

U D ˚
x 2 X I ˇ̌

�.x/ � .�.x/ � 1/ˇ̌ � "� � X
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for some value " D jcj < 1 where c 2 K. Then U is the disjoint union of the
Weierstraß subdomains

U1 D
˚
x 2 X I ˇ̌

�.x/
ˇ̌ � "�; U2 D

˚
x 2 X I ˇ̌

�.x/ � 1ˇ̌ � "�

in X . Looking at corresponding affinoid K-algebras, one can conclude by a direct
approximation argument or, more easily, by applying Tate’s Theorem 4.3/1 (to be
proved in Chap. 4) that T1hc�1�.� � 1/i, the affinoid K-algebra of U , is the direct
product of two integral domains, namely the affinoid K-algebras corresponding to
U1 and U2:

T1hc�1�.� � 1/i ' T1hc�1�i � T1hc�1.� � 1/i:

Therefore, working with full prime spectra instead of maximal spectra, we see that
the “generic” point of X , which corresponds to the zero-ideal in T1, gives rise to
two different points on U , namely the “generic” point of U1 and the “generic” point
of U2.

This is the first problem we encounter when dealing with affinoid subdomains in
terms of full prime spectra instead of spectra of maximal ideals. But worse than that,
it can happen that there exist prime ideal points in an affinoid subdomain U � X

that are not visible at all on X . In terms of the corresponding morphism of affinoid
K-algebras A � A0 this means that there can exist non-maximal prime ideals
p0 � A0 such that the prime ideal p D p0 \ A � A does not satisfy pA0 D p0.
Interpreting this phenomenon on the level of Zariski closed subsets, we can start
with Y 0 D V.p0/ � U and see from 3.2/3 that Y D V.p \ A/ is the Zariski closure
of Y 0 in X . Then, indeed, it can happen that the restriction Y \ U is strictly bigger
than Y 0 and, thus, that there is no Zariski closed subset in X that restricts to Y 0 on
U . To give an example we first need to show:

Example 21. Assume that the valuation on K is not discrete. Then there exists a
non-trivial formal power series f DP1

�D1 c��� 2 Kdbdb�ecec such that:

(i) the coefficients c� 2 K satisfy jc� j < 1 and, hence, f converges on the open
unit disk B1C D fx 2 K ; jxj < 1g,

(ii) f has infinitely many zeros on B1C.

Proof. We choose a sequence of coefficients c0; c1; : : : 2 K such that the corre-
sponding sequence of absolute values is strictly ascending and bounded by 1. Then
lim�!1 c�"

� D 0 for all " 2 R, 0 � " < 1, and the series f D P1
�D1 c���

converges on B1C.
For " 2 jKj, 0 < " < 1, let �."/ be the largest index � where the sequence

jc� j"� , � D 0; 1; : : :, assumes its maximum. Note that �."/ tends to infinity when
" approaches 1 from below. Now choose c 2 K, 0 < jcj < 1, and set " D jcj.
Using 
 D c�1� as a new coordinate function, we can interpret the closed disk
B" D fx 2 B1C I jxj � "g as the affinoid unit disk SpKh
i. Restricting f
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to B" yields an element f 0 2Kh
i that is 
-distinguished of order �."/. But then
f 0 is associated to a Weierstraß polynomial of degree �."/ by 2.2/9, and it follows
from 3.1/11 that f has �."/ zeros in B". Thus, if " approaches 1 and, hence, �."/
approaches infinity, we see that f has infinitely many zeros on B1C D

S
0<"<1 B".

ut

Example 22. Now, for K equipped with a non-discrete complete valuation as
before, we can construct an affinoidK-space X with an affinoid subdomain U � X
where U admits a non-maximal prime ideal point that is not induced by a point of
the same type on X . Let X D SpT2 D SpKh�1,�2i be the two-dimensional unit
ball and consider the Weierstraß domains

X" D
˚
x 2 X ;

ˇ̌
�1.x/

ˇ̌ � "� � X , " 2 ˇ̌
K

ˇ̌
,0 < " < 1:

Then the affinoid K-algebra corresponding to X" is A" D T2hc�1
" �1i ' T2 where

c" 2 K is a constant satisfying jc"j D ". Furthermore, let f 2 Kdbdb�1ecec be a formal
power series as constructed in Example 21. So f is non-trivial, converges on the
open unit disk B1C, has infinitely many zeros on B1C, and assumes values < 1. In
particular, �2 C f .�1/ induces a well-defined element h" 2 A" for each " as before.
All elements h" are prime since the continuous morphism of K-algebras given by

A" � A", �1 � �1, �2 � �2 C f .�1/,

is an isomorphism and, hence, A"=.h"/ ' Khc�1
" �1i is an integral domain. As all

maximal ideals in A" are of height 2, cf. 2.2/17, we see clearly that the prime ideals
p" D h"A" � A" satisfy p" \ A"0 D p"0 as well as p"0A" D p" for " < "0.

Next write A D T2 for the affinoid K-algebra corresponding to X and look at
some " 2 jKj, 0 < " < 1. Then the prime ideal p D p" \ A � A is independent
of ". We claim that, in fact, p D 0. First, p cannot be maximal, since otherwise
pA" � p" would be maximal; use Lemma 10. Choosing an element h 2 p, the
inclusion pA" � p" shows that the image of h in A" is a multiple of h". Now let us
restrict our situation to the Zariski closed subset Y D V.�2/ � X , a process that on
the level of affinoid K-algebras is realized by dividing out ideals generated by �2.
Then Y D SpKh�1i is the unit disk and the restriction Y" D X" \ Y gives rise to
the closed subdisk SpKh�1ihc�1

" �1i that is a Weierstraß domain in Y . Furthermore,
h" induces on Y" the element given by the series f , as we have to divide out the
ideal generated by �2. Remembering that the image of h in A" is a multiple of h"
and letting " vary, we see that h restricts on each Y" to a multiple of f . Since f
has an infinity of zeros on the open unit disk B1C, the element h0 induced by h on Y
must have an infinity of zeros as well. However, due to Weierstraß theory, see 2.2/9,
non-zero elements can only have finitely many zeros on Y . Hence, we must have
h0 D 0 and therefore h 2 �2 � A so that if h varies over p we get p � �2 � A. As
p and �2 � A are prime ideals in A and �2 � A is of height 1 by Krull’s Dimension
Theorem, see [Bo], 2.4/6, we get p D �2 � A if p is non-trivial. Then we would have
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�2 2 p" and, hence, p" D �2 � A" for all " by an argument as before. However, h" is
not divisible by �2, which means that the only remaining possibility is p D 0.

To conclude our example, fix some " 2 jKj, 0 < " < 1, and consider the
morphism of affinoid K-algebras A � A" corresponding to the Weierstraß
subdomain X" � X . Then it follows for the prime ideal p" � A" that there cannot
exist any ideal p � A satisfying pA" D p".



Chapter 4
Affinoid Functions

4.1 Germs of Affinoid Functions

Let X be an affinoid K-space. For any affinoid subdomain U � X we denote
by OX.U / the affinoid K-algebra corresponding to U . Then, if U � V is an
inclusion of affinoid subdomains of X , there is a canonical morphism between the
corresponding affinoid K-algebras OX.V / � OX.U /, which we might interpret
as restriction of affinoid functions on V to affinoid functions on U . More precisely,
OX is a presheaf of affinoid K-algebras on the category of affinoid subdomains of
X . This means that OX associates to any affinoid subdomain U � X an affinoid
K-algebra OX.U / and to any inclusion U � V of affinoid subdomains in X a
morphism of affinoid K-algebras �VU WOX.V / � OX.U / (generally denoted by
f � f jU ) such that for subdomains U � V � W ofX the following conditions
are fulfilled:

(i) �UU D id ,

(ii) �WU D �VU ı �WV .

The presheaf OX will be referred to as the presheaf of affinoid functions on X .
For any point x 2 X the ring

OX;x D lim�!
x2U

OX.U /

where the limit runs over all affinoid subdomains U � X containing x, is called
the stalk of OX at x. Its elements are called germs of affinoid functions at x. To
give a more explicit characterization of OX;x , we can say that any germ fx 2 OX;x

is represented by some function f 2 OX.U / for some affinoid subdomain U � X
containing x and that two functions fi 2 OX.Ui /, i D 1; 2, with x 2 U1 \ U2
represent the same germ fx 2 OX;x if and only if there is an affinoid subdomain
U � X such that x 2 U � U1 \ U2 and �U1U .f1/ D �

U2
U .f2/. It is clear that the

construction of germs of affinoid functions is functorial in the sense that a morphism

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__4,
© Springer International Publishing Switzerland 2014
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of affinoid K-spaces 'WY � X induces a homomorphism

'�
y WOX;'.y/

� OY;y;

for any y 2 Y . All such morphisms '�
y are local.

Proposition 1. Let X be an affinoid K-space and x 2 X a point corresponding
to the maximal ideal m � OX.X/. Then OX ,x is a local ring with maximal ideal
mOX ,x .

Proof. For any affinoid subdomain U � X containing x, we know from 3.3/10 that
the morphism of affinoidK-algebras OX.X/ � OX.U / induces an isomorphism
OX.X/=m �� OX.U /=mOX.U /. Thus, passing to the direct limit, we get a
surjective map OX;x

� K 0 where K 0 ' OX.X/=m is a field that is finite
over K. The map may be viewed as evaluation at x, and we will use the notation
fx � fx.x/ for it. Its kernel n is a maximal ideal in OX;x , and we claim that
n D mOX;x . Clearly we have mOX;x � n. To show the converse, consider an
element fx 2 OX;x represented by some f 2 OX.U / for some affinoid subdomain
U � X . Then, if fx.x/ D 0 we must have f .x/ D 0 and, hence, f 2 mOX.U /,
which implies fx 2 mOX;x . Alternatively we could have used the fact that lim�!
preserves exact sequences.

That n is the only maximal ideal in OX;x is easy to see. Consider an element
fx 2 OX;x � n represented by some f 2 OX.U / for some affinoid subdomain
U � X . Then f .x/ ¤ 0 and, multiplying f by a suitable constant in K�, we
can even assume that jf .x/j � 1. But then U.f �1/ contains x and is an affinoid
subdomain ofX such that f jU.f �1/ is a unit. Consequently, fx is a unit in OX;x , and
n is the only maximal ideal in OX;x . ut

Proposition 2. Let X D SpA be an affinoid K-space and x 2 X a point
corresponding to the maximal ideal m � A. Then the canonical map A � OX ,x

decomposes into

A � Am
� OX ,x

where the first map is the canonical map of A into its localization at m and the
second one is injective. Furthermore, these maps induce isomorphisms

A=mn �� Am=m
nAm

�� OX ,x=m
nOX ,x , n 2 N,

so that one obtains isomorphisms

yA �� �Am
�� yOX ,x

between the m-adic completion of A and the maximal adic completions of Am and
OX ,x .
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Proof. For any affinoid subdomain SpA0 � SpA with x 2 SpA0, the restriction
maps A � A0 � OX;x induce maps

A=mn �n� A0=mnA0 n� OX;x=m
nOX;x; n 2 N;

and we claim that these are isomorphisms. For the �n this is clear from 3.3/10, and
it is enough to show the same for the compositions n ı �n. To do this, we may
vary SpA0 as a neighborhood of x and take it as small as we want. As any element
fx 2 OX;x is represented by an element f 2 A0 if SpA0 is small enough, we see that
n ı �n is surjective. To show injectivity, consider an element f 2 A such that its
image fx 2 OX;x is contained in mnOX;x . Writing fx D Pr

iD1 gxi � mi with germs
gxi 2 OX;x and elements mi 2 mn, we can assume that the gxi are represented by
functions gi 2 A0. Choosing SpA0 small enough, we can even assume that f jSpA0

coincides with
Pr

iD1 gi �mi on SpA0. But then we have f jSpA0 2 mnA0 and, hence,
by 3.3/10, even f 2 mn. This shows that n ı �n is injective and, hence, bijective.
Alternatively, we could have used the fact that lim�! is exact.

For n D 1, we see again that mOX;x is a maximal ideal in OX;x restricting to m on
A. As mOX;x is the only maximal ideal in OX;x , it follows that the mapA � OX;x

decomposes into the canonical map A � Am from A into its localization at m
and a map Am

� OX;x . As the canonical maps A=mn � Am=m
nAm are

bijective, they induce a bijection

yA D lim �
n

A=mn �� lim �
n

Am=m
nAm D �Am;

and we see that the map obtained from A � Am via m-adic completion is
bijective. In the same way the bijective maps n ı �n give rise to a bijective map

yA D lim �
n

A=mn �� lim �
n

OX;x=m
nOX;x D yOX;x;

which is the m-adic completion of A � OX;x . As yA � yOX;x is the
composition of yA � �Am and �Am

� yOX;x , also the latter map is bijective.
Finally, that Am

� OX;x is injective, follows from the fact that, due to Krull’s
Intersection Theorem (see 7.1/2), the compositionAm

� OX;x
� yOX;x D �Am

is injective. ut
We want to derive some direct consequences of the injectivity of the map

Am
� OX;x in Proposition 2.

Corollary 3. An affinoid function f on some affinoid K-space X is trivial if and
only if all its germs fx 2 OX ,x at points x 2 X are trivial.
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Proof. Writing X D SpA, the assertion is clear from the injections

A � �
Y

m2MaxA

Am
� �

Y

x2X
OX;x:

ut

Corollary 4. LetX be an affinoidK-space andX DS
i2I Xi a covering by affinoid

subdomains. Then the restriction maps OX.X/ � OX.Xi / define an injection

OX.X/ � �
Y

i2I
OX.Xi /:

Corollary 5. For any affinoid subdomain X 0 D SpA0 of some affinoid K-space
X D SpA, the restriction map A � A0 is flat.

Proof. We use Bourbaki’s criterion on flatness; see [AC], Chap. III, § 5, no. 2.
For any maximal ideal m � A corresponding to a point in X 0, we know
from Proposition 2 that the map A � A0

mA0

gives rise to an isomorphism
yA �� Â0

mA0

between m-adic completions. It follows from loc. cit. § 5.4, Prop. 4,
that A � A0

mA0

is flat. Varying m over the points of X 0, we see that A � A0
is flat. ut

Proposition 6. For any point x of an affinoid K-space X , the local ring OX ,x is
Noetherian.

Proof. Let X D SpA and let m � A be the maximal ideal corresponding to x.
Then the local ring OX;x is m-adically separated, i.e.

T
n2N mnOX;x D 0. In fact,

consider an element fx 2 T
n2N mnOX;x . There is an affinoid subdomain U � X

containing x such that fx is represented by some element f 2 OX.U / and it follows
f 2 mnOX.U / for each n 2 N by Proposition 2; we may write X D SpA instead
of U again. Then it follows from Krull’s Intersection Theorem, see 7.1/2, that the
image of f in Am is trivial. In particular, fx D 0.

In the same way we can show for any finitely generated ideal ax � OX;x that
the residue ring OX;x=ax is m-adically separated. Indeed, fixing a finite generating
system of ax , we may assume that these generators extend to functions in A and,
hence, that ax is induced from an ideal a � A. Then we can interpret OX;x=ax
as a stalk of the affinoid space SpA=a and see that it is m-adically separated. The
latter says that finitely generated ideals in OX;x are closed with respect to the m-adic
topology on OX;x .

Now consider an ascending sequence of finitely generated ideals

a1 � a2 � : : : � OX;x;
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as well as the corresponding sequence of ideals

ya1 � ya2 � : : : � yOX;x

where yai is the closure of ai in yOX;x . We use that yOX;x D �Am is Noetherian,
as it is the maximal adic completion of a Noetherian local ring. So the chain
in yOX;x becomes stationary. As OX;x is m-adically separated, the canonical map
OX;x

� yOX;x is injective. But then the closedness of the ideals ai � OX;x implies
that also the chain in OX;x must become stationary. Thus, OX;x is Noetherian. ut

4.2 Locally Closed Immersions of Affinoid Spaces

In the present section we want to characterize affinoid subdomains of affinoid
K-spaces in local terms and thereby provide a proof of the Theorem of Gerritzen–
Grauert 3.3/20.

Definition 1. A morphism of affinoid K-spaces 'WX 0 � X is called a closed
immersion if the morphism of affinoid K-algebras '�WOX.X/ � OX 0.X 0/ cor-
responding to ' is surjective. Furthermore, ' is called a locally closed immersion
(resp. an open immersion) if it is injective and, for every x 2 X 0, the induced
morphism '�

x WOX ,'.x/
� OX 0,x is surjective (resp. bijective).

For example, any morphism of affinoid K-spaces 'WX 0 � X defining X 0 as
an affinoid subdomain of X is an open immersion, due to the transitivity of affinoid
subdomains mentioned in 3.3/12. On the other hand, if ' is a closed immersion, one
can see using Proposition 10 of Appendix B or, alternatively, with the help of 3.3/13
that ' is, in particular, a locally closed immersion. Furthermore, any composition
of locally closed (resp. closed, resp. open) immersions is an immersion of the same
type again.

At first sight it is not clear that the definition of a locally closed or open immersion
X 0

� � X will provide what is expected from such a terminology. However, we
can conclude from 3.3/18 that there exists a family of special affinoid subdomains
Ui � X , i 2 I , such that X 0 � S

i2I Ui and the restrictions X 0 \ Ui � Ui are,
indeed, closed immersions, respectively isomorphisms. The Theorem of Gerritzen–
Grauert 3.3/20 will improve this fact and show that the Ui can be chosen large
enough such that finitely many of them will suffice to cover X 0.

Remark 2. Let 'WY � X be a closed (resp. a locally closed, resp. an open)
immersion of affinoid K-spaces. Then, for any affinoid subdomain U � X , the
induced morphism 'U W'�1.U / � U is an immersion of the same type.
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Proof. The assertion is immediately clear for locally closed and open immersions ',
since these are characterized locally on X , and since affinoid subdomains U � X
are open, due to 3.3/19. Concerning closed immersions ', the assertion is easily
derived for Weierstraß, Laurent, or rational domains U � X , due to their explicit
description. The remaining case of a closed immersion ' and a general affinoid
subdomain U � X is settled with the help of 3.3/13 from the fact that fiber
products of affinoid K-spaces correspond to completed tensor products on the
level of affinoid K-algebras and that, for two morphisms of affinoid K-algebras
'�WA � B and A � A0, the resulting morphism

' y̋ idA0 WA0 D A y̋ A A0 � B y̋ A A0

is surjective when '� is surjective; use Proposition 10 of Appendix B. ut
More generally, one can show that closed (resp. locally closed, resp. open)

immersions Y � X are preserved under base change with any affinoid K-space
Z over X , that is, the resulting morphism Y �X Z � Z will be of the same type
again.

Proposition 3. Let 'WX 0 � X be a locally closed immersion of affinoid
K-spaces where the corresponding homomorphism of affinoid K-algebras is finite.
Then ' is a closed immersion.

Proof. Writing X 0 D SpA0 and X D SpA, the morphism ' induces for every
x 2 X 0 a commutative diagram

where mx � A0 and m'.x/ � A denote the maximal ideals corresponding to x
and '.x/. Furthermore, '�

mx
, '�

x , and y'�
x are the canonical extensions of '�. The

injections in the middle of the first and second rows are due to 4.1/2, whereas
the remaining ones on the right follow from the fact that OX;'.x/ and OX 0;x , as
Noetherian local rings (see 4.1/1 and 4.1/6) are maximal-adically separated. Since
' is injective, mx � A0 is the only maximal ideal over m'.x/ � A, and we therefore
can view A0

mx
as the localization of A0 by the multiplicative system '�.A �m'.x//.

Thus, since '� is finite, '�
mx

will be finite, too.
The same argument shows that the mx-adic topology of A0

mx
coincides with the

m'.x/-adic one, when A0
mx

is viewed as an Am'.x/
-module via '�

mx
. Then, by Krull’s

Intersection Theorem, im'�
mx

is a closed submodule of A0
mx

. Now, since ' is a
locally closed immersion, '�

x and, hence, y'�
x are surjective. As a result, im'�

mx
is

dense in A0
mx

so that '�
mx

must be surjective, too.
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Now let B D A= ker '�. Then '� gives rise to a homomorphism of Noetherian
B-modules B � A0 that, as the above reasoning shows, reduces to an
isomorphism when localized at any maximal ideal of B . Thus, by standard reasons,
B � A0 is an isomorphism, and '� is surjective. Therefore ' is a closed
immersion. ut

Proposition 4. Let 'WX 0 � X be a morphism of affinoid K-spaces that is an
open and closed immersion. Then the image of X 0 is Zariski open and closed in X
and, in particular, ' defines X 0 as a Weierstraß domain in X .

Proof. Using notations as in the preceding proof, let '�WA � A0 be the
morphism of affinoid K-algebras corresponding to ', and consider the induced
morphism 'mx WAm'.x/

� A0
mx

at a point x 2 X 0. Then '� is surjective, since '
is a closed immersion, and 'mx is, in fact, bijective. Indeed, 'mx is surjective, since,
as above, we may view A0

mx
as the localization of A0 by the multiplicative system

'�.A �m'.x//. On the other hand, the commutative diagram

in conjunction with the injectivity of '�
x yields the injectivity of '�

mx
.

Now, since '�
mx

is bijective, there is an element f 2 A such that f .x/ ¤ 0 and '�
induces a bijection Adbf �1ec �� A0dbf �1ec. Thus, letting x vary over X 0, we can
conclude that '.X 0/ is Zariski open in X . On the other hand, since '.X 0/ is Zariski
closed in X due to the fact that ' is a closed immersion, we see that A decomposes
into a direct sum A D A1 ˚ A2 such that '�WA � A0 is the composition of the
canonical projection A � A1 and an isomorphism A1

�� A0. Choosing some
unipotent element e 2 A that reduces to 0 onA1 and to 1 onA2, as well as a constant
c 2 K with jcj > 1, it is easily seen that the projection A � A1 corresponds to
the Weierstraß subdomain X.ce/ � � X , and we are done. ut

Next we introduce a particular class of locally closed immersions, so-called
Runge immersions.

Definition 5. A morphism of affinoid K-spaces 'WX 0 � X is called a Runge
immersion if it is the composition of a closed immersion X 0 � W and an open
immersion W � X defining W as a Weierstraß domain in X .

From Remark 2 we can immediately deduce:
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Remark 6. Let 'WX 0 � X be a Runge immersion of affinoid K-spaces. Then,
for any affinoid subdomain U � X , the induced morphism 'U W'�1.U / � U is
a Runge immersion, too.

If � WA � A0 is a morphism of affinoid K-algebras, we call finitely many
elements h1; : : : ; hn 2 A0 a system of affinoid generators of A0 over A (with respect
to � ) if � extends to an epimorphism

Ah�1; : : : ; �ni � A0; �i � hi :

Of course, the hi 2 A0 are then necessarily power bounded.

Proposition 7. For a morphism of affinoid K-algebras � WA � A0 the following
are equivalent:

(i) The morphism of affinoid K-spaces 'WSpA0 � SpA associated to � is a
Runge immersion.

(ii) �.A/ is dense in A0.
(iii) �.A/ contains a system of affinoid generators of A0 over A.

Proof. If ' is a Runge immersion, '.A/ is dense in A0, since the corresponding fact
is true for closed immersions and for Weierstraß domains. Next, choose a system
h0
1; : : : ; h

0
n of affinoid generators of A0 over A. Then, if �.A/ is dense in A0, we can

approximate each h0
i by some hi 2 �.A/ in such a way that, using Lemma 8 below,

h1; : : : ; hn will be a system of affinoid generators of A0 over A. Finally, assume
that h1; : : : ; hn 2 �.A/ is a system of affinoid generators of A0 over A. Then �
decomposes into the maps

A � Ahh1; : : : ; hni � A0

where the first one corresponds to the inclusion of X.h1; : : : ; hn/ as a Weierstraß
domain in X D SpA and where the second is surjective and, hence, corresponds to
a closed immersion SpA0 � X.h1; : : : ; hn/. Thus, ' is a Runge immersion. ut

As a consequence we see that the composition of finitely many Runge immersions
or, more specifically, closed immersions and inclusions of Weierstraß domains,
yields a Runge immersion again.

Lemma 8. Consider a morphism of affinoid K-algebras � WA � A0 and a system
h0 D .h0

1, : : : ,h
0
r / of affinoid generators of A0 over A. Fix a residue norm on A and

consider on A0 the residue norm via the epimorphism

� 0WAh�i � A0, � � h0,



4.2 Locally Closed Immersions of Affinoid Spaces 73

where we endow Ah�i D Ah�1, : : : ,�ni with the Gauß norm derived from the given
residue norm on A. Then any system h D .h1, : : : ,hn/ in A0 such that jh0

i � hi j < 1
for all i , yields a system of affinoid generators of A0 over A.

Proof. Since jh0
i j � 1, due to our assumption, we have jhi j � 1 for all i and

therefore can consider the morphism

� WAh�i � A0; � � h:

Let " D maxiD1;:::;n jh0
i � hi j so that " < 1. It is enough to show for any element

g 2 A0 D im� 0 that there is some f 2 Ah�1; : : : ; �ni satisfying jf j D jgj and
j�.f / � gj � "jgj. Then an iterative approximation argument shows that � is
surjective.

Thus, start with an element g 2 A0 and choose a � 0-inverse f DP
�2Nn a��� in

Ah�i with coefficients a� 2 A; we may assume jf j D jgj by 3.1/5. Then

ˇ
ˇ�.f / � gˇ

ˇ D
ˇ̌
ˇ
X

�2Nn
a�h

� �
X

�2Nn
a�h

0�
ˇ̌
ˇ

D
ˇ̌
ˇ
X

�2Nn
a�.h

� � h0�/
ˇ̌
ˇ � "max

�2Nn
ˇ̌
a�

ˇ̌ D "ˇ̌gˇ̌
;

as required. ut
Next, we want to derive a certain extension lemma for Runge immersions. To

do this, let Ka be an algebraic closure of K and write K�
a for its multiplicative

group, as well as jK�
a j for the corresponding value group. Then jK�

a j consists
of all real numbers ˛ > 0 such that there is some integer s > 0 satisfying
˛s 2 K�. Furthermore, letX D SpA be an affinoidK-space and consider functions
f1; : : : ; fr ; g 2 A generating the unit ideal. Then, for any " 2 jK�

a j, we may
consider the subset

X" D
˚
x 2 X I ˇ̌

fj .x/
ˇ̌ � "ˇ̌g.x/ˇ̌; j D 1; : : : ; r� � X:

If "s D jcj for some c 2 K�, the set X" is characterized by the estimates

ˇ̌
f s
j .x/

ˇ̌ � ˇ̌
cgs.x/

ˇ̌
; j D 1; : : : ; r;

and therefore defines a rational subdomain in X . Given a morphism of affinoid
K-spaces 'WX 0 � X , we set X 0

" D '�1.X"/ and consider the morphism
'"WX 0

"
� X" induced by '.

Extension Lemma 9. Assume that the morphism '"0 WX 0
"0

� X"0 defined as
before is a Runge immersion for some "0 2 jK�

a j. Then there is an " 2 jK�
a j, " > "0,

such that '"WX 0
"

� X" is a Runge immersion as well.
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Proof. Write X D SpA and X 0 D SpA0, as well as X" D SpA" and X 0
" D SpA0

"

for " 2 jK�
a j. Replacing X by X"0 and X 0 by X 0

"0

for some "0 2 jK�
a j, "0 > "0, we

may assume that all X" and X 0
" are Weierstraß domains in X and X 0, respectively.

Then, for " 2 jK�
a j, " � "0, we have a canonical commutative diagram

where the vertical maps all have dense images, since, on the level of affinoid spaces,
they correspond to inclusions of Weierstraß domains. Now let h0 D .h0

1; : : : ; h
0
n/ be

a system of affinoid generators of A0 over A. Then h0 gives rise to a system h0
" of

affinoid generators of A0
" over A", as well as to a system h0

"0
of affinoid generators

of A0
"0

over A"0 .
Let us restrict ourselves for a moment to values " 2 jK�j. In particular, we assume

"0 2 jK�j. Fixing a residue norm on A, we consider on A0 the residue norm with
respect to the epimorphism

� WAh�1; : : : ; �ni � A0; �i � h0
i ;

and on each A" the residue norm with respect to the epimorphism

p"WAh"�1�1; : : : ; "�1�ri � A"; �j � fj

g
;

where, strictly speaking, the element " in the expression "�1�j has to be replaced by
a constant c 2 K with jcj D " and where the elements "�1�j have to be viewed as
variables. Then we can introduce on any A0

" the residue norm via the epimorphism

�"WA"h�1; : : : ; �ni � A0
"; �i � h0

i :

The latter equals the residue norm that is derived from the one of A via the
epimorphism

"WAh�1; : : : ; �n; "�1�1; : : : ; "�1�ri � A0
"; �i � h0

i ; �j � fj

g
;

satisfying

ker " D .ker�; g�1 � f1; : : : ; g�r � fr/:



4.2 Locally Closed Immersions of Affinoid Spaces 75

Now choose a system h D .h1; : : : ; hn/ of elements in A0, having '�-inverses in A,
and whose images in A0

"0
satisfy

ˇ̌
ˇh0
i

ˇ
ˇ
X 0

"0

� hi
ˇ
ˇ
X 0

"0

ˇ̌
ˇ < 1; i D 1; : : : ; n:

The latter is possible, since the image of A is dense in A0
"0

, due to the fact that X"0
is a Weierstraß domain in X and '"0 WX 0

"0
� X"0 is a Runge immersion. Then

it follows from Lemma 8 that h gives rise to a system of affinoid generators of A0
"0

over A"0 .
In order to settle the assertion of the Extension Lemma, it is enough to show that,

in fact,

ˇ̌
ˇh0
i

ˇ̌
X 0

"
� hi

ˇ̌
X 0

"

ˇ̌
ˇ < 1; i D 1; : : : ; n; (�)

for some " > "0. Then, using Lemma 8 again, hjX 0

"
is a system of affinoid generators

of A0
" over A" belonging to the image of A", and it follows from Proposition 7 that

'"WX 0
"

� X" is a Runge immersion in this case.
To abbreviate, let d" D h0

i jX 0

"
�hi jX 0

"
2 A0

" for any i 2 f1; : : : ; ng. Furthermore, fix
"1 2 jK�jwith "1 > "0 and choose an element g"1 2 Ah�; "�1

1 �iwith "1.g"1/ D d"1
where � D .�1; : : : ; �n/ and � D .�1; : : : ; �r /. For " � "1, let g" be the image of g"1
in Ah�; "�1�i so that ".g"/ D d" for all " � "1. Now, by the choice of hi , we have
jd"0 j < 1. Thus, using 3.1/5, there is an element

g0 2 ker "0 D .ker�; g�1 � f1; : : : ; g�r � fr/Ah�; "�1
0 �i

such that jg"0 C g0j < 1. Approximating functions in Ah�; "�1
0 �i by polynomials in

Ah�idb"�1
0 �ec, we may assume that g0 is induced by an element

g1 2 ker "1 D .ker�; g�1 � f1; : : : ; g�r � fr/Ah�; "�1
1 �i:

But then we may replace from the beginning g"1 by g"1 � g1 and thereby assume
jg"0 j < 1.

Now let

g"1 D
X

�2Nn;�2Nr
a���

��� 2 Ah�; "�1
1 �i

with coefficients a�� 2 A. Since jg"0 < 1j, we get max�2Nn;�2Nr ja�� j"j�j
0 < 1.

Passing from "0 to a slightly bigger " (not necessarily contained in jK�j), we still
have

jg"j D max
�2Nn;�2Nr ja�� j"

j�j < 1
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for " > "0 sufficiently close to "0. Thus, if such " exist in jK�j, the series g" is a
well-defined element in Ah�; "�1�i satisfying jd"j � jg"j < 1 as required in (�).
This settles the assertion of the Extension Lemma in the case where "0 2 jK�j and
the valuation on K is non-discrete.

In the general case, we can always enlarge the value group jK�j by passing to a
suitable finite algebraic extension L=K. This way, we can assume "0 2 jL�j and,
in addition, that the last step in the above argumentation works for some " > "0
contained in jL�j. In other words, the assertion of the Extension Lemma holds after
replacing the base fieldK by a suitable finite algebraic extension L in the sense that
we apply to our situation the base change functor

SpA � SpA y̋K L

where y̋ is the completed tensor product of Appendix B. Thus, it is enough to show
that a morphism of affinoidK-spacesX 0 � X is a Runge immersion if the corre-
sponding morphism of affinoidL-spacesX 0 y̋K L � X y̋K L has this property
or, equivalently, that a morphism of affinoidK-algebrasA � A0 has dense image
if the corresponding morphism of affinoid L-algebras A y̋K L � A0 y̋K L has
dense image. However, the latter is easy to see. Since the completed tensor product
commutes with finite direct sums, see the discussion following Proposition 2 of
Appendix B, it follows that the canonical morphism A ˝K L � A y̋K L is
bijective for any affinoid K-algebra A and any finite extension L=K. Now consider
a morphism of affinoid K-algebras � WA � A0, and let A00 � A0 be the closure
of �.A/. Then the morphism � ˝K LWA˝K L � A0 ˝K L factors through the
closed subalgebra A00 ˝K L � A0 ˝K L. If � ˝K L has dense image, we see that
A00 ˝K L coincides with A0 ˝K L and, hence, by descent, that the same is true for
A00 and A0. Thus, we are done. ut

Next, let us look more closely at the structure of locally closed immersions. We
begin by stating the main structure theorem for such immersions and by deriving
some of its consequences.

Theorem 10 (Gerritzen–Grauert). Let 'WX 0 � X be a locally closed immersion
of affinoid K-spaces. Then there exists a covering X D Sr

iD1 Xi consisting of
finitely many rational subdomains Xi � X such that ' induces Runge immersions
'i W'�1.Xi / � Xi for i D 1, : : : ,r .

Corollary 11. If , in the situation of Theorem 10, 'WX 0 � X is an open
immersion, then the maps 'i define '�1.Xi / as a Weierstraß domain in Xi , for
i D 1, : : : ,r .

Proof. It is enough to show that a Runge immersion 'WX 0 � X that at the same
time is an open immersion, defines X 0 as a Weierstraß domain in X . Since ' is
the composition of a closed immersion X 0

� � W and of a Weierstraß domain
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W � � X , we may assume W D X and thereby are reduced to the case where '
is a closed immersion. But then the assertion follows from Proposition 4. ut

Corollary 12. Let X be an affinoid K-space and X 0 � X an affinoid subdomain.
Then there exists a covering X D Sr

iD1 Xi consisting of finitely many rational
subdomains Xi � X such that Xi \X 0 is a Weierstraß domain in Xi for every i . In
particular, X 0 is a finite union of rational subdomains in X .

Proof. The inclusion X 0
� � X is an open immersion. Thus, we may apply

Corollary 11 and use the fact that all intersections Xi \X 0 are rational subdomains
of X by 3.3/17. ut

To approach the proof of Theorem 10, we generalize the concept of Weierstraß
division introduced in Sect. 2.2. In the following, let A be an affinoidK-algebra and
� D .�1; : : : ; �n/ a system of variables. For any point x 2 SpA denote by mx � A
the corresponding maximal ideal. Furthermore, given any series f 2 Ah�i, let jf jx
be the Gauß (or supremum) norm of the residue class of f in .A=mx/h�i.

A series f 2 Ah�i is called �n-distinguished of order s at a point x 2 SpA
if its residue class in .A=mx/h�i is �n-distinguished of order s in the sense of
Definition 2.2/6. Furthermore, if f is �n-distinguished of some order � s at each
point x 2 SpA, we say that f is �n-distinguished of order � s on SpA. As a first
step, we generalize 2.2/7.

Lemma 13. Let f D P
�2Nn a��� be a series in Ah�i such that its coefficients

a� 2 A have no common zero on SpA. Then there is an A-algebra automorphism
� WAh�i � Ah�i such that, for some s 2 N, the series �.f / is �n-distinguished
of order � s on SpA.

Proof. We may assume A ¤ 0. For x 2 SpA, let tx � 1 be the least upper bound of
all natural numbers that occur in multi-indices � 2 Nn satisfying ja�.x/j D jf jx .
We claim that

t D sup
x2SpA

tx

is finite. As the coefficients a� of f do not have a common zero on SpA, there
are finitely many indices �.1/; : : : ; �.r/ 2 Nn such that a�.1/; : : : ; a�.r/ generate the
unit ideal in A; see 3.2/6. Fixing an equation

Pr
iD1 cia�.i/ D 1, the coefficients

ci 2 A have finite supremum norm by 2.2/5, and it follows that there is some � > 0
such that

max
iD1;:::;r ja�.i/.x/j � �
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for all x 2 SpA. However, since the a� form a zero sequence with respect to any
residue norm on A and, hence by 3.1/9, also with respect to the supremum norm on
A, we see that all tx are bounded. Consequently, t is finite.

Now, proceeding as in 2.2/7, we set ˛1 D tn�1, . . . , ˛n�1 D t and consider the
A-algebra automorphism

� WAh�i � Ah�i; �i �
(
�i C �˛in for i < n

�n for i D n :

Then, as in the proof of 2.2/7, �.f / is �n-distinguished of order � s D Pn
iD1 t i at

each point x 2 SpA. ut

Lemma 14. Let f 2 Ah�i be �n-distinguished of order � s on SpA. Then the set

˚
x 2 SpA ; f is �n-distinguished of order s at x

�

is a rational subdomain in SpA.

Proof. We write f DP1
�D0 f���n with coefficients f� 2 Ah�1; : : : ; �n�1i. Let a� 2

A be the constant term of f� . That f is �n-distinguished of some order sx � s at a
point x 2 SpA means that

jf� jx � jfsx jx for � � sx;
jf� jx < jfsx jx for � > sx; and

the residue class of fsx is a unit in A=mxh�1; : : : ; �n�1i:

Since a�.x/ is the constant term of the residue class of f� in A=mxh�1; : : : ; �n�1i,
we see that ja�.x/j � jf� jx , which is, in fact, an equality for � D sx by 2.2/4. Thus
we get

ˇ̌
a�.x/

ˇ̌ � ˇ̌
f�

ˇ̌
x
� ˇ̌
fsx

ˇ̌
x
D ˇ̌

asx .x/
ˇ̌

for � � sx;
ˇ̌
a�.x/

ˇ̌ � ˇ̌
f�

ˇ̌
x
<

ˇ̌
fsx

ˇ̌
x
D ˇ̌

asx .x/
ˇ̌

for � > sx;

which shows, in particular, that asx .x/ ¤ 0. Thus, since f is �n-distinguished of
some order � s at each point x 2 SpA, the elements a0; : : : ; as cannot have a
common zero in SpA. Therefore

U D ˚
x 2 SpA I ˇ̌

a�.x/
ˇ̌ � ˇ̌

as.x/
ˇ̌
; � D 0; : : : ; s � 1�

is a rational subdomain in SpA, and the above estimates show that f is
�n-distinguished of order s at a point x 2 SpA if and only if x 2 U . ut
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Proposition 15. As before, let A be an affinoid K-algebra and � D .�1, : : : ,�n/
a system of variables. Then, for any f 2 Ah�i that is �n-distinguished of order
precisely s at each point x 2 SpA, the canonical map

Ah�1, : : : ,�n�1i � Ah�i=.f /

is finite.

Proof. We write f D P1
�D0 f���n with elements f� 2 Ah�1; : : : ; �n�1i. Then, for

any x 2 SpA, the residue class of fs in A=msh�1; : : : ; �n�1i is a unit. Therefore
fs cannot have any zeros and, consequently, is a unit in Ah�1; : : : ; �n�1i by 3.2/6.
Replacing f by f �1

s f , we may assume fs D 1 and, furthermore,

jf� jsup � 1 for � � s;
jf� jsup < 1 for � > s;

where j � jsup denotes the supremum norm on Ah�i. Thus �n, the residue class of �n
in Ah�i=.f /, satisfies the following estimate:

ˇ̌
�n
s C fs�1�ns�1 C : : :C f0

ˇ̌
sup < 1 (�)

Now choose a system of variables � D .�0; �m/ D .�1; : : : ; �m/ with m > s

large enough such that there exists an epimorphism  0WKh�0i � Ah�1; : : : ; �n�1i
sending the first s variables �1; : : : ; �s to f0; : : : ; fs�1. Since jf� jsup � 1, the
latter is possible due to 3.1/19. Furthermore, we can extend  0 to an epimorphism
 WKh�i � Ah�i=.f / by sending �m to the residue class �n. Then, due to (�),
the polynomial �sm C �s�1�s�1m C : : : C �0 2 Kh�i is a Weierstraß polynomial in
�m satisfying j.!/jsup < 1 and, by 3.1/18, there is some r 2 N such that the
image .!r/ has residue norm < 1 with respect to the epimorphism  . Hence,
using 3.1/5, we can get an equation !r D g C h with an element g 2 Kh�i
of Gauß norm jgj < 1 and some h 2 ker  . But then h D !r � g is a
�m-distinguished element of the kernel ker  , and it follows from the Weierstraß
division formula 2.2/8 that  induces a finite morphism Kh�0i � Ah�i=.f /.
Consequently, Ah�1; : : : ; �n�1i � Ah�i=.f / is finite, as claimed. ut

After these preparations, we can start now with the proof of Theorem 10. Let
'�WA � A0 be the morphism of affinoidK-algebras corresponding to the locally
closed immersion 'WX 0 � X . Furthermore, let hA0 W Ai be the minimum of all
integers n such that there exists a system of affinoid generators of A0 over A of
length n. We will proceed by induction on hA0 W Ai, setting n D hA0 W Ai. The case
n D 0 is trivial. Then '� is an epimorphism, which means that ' a closed immersion
and, hence, also a Runge immersion.

For n � 1 consider an epimorphism  WAh�i � A0 extending '� where �
indicates a system of variables .�1; : : : ; �n/. We claim that there exists an element
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f DP
�2Nn a��� 2 ker  � Ah�iwhose coefficients a� 2 A do not have a common

zero on X . To justify this claim, consider for any x 2 X and its maximal ideal
mx � A the morphism

x WA=mxh�i � A0=mxA
0;

obtained from  by tensoring with A=mx over A. Then x has a non-trivial kernel,
due to the fact that ' is injective and, hence, A0=mxA

0 is a local ring, whereas
A=mxh�i is not local. Since ker  is mapped surjectively onto ker x , we see that,
for each x 2 X , there exists an element g 2 ker  that is non-trivial modulo mx .
Thus, there are finitely many series g1; : : : ; gr 2 ker  � Ah�i whose coefficients
generate the unit ideal in A. Since A is Noetherian, we can find an integer d 2 N

such that the zero set in X of the coefficients of any gi is already defined by the
coefficients of gi with an index of total degree < d . Then, choosing some � 2 Nn

with �1 C : : :C �n D d , the series

f D g1 C ��g2 C : : : �.r�1/�gr
belongs to ker  , and its coefficients will have no common zero on X .

Thus, our claim is justified and, applying Lemma 13, we can assume that
ker  contains a series f 2 Ah�i that is �n-distinguished of order � s on X ,
for some s � 0. Now use Lemma 14 and let X.s/ D SpA.s/ � X be the
affinoid subdomain consisting of all points x 2 X where f is �n-distinguished
of order s. We want to show that we can apply the induction hypothesis to the
restricted morphism '.s/W'�1.X.s// � X.s/ that corresponds to the morphism

.s/
0 WA.s/ � A0 y̋ A A.s/ obtained from '� by tensoring with A.s/ over A.

Tensoring  in the same way, we get a morphism

.s/WA.s/h�i � A0 y̋ A A.s/

that is surjective by Remark 2 and extends .s/0 . Let f .s/ be the image of f in
A.s/h�i. Then f .s/ is �n-distinguished of order s at all points x 2 X.s/ and, since
f .s/ 2 ker .s/, we can conclude from Proposition 15 that .s/ gives rise to a finite
morphism

 0.s/WA.s/h�1; : : : ; �n�1i � A0 y̋ A A.s/

extending .s/0 . Clearly,  0.s/ corresponds to a locally closed immersion of affinoid

K-spaces, as the same is true for .s/0 . But then  0.s/ must be surjective by
Proposition 3 so that hA0 y̋ A A.s/ W A.s/i � n � 1. Therefore we can apply the
induction hypothesis to '.s/W'�1.X.s// � X.s/, and it follows that there is a
covering X.s/ D Sr

iD1 Xi consisting of rational subdomains Xi � X.s/ such that
the induced maps 'i W'�1.Xi / � Xi are Runge immersions.
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Next, we want to apply the Extension Lemma 9 to the Runge immersions 'i .
Due to the transitivity property of rational subdomains, see 3.3/17, the Xi may be
viewed as rational subdomains in X . Thus, choosing functions in A that describe
Xi as a rational subdomain in X , we can introduce rational subdomains Xi;" � X
for " 2 jK�

a j where Xi;1 D Xi , as in the context of the Extension Lemma. Then
we can fix an " 2 jK�

a j, " > 1, such that 'i extends to a Runge immersion
'i;"W'�1.Xi;"/ � Xi;". The latter works for i D 1; : : : ; r , and we may even
assume that " is independent of i . Now it is enough to construct rational subdomains
V1; : : : ; V` � X �X.s/ with the property that

X D
r[

iD1
Xi;" [

[̀

	D1
V	: (�)

Let us justify this claim. If V	 D SpB	, the above epimorphism  WAh�i � A0
restricts to epimorphisms

	WB	h�i � A0 y̋ A B	; 	 D 1; : : : ; `;

so that hA0 y̋ A B	 W B	i � n. Furthermore, the above series f 2 Ah�i induces
series f	 2 ker 	, 	 D 1; : : : ; `, that are �n-distinguished of order � s � 1 since
V	 \ X.s/ D ;. Thus, proceeding with 	 in exactly the same way as we did with
the epimorphism  WAh�i � A0, we may lower the order of distinguishedness of
f until it is 0. But then f cannot have any zero. Thus, it must be a unit, and we can
conclude X 0 D ; from f 2 ker  .

It remains to establish the covering (�). Starting with the case r D 1, we drop the
index i and write

X" D X."�1 g1
g`C1

; : : : ; "�1 g`

g`C1
/;

for " 2 jK�
a j and suitable functions g1; : : : ; g`C1 2 A. Furthermore, let

V	 D X."g`C1
g	

;
gj

g	
I j ¤ 	; `C 1/;

for 	 D 1; : : : ; `. Then the V	 are rational subdomains in X , disjoint from X1, and
the covering X D X" [S`

	D1 V	 is as desired.
Finally, if r > 1, we construct as before rational subdomains Vi;	 � X � Xi;1

such that X �Xi;" �S`
	D1 Vi;	 for i D 1; : : : ; r . Then

X �
r[

iD1
Xi;" �

[

	1;:::;	r

V1;	1 \ : : : \ Vr;	r ;

and we can derive a covering of type (�) as desired. ut
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4.3 Tate’s Acyclicity Theorem

Let X be an affinoid K-space and T D TX the category of affinoid subdomains
in X , with inclusions as morphisms. A presheaf F (of groups, rings, . . . ) on T is
called a sheaf if for all objects U 2 T and all coverings U D S

i2I Ui by objects
Ui 2 T the following hold:

(S1) If f 2 F .U / satisfies f jUi D 0 for all i 2 I , then f D 0.
(S2) Given elements fi 2 F .Ui / such that fi jUi\Uj D fj jUi\Uj for all indices
i; j 2 I , there is an f 2 F .U / (necessarily unique by (S1)) such that f jUi D fi
for all i 2 I .

So if F is a sheaf, we can say that, in a certain sense, the elements of the groups
(or rings etc.) F .U /withU varying over T can be constructed locally. In the present
section we are interested in the case where F equals the presheaf OX of affinoid
functions on X . We know from 4.1/4 that condition (S1) holds for OX . However,
due to the total disconnectedness of the canonical topology on X , condition (S2)
cannot be satisfied for OX , except for trivial cases. So, in strict terms, OX cannot be
called a sheaf. Nevertheless, we will see that OX satisfies the sheaf condition (S2) for
finite coverings U DS

i2I Ui . This fact, which is a special case of Tate’s Acyclicity
Theorem, is basic for rigid geometry, and we will give a direct proof for it.

Sheaf conditions (S1) and (S2) can conveniently be phrased by requiring that the
sequence

OX.U / �
Y

i2I
OX.Ui /

��
Y

i;j2I
OX.Ui \ Uj /;

f � �
f jUi

�
i2I ;

�
fi

�
i2I �

( �
fi jUi\Uj

�
i;j2I�

fj jUi\Uj
�
i;j2I

(�)

be exact for everyU 2 T and every covering U D .Ui /i2I ofU by setsUi 2 T. Note
that a sequence of maps is called exact if A is mapped bijectively
onto the subset of B consisting of all elements having same image under the maps

. For a presheaf F on X and a covering U D .Ui /i2I of X by affinoid
subdomains Ui � X , we will say that F is a U-sheaf, if for all affinoid subdomains
U � X the sequence (�) applied to the covering UjU D .Ui \ U/i2I is exact.

Theorem 1 (Tate). Let X be an affinoid K-space. The presheaf OX of affinoid
functions is a U-sheaf on X for all finite coverings U D .Ui /i2I of X by affinoid
subdomains Ui � X .

The proof will be done by reducing to more simple coverings where, finally,
a direct computation is possible. We begin by discussing the necessary reduction
steps. Consider two coverings U D .Ui /i2I and V D .Vj /j2J of X . Then V is
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called a refinement of U if there exists a map  WJ � I such that Vj � U.j / for
all j 2 J . In the following, F will be any presheaf on X .

Lemma 2. Let U D .Ui /i2I and V D .Vj /j2J be coverings of X by affinoid
subdomains where V is a refinement of U. Then, if F is a V-sheaf , it is a U-sheaf
as well.

Proof. We will show the exactness of (�) for the covering U; the proof for its
restriction UjU on any affinoid subdomain U � X works in the same way. So
consider elements fi 2 F .Ui /, i 2 I , such that fi jUi\Ui0 D fi 0 jUi\Ui0 for all
i; i 0 2 I . Choosing a map  WJ � I such that Vj � U.j /, set gj D f.j /jVj for
all j 2 J . Then we have

gj jVj\Vj 0

D �
f.j /jU.j /\U.j 0/

�jVj\Vj 0

D �
f.j 0/jU.j /\U.j 0/

�jVj\Vj 0

D gj 0 jVj\Vj 0

and, as F is a V-sheaf, there is a unique element f 2 F .X/ such that f jVj D gj
for all j 2 J . We claim that f jUi D fi for all i 2 I . To check this, fix an index
i 2 I . Then

�
f jUi

�jUi\Vj D f jUi\Vj D gj jUi\Vj
for j 2 J . Furthermore,

fi jUi\Vj D fi jUi\U.j /\Vj D f.j /jUi\U.j /\Vj D gj jUi\Vj ;

and, thus, we see that fi jUi\Vj D .f jUi /jUi\Vj . Now, using the fact that F is a
V-sheaf when restricted to Ui , we see that necessarily f jUi D fi for all i 2 I .
Clearly, f is uniquely determined by these conditions, and it follows that F is a
U-sheaf. ut

Lemma 3. Let U D .Ui /i2I and V D .Vj /j2J be coverings of X by affinoid
subdomains. Assume that

(i) F is a V-sheaf , and
(ii) the restriction of F to Vj is a UjVj -sheaf for all j 2 J .

Then F is a U-sheaf as well.

Proof. Again, we will show the exactness of the sequence (�) for the covering U;
the proof for the restriction UjU on any affinoid subdomain U � X works in the
same way. Thus, consider elements fi 2 F .Ui / such that fi jUi\Ui0 D fi 0 jUi\Ui0 for
all i; i 0 2 I . Then, fixing j 2 J , we have

fi jUi\Ui0 \Vj D fi 0 jUi\Ui0 \Vj ;
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and condition (ii) implies that there exists a unique element gj 2 F .Vj / such that
gj jUi\Vj D fi jUi\Vj for all i 2 I . Fixing j; j 0 2 J , we get

gj jUi\Vj\Vj 0

D fi jUi\Vj\Vj 0

D gj 0 jUi\Vj\Vj 0

for all i 2 I . Hence, again by condition (ii), we have gj jVj\Vj 0

D gj 0 jVj\Vj 0

, and
by condition (i) there exists a unique element g 2 F .X/ satisfying gjVj D gj for
all j 2 J . Now by construction, g coincides with fi , when we restrict to Ui \ Vj ,
for all i 2 I , j 2 J . But then, by condition (i), we must have gjUi D fi for all
i 2 I . As g is uniquely determined by these conditions, as is easily verified, we see
that F is a U-sheaf. ut

Next we want to look at particular types of coverings of our affinoid K-space
X D SpA to which we want to apply Lemmata 2 and 3. We will call a finite
covering of X by affinoid subdomains an affinoid covering. Furthermore, choosing
elements f0; : : : ; fr 2 A without common zeros, we can write

Ui D X
�f0
fi
; : : : ;

fr

fi

�
; i D 0; : : : ; n;

thereby obtaining a finite covering U D .Ui /iD0:::r of X by rational subdomains. U
is called a rational covering or, more precisely, the rational covering associated to
f0; : : : ; fr .

Lemma 4. Every affinoid covering U D .Ui /i2I of X admits a rational covering as
a refinement.

Proof. Using the Theorem of Gerritzen–Grauert in the version of 4.2/12, we can
assume that U consists of rational subdomains, say U D .Ui /iD1:::n with

Ui D X
�f .i/

1

f
.i/
0

; : : : ;
f
.i/
ri

f
.i/
0

�
:

Now, consider the set I of all tuples .�1; : : : ; �n/ 2 Nn with 0 � �i � ri and set

f�1:::�n D
nY

iD1
f .i/
�i

for such tuples. Writing I 0 for the set of all .�1; : : : ; �n/ 2 I such that �i D 0 for at
least one i , we claim that the functions

f�1:::�n ; .�1 : : : �n/ 2 I 0;
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do not have a common zero on X and, thus, generate a rational covering V on X .
To verify this, look at a point x 2 X where all these functions might vanish. Then
there is an index j such that x 2 Uj and, hence, f .j /

0 .x/ ¤ 0. It follows that all
products

Y

i¤j
f .i/
�i
; 0 � �i � ri ;

must vanish at x. But this is impossible since, for each i , the functions f .i/
0 ; : : : ; f

.i/
ri

generate the unit ideal inA D OX.X/. Thus, the rational covering V is well-defined.
It remains to check that V is a refinement of U. To do this, consider a tuple

.�1; : : : ; �n/ 2 I 0 and look at the set

X�1;:::;�n D X
� f�1:::�n
f�1;:::;�n

I .�1; : : : ; �n/ 2 I 0� 2 V

where, for example, �n D 0. We want to show that X�1;:::;�n � Un. Thus, choosing a
point x 2 X�1;:::;�n and an index �n, 0 � �n � rn, we have to show

ˇ
ˇf .n/
�n
.x/

ˇ
ˇ � ˇ

ˇf .n/
0 .x/

ˇ
ˇ D ˇ

ˇf .n/
�n
.x/

ˇ
ˇ:

There exists an index j such that x 2 Uj . If j D n, nothing is to be proved. So

assume that j is different from n, say j D 1. Then it follows jf .1/
�1 .x/j � jf .1/

0 .x/j
for 0 � �1 � r1 and

�n�1Y

iD1

ˇ̌
f .i/
�i
.x/

ˇ̌� � ˇ̌f .n/
�n
.x/

ˇ̌ � ˇ̌
f
.1/
0 .x/

ˇ̌ �
�n�1Y

iD2

ˇ̌
f .i/
�i
.x/

ˇ̌� � ˇ̌f .n/
�n
.x/

ˇ̌ �
nY

iD1

ˇ̌
f .i/
�i
.x/

ˇ̌
;

as the tuple .0; �2; : : : ; �n�1; �n/ belongs to I 0. Now, since
Qn
iD1 f

.i/
�i .x/ does not

vanish, we can divide by
Qn�1
iD1 f

.i/
�i .x/ to obtain the desired inequality showing

X�1;:::;�n � Un. ut
It is necessary to consider another special class of coverings of affinoidK-spaces

X D SpA. Choose elements f1; : : : ; fr 2 A. Then the sets

X
�
f
˛1
1 ; : : : ; f ˛r

r

�
; ˛i 2 fC1;�1g;

form a finite covering of X by Laurent domains; it is called a Laurent covering or,
more precisely, the Laurent covering associated to f1; : : : ; fr .

Lemma 5. Let U be a rational covering of X . Then there exists a Laurent covering
V of X such that, for each V 2 V, the covering UjV is a rational covering of V
that is generated by units in OX.V /.
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Proof. Let f0; : : : ; fr 2 OX.X/ be functions without common zeros on X

generating the rational covering U. As fi is invertible on Ui D X.
f0
fi
; : : : ;

fr
fi
/ and

since its inverse assumes its maximum on Ui , we can find an element c 2 K� such
that

ˇ̌
c
ˇ̌�1

< inf
x2X

�
max
iD0:::r

ˇ̌
fi .x/

ˇ̌�
:

Let V be the Laurent covering of X generated by the elements cf0; : : : ; cfr . We
claim that V is as desired. To justify this, consider a set

V D X�
.cf 0/

˛0 ; : : : ; .cf r /
˛r

� 2 V

where ˛0; : : : ; ˛r 2 fC1;�1g. We may assume that ˛0 D : : : D ˛s D C1 and that
˛sC1 D : : : D ˛r D �1 for some s � �1. Then

X
�f0
fi
; : : : ;

fr

fi

�
\ V D ;

for i D 0; : : : ; s, since

max
iD0:::s

ˇ̌
fi .x/

ˇ̌ � ˇ̌
c
ˇ̌�1

< max
iD0:::r

ˇ̌
fi .x/

ˇ̌

for x 2 V . In particular, we have

max
iD0:::r

ˇ̌
fi .x/

ˇ̌ D max
iDsC1:::r

ˇ̌
fi .x/

ˇ̌

for all x 2 V , and UjV is the rational covering generated by fsC1jV ; : : : ; fr jV . By
construction, these elements are units in OX.V /. ut

Lemma 6. Let U be a rational covering of X D SpA that is generated by units
f0, : : : ,fr 2 OX.X/. Then there exists a Laurent covering V of X that is a
refinement of U.

Proof. Let V be the Laurent covering of X generated by all products

fif
�1
j ; 0 � i < j � r:

We claim that V refines U. To verify this, consider a set V 2 V. Given elements
i; j 2 S D f0; : : : ; rg, we write i � j if jfi .x/j � jfj .x/j for all x 2 V .
The resulting relation� on S is transitive and total in the sense that, for arbitrary
i; j 2 S , we have always i � j or j � i . Thus, there is an element is 2 S that is
maximal with respect to�, and it follows that
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V � X
� f0
fis
; : : : ;

fr

fis

�
:

Hence, V is a refinement of U. ut
We can now sum up the essence of Lemmata 2 to 6.

Proposition 7. Let F be a presheaf on the affinoid K-space X . If F is a U-sheaf
for all Laurent coverings U of X , then it is a V-sheaf for all affinoid coverings V
of X .

Proof. Start with a general affinoid covering V of X . We have to show that F

is a V-sheaf, provided it is a U-sheaf for every Laurent covering U of X . By
Lemma 4 there is a rational covering refining V and we may assume that V itself is
a rational covering, due to Lemma 2. Furthermore, using Lemma 3 in conjunction
with Lemma 5, we may even assume that V is a rational covering that is generated
by units in OX.X/. But then, Lemma 6 in conjunction with Lemma 2 again reduces
everything to the case where V is a Laurent covering of X and we are done. ut

Thus, we have seen that it is only necessary to do the proof of Theorem 1 for
Laurent coverings. In fact, combining Lemma 3 with an inductive argument it is
only necessary, to consider a Laurent covering generated by one single function
f 2 A D OX.X/. Then we have to show that the sequence

0 � A
"� Ahf i � Ahf �1i ı� Ahf; f �1i � 0;

f
"� �

f jX.f /; f jX.f �1/

�
;

�
f; g

� ı� f jX.f;f �1/ � gjX.f;f �1/;

is left exact. The sequence is part of the following commutative diagram:
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The symbols �; � denote indeterminates, "0 is the canonical injection, ı0 is given by
.h1.�/; h2.�// � h1.�/ � h2.��1/, and ı00 is induced by ı0. Furthermore, the
vertical maps are characterized by � � f and � � f �1, respectively. The
first column of the diagram is exact due to the definition of Ahf i and Ahf �1i; cf.
the proof of 3.3/11. Also the second column is exact since

Ahf; f �1i D Ah�; �i=.� � f; 1 � f �/
D Ah�; �i=.� � f; 1 � ��/ D Ah�; ��1i=.� � f /:

Clearly, ı0 is surjective. Since

.� � f /Ah�; ��1i D .� � f /Ah�i C .1 � f ��1/Ah��1i;

the same is true for ı00. Thus, the first row is exact. Furthermore, also the second row
is exact, since

0 D ı0�
1X

iD0
ai �

i ;

1X

iD0
bi�

i
�
D

1X

iD0
ai �

i �
1X

iD0
bi �

�i

implies ai D bi D 0 for i > 0 and a0 � b0 D 0. Finally, looking at the third
row, the injectivity of " follows from 4.1/4, and the exactness of this row follows by
diagram chase. This concludes the proof of Tate’s Acyclicity Theorem in the version
of Theorem 1. ut

Next, without giving proofs, we want to discuss the general version of Tate’s
Acyclicity Theorem. For more details see [BGR], Chap. 8. We consider an affinoid
K-spaceX and a finite covering U D .Ui /i2I of it consisting of affinoid subdomains
Ui � X . Furthermore, let us fix a presheaf F , say of abelian groups, on the
(category of) affinoid subdomains of X . Setting

Ui0:::iq D Ui0 \ : : : \ Uiq
for indices i0; : : : ; iq 2 I , we define the group of q-cochains on U with values
in F by

Cq.U;F / D
Y

i0:::iq2I
F .Ui0:::iq /:

A cochain f 2 Cq.U;F / is called alternating, if

fi�.0/:::i�.q/ D sgn.�/fi0:::iq
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for indices i0; : : : ; iq 2 I and any permutation � 2 SqC1 and if, furthermore,
fi0:::iq D 0 for indices i0; : : : ; iq that are not pairwise distinct. The alternating
q-cochains form a subgroup Cq

a .U;F / of Cq.U;F /.
There is a so-called coboundary map

dq WCq.U;F / � CqC1.U;F /;

given by

�
dq.f /

�
i0:::iqC1

D
qC1X

jD0
.�1/j fi0:::yij :::iqC1

jUi0:::iqC1
;

that satisfies dqC1 ı dq D 0 and maps alternating cochains into alternating ones,
as is easily verified (yij means that the index ij is to be omitted). Thus, we obtain a
complex

0 � C0.U;F /
d0� C1.U;F /

d1� C2.U;F /
d2� : : : ;

which is called the complex of Čech cochains on U with values in F . In short, it is
denoted by C �.U;F /. Similarly, there is the complex

0 � C0
a .U;F /

d0a� C1
a .U;F /

d1a� C2
a .U;F /

d2a� : : : ;

of alternating Čech cochains on U with values in F , denoted by C �
a .U;F /.

Associated to these complexes are the Čech cohomology groups

Hq.U;F / D ker dq= im dq�1;

Hq
a .U;F / D ker dqa = im dq�1

a ;

which are defined for q 2 N (set d�1 D 0 and d�1
a D 0). There is no difference,

working with all cochains or merely with alternating ones, as is asserted by the
following lemma:

Lemma 8. The inclusion C �
a .U,F / � � C �.U,F / induces isomorphisms of

cohomology groups

Hq
a .U,F / �� Hq.U,F /, q 2 N:

There is an immediate consequence:
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Corollary 9. If the covering U consists of n elements, we have

Hq.U,F / D Hq
a .U,F / D 0 for q � n:

The argument is, of course, that Cq
a .U;F / D 0 for q � n in the situation of

Corollary 9. The covering U of X is called F -acyclic if the sequence

0 � F .X/
"� C0.U;F /

d0� C1.U;F /
d1� : : :

is exact where "WF .X/ � C0.U;F / is the so-called augmentation map given by
f � .f jUi /i2I . Note that U is F -acyclic if and only if F satisfies the following
conditions:

(i) the sequence is exact, i.e. F

satisfies the sheaf properties (S1) and (S2) for the covering U.
(ii) Hq.U;F / D 0 for q > 0.

Now we can state Tate’s Acyclicity Theorem in its general version:

Theorem 10 (Tate). Let X be an affinoid K-space and U a finite covering of X by
affinoid subdomains. Then U is acyclic with respect to the presheaf OX of affinoid
functions on X .

The proof is the same as the one of Theorem 1; it is only necessary to establish
Lemmata 2 and 3 in a more general cohomological context. Then, as exercised
above, the assertion can be reduced to showing that for a Laurent covering of
X generated by a single function f 2 OX.X/, the augmented Čech complex of
alternating cochains

0 � OX.X/
"� C0

a .U;OX/
d0� C1

a .U;OX/
d1� 0

is exact.
Finally, if X D SpA and M is an A-module, we can consider the presheaf

M ˝A OX on the affinoid subdomains of X given by

U � M ˝A OX.U /:

A simple argument shows that the assertion of Theorem 10 can be generalized to
this presheaf in place of OX :

Corollary 11. Let X D SpA be an affinoid K-space, M an A-module, and U a
finite covering of X by affinoid subdomains. Then U is acyclic with respect to the
presheaf M ˝A OX .
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Proof. The assertion is a direct consequence of Theorem 10 if M is a free
A-module, i.e. if M D A.�/ for some index set �. Indeed, in this case the
augmented Čech complex

0 � M
"� C0.U;M ˝A OX/

d0� C1.U;M ˝A OX/
d1� : : :

is just the �-fold direct sum of the complex

0 � A
"� C0.U;OX/

d0� C1.U;OX/
d1� : : :

If M is not free, we can choose a short exact sequence of A-modules

0 � M 0 � F � M � 0:

Associated to it is a sequence of augmented Čech complexes

0 � C �
aug.U;M

0˝A OX/ � C �
aug.U; F ˝AOX/ � C �

aug.U;M ˝AOX/ � 0;

which is exact, since for every affinoid subdomain SpA0
� � SpA the inherent

morphism A � A0 is flat; see 4.1/5.
Now consider the long exact cohomology sequence induced from the preceding

short exact sequence of Čech complexes. Since the complex C �
aug.U; F ˝A OX/ has

trivial cohomology, the long exact cohomology sequence contains isomorphisms of
type

Hq
aug.U;M ˝A OX/

�� HqC1
aug .U;M

0 ˝A OX/; q � 0;

where Hq
aug denotes the qth cohomology of augmented Čech complexes. If U

consists of n elements, we see from Corollary 9 that Hq
aug.U; N ˝A OX/ is trivial

for q � n and all A-modules N . In particular, we have Hq
aug.U;M ˝A OX/ D 0 for

q � n. Furthermore, the preceding isomorphism implies Hn�1
aug .U;M ˝A OX/ D 0.

Replacing M by an arbitrary A-module N , it follows that Hq
aug.U; N ˝A OX/ is

trivial for q � n � 1. But then, by falling induction, we conclude that U is acyclic
for M ˝A OX . ut



Chapter 5
Towards the Notion of Rigid Spaces

5.1 Grothendieck Topologies

As we have already indicated at the end of Sect. 2.1, the presheaf of affinoid
functions OX on an affinoid K-space X cannot satisfy sheaf properties if we do
not restrict the multitude of all possible open coverings. In fact, Tate’s Acyclicity
Theorem in the version of 4.3/1 or 4.3/10 is somehow the best result one can
expect for general affinoid spaces, and we will base the construction of global
rigid K-spaces by gluing local affinoid parts on this result. As a technical trick,
we generalize the notion of a topology.

Definition 1. A Grothendieck topology T consists of a category CatT and a set
CovT of families .Ui � U/i2I of morphisms in CatT, called coverings, such
that the following hold:

(1) If ˚ WU � V is an isomorphism in CatT, then .˚/ 2 CovT.
(2) If .Ui � U/i2I and .Vij

� Ui/j2Ji for i 2 I belong to CovT, then the
same is true for the composition .Vij

� Ui � U/i2I ,j2Ji .
(3) If .Ui � U/i2I is in CovT and if V � U is a morphism in CatT, then

the fiber products Ui �U V exist in CatT, and .Ui �U V � V /i2I belongs
to CovT.

We may think of the objects of CatT as of the open sets of our topology and of
the morphisms of CatT as of the inclusions of open sets. Furthermore, a family
.Ui � U/i2I of CovT has to be interpreted as a covering of U by the Ui
and a fiber product of type Ui �U V as the intersection of Ui with V . Thinking
along these lines an ordinary topological space X is canonically equipped with a
Grothendieck topology: CatT is the category of open subsets of X , with inclusions
as morphisms, and CovT consists of all open covers of open subsets ofX . However,
there are more general examples where the morphisms of CatT are far from being
monomorphisms, like the étale topology, the fppf -topology, or the fpqc-topology

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__5,
© Springer International Publishing Switzerland 2014
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in algebraic geometry. It should be pointed out that the “intersection” of “open” sets
is dealt with in condition (3) of Definition 1, whereas we have refrained from giving
any sense to the union of “open” sets. In fact, even in examples where the union of
“open” sets does make sense, such a union will not necessarily yield an “open” set
again.

The notion of a Grothendieck topology has been designed in such a way that the
notion of presheaf or sheaf can easily be adapted to such a situation:

Definition 2. Let T be a Grothendieck topology and C a category admitting
cartesian products. A presheaf on T with values in C is defined as a contravariant
functor F WCatT � C. We call F a sheaf if the diagram

F .U / �
Y

i2I
F .Ui /

��
Y

i,j2I
F .Ui �U Uj /

is exact for any covering .Ui � U/i2I in CovT.

From now on we will exclusively consider Grothendieck topologies T of a special
type. More specifically, the category CatT will always be a category of certain
subsets of a given set X , with inclusions as morphisms. The objects of CatT
will be referred to as the admissible open subsets of X . Likewise, the elements
of CovT are called the admissible coverings, and we will only consider those
cases where admissible coverings .Ui � U/i2I are, indeed, true coverings of
U by admissible open sets Ui . To let the set X intervene, we will talk about a
Grothendieck topology T on X and call X a G-topological space. Of course, we
are interested in the case where X is an affinoid K-space, and in Grothendieck
topologies on X with respect to which the presheaf OX of affinoid functions
is actually a sheaf. A straightforward possibility to define such a Grothendieck
topology is as follows:

Definition 3. For any affinoid K-space X , let CatT be the category of affinoid
subdomains of X with inclusions as morphisms. Furthermore, let CovT be the set
of all finite families .Ui � U/i2I of inclusions of affinoid subdomains in X such
that U DS

i2I Ui . Then T is called the weak Grothendieck topology on X .

That we really get a Grothendieck topology on X is easily verified. It follows
from 3.3/8 and 3.3/19 that all admissible open subsets of X (in the sense of the
weak Grothendieck topology) are open with respect to the canonical topology,
as introduced in 3.3/1. Furthermore, if 'WZ � X is a morphism of affinoid
K-spaces, the inverse image '�1.U / of any admissible open subset U � X is
admissible open in Z by 3.3/13, and the inverse image of any admissible covering
inX yields an admissible covering inZ. To characterize such a behavior we will say
that the map ' is continuous with respect to the relevant Grothendieck topologies,
in this case the weak Grothendieck topology on Z and on X .
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It has to be pointed out that the presheaf OX of affinoid functions on any affinoid
K-space X really is a presheaf in the sense of Definition 2, if X is equipped with
the weak Grothendieck topology. Even better, Tate’s Acyclicity Theorem 4.3/1 says
that OX is a sheaf in this context.

There is a canonical way to enlarge the weak Grothendieck topology on affinoid
K-spaces by adding more admissible open sets and more admissible coverings in
such a way that morphisms of affinoid K-spaces remain continuous and sheaves
extend to sheaves with respect to this new topology. The resulting Grothendieck
topology is the strong Grothendieck topology on affinoid K-spaces, which we will
define now.

Definition 4. Let X be an affinoid K-space. The strong Grothendieck topology on
X is given as follows.

(i) A subset U � X is called admissible open if there is a (not necessarily finite)
covering U D S

i2I Ui of U by affinoid subdomains Ui � X such that for
all morphisms of affinoid K-spaces 'WZ � X satisfying '.Z/ � U the
covering .'�1.Ui //i2I of Z admits a refinement that is a finite covering of Z
by affinoid subdomains.

(ii) A covering V D S
j2J Vj of some admissible open subset V � X by means

of admissible open sets Vj is called admissible if for each morphism of affinoid
K-spaces 'WZ � X satisfying '.Z/ � V the covering .'�1.Vj //j2J of Z
admits a refinement that is a finite covering of Z by affinoid subdomains.

Note that any covering .Ui /i2I as in (i) is admissible by (ii). It is easily checked
that the strong Grothendieck topology on X really is a Grothendieck topology such
that any finite union of affinoid subdomains of X is admissible open. Furthermore,
a direct verification shows that it satisfies certain completeness conditions. These
allow, as we will see, to construct Grothendieck topologies on global spaces from
local ones.

Proposition 5. Let X be an affinoid K-space. The strong Grothendieck topology is
a Grothendieck topology on X satisfying the following completeness conditions:

(G0) ; and X are admissible open.
(G1) Let .Ui /i2I be an admissible covering of an admissible open subset U � X .

Furthermore, let V � U be a subset such that V \ Ui is admissible open for all
i 2 I . Then V is admissible open in X .

(G2) Let .Ui /i2I be a covering of an admissible open set U � X by admissible
open subsets Ui � X such that .Ui /i2I admits an admissible covering of U as
refinement. Then .Ui /i2I itself is admissible.

Again, let X be an affinoid K-space. Then, if U � X is an affinoid subdomain,
the strong Grothendieck topology on X restricts to the strong Grothendieck
topology on U , viewed as an affinoidK-space of its own. More generally, we show:
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Proposition 6. Let 'WY � X be a morphism of affinoid K-spaces. Then ' is
continuous with respect to strong Grothendieck topologies on X and Y .

Proof. Consider an admissible open set U � X and, furthermore, an admissible
covering U D .Ui /i2I of it where all Ui are affinoid subdomains of X ; such a
covering exists by Definition 4 (i). To show that V D '�1.U / is admissible open in
Y , consider a morphism of affinoid K-spaces  WZ � Y such that .Z/ � V .
Then ' ı  maps Z into U and we see that the covering .�1'�1.Ui //i2I of Z
is refined by a (finite) affinoid covering. But then, as the sets '�1.Ui / are affinoid
subdomains of Y covering V , it follows that V is admissible open in Y .

More generally, if .Ui /i2I is an arbitrary admissible covering of an admissible
open set U � X , the same argument shows that .'�1.Ui //i2I is an admissible
covering of '�1.U /. Thus, ' is continuous with respect to strong Grothendieck
topologies. ut

Next we want to relate the strong Grothendieck topology of an affinoid K-space
to the Zariski topology.

Proposition 7. Let X be an affinoid K-space. For f 2 OX.X/ consider the
following sets:

U D ˚
x 2 X ;

ˇ
ˇf .x/

ˇ
ˇ < 1

�

U 0 D ˚
x 2 X ;

ˇ
ˇf .x/

ˇ
ˇ > 1

�

U 00 D ˚
x 2 X ;

ˇ̌
f .x/

ˇ̌
> 0

�

Any finite union of sets of this type is admissible open. Any finite covering by finite
unions of sets of this type is admissible.

Proof. We write
pjK�j for the group of nth roots of elements in jK�j where

n varies over N. Choosing a sequence "� 2
pjK�j satisfying "� < 1 and

lim�!1 "n D 1, we have

U D
1[

�D0
X

�
"�1
� f

�

where we have used the notation

X
�
"�1
� f

� D ˚
x 2 X I ˇ̌

f .x/
ˇ̌ � "�

� D X�
c�1f r

�

for c 2 K� being chosen in such a way that jcj D "r� for some integer r > 0.
To see that U is admissible open in X , consider a morphism of affinoid spaces
'WZ � X satisfying '.Z/ � U . If '� is the associated homomorphism of
affinoid K-algebras, we have j'�.f /.z/j D jf .'.z//j < 1 for all z 2 Z and, thus,
by the Maximum Principle 3.1/15, j'�.f /jsup < 1. But then the covering
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Z D
1[

�D0
'�1�X."�1

� f /
� D

1[

�D0
Z

�
"�1
� '

�.f /
�

admits a finite subcover, since Z."�1
� '

�.f // D Z for almost all �. This shows that
U is admissible open and that .X."�1

� f //�2N is an admissible covering of U .
That U 0 and U 00 are admissible open is shown similarly. However, that finite

unions of sets of type U;U 0; U 00 are admissible open requires a more sophisticated
application of the maximum principle, which we give below in Lemma 8. Along the
same lines one proves the assertion on admissible coverings. ut

Lemma 8. Let A be an affinoid K-algebra and

f D .f1, : : : ,fr/, g D .g1, : : : ,gs/, h D .h1, : : : ,ht /

systems of functions in A such that each x 2 SpA satisfies at least one of the
equations

jf�.x/j < 1, jg�.x/j > 1, jh.x/j > 0:

Then there exist constants ˛,ˇ,� 2 pjK�j where ˛ < 1 < ˇ, such that each
x 2 SpA satisfies, in fact, one of the equations

jf�.x/j � ˛, jg�.x/j � ˇ, jh .x/j � �:

Proof. The problem is local onX D SpA in the sense that we may choose a (finite)
affinoid cover .Ui /i2I of X and verify the assertion for the restrictions of f; g; h
onto each Ui . In particular, we may choose an ˛ 2 pjK�j, ˛ < 1, and consider the
covering

X D X. f̨ �1
1 ; : : : ; f̨ �1

r / [
r[

�D1
X.˛�1f�/:

As the assertion is clear on all affinoid subdomains X.˛�1f�/, we may replace X
by X. f̨ �1

1 ; : : : ; f̨ �1
r /. Thereby we can assume that all f� are units in A, and we

can look at the inequalities jf �1
� .x/j > 1 instead of jf�.x/j < 1. Thus, replacing

the system g by .f �1
1 ; : : : ; f �1

r ; g1; : : : ; gs/, we have transferred our problem to the
case where the system f is not present and only g and h are of interest.

In this situation, h1; : : : ; ht cannot have a common zero on X.g1; : : : ; gs/. Thus
they generate the unit ideal in OX.X.g1; : : : ; gs//, and there is a � 2 pjK�j such
that maxD1:::t jh .x/j > � for all x 2 X.g1; : : : ; gs/. Equivalently, there is for any
x 2 X.��1h1; : : : ; ��1ht / an index � 2 f1; : : : ; sg such that jg�.x/j > 1. Hence,
considering the covering
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X D X.��1h1; : : : ; ��1ht / [
t[

D1
X.�h�1

 /;

we may replace X by X.��1h1; : : : ; ��1ht /. Thereby h can be dropped and we
might assume that only the system g is present.

In this special case, the functions g1; : : : ; gs do not have a common zero on X ,
and

X D
s[

�D1
X

�g1
g�
; : : : ;

gr

g�

�

is a well-defined rational covering of X such that

max
� 0D1:::s

ˇ̌
g� 0.x/

ˇ̌ D ˇ̌
g�.x/

ˇ̌
> 1

for all x 2 X. g1
g�
; : : : ;

gr
g�
/. But then we are done, since g�1

� assumes its maximum

on X. g1
g�
; : : : ;

gr
g�
/ by the Maximum Principle 3.1/15. ut

Since any Zariski open subset of an affinoid K-space X is a finite union of sets
of type U 00 as mentioned in Proposition 7, we can conclude from this result:

Corollary 9. Let X be an affinoid K-space. Then the strong Grothendieck topology
on X is finer than the Zariski topology, i.e. every Zariski open subset U � X is
admissible open and every Zariski covering is admissible.

We end this section by some remarks on how to construct global Grothendieck
topologies from local data.

Proposition 10. Let T be a Grothendieck topology on a set X such that conditions
(G0), (G1), and (G2) of Proposition 5 are satisfied. Let .Xi /i2I be an admissible
covering of X . Then:

(i) A subset U � X is admissible open if and only if all intersections U \ Xi ,
i 2 I , are admissible open.

(ii) A covering .Uj /j2J of some admissible open subset U � X is admissible if
and only if .Xi \ Uj /j2J is an admissible covering of Xi \ U , for all i 2 I .

The proof is straightforward. Assertion (i) is a direct consequence of condi-
tion (G1), whereas (ii) follows from (G2), since .Xi \ U/i2I and .Xi \ Uj /i2I;j2J
are admissible coverings of U . ut

Proposition 11. Let X be a set and .Xi /i2I a covering of X . Furthermore, let Ti
be a Grothendieck topology on Xi , i 2 I , such that conditions (G0), (G1), and (G2)
of Proposition 5 are satisfied. For all i ,j 2 I , assume that Xi \Xj is Ti -open (i.e.
admissible open with respect to Ti ) in Xi and that Ti and Tj restrict to the same
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Grothendieck topology on Xi \ Xj . Then there is a unique Grothendieck topology
T on X such that the following hold:

(i) Xi is T-open in X , and T induces Ti on Xi .
(ii) T satisfies conditions (G0), (G1), and (G2) of Proposition 5.

(iii) .Xi /i2I is a T-covering of X (i.e. admissible with respect to T).

Proof. Due to Proposition 10, there is at most one possibility to define T. Call a
subset U � X T-open if each intersection Xi \U , i 2 I , is Ti -open. Similarly, we
call a covering U D .Uj /j2J consisting of T-open sets Uj � X a T-covering if, for
each i 2 I , the covering UjXi D .Xi \ Uj /j2J is a Ti -covering of Xi \ U . That T
is a Grothendieck topology as required is easily checked. ut

5.2 Sheaves

In the following, let X be a G-topological space, i.e. a set with a Grothendieck
topology T on it. As in 5.1/2 we define a presheaf of groups, rings, etc. on X
as a contravariant functor F from CatT to the category of groups, rings, etc.
Furthermore, F is called a sheaf if for each admissible covering .Ui /i2I of an
admissible open set U � X the diagram

F .U / �
Y

i2I
F .Ui /

��
Y

i;j2I
F .Ui �U Uj /

is exact.
We are, of course, interested in the case where X is an affinoid K-space.

Considering the weak Grothendieck topology on X , we have introduced the
presheaf OX of affinoid functions on X , and we have seen from Tate’s Acyclicity
Theorem 4.3/1 that OX even is a sheaf. One of the objectives of this section is to
pass on to the strong Grothendieck topology on X and to show that sheaves extend
canonically from the weak to the strong Grothendieck topology on X .

Let X be an arbitrary G-topological space again. For any presheaf F on X and a
point x 2 X , we define

Fx D lim�!F .U /

as the stalk of F at the point x where the limit runs over all admissible open U � X
containing x. Next, let � WF � F 0 be a morphism of presheaves on X . Thereby
we mean a system of morphisms �U WF .U / � F 0.U / for U varying over all
admissible open subsets of X such that the �U are compatible with the restriction
morphisms of F and F 0. Such a morphism induces for any x 2 X a morphism
�x WFx

� F 0
x on the level of stalks.
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Definition 1. Let F be a presheaf on a G-topological space X . A sheafification of
F is a morphism F � F 0, where F 0 is a sheaf such that the following universal
property is satisfied:

Each morphism F � G where G is a sheaf, factors through F � F 0 via
a unique morphism F 0 � G .

In the situation of Definition 1, F 0 is called the sheaf associated to F . Such a
sheaf can always be constructed, as we will see below. The classical construction
of associated sheaves on a topological space X is to consider the disjoint union
E D `

x2X Fx , which comes equipped with a canonical projection � WE � X .
For any open subset U � X , a map f WU � E is called a section of � if
� ı f D id; so f associates to each point x 2 U an element fx 2 Fx . Now let
F 0.U / be the set of those sections f WU � E of � such that, for all x 2 U , there
are an open neighborhood U.x/ � U of x and an element g 2 F .U.x// with the
property that gy D fy for all y 2 U.x/. So F 0.U / consists of all sections over U
that, locally, are induced from elements of the presheaf F , and it is easily checked
that F � F 0 is a sheafification of F .

For G-topological spaces X the classical construction cannot work properly,
since there can exist non-zero sheaves on X having zero stalks at all points x 2 X .
We give an example.

Example 2. Consider the unit disk X D SpT1 over a field K that, for simplicity,
is supposed to be algebraically closed. Then, pointwise, we can identify X with the
closed unit disk around 0 in K. A subset U � X is called a standard set if it is
empty or of type

U D DC.a,r/ �
s[

iD1
D�.ai ,ri /

for points a 2 X , a1, : : : ,as 2 DC.a,r/ and radii r1, : : : ,rs � r in jK�j. We set
d.U / D r as well as d.;/ D 0 and call this the diameter of U . Of course, every
standard set in X gives rise to an affinoid subdomain of X . Conversely, one can
show that every non-empty affinoid subdomain U � X is a finite and, in fact,
unique disjoint union of standard sets; see [BGR], 9.7.2/2. Let us write d.U / for the
maximum of all diameters of the occurring standard sets.

Now we can define a sheaf of abelian groups F on X by setting

F .U / D
(
Z if d.U / D 1
0 if d.U / < 1

with the obvious restriction morphisms. Then it is easily checked that F is a sheaf
with respect to the weak Grothendieck topology on X . The reason is that for any
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affinoid subdomain U � X and a finite covering U D Sn
iD1 Ui by affinoid

subdomains Ui � U one has

d.U / D max
iD1,:::,n d.Ui /:

In particular, due to the restrictiveness of allowed coverings on X , there is no
admissible affinoid covering .Ui /i2I of X itself satisfying d.Ui / < 1 for all i
that would force all global sections of F to vanish. The same is true for affinoid
subdomains U � X satisfying d.U / D 1. Therefore, indeed, F is a non-zero sheaf
having zero stalks at all points of X .

Returning to the construction of sheafifications on arbitraryG-topological spaces
X , we will assume that F is at least a presheaf of abelian groups so that techniques
from Čech cohomology can be used, for example as presented in [BGR], Chaps. 8
and 9. For any admissible open subset U � X we set

LHq.U;F / D lim�!Hq.U;F /; q 2 N;

where the direct limit runs over all admissible coverings U ofU , using the relation of
being finer as a partial ordering. Clearly, the ordering is directed since any two such
coverings .Ui /i2I , .Vj /j2J admit a common admissible refinement, for example
.Ui \ Vj /i2I;j2J . To execute the direct limit, we use, of course, the fact that, for
a refinement V of some admissible covering U of U , there is always a canonical
morphism Hq.U;F / � Hq.V;F / (which, for the purpose of sheafifications,
will only be needed for q D 0). Furthermore, varying U , we get the presheaf
LH q.X;F / that associates to an admissible open subset U � X the cohomology

group LHq.U;F jU /. Note that, for any admissible covering .Ui /i2I of some admissi-
ble open subsetU � X , we have a canonical morphism F .U / � H0.U;F / and,
hence, varying U, a canonical morphism F .U / � LH0.U;F /. The morphisms
of the latter type give rise to a canonical morphism F � LH 0.X;F /.

Proposition 3. Let F be a presheaf (of abelian groups, rings, etc.) on a G-topo-
logical space X .

(i) The presheaf F C D LH 0.X ,F / satisfies sheaf property (S1) of Sect. 4.3, i.e.
the canonical map F C.U / � Q

i2I F C.Ui / is injective for any admissible
covering .Ui /i2I of an admissible open subset U � X .

(ii) If F satisfies sheaf property (S1) of Sect. 4.3, then F C satisfies (S1) and (S2)
and, thus, is a sheaf.

(iii) F CC D LH 0.X , LH 0.X ,F // is a sheaf , and the composition of canonical
morphisms F � F C � F CC is a sheafification of F .

The proof will be omitted; it is straightforward, although a little bit technical;
cf. [BGR], 9.2.2/3 and 9.2.2/4. As an application of the existence of associated
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sheaves, we can define as usual the sheaf image of a morphism � WF � G of
abelian sheaves, i.e. of sheaves of abelian groups. It is the sheaf associated to the
presheaf U � �U .F .U // where U varies over all admissible open subsets of
X . Similarly, the quotient F =F0 of an abelian sheaf F by a subsheaf F0 is defined
as the sheaf associated to the presheaf U � F .U /=F0.U /.

Finally, we want to attack the problem of extending sheaves from the weak to the
strong Grothendieck topology on affinoid K-spaces.

Proposition 4. Let X be a set with Grothendieck topologies T and T0 such that:

(i) T0 is finer than T.
(ii) Each T0-open set U � X admits a T0-covering .Ui /i2I where all Ui are

T-open in X .
(iii) Each T0-covering of a T-open subset U � X admits a T-covering as a

refinement.

Then each T-sheaf F on X admits an extension F 0 as a T0-sheaf on X . The
latter is unique up to canonical isomorphism.

We give only some indications on how to construct F 0. Consider the presheaf F 0
with respect to T0 on X that is given by

U � lim�!
U

H0.U;F /

where the limit runs over all T0-coverings U D .Ui /i2I of U consisting of T-open
sets Ui . Due to condition (iii), F 0 is an extension of F . Using the fact that F is a
sheaf, it is easily checked that F 0 is a sheaf as well. In fact, we may interpret F 0 as
the sheaf LH 0.XT0 ;F /, just observing that, in order to construct the latter object, we
need only to know F on the T-open subsets of X .

As a direct consequence, we can state:

Corollary 5. Let X be an affinoid K-space. Then any sheaf F on X with respect
to the weak Grothendieck topology admits a unique extension with respect to the
strong Grothendieck topology. The latter applies, in particular, to the presheaf of
affinoid functions F D OX , which is a sheaf with respect to the weak Grothendieck
topology by 4.3/1.

Extending OX with respect to the strong Grothendieck topology on X , we will
call the resulting sheaf the sheaf of rigid analytic functions on X and use the
notation OX for it again. Anyway, from now on we will always consider, unless
stated otherwise, the strong Grothendieck topology on affinoid K-spaces.
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5.3 Rigid Spaces

A ringed K-space is a pair .X;OX/ where X is a topological space and OX a sheaf
of K-algebras on it. This concept can be adapted in a natural way to G-topological
spaces.

Definition 1. A G-ringed K-space is a pair .X ,OX/ where X is a G-topological
space and OX a sheaf of K-algebras on it. .X ,OX/ is called a locally G-ringed
K-space if, in addition, all stalks OX ,x , x 2 X , are local rings.

A morphism ofG-ringedK-spaces .X ,OX/ � .Y ,OY / is a pair .','�/ where
'WX � Y is a map, continuous with respect to Grothendieck topologies, and
where '� is a system of K-homomorphisms '�

V WOY .V / � OX.'
�1.V // with

V varying over the admissible open subsets of Y . It is required that the '�
V are

compatible with restriction homomorphisms, i.e. for V 0 � V the diagram

must be commutative.
Furthermore, assuming that .X ,OX/ and .Y ,OY / are locallyG-ringedK-spaces,

a morphism .','�/W .X ,OX/ � .Y ,OY / is called a morphism of locally
G-ringed K-spaces if the ring homomorphisms

'�
x WOY ,'.x/

� OX ,x , x 2 X ,

induced from the '�
V are local in the sense that the maximal ideal of OY ,'.x/ is

mapped into the one of OX ,x .

For example, if X is an affinoid K-space, we can consider the associated locally
G-ringed K-space .X;OX/ where X , as a G-topological space, is endowed with
the strong G-topology and OX is the structure sheaf on X , as introduced in 5.2/5.
As all stalks of OX are local rings by 4.1/1, .X;OX/ is even a locally G-ringed
K-space. Furthermore, it is more or less clear that each morphism of affinoid
K-spaces 'WX � Y induces a morphism .'; '�/W .X;OX/ � .Y;OY /

between associated locally G-ringed K-spaces. To justify this claim, note first that
' defines a continuous morphism of G-topological spaces if X and Y are endowed
with the strongG-topology; cf. 5.1/6. Next, consider an affinoid subdomain V � Y .
Then '�1.V / is an affinoid subdomain in X by 3.3/13. Therefore ' induces a
morphism of affinoid K-algebras '�

V WOY .V / � OX.'
�1.V // that, varying V ,

clearly is compatible with restriction of V . If, more generally, V is just an admissible
open subset in Y , we can choose an admissible affinoid covering .Vi /i2I of V and
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obtain a well-defined morphism '�
V WOY .V / � OX.'

�1.V // in a similar way by
using the exact diagrams

OY .V / �
Y

i2I
OY .Vi /

��
Y

i;j2I
OY .Vi \ Vj /;

OX

�
'�1.V /

� �
Y

i2I
OX

�
'�1.Vi /

� ��
Y

i;j2I
OY

�
'�1.Vi / \ '�1.Vj /

�
;

in conjunction with the maps

'�
Vi
WOY .Vi / � OX

�
'�1.Vi /

�
;

'�
Vi\Vj WOY .Vi \ Vj / � OX

�
'�1.Vi \ Vj /

�I

note that, just as the Vi , all intersections Vi \ Vj are affinoid subdomains of Y
by 3.3/14. Now, writing '� for the system of all maps '�

V , it is easily seen that the
pair .'; '�/ constitutes a morphism of ringed K-spaces .X;OX/ � .Y;OY /.
That this morphism is, in fact, a morphism of locally G-ringed K-spaces, is seen
as follows. Consider a point x 2 X with maximal ideal mx � OX.X/ and
image '.x/ 2 Y corresponding to the maximal ideal m'.x/ � OY .Y /. Then,
'�
Y WOY .Y / � OX.X/, the map between affinoid K-algebras associated to ',

maps m'.x/ into mx , as we have m'.x/ D .'�
Y /

�1.mx/ by definition. Consequently,
the morphism '�

x WOY;'.x/
� OX;x must map the maximal ideal of OY;'.x/, which

is generated by m'.x/ due to 4.1/1, into the maximal ideal of OX;x , which again due
to 4.1/1, is generated by mx . Hence, we have constructed a map from the set of
morphisms X � Y between affinoidK-spaces X and Y to the set of morphisms
of locally G-ringed K-spaces .X;OX/ � .Y;OY /. We want to show that this
map is actually a bijection.

Proposition 2. Let X and Y be affinoid K-spaces. Then the map from morphisms
of affinoid K-spaces X � Y to morphisms of locally G-ringed K-spaces
.X ,OX/ � .Y ,OY /, as constructed above, is bijective.

Proof. To exhibit an inverse of the above constructed map, associate to any mor-
phism of locally G-ringed K-spaces .'; '�/W .X;OX/ � .Y;OY / the morphism
of affinoid K-spaces X � Y corresponding to the morphism of affinoid
K-algebras '�

Y WOY .Y / � OX.X/. To see that it really is an inverse, it is enough
to establish the following auxiliary result:

Lemma 3. Let X and Y be affinoid K-spaces. For every morphism of affinoid
K-algebras ��WOY .Y / � OX.X/ there exists a unique morphism of locally
G-ringed K-spaces .','�/W .X ,OX/ � .Y ,OY / satisfying '�

Y D ��.
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Proof. Only the uniqueness assertion has to be verified. So consider a morphism of
locally G-ringed K-spaces .'; '�/W .X;OX/ � .Y;OY / satisfying '�

Y D �� for
a given morphism of affinoid K-algebras ��WOY .Y / � OX.X/. Then for each
x 2 X , there is a commutative diagram

Let mx � OX.X/ be the maximal ideal corresponding to x and m'.x/ � OY .Y / the
maximal ideal corresponding to '.x/. Since '�

x is local, it maps the maximal ideal
m'.x/OY;'.x/ of the local ring OY;'.x/ into the maximal ideal mxOX;x of the local ring
OX;x . Hence, using the isomorphism OX.X/=mx

�� OX;x=mxOX;x of 4.1/2, we
see that �� maps m'.x/ into mx , so that we have m'.x/ D .��/�1.mx/. From this it
follows that ', as a map of sets, coincides with the morphism of affinoid K-spaces
X � Y given by ��. Thus, at least ' is uniquely determined by ��.

To show that all maps '�
V are unique, we may restrict ourselves to affinoid

subdomains V � Y . Then '�1.V / is an affinoid subdomain in X , and there is a
commutative diagram

the vertical maps being restriction homomorphisms. Since the first one corresponds
to the inclusion of the affinoid subdomain V � � Y , it follows from the defining
properties of affinoid subdomains that '�

V is uniquely determined by �� D '�
Y . ut

The assertion of Proposition 2 enables us to identify morphisms of affinoid
K-spaces with morphisms of their associated locally G-ringed K-spaces. In other
words, the functor from the category of affinoid K-spaces to the category of
locally G-ringed K-spaces that we have constructed is fully faithful. Therefore,
in general, we will make no notational difference between an affinoid K-space
and its associated locally G-ringed K-space, writing simply X instead of .X;OX/.
Also note that, due to our construction, an inclusion U � � X of an affinoid
subdomain U into X gives rise to an open immersion of locally G-ringed K-spaces
.U;OU / � .X;OX/. The latter means that U is an admissible open subset of
X , that OU is the restriction of OX to U , and that .U;OU / � .X;OX/ is the
canonical morphism. Now it is easy to define global objects that look locally like
affinoid K-spaces.
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Definition 4. A rigid (analytic)K-space is a locallyG-ringedK-space .X ,OX/ such
that

(i) the G-topology of X satisfies conditions (G0), (G1), and (G2) of 5.1/5, and
(ii) X admits an admissible covering .Xi /i2I where .Xi ,OX jXi / is an affinoid

K-space for all i 2 I .

A morphism of rigidK-spaces .X ,OX/ � .Y ,OY / is a morphism in the sense
of locally G-ringed K-spaces.

It follows for an admissible open subsetU � X that the induced locallyG-ringed
K-space .U;OX jU / is a rigid K-space again; we will call .U;OX jU / an open
subspace of .X;OX/. In most cases, however, rigidK-spaces will simply be denoted
by a single symbol, say X , instead of .X;OX/. As usual, global rigid K-spaces can
be constructed by gluing local ones.

Proposition 5. Consider the following data:

(i) rigid K-spaces Xi , i 2 I , and
(ii) open subspaces Xij � Xi and isomorphisms 'ijWXij

�� Xji, for all i ,j 2 I ,

and assume that these are subject to the following conditions:

(a) 'ij ı 'ji D id, Xii D Xi , and 'ii D id, for all i ,j 2 I ,
(b) 'ij induces isomorphisms 'ijkWXij \ Xik

�� Xji \ Xjk that satisfy
'ijk D 'kji ı 'ikj for all i ,j ,k 2 I .

Then the Xi can be glued by identifying Xij with Xji via 'ij to yield a rigid
K-space X admitting .Xi /i2I as an admissible covering.

More precisely, there exists a rigid K-space X together with an admissible
covering .X 0

i /i2I and isomorphisms  i WXi �� X 0
i restricting to isomorphisms

 ijWXij
�� X 0

i \X 0
j such that the diagram

is commutative. Furthermore, X is unique up to canonical isomorphism.

The proof is straightforward. To construct X as a set, we glue the Xi , using
the isomorphisms 'ij as identifications. In more precise terms, we start out from the
disjoint unionX 0 D`

i2I Xi and call x; y 2 X 0 equivalent, say x 2 Xi and y 2 Xj ,
if 'ij.x/ D y. The relation we get is symmetric and reflexive by the conditions in (a)
and transitive by (b). Thus, we really get an equivalence relation � and can define
X as the quotient X 0= �. Then we may view X as being covered by the Xi and,
applying 5.1/11, we get a unique Grothendieck topology on it such that .Xi /i2I is
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an admissible covering of X . Next, one constructs the structure sheaf OX by gluing
the sheaves OXi . In a first step one identifies rings of type OXi .U / and OXj .U /, in
case U is contained in both,Xi andXj , just by using the isomorphism 'ij. This way
one obtains a sheaf OX on X with respect to some Grothendieck topology that is
weaker than the one we have to consider. In a second step one applies 5.2/4, thereby
extending OX with respect to the Grothendieck topology we are considering on X .

ut
More easy is the gluing of morphisms:

Proposition 6. Let X ,Y be rigid K-spaces and let .Xi /i2I be an admissible
covering of X . Furthermore, let 'i WXi � Y be morphisms of rigid K-spaces
such that 'i jXi\Xj WXi \ Xj � Y coincides with 'j jXi\Xj WXi \ Xj � Y

for all i ,j 2 I . Then there is a unique morphism of rigid K-spaces 'WX � Y

satisfying 'jXi D 'i for all i 2 I .

The proof is straightforward by using the sheaf property of OX .

Corollary 7. Let X be a rigid K-space and Y an affinoid K-space. Then the
canonical map

Hom.X ,Y / � Hom.OY .Y /,OX.X//, ' � '�
Y ,

is bijective.

Proof. The assertion follows from Proposition 2 if X is affinoid. In the general case
it is only necessary to consider a homomorphism ��WOY .Y / � OX.X/ and to
show that there is a unique morphism of rigid K-spaces 'WX � Y satisfying
'�
Y D ��. To do this, choose an admissible affinoid covering .Xi /i2I of X and

write ��
i for the composition of �� with the canonical map OX.X/ � OX.Xi /.

Again by Proposition 2, each ��
i corresponds to a morphism of affinoid K-spaces

'i WXi � Y , and one concludes with the help of Proposition 6 that the 'i can be
glued to yield a unique morphism 'WX � Y , corresponding to ��. ut

Corollary 8. For two rigid K-spaces X ,Y over a third one Z, the fiber product
X �Z Y can be constructed.

Proof. The category of affinoid K-spaces admits fiber products, since, dually, the
category of affinoid K-algebras admits amalgamated sums; see Appendix B. Thus,
we have

SpA �SpC SpB D Sp.A y̋ C B/

for morphisms of affinoid K-algebras C � A and C � B . But then one
can construct fiber products of global rigid K-spaces as usual by gluing local
affinoid ones. ut
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In the next section, dealing with the GAGA-functor, we will give another
application of Propositions 5 and 6.

Finally, let us briefly touch the subject of connectedness and of connected
components for rigid spaces, as we will need these concepts later (see the proof
of 8.4/4 (e)).

Definition 9. A rigid K-space X is called connected if there do not exist non-empty
admissible open subspaces X1,X2 � X such that X1 \ X2 D ; and .X1,X2/ is an
admissible covering of X .

It follows from Tate’s Acyclicity Theorem 4.3/10 that an affinoid K-space SpA
is connected if and only if A cannot be written as a non-trivial cartesian product of
two K-algebras. The latter amounts to the fact that SpA is connected with respect
to the Zariski topology. In general, an affinoid K-space SpA can be decomposed
into its Zariski-connected components. These are affinoid subdomains of SpA and
define an admissible affinoid covering as they are of finite number, due to the fact
that affinoid algebras are Noetherian by 3.1/3 (i). To check whether or not a global
rigid K-space X is connected, one can consider an admissible covering .Ui /i2J
of X by non-empty connected admissible open subspaces Ui � X . For example,
one may take the Ui to be affinoid and connected. If there is no partition of J into
non-empty subsets J1; J2 � J such that

[

i2J1
Ui \

[

i2J2
Ui D ;; (�)

then X is connected, otherwise it is not. Indeed, if there is a partition J D J1 q J2
satisfying (�), then X1 D S

i2J1 Ui and X2 D S
i2J2 Ui are admissible open in X

by condition (G1) of 5.1/5 and X D X1 [ X2 is an admissible covering of X by
condition (G2) of 5.1/5. Conversely, assume there are admissible open subspaces
X1;X2 � X satisfying X1 \ X2 D ;, which define an admissible covering of
X . Then consider an admissible covering .Ui /i2J of X consisting of connected
admissible open subsets. The admissible covering .X1;X2/ of X restricts to an
admissible covering .X1 \ Ui ;X2 \ Ui/ on each Ui . Since Ui is supposed to be
connected, we get X1 \ Ui D Ui or X2 \ Ui D Ui and, thus, Ui � X1 or Ui � X2.
This leads to a partition J D J1 q J2 such that (�) is satisfied.

To define the connected components of a rigid K-space X , write x � y for
two points x; y 2 X if there exist finitely many connected admissible open subsets
U0; : : : ; Un � X such that x 2 U0 , y 2 Un, and Ui�1 \ Ui ¤ ; for i D 1; : : : ; n.

Proposition 10. Let X be a rigid K-space and consider the just defined relation
“ � ” on it.

(i) “ � ” is an equivalence relation.
(ii) For any x 2 X the corresponding equivalence class Z.x/ is admissible open

in X . It is called the connected component of X that contains x.
(iii) The connected components of X form an admissible covering of X .
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Proof. First, that “ � ” is an equivalence relation is clear from the definition of
the relation. Next, consider an admissible open subset U � X that is connected
and assume U \ Z.x/ ¤ ;. Then we must have U � Z.x/ by the definition of
Z.x/. In particular, consider an admissible covering .Ui /i2J of X where all Ui are
connected. It follows Ui � Z.x/ or Ui \Z.x/ D ;, depending on i 2 J . Thus, we
can conclude from condition (G1) of 5.1/5 that Z.x/ is admissible open in X . By a
similar reasoning one concludes from condition (G2) of 5.1/5 that .Z.x//x2X is an
admissible covering of X . ut

5.4 The GAGA-Functor

We want to construct a functor that associates to any K-scheme Z of locally finite
type a rigid K-space Z rig, called the rigid analytification of Z . The corresponding
functor in the classical complex case was first investigated by Serre in his funda-
mental paper [S]. Taking initials of the main words in the title, the functor has been
referred to as the GAGA-functor since.

Let us start by constructing the rigid version of the affine n-space AnK . To do
this, we denote by Tn.r/ for r > 0 the K-algebra of all power series

P
� a��

n in
n variables � D .�1; : : : ; �n/ and with coefficients in K satisfying lim� a�r

j�j D 0.
Thus, Tn.r/ consists of all power series converging on a closed n-dimensional ball
of radius r . Now choose c 2 K, jcj > 1. Then we may identify T .i/n D Tn.jcji /
with the Tate algebra Khc�i �1; : : : ; c�i �ni. The inclusions

Tn D T .0/n
� � T .1/n

� � T .2/n
� � : : : � � Kdb�ec

give rise to inclusions of affinoid subdomains

Bn D SpT .0/n
� � SpT .1/n

� � SpT .2/n
� � : : :

where SpT .i/n can be interpreted as the n-dimensional ball of radius jci j.
Using 5.3/5, the “union” of all these balls can be constructed. The resulting rigid
K-space An;rigK comes equipped with the admissible covering A

n;rig
K DS1

iD0 SpT .i/n ,
and we refer to it as the rigid analytification of the affine n-space AnK . In particular,
we will see that An;rigK is independent of the choice of c and that it satisfies the
universal property of an affine n-space in the category of rigid K-spaces. In a first
step, we want to show that, pointwise, An;rigK coincides with the set of closed points
in AnK .

Lemma 1. The inclusions

T .0/n 
 T .1/n 
 T .2/n 
 : : : 
 Kdb�ec
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induce inclusions of spectra of maximal ideals

MaxT .0/n � MaxT .1/n � MaxT .2/n � : : : � MaxKdb�ec

such that MaxKdb�ec DS1
iD0 MaxT .i/n .

Proof. As we have inclusions of affinoid subdomains SpT .i/n � � SpT .iC1/n the
inclusions between maximal spectra of the above affinoid K-algebras are clear.
Next we show the following assertions:

(a) Let m � Kh�i be a maximal ideal. Then m0 D m \Kdb�ec is a maximal ideal in
Kdb�ec satisfying m D m0Kh�i.

(b) Given a maximal ideal m0 � Kdb�ec, there is an index i0 2 N such that
m0Khc�i �i is maximal in Khc�i �i D T .i/n for all i � i0.

Let us start with assertion (a). There is a commutative diagram

with horizontal maps being injections. As Kh�i=m is a field that is finite over K
by 2.2/12, the same must be true for Kdb�ec=m0, and it follows that m0 is maximal in
Kdb�ec.

To see m D m0Kh�i, look at the following commutative diagram:

As Kdb�ec is dense in Kh�i, and as finite-dimensional K-vector spaces are complete
(and, hence, closed if they are subspaces, see Theorem 1 of Appendix A), it
follows that the horizontal maps are surjective. As the lower horizontal map is
injective by definition of m0, it is, in fact, bijective. Then the upper horizontal
map is injective and, hence, bijective as well. Consequently, the right vertical map
is bijective, and assertion (a) is clear. Thereby we see that the canonical map
MaxT .i/n � MaxKdb�ec is a well-defined injection for i D 0 and, in a similar
way, for all i .

To verify (b), consider a maximal ideal m0 � Kdb�ec. Then, by the analog of 2.2/12
for polynomial rings,Kdb�ec=m0 is a finite extension ofK and, as such, carries a well-
defined absolute value extending the one of K. Choosing an integer i0 2 N such
that the absolute values of the residue classes �j 2 Kdb�ec=m0 of all components of
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� satisfy j�j j � jcji0 , it follows that the projection Kdb�ec � Kdb�ec=m0 factors

for i � i0 through T .i/n D Khc�i �i via a unique K-morphism T
.i/
n

� Kdb�ec=m0
sending �j to �j . The kernel m of the latter map is a maximal ideal in T .i/n satisfying
m \ Kdb�ec D m0. Consequently, (a) and (b) together imply that MaxKdb�ec is the
union of the MaxT .i/n . ut

To construct the rigid analytification of an affine K-scheme of finite type, say of
SpecKdb�ec=a with an ideal a � Kdb�ec and a system � of n variables �1; : : : ; �n, we
proceed similarly by looking at the maps

T .0/n =.a/ � T .1/n =.a/ � T .2/n =.a/ � : : : � Kdb�ec=a

and the associated sequence of inclusions

MaxT .0/n =.a/ � � MaxT .1/n =.a/ � � MaxT .2/n =.a/ � � : : :

� � MaxKdb�ec=a

where, again, we may interpret the first maps as inclusions of affinoid subdomains
SpT .i/n =.a/ � � SpT .iC1/n =.a/, for all i . Furthermore, we see from Lemma 1 that
all maps into MaxKdb�ec=a are injective and that MaxKdb�ec=a equals the union of
all MaxT .i/n =.a/. Thus, the union

S1
iD0 SpT .i/n =.a/ can be constructed as a rigid

K-space using 5.3/5, and we call it the rigid analytification of SpecKdb�ec=a.
We want to show that, for any K-scheme of locally finite type Z and its

analytification Z rig, there is a canonical morphism of locally G-ringed K-spaces
.�; ��/W .Z rig;OZ rig/ � .Z ;OZ / where, of course, Z is provided with the Zariski
topology. Adapting 5.3/6 to our situation, the existence of such a morphism is a
consequence of the following auxiliary result.

Lemma 2. Let Z be an affine K-scheme of finite type and Y a rigid K-space. Then
the set of morphisms of locally G-ringed K-spaces .Y ,OY / � .Z ,OZ / corre-
sponds bijectively to the set of K-algebra homomorphisms OZ .Z / � OY .Y /.

Proof. We can conclude similarly as in 5.3/2 and 5.3/7. Let us first consider the case
where Y is affinoid. Set B D OY .Y / and C D OZ .Z / and consider aK-morphism
� WC � B . By the usual reasoning involving 2.2/12, taking inverse images of
maximal ideals yields a map MaxB ! Max C � � Spec C and, thus, a well-
defined map 'WY � Z that is easily seen to be continuous with respect to
Grothendieck topologies. For f 2 C and " 2 K� there is a commutative diagram
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with a unique lower map, due to the fact that �.f / is invertible in Bh" � �.f /�1i.
Thus, varying " yields a commutative diagram

with a unique lower map; Z f is the part of Z where f does not vanish. From this
and the standard globalization argument one concludes that there is a morphism
of ringed K-spaces .'; '�/W .Y;OY / � .Z ;OZ / satisfying '�

Z D � . The
morphism is a morphism of locally ringed K-spaces, as for any point z 2 Z and
its corresponding prime ideal p 2 C , the maximal ideal of the local ring OZ ;z D C p

is generated by p.
Just as in 5.3/2, it remains to show that there is at most one morphism of locally

G-ringed K-spaces .'; '�/W .Y;OY / � .Z ;OZ / satisfying '�
Z D � . The proof

is the same as the one of 5.3/3. Finally, the generalization to the case where .Y;OY /

is not necessarily affinoid is done as in 5.3/7. ut
To show that rigid analytifications are independent of the choice of the constant

c 2 K and of the representation of K-algebras of finite type as quotients Kdb�ec=a,
we want to characterize them by a universal property.

Definition and Proposition 3. Let .Z ,OZ / be a K-scheme of locally finite type.
A rigid analytification of .Z ,OZ / is a rigid K-space .Z rig,OZ rig/ together with a
morphism of locally G-ringedK-spaces .�,��/W .Z rig,OZ rig/ � .Z ,OZ / satisfying
the following universal property:

Given a rigid K-space .Y ,OY / and a morphism of locally G-ringed K-spaces
.Y ,OY / � .Z ,OZ /, the latter factors through .�,��/ via a unique morphism of
rigid K-spaces .Y ,OY / � .Z rig,OZ rig/.

For example, the analytifications Z rig constructed above for affine K-schemes of
finite type, give rise to analytifications in the sense of this definition.

Proof. To show that the rigid analytifications as constructed in the beginning are
analytifications in the sense of the definition, we look at an affine K-scheme of
finite type Z D SpecKdb�ec=a and consider its associated rigidK-space that is given
by Z rig D S1

iD0 SpT .i/n =.a/. The canonical morphisms Kdb�ec=a � T
.i/
n =.a/

constitute a morphism OZ .Z / � OZ rig.Z rig/ and, using Lemma 2, the latter
gives rise to a well-defined morphism of locally G-ringed K-spaces

.�; ��/W .Z rig;OZ rig/ � .Z ;OZ /:
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We claim that .�; ��/ satisfies the universal property of rigid analytifications. To jus-
tify this, look at a morphism of locally G-ringed K-spaces .Y;OY / � .Z ;OZ /

where .Y;OY / is a rigid K-space that we may assume to be affinoid.
Using Lemma 2, the morphism .Y;OY / � .Z ;OZ / corresponds to a

K-morphism � WKdb�ec=a � B where B D OY .Y /, and it is enough
to show that, for all i 2 N sufficiently large, there is a factorization
Kdb�ec=a � T

.i/
n =.a/ � B of � with a unique map T

.i/
n =.a/ � B .

Choose i 2 N such that the residue classes �j 2 Kdb�ec=a satisfy j�.�j /jsup � jcji in

B . Then the K-morphism Kdb�ec � B obtained from � extends uniquely to T .i/n ,
and we see that � admits a unique factorization through T .i/n =.a/, as claimed. ut

Proposition 4. Every K-scheme Z of locally finite type admits an analytification
Z rig � Z . Furthermore, the underlying map of sets identifies the points of Z rig

with the closed points of Z .

Proof. We know the assertion already if Z is affine. In the general case we
choose a covering of Z by affine open subschemes Z i , i 2 J . The latter
admit analytifications �i WZ rig

i
� Z i . It follows then from the definition of

analytifications that ��1i .Z i \Z j / � Z i \Z j is an analytification of Z i \Z j

for all i; j 2 J . Thus, we can transport the gluing data we have on the Z i to
the analytifications Z

rig
i and thereby construct a rigid K-space Z rig using 5.3/5.

By 5.3/6 we get a morphism of locally G-ringed K-spaces Z rig � Z that is
easily seen to be an analytification of Z . Finally, the assertion on the underlying
map of point sets follows from the construction of Z rig, since the assertion is known
over the affine open parts of Z . ut

The characterizing universal property of rigid analytifications shows that mor-
phisms between K-schemes of locally finite type admit analytifications as well.
Thus we can state:

Corollary 5. Rigid analytification defines a functor from the category of K-schemes
of locally finite type to the category of rigid K-spaces, the so-called GAGA-functor.

Relying on the relevant universal properties, one can even show that rigid
analytification respects fiber products, see Köpf [Kö], Satz 1.8. Furthermore, for
a K-scheme Z of locally finite type and its rigid analytification Z rig, the maximal
adic completion of the stalk OZ rig;z at a point z 2 Z rig coincides canonically with
the maximal adic completion of the stalk OZ ;z at the corresponding closed point
in Z ; see [Kö], Satz 2.1. One can conclude from this that the GAGA-functor is
faithful. However, it is not fully faithful since there exist K-schemes of locally
finite type Y and Z , for example take Y D Z as the affine line A1K , such that
there are morphisms of rigid K-spaces Y rig � Z rig that cannot be viewed as
analytifications of morphisms Y � Z .
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Let us conclude the section by looking at some examples. First we want to show
that the analytification A

n;rig
K of the affine n-space AnK satisfies the universal property

of an n-dimensional affine space, namely that for any rigid K-space Y the set
of morphisms of rigid K-spaces Y � A

n;rig
K is in one-to-one correspondence

with OY .Y /
n, the n-fold cartesian product of the set of global sections on Y .

Indeed, composition with the canonical morphism of locally G-ringed spaces
A
n;rig
K

� AnK of Definition 3 yields a bijection

HomK.Y;A
n;rig
K / �� HomK.Y;A

n
K/

between the set of rigid morphisms Y � A
n;rig
K and the set of morphisms

Y � AnK of locally G-ringed spaces over K. Furthermore, by Lemma 2, we
get bijections

HomK.Y;A
n
K/
�� HomK

�
Kdb�1; : : : ; �nec;OY .Y /

� �� OY .Y /
n

so that the desired property HomK.Y;A
n
K/
�� OY .Y /

n follows.
Let us have a particular look at the analytification A

1;rig
K of the affine 1-space A1K

that is constructed by gluing the ascending sequence of affinoid spaces

SpT .0/1
� � SpT .1/1

� � SpT .2/1
� � : : :

where, for some c 2 K with jcj > 1, we may interpret SpT .i/1 D Khc�i �i as the

disk with radius jcji centered at the origin. Writing R.i/ D SpT .iC1/1 hci ��1i for the
annulus with radii jcji and jcjiC1, we obtain for each i 2 N

SpT .iC1/1 D SpT .i/1 [R.i/

as an admissible affinoid covering of SpT .iC1/1 and, hence,

A
1;rig
K D SpT .0/1 [

[

i2N
R.i/

as an admissible affinoid covering of the analytification A
1;rig
K . Thus, we could just as

well define the rigid analytification of A1K by relying on such a covering consisting
of a disk and an infinite sequence of annuli. Removing the origin from A1K , we get
A
1;rig
K � f0g as its analytification, and the latter admits

A
1;rig
K � f0g D

[

i2Z
R.i/

as a convenient admissible affinoid covering by annuli.
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Let us assume for a moment that K is algebraically closed, but not spherically
complete. Not spherically complete means that there exists a descending sequence
D0 
 D1 
 D2 
 : : : of disks of typeD�.a; r/ inK, centered at points a 2 K and
with radii r 2 jKj, such that the intersection

T
i2NDi is empty. For example, it can

be shown that the field Cp for any prime p is not spherically complete. Interpreting
B1 D SpT1 as the unit disk, we may assume that all disks Di are contained in B1.
Then B1 is covered by the ascending sequence of annuli B1 � Di where all these
annuli may be interpreted as affinoid subdomains of B1. However, as this covering
does not admit a finite refinement, it is not admissible. On the other hand, we are
free to use the covering

DC.0; 1/ D
[

i2N

�
B1 �Di

�

in order to define an “exotic” structure of rigid K-space on the points of the unit
disk. In the same way the covering

K D
[

i2N

�
B1 �Di

� [
[

i>1

R.i/

leads to an “exotic” structure of rigid K-space on the affine line over K. But let
us point out that in more refined theories allowing additional points like Berkovich
or Huber theory, these “exotic” structures become quite natural as they give rise to
subspace structures on suitable subspaces of the unit disk or the affine line.

Finally let us look at the projective n-space

PnK D ProjKdb�0; : : : ; �nec

where �0; : : : ; �n denote variables and K is not necessarily algebraically closed any
more. Writing

Ai D K
h�0
�i
; : : : ;

�n

�i

i

for the homogeneous localization of Kdb�0; : : : ; �nec by �i , the projective n-space
PnK is covered by the open affine subschemes U i D SpecAi ' AnK . Accordingly,
the rigid analytification P

n;rig
K admits an admissible covering consisting of the rigid

analytifications

U
rig
i D

[

j2N
SpK

D
c�j �0

�i
; : : : ; c�j �n

�i

E
' A

n;rig
K ; i D 0; : : : ; n;

for some c 2 K, jcj > 1. We claim that, in fact, Pn;rigK is already covered by the
unit balls
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SpK
D�0
�i
; : : : ;

�n

�i

E
� U

rig
i ; i D 0; : : : ; n:

As a consequence, the latter covering is admissible, since it is a refinement of the
previous one. To justify that Pn;rigK is a union of the nC1 unit balls in U

rig
0 ; : : : ;U

rig
n ,

consider a closed point x 2 PnK , say with residue field L D K.x/, and view it
as an L-valued point in PnK.L/. As the latter set can be interpreted as the ordinary
projective n-space Pn.L/ D .LnC1 � f0g/=L�, we may represent x in terms of
homogeneous coordinates, say x D .x0 W : : : W xn/ with components xi 2 L.
Extending the absolute value of K to L, which is finite over K, choose an index i
such that

jxi j D max
˚jx0j; : : : ; jxnj

�
:

Then x factors through SpKh �0
�i
; : : : ;

�n
�i
i and, consequently, Pn;rigK is covered by unit

balls as claimed.



Chapter 6
Coherent Sheaves on Rigid Spaces

6.1 Coherent Modules

Consider an affinoid K-space X D SpA and an A-module M . We can look at the
functor F from affinoid subdomains in X to abelian groups that associates to any
affinoid subdomain SpA0 � X the tensor productM ˝A A0. The latter is, of course,
an abelian group, but we can also view it as an A-module or even as an A0-module.
F is a presheaf on X with respect to the weak G-topology, and this presheaf is, in
fact, a sheaf, as we have already remarked within the context of Tate’s Acyclicity
Theorem in 4.3/11. In particular, using 5.2/4, we see that F extends to a sheaf with
respect to the strong G-topology, again denoted by F .

It follows from the construction that F is a so-called OX -module. This means
that, for any admissible open U � X , the abelian group F .U / is equipped with an
OX.U /-module structure, in a way that all these module structures are compatible
with restriction homomorphisms. We call F the OX -module associated to the
A-module M , writing F DM ˝A OX . Note that we have

F jX 0 D .M ˝A A0/˝A0 OX jX 0

for the restriction of F to any affinoid subdomain X 0 D SpA0 in X .

Proposition 1. Let X D SpA be an affinoid K-space.

(i) The functor

� ˝A OX W M � M ˝A OX

from A-modules to OX -modules is fully faithful.
(ii) It commutes with the formation of kernels, images, cokernels, and tensor

products.

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__6,
© Springer International Publishing Switzerland 2014
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(iii) A sequence of A-modules 0 � M 0 � M � M 00 � 0 is exact if
and only if the associated sequence of OX -modules is exact:

0 � M 0 ˝A OX
� M ˝A OX

� M 00 ˝A OX
� 0

Proof. It is clear that the canonical map

HomA.M;M
0/ � HomOX

.M ˝A OX;M
0 ˝A OX/

is bijective, since an OX -morphism M ˝A OX
� M 0 ˝A OX is uniquely

determined by its inherent A-morphism

M DM ˝A OX.X/ � M 0 ˝A OX.X/ DM 0:

Thus, the functor � ˝A OX is fully faithful, which settles assertion (i). Furthermore,
by its construction, it commutes with tensor products.

Next, if

0 � M 0 � M � M 00 � 0

is an exact sequence of A-modules, the induced sequence

0 � M 0 ˝A A0 � M ˝A A0 � M 00 ˝A A0 � 0

is exact for any affinoid subdomain SpA0 � X , since the corresponding map
A � A0 is flat by 4.1/5. From this one easily concludes that the functor of taking
associated OX -modules is exact, i.e. carries short exact sequences over to short exact
sequences. Then assertion (ii) becomes clear and, furthermore, also (iii), using the
fact that an A-module M is trivial if and only if M ˝A OX is trivial. ut

Definition 2. Let X be a rigid K-space and F an OX -module.

(i) F is called of finite type if there exists an admissible covering .Xi /i2I of X
together with exact sequences of type

Osi
X jXi � F jXi � 0, i 2 I:

(ii) F is called of finite presentation, if there exists an admissible covering .Xi /i2I
of X together with exact sequences of type

Ori
X jXi � Osi

X jXi � F jXi � 0, i 2 I:

(iii) F is called coherent if F is of finite type and if for every admissible open
subspace U � X the kernel of a morphism Os

X jU � F jU is of finite type.
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For affinoid K-spaces X D SpA, we have Or
X D Ar ˝A OX . Furthermore,

as A is Noetherian, we conclude from Proposition 1 that kernels and cokernels
of morphisms of type Or

X
� Os

X are associated to A-modules of finite type.
Therefore we can state:

Remark 3. An OX -module F on a rigid K-space X is coherent if and only if
there exists an admissible affinoid covering U D .Xi /i2I of X such that F jXi is
associated to a finite OXi .Xi /-module for all i 2 I . More precisely, we will say that
F is U-coherent in this case.

There is a basic result that fully clarifies the structure of coherent modules on
affinoid K-spaces, see Kiehl [K1]:

Theorem 4 (Kiehl). Let X D SpA be an affinoid K-space and F an OX -module.
Then F is coherent if and only if F is associated to a finite A-module.

Before we give the proof, let us observe that this result allows a characterization
of coherent OX -modules as follows:

Corollary 5. Let X be a rigid K-space and F an OX -module on it. The following
are equivalent:

(i) F is coherent, i.e. F is U-coherent for some admissible affinoid covering U
of X .

(ii) F is U-coherent for all admissible affinoid coverings U of X .

Proof. We have only to show that (i) implies (ii). So assume that F is coherent.
In order to derive assertion (ii), we may assume that X is affinoid, say X D SpA.
But then, applying Theorem 4, F is associated to a finite A-module and (ii) is
obvious. ut

To start the proof of Theorem 4, observe that the if-part of the assertion is trivial.
So assume that F is U-coherent for some admissible affinoid covering U of X . To
show that F is associated to a finiteA-module, we may apply Lemmata 4.3/4, 4.3/5,
and 4.3/6, and thereby restrict ourselves to the case where U is a Laurent covering of
X . Furthermore, using an inductive argument, it is only necessary to treat the case
where U is a Laurent covering generated by a single function f 2 A. Then it is
enough to establish the following facts:

Lemma 6. Let F be U-coherent. Then H1.U,F / D 0.

Lemma 7. Assume H1.U,F / D 0 for all U-coherent OX -modules F . Then any
such module is associated to a finite A-module.
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Proof of Lemma 6. Let U D .U1; U2/ with U1 D X.f / and U2 D X.f �1/. Due to
our assumption,

M1 D F .U1/; M2 D F .U2/; M12 D F .U1 \ U2/

are finite modules over Ahf i, Ahf �1i, and Ahf; f �1i, respectively, and the Čech
complex of alternating cochains C �

a .U;F / degenerates to

0 � M1 �M2
d0� M12

� 0:

Since H1.U;F / can be computed using alternating cochains, see 4.3/8, it is only
necessary to show that d0WM1 �M2

� M12 is surjective.
To do so, we fix an arbitrary residue norm on A and consider on Ah�i, Ah�i, as

well as Ah�; �i the Gauß norm, and on Ahf i, Ahf �1i, and Ahf; f �1i the residue
norms induced from the canonical epimorphisms

Ah�i � Ah�i=.� � f / D Ahf i;
Ah�i � Ah�i=.f � � 1/ D Ahf �1i;
Ah�; �i � Ah�; �i=.� � f; f � � 1/ D Ahf; f �1i:

Then all restriction morphisms of the commutative diagram

are contractive. Choosing a constant ˇ > 1, any g 2 Ahf; f �1i can be represented
by a power series

g0 D
X

c���
��� 2 Ah�; �i

where the coefficients c�� 2 A form a zero sequence satisfying jc�� j � ˇjgj.
Thereby we see:

(�) Let ˇ > 1. For any g 2 Ahf; f �1i, there exist elements gC 2 Ahf i and
g� 2 Ahf �1i such that

jgCj � ˇjgj; jg�j � ˇjgj; g D gCjU1\U2 C g�jU1\U2 :
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Next choose elements v0
1; : : : ; v

0
m 2 M1 and w0

1; : : : ;w
0
n 2 M2 generating M1 as

anAhf i-module andM2 as anAhf �1i-module. Using the fact that F is U-coherent,
the restrictions v1; : : : ; vm of the v0

i to U1\U2, as well as the restrictions w1; : : : ;wn
of the w0

j to U1 \ U2, will generate M12 as Ahf; f �1i-module. Now look at the
epimorphisms

�
Ahf i�m � M1;

�
Ahf �1i�n � M2;

�
Ahf; f �1i�m � M12;

given by mapping unit vectors to the v0
i 2M1, to the w0

j 2M2, and to the vi 2M12,
respectively. Just as in the case of affinoid algebras, we can consider the attached
residue norms on M1, M2, and M12, starting out from the maximum norms on
.Ahf i/m, .Ahf �1i/n, and .Ahf; f �1i/m. These residue norms will be complete,
as any Cauchy sequence, for example in M1, can be lifted to a Cauchy sequence
in .Ahf i/m. Furthermore, M1 will be a normed Ahf i-module in the sense that we
have javj � jajjvj for a 2 Ahf i and v 2M1; likewise for M2 and M12. Thus, using
a standard approximation procedure, the surjectivity of the coboundary morphism
d0WM1 �M2

� M12 will be a consequence of the following assertion:

(��) Let " > 0. Then there is a constant ˛ > 1 such that for each u 2 M12, there
exist elements uC 2M1 and u� 2M2 with

ˇ̌
uC ˇ̌ � ˛ˇ̌

u
ˇ̌
;

ˇ̌
u� ˇ̌ � ˛ˇ̌

u
ˇ̌
;

ˇ̌
u � .uCjU1\U2/ � .u�jU1\U2/

ˇ̌ � "ˇ̌uˇ̌
:

To justify the assertion, recall that the elements vi as well as the wj generateM12

as an Ahf; f �1i-module. Hence, there are equations

vi D
nX

jD1
cijwj ; i D 1; : : : ; m;

wj D
mX

lD1
djlvl ; j D 1; : : : ; n;

with coefficients cij; djl 2 Ahf; f �1i. Using the fact that the image of Ahf �1i is
dense in Ahf; f �1i, there are elements c0

ij 2 Ahf �1i such that

max
ijl
jcij � c0

ijjjdjlj � ˇ�2";

where ˇ > 1 is a constant as in (�) and where, in more precise terms, we should have
used the restriction c0

ijjU1\U2 in place of c0
ij. We claim that assertion (��) holds for

˛ D ˇ2 max.jc0
ijj C 1/:



122 6 Coherent Sheaves on Rigid Spaces

Indeed, consider any element u 2 M12, and write it as u D Pm
iD1 aivi with

coefficients ai 2 Ahf; f �1i. Due to the choice of the norm onM12, we may assume
jai j � ˇjuj for all i . Furthermore, using (�), we can write

ai D aC
i jU1\U2 C a�

i jU1\U2
with elements aC

i 2 Ahf i, a�
i 2 Ahf �1i satisfying jaC

i j � ˇjai j and ja�
i j � ˇjai j.

Now consider the elements

uC D
mX

iD1
aC
i v0

i 2M1;

u� D
mX

iD1

nX

jD1
a�
i c

0
ijw

0
j 2M2:

We have

juCj � max
i
jaC
i j � max

i
ˇjai j � ˇ2juj � ˛juj;

ju�j � max
ij
ja�
i jjc0

ijj � max
i
ˇjai jmax

ij
jc0

ijj � ˇ2jujmax
ij
jc0

ijj � ˛juj;

and, omitting restrictions to U1 \ U2,

u D
mX

iD1
.aC
i C a�

i /vi D uC C
mX

iD1

nX

jD1
a�
i cijwj

D uC C u� C
mX

iD1

nX

jD1
a�
i .cij � c0

ij/wj :

Hence,

ju � uC � u�j D
ˇ
ˇ̌
mX

iD1

nX

jD1

mX

lD1
a�
i .cij � c0

ij/djlvl
ˇ
ˇ̌

� max
ijl
ja�
i jjcij � c0

ijjjdjlj � ˇ2jujˇ�2" D "juj;

which justifies assertion (��) and thereby the assertion of the lemma. ut
Proof of Lemma 7. Here it is not necessary to make a difference between Laurent
and general affinoid coverings. Therefore, consider a covering U D .Ui /iD1;:::;n
of X D SpA consisting of affinoid subdomains Ui D SpAi � X . Since F is
U-coherent, F jUi is associated to a finite Ai -module Mi , i D 1; : : : ; n. For x a
point in X , we denote by mx � A its corresponding maximal ideal and by mxOX
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the associated coherent ideal of the structure sheaf OX . Its product with F yields
a submodule mxF � F that is U-coherent, since its restriction to each Ui is
associated to the submodule mxMi � Mi ; the latter is finite, since Mi is a finite
module over a Noetherian ring. Then F =mxF is U-coherent by Proposition 1 and

0 � mxF � F � F =mxF � 0

is a short exact sequence of U-coherent OX -modules.
If U 0 D SpA0 is an affinoid subdomain of X , which is contained in Ui for some

index i , then the above short exact sequence restricts to a short exact sequence of
coherent modules on U 0. More precisely, as the modules mxF , F , and F =mxF

are U-coherent, their restrictions to Ui are associated to finite Ai -modules and the
same is true for restrictions to U 0 in terms of A0-modules. Thus, by Proposition 1,
the above short exact sequence leads to a short exact sequence of A0-modules

0 � mxF .U
0/ � F .U 0/ � F =mxF .U

0/ � 0:

In particular, U 0 can be any intersection of sets in U, and we thereby see that the
canonical sequence of Čech complexes

0 � C �.U;mxF / � C �.U;F / � C �.U;F =mxF / � 0

is exact. As H1.U;mxF / D 0 by our assumption, the associated long cohomology
sequence yields an exact sequence

0 � mxF .X/ � F .X/ � F =mxF .X/ � 0: (�)

Next we claim:

(��) The restriction homomorphism F =mxF .X/ � F =mxF .Uj / is bijective
for any index j such that x 2 Uj .

To justify the claim, consider an affinoid subdomain U 0 D SpA0 � X such that
F jU 0 is associated to a finite A0-module M 0 and write U 0 \ Uj D SpA0

j . Then
F =mxjU 0 is associated to the quotient M 0=mxM

0, and the canonical map

M 0=mxM
0 � M 0=mxM

0 ˝A0 A0
j
�� M 0=mxM

0 ˝A0=mxA0 A0
j =mxA

0
j

is bijective for x 2 Uj . This follows from 3.3/10 if x 2 U 0\Uj , since the restriction
map A0=mxA

0 � A0
j =mxA

0
j is bijective then. However, the latter is also true for

x 62 U 0 since in this case the quotients A0=mxA
0 and A0

j =mxA
0
j are trivial.

Now if F is known to be U-coherent, we look at the canonical diagram
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with exact rows. By the consideration above, the middle and right restriction
morphisms are bijective. Thus, the same will hold for the left one, which settles
assertion (��).

Looking at the commutative diagram

for x 2 Uj , the exact sequence (�) shows in conjunction with (��) thatMj=mxMj ,
as an Aj -module, is generated by the image of F .X/. Hence, by the classical
Lemma of Nakayama, F .X/ generates Mj locally at each point x 2 Uj . But
then the submodule of Mj generated by the image of F .X/ must coincide with
Mj . Therefore we can choose elements f1; : : : ; fs 2 F .X/ such that their images
generate all modules Mi D F .Ui / simultaneously for i D 1; : : : ; n. As a
consequence, the morphism of OX -modules 'WOs

X
� F given by f1; : : : ; fs

is an epimorphism of U-coherent OX -modules, and its kernel ker' is a U-coherent
submodule of Os

X by Proposition 1.
We can work now in the same way as before with ker' in place of F and

construct an epimorphism  WOr
X

� ker', thus obtaining an exact sequence

Or
X

 � Os
X

'� F � 0

of OX -modules. Thereby we see that F is isomorphic to the cokernel of  , and so
F is associated to the cokernel of the A-module morphism  .X/WAr � As by
Proposition 1. The latter is finite and, hence, F is associated to a finite A-module.
This finishes the proof of Lemma 7 and thereby also the proof of Theorem 4. ut

If 'WX � Y is a morphism of rigid K-spaces and F an OX -module,
we can construct its direct image '�F . In terms of abelian groups, the latter
sheaf associates to any admissible open subspace V � Y the abelian group
F .'�1.V //. Clearly, F .'�1.V // is an OX.'

�1.V //-module and, via the morphism
'�
V WOY .V / � OX.'

�1.V //, also an OY .V /-module. Thereby the sheaf '�F

inherits the structure of an OY -module. The picture is quite simple for associated
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modules on affinoid K-spaces. So assume that 'WX � Y is a morphism of
affinoid K-spaces, say X D SpA and Y D SpB , and let F DM ˝A OX for some
A-module M . Then the definition shows that '�F coincides with the OY -module
associated to M viewed as a B-module via the morphism '�

Y WB � A.
In particular, if ' is finite in the sense that A is a finite B-module via '�

Y , it follows
that the direct image '�F is coherent if the same is true for F . The latter statement
is more generally true for so-called proper morphisms of rigidK-spaces, as we will
explain later.

Considering a morphism 'WX � Y of rigid K-spaces again, we may view
'� as a functor from OX -modules to OY -modules, a functor that is easily seen to
be left-exact. There is a so-called left-adjoint '� of '�, which is right-exact. Given
an OY -module E , the OX -module '�E is uniquely characterized (up to canonical
isomorphism) by the equation

HomOX
.'�E;F / D HomOY

.E; '�F /;

which is supposed to be functorial in F varying over all OX -modules. '�E is
called the inverse image of E . Of course, one has to show that an OX -module '�E

satisfying these equations really exists. There is a general procedure for showing
the existence, which we will not explain at this place. We just look at the special
case where X and Y are affinoid, say X D SpA and Y D SpB , and where E is
associated to a B-module N . In this situation, it is easy to see that the OX -module
associated to N ˝B A satisfies the above equations and, hence, must coincide
with '�E .

6.2 Grothendieck Cohomology

In the present section we will be concerned with OX -modules on rigid K-spaces
X . As usual, the cohomology of such modules is defined via derived functors. The
functors we want to consider are the section functor

� .X; �/WF � � .X;F / D F .X/;

which associates to an OX -module F the group of its global sections F .X/ and,
for a morphism of rigid K-spaces 'WX � Y , the direct image functor

'�WF � '�F ;

which associates to an OX -module F its direct image '�F . Both functors are
left-exact. To define their right-derived functors we need injective resolutions. For
shortness, let us write C for the category of OX -modules.
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Definition 1. An object F 2 C is called injective if the functor Hom.�,F / is exact,
i.e. if for each short exact sequence

0 � E 0 � E � E 00 � 0

in C also the sequence

0 � Hom.E 00,F / � Hom.E ,F / � Hom.E 0,F / � 0

is exact.

As Hom.�;F / is left-exact, the sequence

0 � Hom.E 00;F / � Hom.E;F / � Hom.E 0;F /

will always be exact, and we see that F is injective if and only if for a given
monomorphism E 0

� � E any morphism E 0 � F admits a (not necessarily
unique) extension E � F . Without proof we will use:

Proposition 2. The category C of OX -modules on a rigid K-space X contains
enough injectives, i.e. for each object F 2 C there is a monomorphism F � � I

into an injective object I 2 C.

The assertion of Proposition 2 is true for quite general categories C; cf. Grothen-
dieck [Gr], Thm. 1.10.1.

Corollary 3. Every object F 2 C admits an injective resolution, i.e. there is an
exact sequence

0 � F � I0 � I1 � : : :

with injective objects Ii , i D 0,1, : : :.

Recall that, more precisely, the above exact sequence has to be viewed as a quasi-
isomorphism of complexes

where the lower row is referred to as an injective resolution of F .
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Proof of Corollary 3. We choose an embedding F � � I0 of F into an injective
object I0, an embedding I0=F � � I1 into an injective object I1, then an
embedding I1= im I0 � � I2 into an injective object I2, and so on. ut

Now let us define right derived functors of the section functor � D � .X; �/
and of the direct image functor '�, the latter for a morphism of rigid K-spaces
'WX � Y . To apply these functors to an OX -module F , choose an injective
resolution

0 � I0
˛0� I1

˛1� I2
˛2� : : :

of F , apply the functor � to it, thereby getting a complex of abelian groups

0 � � .X; I0/
� .˛0/� � .X; I1/

� .˛1/� � .X; I2/
� .˛0/� : : : ;

and take the cohomology of this complex. Then

Rq� .X;F / D Hq.X;F / D ker� .˛q/= im� .˛q�1/

is called the qth cohomology group of X with values in F . Using the technique
of homotopies, one can show that these cohomology groups are independent of the
chosen injective resolution of F , and that Rq� .X; �/ D Hq.X; �/ is a functor on
C; it is the so-called qth right-derived functor of the section functor � .X; �/. Note
that R0� .X; �/ D � .X; �/, since the section functor is left-exact. For F D OX ,
the cohomology groups Hq.X;F / may be viewed as certain invariants of the rigid
K-space X .

Similarly one proceeds with the direct image functor '�, which might be viewed
as a relative version of the section functor. Applying '� to the above injective
resolution of F , we get the complex of OY -modules

0 � '�I0
'

�

˛0� '�I1
'

�

˛1� '�I2
'

�

˛2� : : :

and

Rq'�.F / D ker'�˛q= im'�˛q�1

is an OY -module, which is called the qth direct image of F . Clearly, R0'�.F /
equals '�.F /, and one can show that Rq'�.F / is the sheaf associated to the
presheaf

Y 
 V � Hq
�
'�1.V /;F j'�1.V /

�
:

Let us mention the existence of long exact cohomology sequences, writing ˚ for
a left-exact functor on C, such as the section functor or a direct image functor:
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Theorem 4. Let

0 � F 0 ˛� F
ˇ� F 00 � 0

be an exact sequence of objects in C. Then there is an associated long exact
sequence:

0 � ˚.F 0/ ˚.˛/� ˚.F /
˚.ˇ/� ˚.F 00/

@ � R1˚.F 0/ R1˚.˛/� R1˚.F /
R1˚.ˇ/� R1˚.F 00/

@ � R2˚.F 0/ R2˚.˛/� R2˚.F /
R2˚.ˇ/� R2˚.F 00/

@ � : : :

There is, of course, the problem of computing derived functors or cohomology
groups. For example, for an injective object I 2 C we have R0˚.I/ D ˚.I/ and
Rq˚.I/ D 0 for q > 0 since we can use 0 � I � 0 as an injective resolution
of I. In general, one can try to compute cohomology groups via Čech cohomology.
Below we give some details on this method, but for more information one may
consult Artin [A], Grothendieck [Gr], or Godement [Go].

If F is an OX -module, we define the Čech cohomology groups Hq.U;F / for
any admissible covering U of X as in Sect. 4.3. Then

LHq.X;F / D lim�!
U

Hq.U;F /

where the limit runs over all admissible coverings of X , is called the qth Čech
cohomology group of X with values in F . There is always a canonical morphism

LHq.X;F / � Hq.X;F /

that it is bijective for q D 0; 1 and injective for q D 2. To compute higher
cohomology groups via Čech cohomology, one needs special assumptions.

Theorem 5. Let U be an admissible covering of a rigid K-space X and let F be an
OX -module. Assume Hq.U ,F / D 0 for q > 0 and U any finite intersection of sets
in U. Then the canonical map

Hq.U,F / � Hq.X ,F /

is bijective for all q � 0.

Theorem 6. Let X be a rigid K-space, F an OX -module, and S a system of
admissible open subsets of X satisfying the following conditions:
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(i) The intersection of two sets in S is in S again.
(ii) Each admissible covering of an admissible open subset of X admits an

admissible refinement consisting of sets in S.
(iii) LHq.U ,F / D 0 for q > 0 and U 2 S.

Then the canonical homomorphism

LHq.X ,F / � Hq.X ,F /

is bijective for q � 0.

For example, let us look at an affinoid K-space X and let S be the system of all
affinoid subdomains of X . Then the conditions of Theorem 6 are satisfied for the
structure sheaf F D OX or for any OX -module associated to an OX.X/-module;
for condition (iii), see Tate’s Acyclicity Theorem 4.3/10 and Corollary 4.3/11. Thus,
we can conclude:

Corollary 7. Let X be an affinoid K-space. Then

Hq.X ,OX/ D 0 for q > 0:

The same is true for any OX -module F in place of OX that is associated to an
OX.X/-module.

6.3 The Proper Mapping Theorem

We end the first part of these lectures by an advanced topic, Kiehl’s Proper Mapping
Theorem; its proof will follow in Sect. 6.4. The theorem requires the notions of
properness and, in particular, of separatedness for morphisms of rigid spaces. In
order to introduce the latter concept, we adapt the definition of closed immersions,
as given in 6.1/1 for affinoid spaces, to the setting of global rigid spaces.

Definition 1. A morphism of rigid K-spaces 'WX � Y is called a closed
immersion if there exists an admissible affinoid covering .Vj /j2J of Y such that,
for all j 2 J , the induced morphism 'j W'�1.Vj / � Vj is a closed immersion of
affinoid K-spaces in the sense of 4.2/1. The latter means that 'j is a morphism of
affinoid spaces, say '�1.Vj / D SpAj and Vj D SpBj , and that the corresponding
morphism of affinoid K-algebras Bj � Aj is an epimorphism.

If 'WX � Y is a closed immersion in the sense of the definition, we can
view '�OX as a coherent OY -module as characterized in 6.1/3. Using Kiehl’s
Theorem 6.1/4 in conjunction with 6.1/1, one can show that the condition in
Definition 1 is independent of the chosen admissible affinoid covering .Vj /j2J .
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In fact, a morphism of affinoid K-spaces SpA � SpB is a closed immersion if
and only if the corresponding morphismB � A is an epimorphism. In particular,
we thereby see that Definition 1 extends the notion of closed immersions for affinoid
K-spaces, as given in 4.2/1.

Definition 2.

(i) A rigid K-space X is called quasi-compact if it admits a finite admissible
affinoid cover. A morphism of rigid K-spaces 'WX � Y is called quasi-
compact if for each quasi-compact open subspace Y 0 � Y its inverse image
'�1.Y 0/ is quasi-compact.

(ii) A morphism of rigid K-spaces 'WX � Y is called separated (resp. quasi-
separated) if the diagonal morphism�WX � X�Y X is a closed immersion
(resp. a quasi-compact morphism).

(iii) A rigid K-space X is called separated (resp. quasi-separated) if the structural
morphism X � SpK is separated (resp. quasi-separated).

Of course, every separated morphism of rigid K-spaces is quasi-separated since
closed immersions are quasi-compact. As in algebraic geometry, one shows:

Proposition 3. Every morphism of affinoid K-spaces 'WSpA � SpB is
separated.

Proposition 4. Let 'WX � Y be a separated (resp. quasi-separated) morphism
of rigid K-spaces and assume that Y is affinoid. Then, for any open affinoid
subspaces U ,V � X , the intersection U \ V is affinoid (resp. quasi-compact).

In algebraic geometry, one knows for a morphism of schemes 'WX � Y that
the diagonal morphism �WX � X �Y X is always a locally closed immersion.
Furthermore, � is a closed immersion and, hence, ' is separated, if and only if the
image of � is closed in X �Y X . In rigid analytic geometry the diagonal morphism
�WX � X �Y X is still a locally closed immersion, but the characterization of
separated morphisms is a bit more complicated; see [BGR], 9.6.1/7 in conjunction
with [BGR], 9.6.1/3:

Proposition 5. A morphism of rigid K-spaces 'WX � Y is separated if and only
if the following hold:

(i) ' is quasi-separated.
(ii) The image of the diagonal morphism �WX � X �Y X is a closed analytic

subset in X �Y X , i.e., locally on open affinoid parts W � X �Y X , it is a
Zariski closed subset of W .

Considering a rigid K-space Y as a base space, a morphism of rigid K-spaces
X � Y is quite often referred to as a rigid Y -space. We need to introduce a
notion of relative compactness over such a base Y .
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Definition 6. Let X be a rigid Y -space where the base space Y is affinoid, and let
U � U 0 � X be open affinoid subspaces. We say that U is relatively compact in
U 0 and write U bY U

0 if there exist affinoid generators f1, : : : ,fr of OX.U
0/ over

OY .Y / (in the sense that the structural morphism OY .Y / � OX.U
0/ extends to

an epimorphism OY .Y /h�1, : : : ,�ri � OX.U
0/ mapping �i to fi ) such that

U � ˚
x 2 U 0 ; jfi .x/j < 1

�

or, in equivalent terms, such that there is an " 2pjK�j,0 < " < 1, satisfying

U � U 0�"�1f1, : : : ,"�1fr
�
:

The notion of relative compactness behaves in a quite reasonable way:

Lemma 7. Let X1,X2 be affinoid spaces over an affinoid K-space Y and consider
affinoid subdomains Ui � Xi , i D 1,2. Then:

(i) U1 bY X1 H) U1 �Y X2 bX2 X1 �Y X2.
(ii) Ui bY Xi , i D 1,2, H) U1 �Y U2 bY X1 �Y X2.

(iii) Ui bY Xi , i D 1,2, H) U1 \ U2 bY X1 \X2 where, slightly different from
the above, X1,X2 are open affinoid subspaces of an ambient rigid K-space X
over Y and the morphism X � Y is separated.

Now we can introduce proper morphisms of rigid K-spaces. The definition is
inspired from compact complex Riemann surfaces that are viewed as manifolds
without boundary.

Definition 8. A morphism of rigidK-spaces 'WX � Y , orX as a rigid Y -space,
is called proper if the following hold:

(i) ' is separated.
(ii) There exist an admissible affinoid covering .Yi /i2I of Y and for each i 2 I two

finite admissible affinoid coverings .Xij/jD1:::ni ,.X 0
ij/jD1:::ni of '�1.Yi / such

that Xij bYi X
0
ij for all i and j .

It can easily be shown that properness, just like separateness, behaves well with
respect to base change on Y and with respect to fiber products over Y ; cf. Lemma 7.
However, it is quite difficult to see that the composition of two proper morphisms
is proper again. To deduce this result, one uses the characterization of properness
in terms of properness on the level of formal models as we will study them in
Sect. 8.4; for details see Lütkebohmert [L] if K carries a discrete valuation, as well
as Temkin [Te] in the general case.

Of course, finite morphisms of rigid K-spaces are examples of proper mor-
phisms. Furthermore the projective space PnK , viewed as the rigid analytification
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of the corresponding K-scheme, is a prototype of a proper rigid K-space. More
generally, if 'WX � Y is a morphism of K-schemes of locally finite type, one
can show that the corresponding rigid analytification 'rigWX rig � Y rig is proper if
and only if ' is proper in the sense of algebraic geometry; see Köpf [Kö], Satz 2.16.
On the other hand, an affinoid K-space will never be proper over K, unless it is
finite over K, as can be read from Kiehl’s theorem below.

We want to present now Kiehl’s version of the Proper Mapping Theorem, see
Kiehl [K2], as well as some of its applications. The proof of this theorem will be
postponed until the next section.

Theorem 9 (Kiehl). Let 'WX � Y be a proper morphism of rigid K-spaces
and F a coherent OX -module. Then the higher direct images Rq'�.F /, q � 0, are
coherent OY -modules.

A basic lemma that has to be established on the way is the following one:

Lemma 10. If , in the situation of Theorem 9, Y is affinoid, say Y D SpB , and if
Y 0 D SpB 0 � Y is an affinoid subdomain, then

�
�
Y 0,Rq'�.F /

� D Hq
�
'�1.Y 0/,F

� D Hq.X ,F /˝B B 0, q � 0:

There are a lot of applications of the Proper Mapping Theorem, and before
concluding this section, we want to discuss some of them. Let 'WX � Y be
a proper morphism of rigid K-spaces. Then, for any closed analytic subset A � X
(i.e., locally on open affinoid parts of X , one requires that A is Zariski closed in X ),
the image '.A/ is a closed analytic subset of Y . Furthermore, there is the so-called
Stein Factorization of ': The coherent OY -module '�.OX/ gives rise to a rigid
K-space Y 0 that is finite over Y . Thus, ' splits into a proper morphism X � Y 0
with connected fibers and a finite morphism Y 0 � Y .

Finally, we want to present the subsequent theorems applying to the GAGA-
functor, dealt with in Sect. 5.4. Note that, for a K-scheme of locally finite type X ,
any OX -module F gives rise to an OX rig -module F rig on the rigid analytification
X rig of X , and one can show that F rig is coherent if and only if the same is true
for F .

Theorem 11. Let X be a proper K-scheme and F a coherent OX -module. Then the
canonical maps

Hq.X ,F / � Hq.X rig,F rig/, q � 0,

are isomorphisms.
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Theorem 12. Let X be a proper K-scheme and F ,G coherent OX -modules. Then
the canonical map

HomOX
.F ,G / � HomO

X rig .F
rig,G rig/

is an isomorphism.

Theorem 13. Let X be a proper K-scheme and F 0 a coherent OX rig -module. Then
there is a coherent OX -module F satisfying F rig D F 0; furthermore, F is unique
up to canonical isomorphism.

It should be mentioned that the last three theorems generalize to the relative
GAGA-functor where one works over an affinoid K-algebra as base instead of K.
For details, see Köpf [Kö].

One may apply Theorem 13 to the case where X equals the projective n-space
PnK and where F 0 is a coherent ideal I0 � OX rig . As the zero sets of such coherent
ideals are precisely the closed analytic subsets of X rig, we obtain the analog of
Chow’s Theorem, namely that each analytic subset of Pn;rigK is algebraic.

6.4 Proof of the Proper Mapping Theorem

In this section we will prove Kiehl’s Theorem 6.3/9, which states that all higher
direct images of a coherent sheaf under a proper morphism are coherent again. To
give a short preview on the method we will use, consider a proper morphism of rigid
K-spaces 'WX � Y where Y is affinoid, and assume that the following (slightly
stronger) condition for ' is satisfied:

(�) There exist two finite admissible affinoid coverings U D .Ui /iD1;:::;s as well as
V D .Vi /iD1;:::;s of X such that Vi bY Ui for all i .

Note that a separated morphism ' is proper if and only if there is an admissible
affinoid covering of Y such that condition (�) is satisfied for the inverse images of
the members of this covering.

Now let F be a coherent OX -module. As a main step of proof, we will show that
Hq.X;F / is a finite module over B D OY .Y / for all q � 0. Applying 6.2/5 in
conjunction with 6.2/7, we may look at Čech cohomology and use the fact that the
canonical morphisms

Hq.U;F /
res� Hq.V;F / � Hq.X;F /; q � 0;

are isomorphisms. Thus, writing Zq.V;F / for the kernel of the coboundary map
dq WCq.V;F / � CqC1.V;F /, it is enough to show that the maps
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f q WCq�1.V;F / � Zq.V;F /; q � 0;

(with C�1.V;F / D 0) induced by the coboundary maps of the Čech complex
C �.V;F / have finite B-modules as cokernels. Let

rq WZq.U;F / � Zq.V;F /; q � 0;

be the morphisms induced from the restriction map C �.U;F / � C �.V;F /
on the kernels of coboundary maps. Then, relying on the fact that associated maps
between cohomology groups are isomorphisms, as mentioned above, all maps

f q C rq WCq�1.V;F /˚Zq.U;F / � Zq.V;F /; q � 0;

will be surjective. At this point a subtle approximation argument comes in. It says
that the map rq is suitably “nice” such that, when we disturb f qC rq by subtracting
rq , the resulting map f q , although not necessarily surjective any more, will still
have finite cokernel. It is this approximation step that we will discuss first.

In order to make the notion of “nice” maps more explicit, we introduce some
notation. As before, let B be an affinoid K-algebra that is equipped with a fixed
residue norm j � j. On B we will consider normed modulesM that are complete. For
any such M let

Mı D ˚
x 2M I jxjM � 1

�
;

and, for any B-linear continuous homomorphism f WM � N between two such
B-modules, set

ˇ
ˇf

ˇ
ˇ D sup

� jf .x/jN
jxjM I x 2M � f0g


:

Using Lemma 1 of Appendix B we see that jf j is finite. In particular, we thereby
get a complete B-module norm on the space of all B-linear homomorphisms from
M to N . As usual, let R be the valuation ring of K.

Definition 1. A continuous B-linear homomorphism f WM � N is called
completely continuous if it is the limit of a sequence .fi /i2N of continuous B-linear
homomorphisms such that im.fi / is a finite B-module for all i 2 N. Furthermore,
if there is an element c 2 R � f0g such that for all integers i 2 N the Bı-module
cf i .M

ı/ is contained in a finiteBı-submodule ofNı, which may depend on i , then
f is called strictly completely continuous.

We want to give a basic example of a strictly completely continuous
homomorphism.
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Proposition 2. Let f WBh�i � A be a K-homomorphism where A and B are
affinoid K-algebras and � D .�1, : : : ,�n/ a system of variables. Consider on Bh�i
the Gauß norm derived from a given residue norm on B and on A any residue norm
j � j such that f jB WB � A is contractive. Then, if jf .�i /jsup < 1 for all i ,
the map f is a strictly completely continuous homomorphism of complete normed
B-modules.

Proof. Since jf .�i /jsup < 1, we see from 3.1/18 that f .�i / is topologically nilpotent
in A for all i , and it follows that .f .��//�2Nn is a zero sequence in A.

For i 2 N set Mi D L
j�jDi B�� so that Bh�i equals the complete direct sum

M D OLi2NMi . Furthermore, let fi WM � A be the B-module homomorphism

that equals f on Mi and is trivial on the complement OLj2N;j¤iMj . Then, since
f .��/ is a zero sequence inA, we can conclude that f DP

i2N fi and, hence, since
the Mi are finite B-modules, that f is completely continuous. In fact, choosing
c 2 R � f0g such that jf .��/j � jcj�1 for all �, we get cf i .M

ı/ � Aı, and we see
that f is strictly completely continuous, since fi .Mı/ D fi .Mi

ı/ and since each
Mi
ı is a finite Bı-module. ut
We start the approximation process alluded to above by establishing a Theorem

of L. Schwarz.

Theorem 3. Let f ,gWM � N be continuous homomorphisms of complete
normed B-modules where, as above, B is an affinoid K-algebra equipped with a
certain residue norm. Assume that

(i) f is surjective, and
(ii) g is completely continuous.

Then the image im.f C g/ is closed in N , and the cokernel N= im.f C g/ is a
finite B-module.

Proof. We can view f as a continuous surjective linear map between K-Banach
spaces. Thus, by Banach’s Theorem, see [EVT], f is open and there exists a
constant t 2 K� such that tN ı � f .Mı/. In other words, replacing t by ct for
some c 2 K� with jcj < 1, we see for any y 2 N that there is some x 2 M
satisfying

f .x/ D y and jxj � jt j�1jyj:

Now consider the special case where jgj D ˛jt j for some ˛ < 1. We claim that,
under such an assumption, f C g is still surjective. Indeed, given y 2 N � f0g, we
can pick x 2M as before with f .x/ D y, jxj � jt j�1jyj, and write

.f C g/.x/ D y C y0
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where y0 D g.x/ 2 N satisfies jy0j � ˛jyj. Then, proceeding with y0 in the same
way as we did with y, an iteration argument in combination with a limit process
shows that, indeed, f C g is surjective.

To deal with the general case, we use the fact that g is completely continuous and,
hence, can be uniformly approximated by an infinite sum of continuous B-linear
maps having module-finite image. By the just considered special case, we may
assume that this sum is, in fact, finite and, hence, that g has module-finite image.
Then M= ker g may be viewed as a finite B-module, and we can consider the
commutative diagram

where the lower row is induced from f and, hence, all arrows are epimorphisms. It
follows that N=f .ker g/ is a finite B-module and, since

f .ker g/ D .f C g/.kerg/ � .f C g/.M/;

that the same is true for N=.f C g/.M/.
To show that im.f C g/ is closed in M , observe that kerg is closed in M and

that we can provide M= ker g with the canonical residue norm derived from the
norm of M . Using the assertion of 2.3/10, one can show that any submodule of
such a finite B-module is closed. In particular, kerf is closed, and we can consider
the residue norm via f on N=f .ker g/. On the other hand, we can assume, due
to Banach’s Theorem (see above), that the norm of N coincides with the residue
norm via f . Then it follows that the norm onN=f .ker g/ coincides with the residue
norm via N � N=f .ker g/. In particular, the latter map is continuous. Since
.f C g/.M/ can be interpreted as the inverse of a submodule of N=f .ker g/, and
since any such submodule is closed, as we have seen, it follows that .f C g/.M/ is
closed in N . ut

Recalling the maps

f q C rq WCq�1.V;F /˚Zq.U;F / � Zq.V;F /; q � 0;

as introduced in the beginning of the section, we would like to apply Theorem 3 to
the maps f D f q C rq and g D �rq , for all q. Certainly, f is surjective then,
but we do not know if g will be completely continuous. Basing our information
about complete continuity upon the example given in Proposition 2, we need a slight
generalization of the Theorem of Schwarz, as follows:



6.4 Proof of the Proper Mapping Theorem 137

Theorem 4. Let f ,gWM � N be continuous homomorphisms of complete
normed B-modules where, as above, B is an affinoid K-algebra equipped with a
certain residue norm. Assume that

(i) f is surjective, and

(ii) g is part of a sequence M[ p� M
g� N

j� N] of continuous
morphisms of complete normed B-modules where p is an epimorphism and
j identifies N with a closed submodule of N], and where the composed map
j ı g ı p is strictly completely continuous.

Then the image im.f C g/ is closed in N , and the cokernel N= im.f C g/ is a
finite B-module.

The proof of Theorem 4 requires some preparations.

Lemma 5. LetE be a finiteBı-module andE 0 � E aBı-submodule. Then, for any
constant 0 < ˛ < 1, there is a finite Bı-submodule E 00 � E 0 such that aE 0 � E 00
for all a 2 R with jaj � ˛.

Proof. If � WTn D Kh�i � B with a system of variables � D .�1; : : : ; �n/ is an
epimorphism defining the chosen residue norm on B , then the induced morphism
�ıWTnı D Rh�i � Bı is surjective by 2.3/9. Thus, we may assume that Bı
coincides with the algebraRh�i of all restricted power series in � having coefficients
in R. If R is a discrete valuation ring, Rh�i is Noetherian by Grothendieck and
Dieudonné [EGA I], Chap. 0, Prop. 7.5.2. Thus we are done in this case, since E is
Noetherian then.

To deal with the general case, assume that the valuation on K is not discrete.
There is a more or less obvious reduction step:

Let 0 � E1 � E
 � E2 � 0 be an exact sequence of finite

Bı-modules. Then the assertion of Lemma 5 holds for E if and only if it holds
for E1 and E2.

In fact, the only-if part being trivial, assume that the assertion of the lemma holds
for E1 and E2. Consider a submodule E 0 � E, and set E 0

1 D E 0 \ E1, as well as
E 0
2 D  .E 0/. Then, given a constant 0 < ˛ < 1, fix some constant � satisfyingp
˛ < � < 1. There are finite submodules E 00

1 � E 0
1 and E 00

2 � E 0
2 such that

cE 0
1 � E 00

1 and cE 0
2 � E 00

2 for all c 2 R with jcj � � . Lifting E 00
2 to a finite

submodule zE 00
2 � E 0, we claim that the submodule E 00 D E 00

1 C zE 00
2 � E 0 satisfies

the assertion of the Lemma. To justify this, pick some a 2 R with jaj � ˛ and
choose a constant c 2 R such that

pjaj � jcj � � . It follows  .cE0/ D cE0
2 � E 00

2

and, hence, cE0 � E 0
1 C zE 00

2 . But then we have

aE0 � c2E 0 � c.E 0
1 C zE 00

2 / � E 00
1 C zE 00

2 D E 00;

as required.
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Now, applying the above reduction step, we may assume that E is a finite free
Rh�i-module and, applying it again in a recursive way, that E coincides with Rh�i
itself. Then E 0 is an ideal in Rh�i. We will proceed by induction on n, the number
of variables. The case n D 0 is trivial, and the same is true for E 0 D 0. Therefore
assume n > 0 andE 0 ¤ 0. Write ˇ D supfjhj I h 2 E 0gwhere j � j denotes the Gauß
norm on Rh�i, and consider some g 2 E 0 such that jgj > ˛ˇ, for a fixed constant
0 < ˛ < 1. There is a constant c 2 R satisfying jcj D jgj, and we see that
f D c�1g is a well-defined element of Gauß norm 1 in Rh�i. Using 2.2/7,
we may apply a change of variables to Kh�i and thereby can assume that f
is �n-distinguished of some order s � 0. Then, by Weierstraß Division 2.2/8,
Rh�i=.f / is a finite Rh�0i-module where �0 D .�1; : : : ; �n�1/, and we can consider
the exact sequence

0 � .f / � Rh�i � Rh�i=.f / � 0:

As a finite Rh�0i-module, Rh�i=.f / satisfies the assertion of the lemma by the
induction hypothesis. Thus, by the argument given in the above reduction step,
it is enough to show that the assertion of the lemma holds for the submodule
E 0
1 D E 0 \ .f / � .f /. However, the latter is obvious from our construction.

Indeed, consider the submodule E 00
1 D .g/ � E 0

1. Any h 2 E 0
1 has Gauß norm

jhj � ˇ and, hence, any h 2 aE 0
1 has Gauß norm jhj � jajˇ � ˛ˇ � jgj by

the choice of g 2 E 0. But then, as we are working within the free monogenous
Rh�i-module fRh�i ' Rh�i, we see that aE0

1 � .g/ D E 00
1 as required. ut

Lemma 6. Let M
g� N

j� N] be a homomorphism of complete normed
B-modules where j identifies N with a closed submodule of N]. Assume that M is
topologically free in the sense that there exists a system .e	/	2� of elements in M
such that every x 2 M can be written as a converging series x DP

	2� b	e	 with
coefficients b	 2 B satisfying max	2� jb	j D jxj (and, hence, where the coefficients
b	 are unique).

Then, if j ı g is strictly completely continuous, the same is true for g.

Proof. We may assume that the norm of N] restricts to the one of N . Furthermore,
if j ıg is strictly completely continuous, it is, in particular continuous, and we may
assume that j ı g and g are contractive. Then g and j restrict to morphisms of
Bı-modules

Mı � N ı � � N]ı:

Since j ı g is strictly completely continuous, there exist continuous B-linear maps
hi WM � N], i 2 N, satisfying j ı g D limi2N hi , and there is a non-zero
constant c 2 R such that chi .Mı/ is contained in a finite Bı-submodule of N]ı
for each i . Adjusting norms onN andN] by the factor jcj�1, we may assume c D 1
and, hence, that hi .Mı/, for each i , is contained in a finite Bı-submodule of N]ı.
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Now consider a constant ˛, 0 < ˛ < 1, and assume that there is an element
a 2 R satisfying jaj D ˛. In order to show that g is strictly completely continuous,
it is enough to construct for each ", 0 < " < 1, a B-linear continuous map
g0WM � N such that

(i) jg � g0j � "˛�1, and
(ii) ag0.Mı/ is contained in a finite Bı-submodule of Nı.
To construct such an approximation g0 of g, let i 2 N be big enough such that
h D hi satisfies jj ı g � hj � ". By our assumption, h.Mı/ is contained in a finite
Bı-submodule E � N]ı. Thus, using Lemma 5, there is a finite Bı-submodule
E 00 � h.Mı/ such that ah.Mı/ � E 00.

We will obtain the desired approximation g0WM � N of g by modifying the
approximation hWM � N] in a suitable way. Fix generators y1; : : : ; yr of E 00,
let x1; : : : ; xr 2Mı be inverse images with respect to h such that yj D h.xj /, and
set zj D g.xj / for j D 1; : : : ; r . Then zj 2 N ı and jyj � zj j � " for all j . Thus,
we have approximated the elements yj 2 N]ı suitably well by certain elements
zj 2 N ı. Now, using the fact that ah.Mı/ � E 00, there are elements bj	 2 B ,
j D 1; : : : ; r , 	 2 �, such that

h.e	/ D
rX

jD1
bj	yj ; jbj	j � ˛�1;

and we can define a continuous B-linear map g0WM � N by setting

g0.e	/ D
rX

jD1
bj	zj :

Then, since jyj � zj j � " for all j , we have

ˇ̌
g.e	/ � g0.e	/

ˇ̌ � max
˚ˇ̌
g.e	/ � h.e	/

ˇ̌
;
ˇ̌
h.e	/ � g0.e	/

ˇ̌�

� max
˚
"; ˛�1"

� D ˛�1"

for all 	 and, hence, jg � g0j � ˛�1". Since ag0.Mı/ �Pr
jD1 Bızj � N ı, by the

construction of g0, we are done. ut
After these preparations, the proof of Theorem 4 is easy to achieve. First observe

that the epimorphism pWM[ � M is not really relevant, since composition
with such a continuous (and, hence, by Banach’s Theorem, open) B-linear map
p does not change the image of f C g. Assume first that M[ is topologically free,
as needed in Lemma 6. Then, with the help of this lemma, the assertion follows
from Theorem 3. If M[ is not topologically free, we can compose our situation
with a continuous B-linear epimorphism M[[ � M[ and apply the reasoning
used before. To obtain such an epimorphism, consider a bounded generating system
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.x	/	2� for M[ as ordinary B-module, and let M[[ be the completion of B.�/,
the free B-module generated by �, with respect to the canonical maximum norm.
Then M[[ is topologically free, and there is a canonical continuous epimorphism
M[[ � M[, as required. ut

Going back to Kiehl’s Theorem 6.3/9, we consider a proper morphism of rigid
K-spaces 'WX � Y and a coherent OX -module F . Then the higher direct image
Rq'�.F / is the sheaf associated to the presheaf

Y 
 Y 0 � Hq
�
'�1.Y 0/;F

�
:

In order to show that Rq'�.F / is a coherent OY -module in the sense of 6.1/3, we
may work locally on Y . In other words, we may assume that Y is affinoid and that,
as in the beginning of the present section, the following condition is satisfied:

(�) There exist two finite admissible affinoid coverings U D .Ui /iD1;:::;s as well as
V D .Vi /iD1;:::;s of X such that Vi bY Ui for all i .

As a first step we show:

Proposition 7. Let 'WX � Y be a proper morphism of rigid K-spaces where
Y is affinoid, and where condition (�) is satisfied. Let F be a coherent OX -module.
Then Hq.X ,F / is a finite module over B D OY .Y / for all q � 0.

Proof. Looking at the maps Vi � � Ui
'� Y , we can fix a residue norm onB , as

well as residue norms on OX.Ui / and OX.Vi / for i D 1; : : : ; s in such a way that the
canonical maps B � OX.Ui / � OX.Vi / are contractive. As a result, we may
view OX.Ui / � OX.Vi / as a continuous homomorphism of complete normed
B-modules. Furthermore, we can extend B � OX.Ui / to an epimorphism
Bh�1; : : : ; �ni � OX.Ui /, for a number of variables �1; : : : ; �n. Using the
Gauß norm derived from the residue norm of B , we view Ei D Bh�1; : : : ; �ni
as a topologically free complete normed B-module. Since we have Vi bY Ui ,
we may even assume that the image of each variable �j under the composition
Ei � OX.Ui / � OX.Vi / has supremum norm < 1. Then it follows from
Proposition 2 that the latter composition is strictly completely continuous. From
this we can conclude:

For each q 2 N, there exists a topologically free complete normed B-module
Eq together with a continuous epimorphism pWEq � Cq.U;F / such that the
composition

Eq p� Cq.U;F /
res� Cq.V;F /

is completely continuous.
Indeed, to settle the case q D 0, we consider the cartesian product of the maps

Ei � OX.Ui / � OX.Vi / as introduced above. Since any intersection of
type Vi0 \ : : : \ Viq lies relatively compact in the intersection Ui0 \ : : : \ Uiq
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by 6.3/7 (iii), the same reasoning works for q > 0. Also note that the restriction
of the above composition to the inverse image p�1.Zq.U;F // remains strictly
completely continuous for trivial reasons.

In the beginning of the section, we have introduced the maps

f q WCq�1.V;F / � Zq.V;F /; q � 0;

(with C�1.V;F / D 0) given by coboundary maps, which are continuous. Also we
have shown that the maps

f q C rq WCq�1.V;F /˚Zq.U;F / � Zq.V;F /; q � 0;

are surjective where rq WZq.U;F / � Zq.V;F / is the canonical restriction map
induced from the restriction map resWCq.U;F / � Cq.V;F /, as considered
above. We view rq , in a more precise manner, as the map

rq WCq�1.V;F /˚Zq.U;F / � Zq.V;F /

that is zero on the first component and given by restriction on the second. Then we
can conclude from the above statement that the composition

Cq�1.V;F /˚ p�1�Zq.U;F /
� id �p� Cq�1.V;F /˚Zq.U;F /

rq� Zq.V;F / �

j� Cq.V;F /

is strictly completely continuous, with id�p a continuous epimorphism and j the
canonical inclusion. But then, applying Theorem 4 to the epimorphism f q C rq in
place of f and to �rq in place of g, the cokernel of f q D .f q C rq/ � rq , which
coincides with Hq.X;F /, is a finite B-module. ut

As a next step, we want to show that in the situation of the above proposi-
tion the higher direct image sheaf Rq'�F is the sheaf associated to the finite
B-module Hq.X;F /. The proof of this fact is based on a formal function type
result. To explain it, choose an element b 2 B and consider the composition

F
dbbi ec� F � F =biF where dbbiec for some exponent i is given by multi-

plication with '#.bi /. This composition is zero and so is the attached composition

Hq.X;F /
Hq.dbbi ec/� Hq.X;F / � Hq.X;F =biF /

on the level of cohomology groups. Since Hq.dbbiec/ is just multiplication with
bi in the sense of B-modules, as is easily checked, we get a canonical map
�i WHq.X;F /=biHq.X;F / � Hq.X;F =biF / and then, varying i , a canonical
map between associated inverse limits.
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Proposition 8. As in the situation of Proposition 7, let 'WX � Y be a proper
morphism of rigidK-spaces where Y is affinoid and where condition (�) is satisfied.
Let F be a coherent OX -module and fix an element b 2 B D OY .Y /. Then the
canonical morphism

� W lim �
i

Hq.X ,F /=biHq.X ,F / � lim �
i

Hq.X ,F =biF /

is an isomorphism for all q � 0.

For the proof of the proposition, we need to recall some notions applying to
projective systems. Let .Mi/i2N be a projective system with connecting morphisms
fijWMj

� Mi for i � j . The system .Mi/i2N is said to satisfy the condition
of Mittag–Leffler if for every i 2 N there exists an index j0 � i in N such
that fij.Mj / D fij0 .Mj0/ for all j � j0. Furthermore, .Mi/i2N is called a null
system if, more specifically, for every i 2 N there is an index j0 � i in N such
that fij.Mj / D 0 for all j � j0. Note that any null system .Mi/i2N satisfies
the condition of Mittag–Leffler and yields lim �i2NMi D 0. Furthermore, an exact

sequence of projective systems 0 � M 0
i

� Mi
� M 00

i
� 0 induces an

exact sequence of projective limits

0 � lim �
i2N

M 0
i

� lim �
i2N

Mi
� lim �

i2N
M 00
i

� 0;

provided the system .M 0
i /i2N satisfies the condition of Mittag–Leffler. In general,

the functor lim � is only left exact.
In the situation of the proposition, the canonical morphisms

Hq.F / � Hq.F =biF /; Hq.F /=biHq.F / � Hq.F =biF /;

(where we have suppressed the rigid space X , as it won’t change for the moment)
can be inserted into exact sequences

0 � Di
� Hq.F / � Hq.F =biF / � Ei � 0;

0 � Di
� Hq.F /=biHq.F / � Hq.F =biF / � Ei � 0 (�)

by adding kernels and cokernels. Then the kernels Di , resp. Di , form projective
systems again, and the same is true for the cokernels Ei . Furthermore, we have
Di D Di=b

iHq.F /. We claim that the assertion of Proposition 8 will be a
consequence of the following facts:

Lemma 9. In the above situation, the projective systems .Di /i2N and .Ei /i2N are
null systems. Furthermore, that .Di /i2N is a null system follows from the fact that
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the filtration Hq.F / 
 D0 
 D1 
 : : : becomes b-stable in the sense that there is
an index i0 2 N satisfying Di D bi�i0Di0 for all i 2 N, i � i0.

Let us first show how to deduce the proof of Proposition 8 from the lemma. LetHi

be the image of the canonical map

�i WHq.F /=biHq.F / � Hq.F =biF /:

Then we can split �i into the composition

�i WHq.F /=biHq.F / � Hi
� � Hq.F =biF /

and deduce from the above exact sequence (�) the short exact sequences

0 � Di
� Hq.F /=biHq.F / � Hi

� 0;

0 � Hi
� Hq.F =biF / � Ei � 0:

Passing to inverse limits, the first of these remains exact, since .Di /i2N, as a null
system, satisfies the condition of Mittag–Leffler. The same is true for the second
sequence, since all morphisms of the projective system .Hi /i2N are surjective so
that, also in this case, the condition of Mittag–Leffler is satisfied. Since .Di /i2N and
.Ei /i2N are null systems, we see that

� W lim �
i

Hq.F /=biHq.F / � lim �
i

Hi
� lim �

i

Hq.F =biF /

is a composition of isomorphisms and, thus, an isomorphism, as claimed. ut
It remains to prove Lemma 9. First, assume that the filtration D0 
 D1 
 : : : is

b-stable. Choosing i0 2 N such that Di D bi�i0Di0 for all i � i0, we see that the
image of Di D Di=b

iHq.F / is trivial in Hq.F /=bi�i0Hq.F / for all i � i0 so
that, indeed, .Di /i2N is a null system. Thus, it remains to show that the filtration of
the Di is b-stable and .Ei /i2N is a null system.

To do this, let S D L
i2N Si D

L
i2N biB be the graded ring generated by

the ideal S1 D bB � B . The latter is Noetherian, since, as an algebra over the
Noetherian ring B , it is generated by b, viewed as a homogeneous element of
degree 1. Now consider the direct sum

Mq.F / D
M

i2N
Hq.biF /

as a graded S -module, where the multiplication by b 2 S1 D bB is given by the
maps Hq.biF / � Hq.biC1F / derived from the maps biF � biC1F that,
in turn, are given by multiplication with b 2 B . We claim that:

Mq.F / is a finite S -module.
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If F does not admit b-torsion, the assertion is trivial, since then multiplication
by b 2 B yields isomorphisms biF �� biC1F and therefore isomorphisms
Hq.biF / �� Hq.biC1F /. Then Mq.F /, as an S -module, is generated by
Hq.F /, the part of degree 0 in Mq.F /, where Hq.F / is a finite B-module by
Proposition 7. It follows that Mq.F / is a finite S -module.

If there is non-trivial b-torsion in F , the situation is slightly more complicated.
In this case, consider the kernels of the morphisms dbbiecWF � F , which form an
increasing sequence of submodules of the coherent OX -module F . By a Noetherian
and quasi-compactness argument, the sequence becomes stationary at a certain
coherent submodule T � F . It follows that T is annihilated by a power of b,
and that the quotient F =T is without b-torsion. Now let Ti D T \ biF . Then, by
the Lemma of Artin–Rees, see 7.1/4, the filtration T0 
 T1 
 : : : is b-stable. Thus,
there is an index i0 2 N such that Ti D 0 for all i � i0. Since Hq.Ti / is trivial for
such i , it follows with the help of Proposition 7 that the graded S -module

Nq D
M

i2N
Hq.Ti /

is finitely generated over B and, hence, also over S .
Now observe that the short exact sequence

0 � Ti � biF � bi .F =T / � 0

induces an exact sequence

Nq � Mq.F / � Mq.F =T /:

By construction, F =T is without b-torsion. ThereforeMq.F =T / is a finite S -mod-
ule, as we have seen above. Since also Nq is a finite S -module, it follows that
Mq.F / is a finite S -module, as claimed.

In order to justify the remaining assertions of the lemma, consider the exact
sequence

0 � biF � F � F =biF � 0;

as well as the attached long cohomology sequence

: : : � Hq.biF / � Hq.F / � Hq.F =biF /
� HqC1.biF / � HqC1.F / � : : :

Then we have

Di D ker
�
Hq.F / � Hq.F =biF /

� D im
�
Hq.biF / � Hq.F /

�
;

Ei D im
�
Hq.F =biF / � HqC1.biF /

�
;
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and it follows that D D L
i2NDi , as an image of the finite S -module Mq.F /,

is a finite S -module itself. The latter means that the filtration D0 
 D1 
 : : : is
b-stable.

Thus, it remains to show that .Ei /i2N is a null system. The characterization of
Ei above says that the graded S -module E D L

i2NEi , as a submodule of the
finite S -module MqC1.F /, is finite itself. Furthermore, each Ei is annihilated by
bi , as it is an image of Hq.F =biF /. Since E is a finite S -module, there is some
r 2 N such that brE D 0, viewing br as an element of B D S0. On the other
hand, using the fact that E is a finite S -module and writing b1 instead of b for
the corresponding element in S1 D bB, one can find integers i0 and s � r with
bs1Ei D EiCs for all i � i0. Let pi;s WEiCs � Ei be the map induced by the
canonical mapHq.F =biCsF / � Hq.F =biF /, i.e. the canonical map given by
the projective system .Ei /i2N. Then pi;s.bs1Ei / D bsEi , as is easily checked, and
we see that

pi;s.EiCs/ D pi;s.bs1Ei / D bsEi D 0

for i � i0. Thus, .Ei /i2N is a null system. ut
Finally, using the characterization of coherent modules as given in 6.1/3, the

assertion of Kiehl’s Theorem 6.3/9 will be a consequence of the following result:

Theorem 10. As in the situation of Proposition 7, let 'WX � Y be a proper
morphism of rigidK-spaces where Y is affinoid and where condition (�) is satisfied.
Let F be a coherent OX -module. Then, for any q 2 N, the higher direct image
Rq'�.F / equals the OY -module associated to the finite B-module Hq.X ,F /, for
B D OY .Y /.

Proof. We will proceed by induction on the Krull dimension d of B . The case
d D 0 is trivial, since then Y is a finite disjoint union of rigid K-spaces supported
at a single point each.

Therefore assume d > 0, and consider an affinoid subdomain Y 0 D SpB 0 in
Y D SpB . Let X 0 D X �Y Y 0. We have to show that the canonical morphism

Hq.X;F /˝B B 0 � Hq.X 0;F /

is an isomorphism. In order to do this, it is enough to show that all localizations
Hq.X;F / ˝B B 0

m0

� Hq.X 0;F / ˝B0 B 0
m0

at maximal ideals m0 � B 0 are
isomorphisms or, since the m0-adic completion yB 0

m0

of Bm0 is faithfully flat over
B 0

m0

(see [AC], Chap. III, § 3, no. 4, Thm. 3 and no. 5, Prop. 9), that all morphisms
Hq.X;F /˝B yB 0

m0

� Hq.X 0;F /˝B0

yB 0
m0

are isomorphisms.
Now consider a maximal ideal m0 � B 0. Then it follows from 3.3/10, that there is

a (unique) maximal ideal m � B satisfying m0 D mB0. Furthermore, by 2.2/11, there
is a finite monomorphism Td � � B , and we see that n D m \ Td is a maximal
ideal in Td . Choosing a non-zero element b 2 n � Td , we conclude from 2.2/9 in
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conjunction with 2.2/7 that B=.bi / has Krull dimension < d for all i 2 N. Thus,
writing Yi D SpB=.bi /, we may apply the induction hypothesis to the morphisms

'i WX �Y Yi � Yi ; i 2 N;

and the induced coherent sheaves F =biF on X �Y Yi . Using identifications of type
Hq.X �Y Yi ;F =biF / D Hq.X;F =biF /, the canonical morphisms

Hq.X;F =biF /˝B B 0 � Hq.X �Y Y 0;F =biF /

are isomorphisms by induction hypothesis.
Next we recall the exact sequence (�) from the proof of Proposition 8. Tensoring

it with B 0 over B , we get the upper square of the following commutative diagram
where we have written X 0 as an abbreviation for X �Y Y 0:

The lower vertical maps are induced by restriction from X to X 0, whereas the
lower horizontal morphism is the equivalent of the middle morphism in (�), with X
replaced by X 0. Taking inverse limits for i !1, we get the commutative diagram

where yB 0 is the b-adic completion of B 0. Here we have used the fact that the b-adic
completion of a finite B 0-module M 0 is canonically isomorphic to M 0 ˝B yB 0; see
[AC], Chap. III, § 3, no. 4, Thm. 3 (ii), or use the method of proof applied in 7.3/14.
Now observe that the projective systems .Di ˝B B 0/i2N and .Ei ˝B B 0/i2N are
null systems, since the same is true for .Di /i2N and .Ei /i2N. Thus, the proof of
Proposition 8 shows that the upper morphism is an isomorphism. Similarly, by
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the same proposition again, the lower morphism is an isomorphism. Since the
right vertical map is an inverse limit of isomorphisms, it is an isomorphism, too.
Therefore we can conclude that the left vertical map is an isomorphism. Thus, the
canonical map

Hq.X;F /˝B B 0 � Hq.X 0;F /

yields an isomorphism when we tensor with yB 0 over B 0. But then, since b belongs
to the maximal ideal m0 D mB � B 0, the map from B 0 to the m0-adic completion
yB 0
m0

of B 0 factors through the b-adic completion yB 0 of B 0, and we see that the above
map gives rise to an isomorphism

Hq.X;F /˝B yB 0
m0

�� Hq.X 0;F /˝B0

yB 0
m0

:

Thus, we are done. ut



Part II
Formal Geometry



Chapter 7
Adic Rings and Their Associated Formal
Schemes

7.1 Adic Rings

In classical rigid geometry, one works over a field K, carrying a non-Archimedean
absolute value. The strategy of the formal approach to rigid geometry is to replace
K by its valuation ring R. For example, one starts with R-algebras Rh�1; : : : ; �ni of
restricted power series having coefficients in R and considers quotients with respect
to finitely generated ideals. This way one obtains R-algebras that may be viewed
as R-models of affinoid K-algebras. In fact, taking the generic fiber of such an
R-model, i.e. tensoring it with K over R, yields an affinoid K-algebra.

We want to look at rings R that are more general than just valuation rings as
occurring above. Let us call a ring R together with a topology on it a topological
ring if addition and multiplication on R yield continuous maps R � R � R;
of course, R � R is endowed with the product topology. There is a fundamental
example. Let R be an arbitrary ring (commutative, and with identity) and a � R

an ideal. There is a unique topology on R making it a topological ring such that
the ideals an, n 2 N, form a basis of neighborhoods of 0 in R. Just call a subset
U � R open if for each x 2 U there is an n 2 N such that x C an � U .
The resulting topology is called the a-adic topology on R. (In Grothendieck’s
terminology [EGA I], this is the a-preadic topology; the latter is called adic if it
is separated and complete.) Note that all ideals an are open and, being subgroups
of R, also closed in R. A topological ring R is called an adic ring if its topology
coincides with the a-adic one for some ideal a � R. Any such ideal a is called an
ideal of definition.

There are similar notions for modules. A module M over a topological ring R,
together with a topology on M , is called a topological R-module if the addition
mapM �M � M and the multiplication map R�M � M are continuous.
Furthermore, for any R-module M and an ideal a � R, we can define the a-adic
topology on M : we endow R with its a-adic topology as described above and
consider on M the unique topology making it a topological R-module, for which

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__7,
© Springer International Publishing Switzerland 2014
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the submodules anM , n 2 N, form a basis of neighborhoods. Again, all these
submodules are open and closed in M .

Remark 1. Consider a ring R and an R-moduleM with a-adic topologies for some
ideal a � R.

(i) R is separated (i.e. Hausdorff ) if and only if
T1
nD0 an D 0.

(ii) M is separated if and only if
T1
nD0 anM D 0.

Proof. We have
T1
nD0 an D 0 if and only if, for each x 2 R�f0g, there is an n 2 N

such that x 62 an. As an is open and closed inR, assertion (i) follows by a translation
argument; (ii) is derived in the same way. ut

For Noetherian rings, adic topologies have nice properties. Let us recall the basic
facts from Commutative Algebra.

Theorem 2 (Krull’s Intersection Theorem). Let R be a Noetherian ring, a � R an
ideal, and M a finite R-module. Then:

1\

nD0
anM D fx 2M ; there exists r 2 1C a with rx D 0g

Proof. Let M 0 D T1
nD0 anM , and let x1; : : : ; xr 2 M 0 be a generating system of

M 0 as an R-module. By the Lemma of Artin–Rees below, there is some integer
n0 2 N, such that

M 0 D anM \M 0 D an�n0�.an0M/ \M 0� D an�n0M 0

for n � n0. In particular, we have M 0 D aM 0, and there are coefficients aij 2 a
such that

xi D
rX

jD1
aijxj ; i D 1; : : : ; r:

Interpreting � D .ıij � aij/ij as a matrix in Rr�r and x D .xi /i as a column vector
in Mr , the above equations can be written in matrix form as � � x D 0. Multiplying
from the left with the adjoint matrix �� of � yields

det.�/ � x D �� �� � x D 0

and, therefore, det.�/ �M 0 D 0. By construction, we have det.�/ 2 1C a so that
any element of M 0 is annihilated by an element in 1C a.

Conversely, assume that u 2 M is an element which is annihilated by some
element of type 1 � a for a 2 a. Then
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u D au D a2u D : : : 2
1\

nD0
anM

and, hence, u 2M 0. Thus, M 0 DT1
nD0 anM is characterized as claimed. ut

Corollary 3. Let R be a local Noetherian ring with maximal ideal m. Then R is
m-adically separated. The same is true for any finitely generated R-module M .

Lemma 4 (Artin–Rees). Let R be a Noetherian ring, a � R an ideal, M a finite
R-module, and M 0 � M an R-submodule. Then there is an integer n0 2 N

such that

.anM/ \M 0 D an�n0�.an0M/ \M 0�

for all integers n � n0.

Proof. Consider R� D L
n2N an as a graded ring and M� D L

n2N anM as a
graded R�-module. The ideal a � R is finitely generated, since R is Noetherian,
and any such generating system will generate R� as an R-algebra, when viewed
as a system of homogeneous elements of degree 1 in R�. Thus, by Hilbert’s
Basis Theorem, R� is Noetherian. Furthermore, any system of generators for M
as an R-module, will generate M� as an R�-module. In particular, M� is a finite
R�-module and, thus, Noetherian.

Now let M 0
n D anM \M 0 for n 2 N and consider

mM

nD0
M 0
n ˚

M

n>m

an�mM 0
m; m 2 N;

as an ascending sequence of graded submodules of M�. Since M� is Noetherian,
the sequence becomes stationary. Thus, there is an index m D n0 2 N such that

M 0
n D an�n0M 0

n0
for all n � n0:

But then .anM/ \M 0 D an�n0�.an0M/ \M 0� for n � n0, as required. ut

Corollary 5. In the situation of Lemma 4, the a-adic topology of M restricts to the
a-adic topology of M 0.

Proof. We have

anM 0 � .anM/ \M 0 and .anCn0M/ \M 0 � anM 0

in the situation of Lemma 4. ut
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Apart from Noetherian rings we will look at valuation rings. Recall that an
integral domain R with field of fractions K is called a valuation ring if we have
x 2 R or x�1 2 R for every x 2 K.

Remark 6. Let R be a valuation ring.

(i) Every finitely generated ideal in R is principal.
(ii) For two ideals a,b � R we have a � b or b � a.

In particular, R is a local ring.

Proof. For two non-trivial elements a; b 2 R we have ab�1 2 R or a�1b 2 R, i.e.
b divides a or a divides b in R. This shows (i). To verify (ii) assume a 6� b and
b 6� a. Then there are elements a 2 a � b and b 2 b � a. If a divides b, we have
b 2 a, and if b divides a, we must have a 2 b. However, both is excluded, and we
get a contradiction. ut

The length of a maximal chain of prime ideals in a valuation ring R is called
the height of R. For example, starting with a non-Archimedean absolute value on
a field K, the corresponding valuation ring R D fx 2 K I jxj � 1g is of height 1.
However, there are valuation rings of higher, even infinite height. For any prime
ideal p of a valuation ringR, the localizationRp is a valuation ring again. In fact, the
map p � Rp defines a bijection between prime ideals ofR and intermediate rings
betweenR and its field of fractionsK. Let us mention without proof that the concept
of valuations and absolute values carries over to the field of fractions of valuation
rings of arbitrary height. Then � D K�=R�, with its attached canonical ordering,
serves as the value group of K�, and the canonical maps �WK � � [ f1g,
resp. j � jWK � � [ f0g are viewed as a valuation, resp. an absolute value on
K. The valuation ring R is of height 1 if and only if � , together with its ordering,
can be realized as a subgroup of the additive group R, resp. the multiplicative group
R>0. In precisely these cases, the valuation corresponds to a valuation or a non-
Archimedean absolute value on K, as we have defined them in Sect. 2.1.

Any valuation ring R may be viewed as a topological ring by taking the system
of its non-zero ideals as a basis of neighborhoods of 0. Then R is automatically
separated, unless R is a field. We are only interested in valuation rings that are adic.

Remark 7. Let R be a valuation ring and assume that R is not a field. Then the
following are equivalent:

(i) R is adic with a finitely generated ideal of definition.
(ii) There exists a minimal non-trivial prime ideal p � R.

If the conditions are satisfied, the topology of R coincides with the t -adic one for
any non-zero element t 2 p.

Proof. To begin, let us show that, for any non-unit t 2 R, the ideal rad.t/ � R

is prime. To verify this, consider elements a; b 2 R satisfying ab 2 rad.t/, and
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look at the ideals rad.a/ and rad.b/. Using Remark 6 (ii), we may assume that
rad.a/ � rad.b/. Then b divides some power of a, and ab 2 rad.t/ implies
a 2 rad.t/. Thus, rad.t/ is prime.

Now assume condition (i). Due to Remark 6 (i), the topology of R coincides with
the t -adic one for some non-zero element t 2 R. As any non-zero ideal of R must
contain a power of t , we see that any non-zero prime ideal inR will contain the ideal
rad.t/. The latter is prime by what we have shown and, thus, it is minimal among
all non-zero prime ideals in R.

Conversely, assume (ii), i.e. that there is a minimal non-zero prime ideal p � R.
Let t 2 p be a non-zero element and let a � R be any non-zero ideal. We have to
show that a contains a power of t . To do this, we may assume that a is principal, say
a D .a/. Comparing rad.t/ with rad.a/, both ideals are prime. Thus, we must have
rad.t/ � rad.a/, and it follows that a power of t is contained in .a/ D a. ut

Now let us turn to general adic rings again; let R be a such a ring with a � R

as ideal of definition. As the a-adic topology on R is invariant under translation,
convergence in R can be defined in a natural way. We say that a sequence c� 2 R
converges to an element c 2 R if, for each n 2 N, there is an integer �0 2 N such
that c� � c 2 an for all � � �0. Similarly, c� is called a Cauchy sequence if, for each
n 2 N, there is an integer �0 2 N such that c� � c�0 2 an for all �; �0 � �0. As usual,
R is called complete if every Cauchy sequence in R is convergent. A separated
completion yR of R can be constructed by dividing the ring of all Cauchy sequences
in R by the ideal of all zero sequences.

For adic rings there is a nice description of completions, which we will explain.
Consider the projective system

: : : � R=an � : : : � R=a2 � R=a1 � 0

where a is an ideal of definition of R. Then its projective limit

yR D lim �
n

R=an

is seen to be the (separated) completion of R. The topology on this limit is the
coarsest one such that all canonical projections �nW yR � R=an are continuous
where R=an carries the discrete topology (the one for which all subsets of R=an

are open). Thus, a subset of yR is open if and only if it is a union of certain fibers
of the �n, with varying n, and it follows that a basis of neighborhoods of 0 2 yR
is given by the ideals ker�n � yR. We claim that ker�n equals the closure of an in
yR. In fact, ker�n is closed in yR by the definition of the topology on yR, and an is
dense in ker�n, as for any f 2 ker�n and any m 2 N there is an element fm 2 an

such that f � fm 2 ker�mCn. Just choose fm 2 R as a representative of the image
�mCn.f / 2 R=amCn. If the ideal a � R is finitely generated, say a D .a1; : : : ; ar /,
it is easy to see that its closure in yR equals a yR. First, a is clearly dense in a yR, since
a yR � ker�1 and a is dense in ker�1. Furthermore, if f D P1

iD1 fi is an infinite
sum with fi 2 ai , then each fi can be written as a combination fi D Pr

jD1 fijai
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with coefficients fij 2 ai�1, which yields f D Pr
jD1.

P1
iD1 fij/aj and, hence,

f 2 a yR. Thus, we have shown:

Remark 8. If the ideal of definition a � R is finitely generated, then a yR is the
closure of a in yR and it follows that yR is adic again with ideal of definition a yR.

On the other hand, if a is not finitely generated, it can happen that yR fails to be
a yR-adically complete so that in this case the topology of yR will be different from
the a yR-adic one.

In the following we will always assume that R is complete and separated under
its a-adic topology. In particular, the canonical homomorphism

R � lim �
n

R=an

is an isomorphism then. For f 2 R we set

Rhf �1i D lim �
n

�
.R=an/dbf �1ec�

and call it the complete localization of R by (the multiplicative system generated
by) f . There is a canonical map R � Rhf �1i, and the maps

Rdbf �1ec � �
R=an

�dbf �1ec
give rise to a canonical map Rdbf �1ec � Rhf �1i showing that the image of f is
invertible in Rhf �1i.

Remark 9. The canonical homomorphism Rdbf �1ec � Rhf �1i exhibits Rhf �1i
as the adic completion of Rdbf �1ec with respect to the ideal aRdbf �1ec generated by
a in Rdbf �1ec. If a is finitely generated, the topology on Rhf �1i coincides with the
aRhf �1i-adic one.

Proof. Tensoring the exact sequence

0 � an � R � R=an � 0

with Rdbf �1ec, which is flat over R, yields the exact sequence

0 � anRdbf �1ec � Rdbf �1ec � .R=an/dbf �1ec � 0

and, hence, an isomorphism

Rdbf �1ec=.an/ �� .R=an/dbf �1ec:
Thus Rhf �1i D lim �Rdbf

�1ec=.an/ is the aRdbf �1ec-adic completion of Rdbf �1ec.
As we have explained in Remark 8, the topology on the latter is the aRhf �1i-adic
one if a is finitely generated. ut
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To give a more explicit description ofRhf �1i, we consider theR-algebraRh�i of
restricted power series with coefficients in R and with a variable �, i.e. of all power
series

P1
�D0 c��� satisfying lim c� D 0, a condition that is meaningful, as we have

explained. Note that Rh�i is complete and separated under the .a/-adic topology
and that, in fact, Rh�i D lim �n R=a

ndb�ec. Thus, there is a canonical continuous

homomorphism Rh�i � Rhf �1i mapping � to f �1.

Remark 10. The canonical homomorphism Rh�i � Rhf �1i induces an
isomorphism

Rh�i=.1 � f �/ �� Rhf �1i:

Proof. To abbreviate, let us write Rn D R=an for n 2 N. Then consider the
projective system of exact sequences:

As lim � is left exact, it gives rise to a left exact sequence

0 � lim � .1 � f �/Rndb�ec � lim �Rndb�ec � lim �Rndbf
�1ec � 0; (�)

which is, in fact, exact, since all maps

.1 � f �/RnC1db�ec � .1 � f �/Rndb�ec
are surjective so that the system on the left-hand side in (�) satisfies the condition
of Mittag–Leffler. Thus, as 1 � f � is not a zero divisor in Rndb�ec, we get an exact
sequence

0 � .1 � f �/Rh�i � Rh�i � Rhf �1i � 0

as claimed. ut
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7.2 Formal Schemes

Formal schemes are locally topologically ringed spaces where all occurring rings
have to be viewed as objects of the category of topological rings. Just as ordinary
schemes, they are built from local affine parts. To define such affine formal schemes,
consider an adic ring A; from now on, we will always assume that adic rings are
complete and separated. Let a be an ideal of definition of A. We denote by SpfA
the set of all open prime ideals p � A. As a prime ideal in A is open if and only
if it contains some power of a and, hence, a itself, we see that SpfA is canonically
identified with the closed subset SpecA=a � SpecA, for any ideal of definition a
of A.

This way the Zariski topology on SpecA induces a topology on SpfA. As usual,
let D.f / for f 2 A be the open subset in SpfA where f does not vanish. Then

D.f / � Ahf �1i D lim �
n

�
A=andbf �1ec�

defines a presheaf O of topological rings on the category of subsets D.f / � SpfA,
f 2 A, which in fact is a sheaf. Indeed, for every f 2 A and every open covering�
D.fi /

�
i

of D.f /, the diagram

Ahf �1i �
Y

i

Ahf �1
i i ��

Y

i;j

Ah.fifj /�1i

is exact, as it is the projective limit of the exact diagrams

A=an
	
f �1
 �

Y

i

A=an
	
f �1
i


 ��
Y

i;j

A=an
	
.fifj /

�1
;

and as lim � is left exact. By the usual procedure, the sheaf O can be extended to the
category of all Zariski open subsets of SpfA and we will use the notation O for
it again. In fact, if U � SpfA is Zariski open and U D S

i2J D.fi / is an open
covering by basic open subsets D.fi / � SpfA, fi 2 A, then the exact diagram

O.U / �
Y

i

Ahf �1
i i ��

Y

i;j

Ah.fifj /�1i

is obtained by taking the projective limit of the exact diagrams

OSpecA=an.U / �
Y

i

A=an
	
f �1
i


 ��
Y

i;j

A=an
	
.fifj /

�1
:

Thus, it makes sense to write O D lim �OSpecA=an , i.e. O is the projective limit of the
sheaves OSpecA=an .
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However, let us point out, although this is only of minor importance, that the
interpretation of the sheaf O on SpfA as the projective limit of the sheaves OSpecA=an

has actually to be carried out in a more specific setting. To get a projective limit
topology on O.U / for U � SpfA open, which is in accordance with the definition
of a sheaf with values in the category of topological rings ([EGA I], Chap. 0, 3.3.1),
especially if U is not quasi-compact, we have to view the sheaves OSpecA=an as
sheaves of pseudo-discrete topological rings ([EGA I], Chap. 0, 3.9.1).

Remark 1. If in the above situation a point x 2 SpfA corresponds to the open
prime ideal jx � A, then the stalk Ox D lim�!x2D.f / Ahf

�1i is a local ring with

a maximal ideal mx containing jxOx . Furthermore, mx D jxOx if a is finitely
generated.

Proof. For each f 2 A � jx , there are canonical exact sequences

0 � jxA=a
ndbf �1ec � A=andbf �1ec � A=jxdbf �1ec � 0

where n � 1. Taking projective limits over n and using the fact that the projective
system on the left-hand side is surjective and, hence, satisfies the condition of
Mittag–Leffler, we get an exact sequence

0 � jxhf �1i � Ahf �1i � A=jxdbf �1ec � 0

where we have used the abbreviation jxhf �1i D lim � jxA=a
ndbf �1ec for the

completion of jxAdbf �1ec with respect to the topology induced from the .a/-adic
topology on Adbf �1ec. Then, taking the direct limit over all f 2 A � jx and writing
mx D lim�! jxhf �1i, we get an exact sequence

0 � mx
� Ox

� Q.A=jx/ � 0

showing that mx is a maximal ideal in Ox containing jxOx .
To see that mx is the only maximal ideal in Ox , we show that Ox � mx consists

of units. To do this, fix an element gx 2 Ox � mx , say represented by an element
g 2 Ahf �1i for some f 2 A satisfying f 62 jx . Then g cannot belong to jxhf �1i
and, hence, using a � jx , its residue class g 2 A=adbf �1ec cannot belong to
jxA=adbf �1ec. Multiplying g by a suitable power of f , we can even assume that
g belongs to A=a and, thus, admits a representative g0 2 A where g0 62 jx .
Then fg0 2 A � jx , and we claim that the image of g is invertible in Ah.fg0/�1i,
which implies that it is invertible in Ox as well. To see this, consider the equation
g D g0.1 � d/ in Ah.fg0/�1i with d D 1 � g0�1g where we have written g; g0
again for the corresponding images in Ah.fg0/�1i. Thus, in order to show that g is
invertible in Ah.fg0/�1i, we need to know that 1 � d is invertible. However, using
the geometric series, the latter is clear since dn is a zero sequence in Ah.fg0/�1i, due
to the fact that the image of d is trivial in A=adb.fg0/�1ec and, hence, the image of dn

is trivial in A=andb.fg0/�1ec for all n 2 N.
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Finally, if a is finitely generated, we can conclude jxhf �1i D jxAhf �1i
from 7.1/8 and, hence, that mx D jxOx . ut

Definition 2. For an adic ring A with ideal of definition a � A, set X D SpfA
and let OX be the sheaf of topological rings we have constructed above. Then the
locally ringed space .X ,OX/ (where “ringed” has to be understood in the sense of
topological rings) is called the affine formal scheme of A. It is denoted by SpfA
again.

There is a slight problem with this definition. If we consider an affine formal
scheme X D SpfA and a basic open subset U D D.f / � SpfA for some f 2 A,
we would like to interpret .U;OX jU / as the affine formal scheme SpfAhf �1i,
although we do not know in general if Ahf �1i, which is defined as the a-adic
completion of Adbf �1ec, is an adic ring again. Due to 7.1/9, no problems arise, when
a is finitely generated, since then the topology of Ahf �1i coincides with the a-adic
one.

When such a finiteness condition is to be avoided, affine formal schemes SpfA
should be constructed for slightly more general topological rings than just adic ones.
One needs that A is an admissible ring in the sense of Grothendieck. This means
that:

(i) A is linearly topologized, i.e. there is a basis of neighborhoods .I	/	2� of 0
consisting of ideals in A; such ideals are automatically open.

(ii) A has an ideal of definition, i.e. there is an open ideal a � A such that an tends
to zero in the sense that, for each neighborhood U � A of 0, there is an n 2 N

satisfying an � U . (This does not necessarily imply that an is open for n > 1.)
(iii) A is separated and complete.

If A is an admissible ring with a family of ideals .I	/	2� forming a basis of
neighborhoods of 0, then the canonical map A �� lim �	 A=I	 is a topological
isomorphism. Admissible rings can be dealt with in essentially the same way as adic
ones, just replacing the system of powers .an/n2N for an ideal of definition a � A
by the system .I	/	2�. However, for our purposes, it will be enough to restrict to
complete and separated adic rings, as later we will always suppose that there is an
ideal of definition that is finitely generated.

When working with affine formal schemes, morphisms are, of course, meant in
the sense of morphisms of locally topologically ringed spaces. So all inherent ring
homomorphisms are supposed to be continuous. Just as in the scheme case or in the
case of affinoidK-spaces, one shows that morphisms of locally topologically ringed
spaces SpfA � SpfB correspond bijectively to continuous homomorphisms
B � A.

Definition 3. A formal scheme is a locally topologically ringed space .X ,OX/

such that each point x 2 X admits an open neighborhood U where .U ,OX jU /
is isomorphic to an affine formal scheme SpfA, as constructed above.
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As usual, global formal schemes can be constructed by gluing local ones.
In particular, fiber products can be constructed by gluing local affine ones. Similarly
as for schemes or rigid K-spaces, the fiber product of two affine formal schemes
SpfA and SpfB over a third one SpfR is given by Spf.A y̋ R B/ where

A y̋ R B D lim �A=a
n ˝R B=bn

with ideals of definition a of A and b of B is the complete tensor product of A and
B over R. The latter is the .a; b/-adic completion of the ordinary tensor product
A˝R B . If a and b are finitely generated, we see from 7.1/8 that A y̋ R B is an adic
ring again with ideal of definition generated by the image of a˝R B C A˝R b.

We end this section by a fundamental example of a formal scheme, the so-called
formal completion of a scheme X along a closed subscheme Y � X .

Example 4. LetX be a scheme and Y � X a closed subscheme, defined by a quasi-
coherent ideal J � OX . Then consider the sheaf OY obtained by restricting the
projective limit lim �n OX=J

n to Y . It follows that .Y ,OY / is a locally topologically
ringed space, the desired formal completion of X along Y . Locally, the construction
looks as follows: Let X D SpecA and assume that J is associated to the ideal
a � A. Then

.Y ,OY / D Spf
�
lim �
n

A=an
� D Spf yA

where yA is the a-adic completion of A.
For example, assume A D Rdb�ec where � is a system of n variables,R a complete

valuation ring of height 1, and where a D .t/ for some non-unit t 2 R � f0g. So
X coincides with the affine n-space AnR and Y (pointwise) with its special fiber
Ank where k is the residue field of R. The formal completion of X along Y then
yields the formal affine n-space SpfRh�i. The latter admits the affinoid unit ball
BnK D SpKh�i D Sp.Rh�i ˝R K/ for K D Q.R/ as “generic fiber”, as we will
explain later in Sect. 7.4, and there is a canonical open immersion BnK

� � A
n, rig
K

into the rigid analytification of AnK .
A canonical open immersion of this type exists on a more general scale. Let

X be an R-scheme of locally finite type that is flat over R, and denote by yX its
formal completion along the special fiber. Then yX is an admissible formalR-scheme
using the terminology of 7.3/3 and 7.4/1, and its generic fiber yXrig in the sense
of Sect. 7.4 admits canonically an open immersion yXrig

� � .XK/
rig into the rigid

analytification via the GAGA-functor of the generic fiber XK D X ˝R K of X . As
we have seen above, this immersion is not necessarily an isomorphism. But in case
X is proper over R, one can show yXrig D .XK/rig relying on the valuative criterion
of properness.
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7.3 Algebras of Topologically Finite Type

Let R be a (complete and separated) adic ring with a finitely generated ideal of
definition I � R. We will assume that R does not have I -torsion, i.e. that the ideal

.I -torsion/R D
˚
r 2 R I I nr D 0 for some n 2 N

�

is trivial, a condition that, apparently, is independent of the choice of I . Choosing
generators g1; : : : ; gr of I , we see that R does not have I -torsion if and only if the
canonical map

R �
rY

iD1
Rdbg�1

i ec

is injective. We will admit only the following two classes of rings:

(V)R is an adic valuation ring with a finitely generated ideal of definition (which
automatically is principal by 7.1/6).
(N) R is a Noetherian adic ring with an ideal of definition I such that R does not
have I -torsion.

These classes of adic rings R have been chosen bearing in mind that topological
R-algebras with certain finiteness conditions, for example as we will set them up in
Definition 3, should be accessible in a satisfactory way. Of course, the Noetherian
hypothesis in class (N) is quite convenient and useful, especially since there are
interesting objects such as Raynaud’s universal Tate curve that live over a non-
local base of this type; see Sect. 9.2. On the other hand, even if the Noetherian
hypothesis is not present, it turns out that adic valuation rings of class (V) can
still be handled reasonably well. Indeed, this class allows the extension of several
important results on R-algebras that otherwise are only valid in the Noetherian
situation. A good example for this is Gabber’s flatness result 8.2/2. Also note that
class (V) includes all classical valuation rings that are obtained from a field with
a complete non-Archimedean absolute value, especially in the non-discrete case
where the Noetherian hypothesis is not available.

In the following, let R be of type (V) or (N). As usual, we define the R-algebra
Rh�1; : : : ; �ni of restricted power series in the variables �1; : : : ; �n as the subalgebra
of the R-algebra Rdbdb�1; : : : ; �necec of formal power series, consisting of all seriesP

�2Nn c��� with coefficients c� 2 R constituting a zero sequence in R. Of
course, Rh�1; : : : ; �ni equals the I -adic completion of the ring of polynomials
Rdb�1; : : : ; �nec.

Remark 1. Rh�1, : : : ,�ni is Noetherian if R is of class .N/.

Proof. IfR is Noetherian, the polynomial ring .R=I /db�1; : : : ; �nec is Noetherian and
the assertion follows from [AC], Chap. III, § 2, no. 11, Cor. 2 of Prop. 14. ut
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Remark 2. Rh�1, : : : ,�ni is flat over R.

Proof. A module M over a ring R is flat if and only if, for each finitely generated
ideal a � R, the canonical map a ˝R M � M is injective. If R is an integral
domain and if every finitely generated ideal in R is principal, the latter condition is
equivalent to the fact that M does not admit R-torsion. Thus, if R is of class (V),
we see from 7.1/6 that Rh�1; : : : ; �ni is flat over R.

On the other hand, ifR is of class (N), the mapR � Rdb�1; : : : ; �nec is flat being
module-free. Furthermore, the map from Rdb�1; : : : ; �nec into its I -adic completion
is flat by Bourbaki [AC], Chap. III, § 5, no. 4, Cor. of Prop. 3. ut

Having defined restricted power series with coefficients in R, let us introduce
now the analogs of affinoid algebras.

Definition 3. A topological R-algebra A is called

(i) of topologically finite type if it is isomorphic to an R-algebra of type
Rh�1, : : : ,�ni=a that is endowed with the I -adic topology and where a is an
ideal in Rh�1, : : : ,�ni,

(ii) of topologically finite presentation if, in addition to (i), a is finitely generated,
(iii) admissible if, in addition to (i) and (ii), A does not have I -torsion.

It is a fundamental fact, which will be used extensively in the sequel, that
an R-algebra of topologically finite type that is flat over R, is automatically
of topologically finite presentation. Properties of this type are proved using the
flattening techniques of Raynaud and Gruson; see [RG], Part I, 3.4.6.

Theorem 4 (Raynaud–Gruson). Let A be an R-algebra of topologically finite
type and M a finite A-module that is flat over R. Then M is an A-module of
finite presentation, i.e. M is isomorphic to the cokernel of some A-linear map
Ar � As .

Proof. As an R-algebra of topologically finite type, A is a quotient of some algebra
of restricted power series Rh�1; : : : ; �ni. ViewingM as a module over such a power
series ring, we may assume A D Rh�1; : : : ; �ni. In the Noetherian case (N), nothing
has to be shown, since A is Noetherian then. If R is an adic valuation ring of type
(V), we can choose an element t generating an ideal of definition of R. Then A=tA
is an R=.t/-algebra of finite presentation, andM=tM is a finite A=tA-module that is
flat over R=.t/. Furthermore, it follows from the above cited result of Raynaud and
Gruson that M=tM is an A=tA-module of finite presentation. Now consider a short
exact sequence of A-modules

0 � N � As � M � 0:
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Since M is flat over R, the sequence remains exact when tensoring it with R=.t/
over R. Since M=tM is an A=tA-module of finite presentation, N=tN is a finite
A=tA-module. But then, viewing N as a submodule of As for A D Rh�1; : : : ; �ni, a
standard approximation argument in terms of the t -adic topology on As shows that
N is a finite A-module and, hence, that M is an A-module of finite presentation.

In the most interesting case where R is an adic valuation ring of height 1, the
Theorem is accessible by more elementary methods. First, one reduces to the case
where A D Rh�i, for a finite system of variables � D .�1; : : : ; �n/, as indicated
above. Then, as before, consider a short exact sequence

0 � N � �
Rh�i�s � M � 0

of Rh�i-modules. Since M is flat over R, there is no R-torsion in M and,
consequently, looking at the inclusion map .Rh�i/s � � .Rh�i/s ˝R K D T sn
where K is the field of fractions of R, we get

�
N ˝R K

� \ �
Rh�i�s D N:

Applying 2.3/10 to the Tn-module N ˝R K, we see that N is a finite Rh�i-module
and, hence, that M is an Rh�i-module of finite presentation. ut

Corollary 5. Let A be an R-algebra of topologically finite type. If A has no
I -torsion, A is of topologically finite presentation.

Proof. The assertion is trivial in the Noetherian case. So assume that R is of class
(V). Interpreting A as a residue algebra Rh�i=a with a system of variables �, we
can view A as an Rh�i-module via the canonical projection Rh�i � A. If A
has no I -torsion, it is flat over R and, thus, by Theorem 4, a finitely presented
Rh�i-module. But then a must be finitely generated so that A is of topologically
finite presentation. ut

Recall that, similarly as in 6.1/2, a module M over a ring A is called coherent if
M is finitely generated and if every finite submodule of M is of finite presentation.
A itself is called a coherent ring if it is coherent as a module over itself, i.e. if
each finitely generated ideal a � A is of finite presentation. One can show that all
members of a short exact sequence of A-modules

0 � M 0 � M � M 00 � 0

are coherent as soon as two of them are; see for example [Bo], 1.5/15.

Corollary 6. Let A be an R-algebra of topologically finite presentation. Then A is
a coherent ring. In particular, any A-module of finite presentation is coherent.
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Proof. We may assume that R is of class (V). Let us first consider the case where
A does not have I -torsion and, hence, is flat over R. Then any finitely generated
ideal in A is flat over R and, hence, of finite presentation by Theorem 4. Thus, A is
coherent in this case.

In the general case, we can write A as a quotient Rh�i=a with a system of
variables � and a finitely generated ideal a. The algebra Rh�i is coherent, as we
have seen. Thus, a is coherent, too, and it follows that A D Rh�i=a is coherent. ut

We want to draw some further conclusions from Theorem 4.

Lemma 7. Let A be an R-algebra of topologically finite type,M a finite A-module,
and N �M a submodule. Then:

(i) If N is saturated in M in the sense that

Nsat D
˚
x 2M ; there is an n 2 N such that I nx � N �

coincides with N , then N is finitely generated.
(ii) The I -adic topology of M restricts to the I -adic topology on N .

Proof. If R is of class (N), assertion (i) is trivial, and assertion (ii) follows from the
lemma of Artin–Rees; cf. 7.1/5. So assume that R is of class (V). If N is saturated
in M , the quotient M=N does not admit I -torsion and, hence, is flat over R, since
R is a valuation ring. ThusM=N , as a finite A-module that is flat over R, is of finite
presentation by Theorem 4 and there is an exact sequence of A-modules

0 � K � F � M=N � 0

where F is finite free and K is finite. As M is finitely generated, we may assume
thatF � M=N factors throughM via an epimorphismF � M . But then this
map restricts to an epimorphismK � N and we see thatN is finitely generated.
This verifies (i).

To verify assertion (ii), we can consider the saturation Nsat � M of N ; it is
finitely generated by (i). Thus, there is an integer n 2 N such that I nNsat � N , and
we have

ImCnM \N � ImN � ImM \N

for all m 2 N. So we are done. ut

Proposition 8. Let A be an R-algebra of topologically finite type and M a finite
A-module. Then M is I -adically complete and separated.

Proof. We may replace A by an algebra of restricted power series Rh�i and thereby
assume that A is I -adically complete and separated. Then, viewingM as a quotient
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of a finite cartesian product ofA and using Lemma 7 (ii), we see thatM is I -adically
complete for trivial reasons. To show that it is also I -adically separated, consider
an element x 2 T1

nD0 I nM , and look at the submodule N D Ax � M . Using
Lemma 7 (ii), there is an integer n 2 N such that N D I nM \ N � IN . Hence
there is an equation .1 � c/x D 0 for some c 2 I . However, using the geometric
series, we see that 1 � c is a unit in R and, hence, that x must be zero. ut

Corollary 9. Any R-algebra of topologically finite type is I -adically complete and
separated.

In particular, if A is an R-algebra of topologically finite type, we can identify A
with the projective limit lim �n A=I

nA. To abbreviate, we will write Rn D R=InC1

and An D A=InC1 D A ˝R Rn for n 2 N. Similar notions will be used for
R-modules.

Proposition 10. Let A be an R-algebra, which is I -adically complete and sepa-
rated. Then:

(i) A is of topologically finite type if and only if A0 is of finite type over R0.
(ii) A is of topologically finite presentation if and only if An is of finite presentation

over Rn for all n 2 N.

Proof. We need only to verify the if-parts. So assume that A0 is of finite type over
R0. Then there is an epimorphism '0WR0db�ec � A0 for a finite system of variables
� D .�1; : : : ; �m/. Let ai 2 A be a representative of '0.�i / and define a continuous
R-algebra homomorphism 'WRh�i � A by mapping �i onto ai ; the latter is
possible, as A is I -adically complete and separated. Then A D im' C IA, and a
limit argument shows that ' is surjective.

Now, setting a D ker', consider the exact sequence

0 � a � Rh�i '� A � 0

and assume that all algebras An are of finite presentation over Rn. Then, due to
Lemma 7 (ii) there is an integer n 2 N satisfying a \ I nC1 � Ia, and we get the
exact sequence

0 � a=a \ I nC1Rh�i � Rndb�ec � An � 0:

By our assumption a=a \ I nC1Rh�i and, hence, also a=Ia are finitely generated.
Thus there is a finitely generated ideal a0 � a such that a D a0 C Ia. Again a limit
argument yields a D a0 and, hence, that a is finitely generated. ut

Proposition 11. Let 'WA � B be a morphism of R-algebras of topologically
finite type, andM a finiteB-module. ThenM is a flat (resp. faithfully flat)A-module
if and only if Mn is a flat (resp. faithfully flat) An-module for all n 2 N.
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Proof. The only-if part is trivial, since flatness is preserved under base change.
To verify the if part, we have to show that the canonical map a ˝A M � M

is injective for each finitely generated ideal a � A. This can be done similarly as in
the proof of the Bourbaki criterion on flatness; see [AC], Chap. III, § 5, no. 2. Given
an arbitrary m 2 N, there is an integer n 2 N such that I nC1A \ a � Ima; see
Lemma 7 (ii). Setting N D a=.I nC1A \ a/, we get a commutative diagram, whose
upper row is exact:

We may interpret h as the map obtained from N � � An by tensoring with Mn

over An. Therefore, due to our flatness assumption, h is injective, and this implies
kerg � Im.a˝AM/. Now, as a finitely generated B-module, a˝AM is I -adically
separated by Proposition 8. Thus, varying m, we get

kerg �
1\

mD0
Im.a˝A M/ D 0;

which shows that M is a flat A-module.
Next, assume for all n 2 N that Mn is a faithfully flat An-module, and let N be

a finitely generated A-module such that M ˝A N D 0. Then Mn ˝An Nn D 0 for
all n 2 N and, consequently, Nn D 0. In particular, we get N D IN and, hence
N D 0, as N is I -adically separated; see Proposition 8. ut

Corollary 12. Let A be an R-algebra that is topologically of finite type, and let
f1, : : : ,fr 2 A be elements generating the unit ideal. Then all canonical maps
A � Ahf �1

i i are flat, and A � Qr
iD1 Ahf �1

i i is faithfully flat.

Proof. Use the corresponding facts for ordinary localizations in conjunction with
Proposition 11. ut

Corollary 13. Let A be an R-algebra that is I -adically complete and separated,
and let f1, : : : ,fr 2 A be elements generating the unit ideal. Then the following are
equivalent:

(i) A is of topologically finite type (resp. finite presentation, resp. admissible).
(ii) Ahf �1

i i is of topologically finite type (resp. finite presentation, resp. admissi-
ble) for each i .

Proof. The assertion on “finite type” and “finite presentation” follows from the
corresponding fact on ordinary localizations in conjunction with Proposition 10.
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To extend the equivalence between (i) and (ii) to the condition “admissible”,
let I D .g1; : : : ; gr /. If A is admissible, the map A � Qr

jD1 Adbg�1
j ec is

injective. Tensoring it with Ahf �1
i i, which is flat over A by Corollary 12, we see

that Ahf �1
i i � Qr

jD1 Ahf �1
i idbg�1

j ec is injective and, hence, that Ahf �1
i i is

admissible.
Conversely, assume that all Ahf �1

i i are admissible. Then consider the commuta-
tive diagram:

By assumption the right vertical map is injective. As the upper horizontal map is
injective anyway due to the faithful flatness, see Corollary 12, the left vertical map
must be injective as well. ut

We end by a lemma that will be useful later.

Lemma 14. Let A be an R-algebra of topologically finite type, B an A-algebra of
finite type, and M a finite B-module. Then, if yB and yM are the I -adic completions
of B and M , the canonical map

M ˝B yB � yM

is an isomorphism.

Proof. Choose an exact sequence of B-modules

0 � N � Bn p� M � 0

and consider the commutative diagram
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having exact rows where the first row is obtained via tensoring with yB over B and
the second one via completion; N is the closure of N in yBn. Since M is a finite
B-module, a standard approximation argument shows that yp and h are surjective.
Furthermore, N � ker yp holds by continuity. That, indeed, N equals the kernel
of yp is seen as follows. Let .b�/�2N be a sequence in Bn converging I -adically
towards an element b 2 ker yp � yBn. Then .p.b�//�2N is a zero sequence in M .
Since p is surjective and, hence, satisfies p.I �Bn/ D I �M , we can find a zero
sequence .b0

�/�2N in Bn such that p.b0
�/ D p.b�/ for all �. But then we have

b� � b0
� 2 kerp D N for all � and, hence,

b D lim
n!1 b� D lim

n!1.b� � b
0
�/ 2 N:

Now use the fact that B is an A-algebra of finite type and A an R-algebra of
topologically finite type. From this we may conclude using Proposition 10 that yB is
an R-algebra of topologically finite type. Then we see from Proposition 8 that any
submodule L � yBn is closed, since yBn=L is I -adically separated. In particular, the
image of N ˝B yB in yBn is closed and therefore equals N , since it must contain the
image of N . Thus, f WN ˝B yB � N is surjective, and it follows by diagram
chase that h is injective. Hence, being surjective as well, h is bijective. ut

7.4 Admissible Formal Schemes

Let A be an R-algebra that is I -adically complete and separated. We have seen
in 7.3/13 that the condition of A being of topologically finite type, of topologically
finite presentation, or admissible, can be tested locally on localizations of type
Ahf �1i. This enables us to extend these notions to formal R-schemes.

Definition 1. Let X be a formal R-scheme. X is called locally of topologically
finite type (resp. locally of topologically finite presentation, resp. admissible) if
there is an open affine covering .Ui /i2J of X with Ui D SpfAi where Ai is an
R-algebra of topologically finite type (resp. of topologically finite presentation, resp.
an admissible R-algebra).

As an immediate consequence we get from 7.3/13:

Remark 2. Let A be an R-algebra that is I -adically complete and separated,
and let X D SpfA be the associated formal R-scheme. Then the following are
equivalent:

(i) X is locally of topologically finite type (resp. locally of topologically finite
presentation, resp. admissible).

(ii) A is of topologically finite type (resp. of topologically finite presentation, resp.
admissible) as R-algebra.
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Similarly as in the scheme case, a formal R-scheme X is called of topologically
finite type if it is locally of topologically finite type and quasi-compact. It is called
of topologically finite presentation if it is locally of topologically finite presentation,
quasi-compact, and quasi-separated. Recall that X is called quasi-separated if
the diagonal embedding X � X �R X is quasi-compact. If X is locally of
topologically finite type, the quasi-separateness ofX is automatic ifR is Noetherian,
since X , as a topological space, is locally Noetherian then. The same is true for R
a complete valuation ring of height 1. Indeed, if A is an R-algebra of topologically
finite type and m is the maximal ideal of R, then, as a topological space, SpfA
coincides with Spec.A˝R R=m/. Since A˝R R=m is of finite type over the field
R=m, its spectrum Spec.A˝R R=m/ is a Noetherian space.

Let X be a formal R-scheme that is locally of topologically finite type, and let
OX be its structure sheaf. Then we can look at the ideal J � OX representing
the I -torsion of OX where J.U /, for any open subset U � X , consists of all
sections f 2 OX.U / such that there is an open affine covering .U	/	2� of U with
the property that each restriction f jU	 is killed by some power I n of the ideal of
definition I � R. It is clear from the definition that J really is an ideal sheaf in OX .
Furthermore, if U � X is an affine open formal subscheme, say U D SpfA, then
one gets

J.U / D .I -torsion/A D ff 2 A I I nf D 0 for some n 2 Ng:
Indeed, we clearly have .I -torsion/A � J.U /, and the quotient A=.I -torsion/A
does not have I -torsion locally on SpfA, due to 7.3/13. In particular, we can replace
the structure sheaf OX by the quotient OX=J and restrict X to the support Xad of
OX=J. Thereby we get a formal R-scheme Xad that is still locally of topologically
finite type and whose structure sheaf does not have I -torsion. Then Xad is locally
of topologically finite presentation by 7.3/5 and, thus, admissible. We call Xad the
admissible formal R-scheme induced from X .

For a moment, let us look at the classical rigid case where R consists of a
complete valuation ring of height 1 with field of fractions K. To simplify our
terminology, let us assume in the following that all formal R-schemes are at least
locally of topologically finite type, unless stated otherwise. We want to define a
functor “rig” from the category of formal R-schemes to the category of rigid
K-spaces, which will be interpreted as associating to a formal R-scheme X its
generic fiber Xrig. On affine formal R-schemes SpfA this functor is defined by

rigWX D SpfA � Xrig D Sp.A˝R K/
where we claim that A˝R K is an affinoid K-algebra. To justify this claim, we set
S D R�f0g and interpret A˝R K as the localization S�1A. By our assumption, A
is of topologically finite type and, thus, isomorphic to a quotientRh�i=a whereRh�i
is an algebra of restricted power series in finitely many variables � D .�1; : : : ; �n/

and where a is an ideal in Rh�i. Since A˝R K D S�1.Rh�i/=.a/, it is enough to
show S�1.Rh�i/ D Kh�i. However, the latter is clear by looking at the canonical
inclusions
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Rh�i � S�1�Rh�i� � Kh�i

and by observing that, for any series f D P
�2Nn c��� 2 Kh�i with coefficients

c� 2 K, there is a constant s 2 S such that s�1f has coefficients in R, due to the
fact that lim c� D 0. Thus A˝RK really is an affinoidK-algebra and, for any affine
formal R-scheme X D SpfA, the corresponding rigid K-space Xrig D SpA˝R K
is well-defined.

Next, if 'WSpfA � SpfB is a morphism of affine formal R-schemes, we
know from Sect. 7.2, as explained just before 7.2/3, that it is induced from a unique
R-homomorphism '�WB � A. Then, by 5.3/2, the corresponding generic fiber

'�
rigWB ˝R K � A˝R K

determines a well-defined morphism of affinoid K-spaces

'rigWSp.A˝R K/ � Sp.B ˝R K/;

which we define as the image of ' under the functor rig. Furthermore, let us observe
that this functor commutes with complete localization. Indeed, for any R-algebra of
topologically finite type A and any f 2 A we get

Ahf �1i ˝R K D
	
Ah�i=.1 � f �/
˝R K

D .A˝R K/h�i=.1 � f �/ D .A˝R K/hf �1i

where we have used 7.1/10 in conjunction with the fact that Ah�i ˝R K coincides
with .A ˝R K/h�i; the latter is justified, similarly as above, by interpreting
dbAh�i=.1 � f �/ec ˝R K as a localization of Ah�i=.1 � f �/ and by representing
A as a quotient of an R-algebra of restricted power series by some ideal. Then we
get a canonical commutative diagram

showing that the functor rig produces from a basic open subspace of type

X.f �1/ D SpfAhf �1i � X D SpfA

the Laurent domain

Xrig.f
�1/ D Sp.A˝R K/hf �1i � Xrig D Sp.A˝R K/



172 7 Adic Rings and Their Associated Formal Schemes

of the generic fiber associated to X . More generally, it follows that rig maps
any open immersion of affine formal R-schemes SpfA0 � SpfA to an open
immersion of affinoid K-spaces Sp.A0 ˝R K/ � Sp.A˝R K/.

Now, to extend the functor rig to global formal R-schemes, let us look at such
a scheme X and assume first that X is separated and, hence, that the intersection
of two open affine formal subschemes of X is affine again. Fixing an open affine
covering .Ui /i2J of X , all intersections Ui \ Uj are affine again. Hence, we
can glue the generic fibers Ui;rig via the “intersections” .Ui \ Uj /rig to produce a
global rigid K-space Xrig. It is easily checked that the latter is independent (up
to canonical isomorphism) of the chosen affine open covering .Ui /i2J and that
any morphism of separated formal R-schemes X � Y leads to a canonical
morphism Xrig

� Yrig so that we really get a functor. In particular, as affine
formal R-schemes are separated, the functor rig is defined on all open formal
subschemes U of an affine formal R-scheme X . Furthermore, since such a U
is necessarily quasi-compact, the generic fiber Urig is admissible open and, thus,
an open subspace of Xrig. Therefore, to extend the functor rig to the category of
all formal R-schemes, we can repeat the above construction, now interpreting an
arbitrary global formal R-scheme X by gluing open affine parts Ui via arbitrary
open subspaces of these. Hence, we have shown:

Proposition 3. Let R be a complete valuation ring of height 1 with field of fractions
K. Then the functor A � A˝R K on R-algebras A of topologically finite type
gives rise to a functor X � Xrig from the category of formal R-schemes that are
locally of topologically finite type, to the category of rigid K-spaces.

As indicated above, Xrig is called the generic fiber of the formal R-scheme X . In
an affine situation, say X D SpfA, it coincides pointwise with the set of all closed
points of Spec.A ˝R K/, the latter being the generic fiber of the ordinary scheme
SpecA. This way the generic fiber of the formal scheme SpfA can be exhibited,
although, on the level of points, it is not visible in SpfA.

In view of Proposition 3, one would like to describe all formal R-schemes X
whose generic fiber Xrig coincides with a given rigid K-space XK . To answer this
question, observe first that the functor X � Xrig factors through the category
of admissible formal R-schemes, since the tensor product with K over R kills any
R-torsion. In particular, the generic fiber of a formal R-scheme X coincides with
the one of its induced admissible formalR-schemeXad. Thus, we are reduced to the
problem of describing all admissible formal R-schemes X admitting a given rigid
K-space XK as generic fiber. Such formal schemes will be referred to as formal
R-models:

Definition 4. Given a rigid K-space XK , any admissible formal R-scheme X
satisfying Xrig ' XK is called a formal R-model of XK .
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Thus, our problem consists in determining all formal R-models of a given rigid
K-space XK . To solve it, the notion of admissible formal blowing-up, which will be
introduced in the Sect. 8.2, plays a central role.



Chapter 8
Raynaud’s View on Rigid Spaces

8.1 Coherent Modules

Now, let us return to the general situation where R is an adic ring of type (V) or (N),
with a finitely generated ideal of definition I . So R is a Noetherian adic ring or an
adic valuation ring with a finitely generated ideal of definition.

Let A be an R-algebra of topologically finite type and X D SpfA the associated
formal R-scheme. There is a functor M � M� that associates to any A-module
M an OX -moduleM� as follows: for a basic open subsetDf D D.f / � X , given
by some f 2 A, set

M�.Df / D lim �
n2N

M ˝A Andbf �1ec

where, as usual, An D A=InC1A. As lim � is left-exact, we get a sheaf which can be
extended to all open subsets of X by the usual procedure. In fact we may say that
M� is the inverse limit of the modules �Mn where the latter are the modules induced
onXn D SpecAn from theAn-modulesMn DM˝AAn. IfM is a finiteA-module,
the sheaf M� can be described in more convenient terms:

Proposition 1. Let X D SpfA be a formal R-scheme of topologically finite type.
Then, for any finite A-module M , the sheaf M� coincides on basic open subsets
Df � X , f 2 A, with the functor

Df
� M ˝A Ahf �1i:

Proof. Since Ahf �1i is an R-algebra of topologically finite type, see 7.1/10
or 7.3/13, we know from 7.3/8 thatM˝AAhf �1i, which is a finiteAhf �1i-module,
is I -adically complete and separated. By the definition of M�.Df /, we may view
it as the I -adic completion of M ˝A Adbf �1ec. However, since the latter is dense in
M ˝A Ahf �1i, we are done. ut
S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__8,
© Springer International Publishing Switzerland 2014
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Corollary 2. Let X D SpfA be a formal R-scheme of topologically finite type.

(i) The functor M � M� from the category of finite A-modules to the category
of OX -modules is fully faithful and exact.

(ii) Assume that X is of topologically finite presentation and, hence by 7.3/6, that
A is coherent. Then the functor M � M� commutes on the category
of coherent A-modules with the formation of kernels, images, cokernels, and
tensor products. Furthermore, a sequence of coherent A-modules

0 � M 0 � M � M 00 � 0

is exact if and only if the associated sequence of OX -modules

0 � M 0� � M� � M 00� � 0

is exact.

Proof. We use the same argument as the one given in 6.1/1. First, it is clear that the
canonical map

HomA.M;M
0/ � HomOX

.M�;M 0�/

is bijective, since an OX -morphism M� � M 0� is uniquely determined by its
inherent A-morphism between M DM�.X/ and M 0 DM 0�. Next, if

0 � M 0 � M � M 00 � 0

is an exact sequence of finite A-modules, then, for all f 2 A, the associated
sequence of Ahf �1i-modules

0 � M 0 ˝A Ahf �1i � M ˝A Ahf �1i � M 00 ˝A Ahf �1i � 0

is exact, since Ahf �1i is flat over A by 7.3/12. Thus, the sequence

0 � M 0� � M� � M 00� � 0

is exact, showing that the functor M � M� is exact.
Now, let us consider the situation of (ii) and assume that X is of topologically

finite presentation. Then A is coherent by 7.3/6, and the same is true for any finite
A-module. If M � N is a morphism of coherent A-modules, we know that its
kernel, image, and cokernel are coherent again. Thus, we see from assertion (i)
that the functor M � M� commutes with the formation of these modules.
Furthermore, one can conclude from Proposition 1 that it commutes with tensor
products.
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Finally, look at a sequence of coherent A-modules M 0 '� M
 � M 00 and

assume that the corresponding sequenceM 0� '�� M�  �� M 00� is exact. Then,
using the just mentioned compatibility of the functor M � M�, we get

.ker = im'/� D .ker /�=.im'/� D ker. �/= im.'�/ D 0

and, hence, that ker = im' is trivial. ut
Next, we want to apply Corollary 2 in order to deal with coherent modules on

formal R-schemes. The definition of such modules follows the general concept of
coherent sheaves.

Definition 3. Let X be a formal R-scheme and F an OX -module.

(i) F is called of finite type, if there exists an open covering .Xi /i2J ofX together
with exact sequences of type

Osi
X jXi � F jXi � 0, i 2 J:

(ii) F is called of finite presentation, if there exists an open covering .Xi /i2J of
X together with exact sequences of type

Ori
X jXi � Osi

X jXi � F jXi � 0, i 2 J:

(iii) F is called coherent, if F is of finite type and if for every open subscheme
U � X the kernel of any morphism Os

X jU � F jU is of finite type.

For an affine formal R-scheme X D SpfA, any power Or
X may be viewed

as the OX -module .Ar/� associated to the A-module Ar . Furthermore, if A is of
topologically finite presentation, A is coherent by 7.3/6, and we can conclude from
Corollary 2 that kernels and cokernels of morphisms of type Or

X
� Os

X are
associated to finite A-modules.

Remark 4. Let X be a formal R-scheme that is locally of topologically finite
presentation, and let F be an OX -module. Then the following are equivalent:

(i) F is coherent.
(ii) F is of finite presentation.

(iii) There is an open affine covering .Xi /i2J of X such that F jXi is associated to
a finite OXi .Xi /-module for all i 2 J .

Proof. That (i) implies (ii) is immediately clear from the definitions. Next, assume
that F is of finite presentation as in (ii). Then, in order to derive (iii), it is only
necessary to consider the case where X is affine, say X D SpfA with an R-algebra
A of topologically finite presentation. In addition, we may assume that there is an
exact sequence
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.Ar/� � .As/� � F � 0:

Then it follows from Corollary 2 that the morphism .Ar/� � .As/� corresponds
to an A-linear map Ar � As and that F is associated to its cokernel. The latter
is a finite A-module so that (ii) implies (iii).

Finally, let F satisfy condition (iii). To show that F is coherent, we may assume,
similarly as before, that X is affine, say X D SpfA with A of topologically finite
presentation, and that F is associated to a finite A-module M . Let U be an open
subscheme of X and 'WOs

X jU � F jU a morphism of OX -modules. To show
that ker' is of finite type, we may assume U D X . Then ' is associated to an
A-linear map As � M . Since A is coherent by 7.3/6, the kernel of this map is,
in particular, of finite type, and the same is true for its associated OX -module. As
the latter coincides with ker', we are done. ut

Just as in the scheme case or in the case of rigid K-spaces, one may ask if
coherent modules on affine formalR-schemesX D SpfA are associated to coherent
A-modules.

Proposition 5. Let X D SpfA be an affine formal R-scheme of topologically
finite presentation and let F be a coherent OX -module. Then F is associated to
a coherent A-module M .

Proof. There is a covering of X by basic open affine subschemes Ui D SpfAi ,
with i varying in a finite index set J , such that F jUi is associated to a coherent
Ai -module Mi . Set Uij D Ui \Uj and let Uij D SpfAij. Then F jUij is associated to
the coherent Aij-module Mij DMi ˝Ai Aij DMj ˝Aj Aij.

Now observe that F induces for each n 2 N a coherent module Fn on the scheme
Xn D SpecAn where, as usual, An D A=InC1A. This module sheaf is constructed
by gluing the OUi;n-modules that are associated to the coherent Ai;n-modules
Mi;n D Mi=I

nC1Mi , i 2 J . Then we can use the fact that Fn is associated to a
coherent An-module Mn, thereby getting exact diagrams of type

Mn
�

Y

i2J
Mi;n

��
Y

ij2J
Mij;n; n 2 N:

Since Fn is derived from FnC1 via base change with XnC1 over Xn, we see that
Mn DMnC1˝AnC1

An. Taking projective limits, the above diagrams give rise to an
exact diagram

M �
Y

i2J
Mi

��
Y

ij2J
Mij

where M D lim �n2NMn. Let K.n/ � M for n 2 N be the kernel of the projection

M � Mn�1, setting M�1 D 0. Then I nM � K.n/, and we claim that, in fact,
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K.n/ D I nM and that M D K.0/ is a finite A-module. Granting these facts, the
topology on M , as a projective limit of the Mn, must coincide with the I -adic one,
and it follows that the canonical map

M ˝A Ai D lim �
n2N
.Mn ˝An Ai;n/ � lim �

n2N
Mi;n DMi

is an isomorphism for all i 2 J . But then F is associated to the finite and, hence,
coherent A-module M .

To justify the above claim, observe that M0 is a finite A0-module. Since
the projective system .Mn/n2N is surjective, there exist finitely many elements
x1; : : : ; xr in M with the property that their images generate M0 as an A0-module.
Set M 0 DPr

�D1 Axi and let M 0
n be the image of M 0 in Mn. Then

Mn DM 0
n C IMn; n 2 N;

and, hence, by finite induction, Mn DM 0
n for all n. From this we deduce that

K.n/ D I nM 0 CK.nC1/; n 2 N: (�)

Indeed, viewing M � Mn�1 as the composition of the projection M � Mn

and the canonical map Mn
� Mn�1, the first map has kernel K.nC1/, whereas

the second one has kernel I nMn D I nM 0
n. Thus, the composition has a kernel K.n/

equal to I nM 0CK.nC1/ as stated. Now fix n and a finite set of generators y1; : : : ; ys
of I nM 0 as A-module. Then applying the equations (�) inductively, we can write
any element z 2 K.n/ as a limit of linear combinations of type

Ps
�D1 a��y� , � 2 N,

with coefficients a�� 2 A where the sequences .a��/�2N have I -adic limits a� 2 A.
Since the I -adic topology on M is finer than the projective limit topology, we must
have z D Ps

�D1 a�y� and, thus, K.n/ � I nM 0 for all n 2 N. As the opposite
inclusion holds anyway, the latter implies K.n/ D I nM 0. In particular, we see for
n D 0 that M coincides with M 0 and therefore is finitely generated. Hence, we get
K.n/ D I nM , and it follows that the topology of M coincides with the I -adic one.

ut

8.2 Admissible Formal Blowing-Up

In the following we will discuss the technique of admissible formal blowing-up
on formal R-schemes X , as sort of a completed scheme theoretic blowing-up on
the affine open parts of X . In order to control torsion submodules under such
a completion process, for example I -torsion submodules, we need an auxiliary
flatness result due to Gabber, which we will prove below in Lemma 2. It extends
certain results on the flatness of adic completions, as contained in [AC], Chap. III,
Sect. 5, no. 4, to the non-Noetherian situations we have to work with. Gabber’s



180 8 Raynaud’s View on Rigid Spaces

Lemma will be used in the proof of Proposition 7 and is essential for showing
that the formal blowing-up of an admissible formal R-scheme yields an admissible
formal R-scheme again.

Lemma 1. Let M be a module over some ring A, and let � 2 A be an element that
is not a zero-divisor in A. Then the following are equivalent:

(i) M is flat over A.
(ii) The torsion

.�-torsion/M D
˚
x 2M ; �nx D 0 for some n 2 N

�

of � inM is trivial,M=�M is flat over A=�A, and M ˝A Adb��1ec is flat over
Adb��1ec.

Proof. Assume first that M is flat over A. Then the multiplication by � is injective
on M , since it is injective on A. Furthermore, the flatness assertions in (ii) for
M=�M and M ˝A Adb��1ec follow by base change.

Conversely, assume condition (ii). Proceeding step by step, we will show that the
Tor modules TorAq .M;N / are trivial for q > 0 and all A-modules N .

(a) Let N D A=�A. Then the short exact sequence

0 � A
�� A � N � 0

yields a free resolution of N . Tensoring it with M , we obtain the sequence

0 � M
�� M � M ˝A N � 0;

which is exact since .�-torsion/M is supposed to be trivial. However, this
implies TorA1 .M;N / D .�-torsion/M D 0 and, hence, that TorAq .M;N / D 0

for q > 0.
(b) Next, assume �N D 0 and choose a projective resolution P� of M . Since

TorAq .M;A=�A/ D 0 for q > 0 by step (a), the sequence

P� ˝A A=�A � M=�M � 0

is seen to be exact. Thus, P� ˝A A=�A is a projective resolution of
M=�M . Since M=�M is flat over A=�A by assumption, we have
TorA=�Aq .M=�M;N/ D 0 for q > 0. Hence, the sequence

P� ˝A A=�A˝A=�A N � M=�M ˝A=�A N � 0

is exact. As the latter coincides with the sequence
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P� ˝A N � M ˝A N � 0;

it follows that TorAq .M;N / D 0 for q > 0.
(c) Assume that �nN D 0 for some n > 1. We consider the long Tor sequence

associated to the short exact sequence

0 � �N � N � N=�N � 0:

Since �N and N=�N are killed by �n�1, an inductive argument in conjunction
with step (b) shows TorAq .M;N / D 0 for q > 0.

(d) Assume that .�-torsion/N D N , i.e. that each element ofN is killed by a power
of � . For n 2 N, let Nn D fx 2 N I �nx D 0g. Then N D lim�!n

Nn. Since the
formation of Tor is compatible with direct limits, we can conclude from step (c)
that TorA1 .M;N / D 0 for q > 0.

(e) Assume that .�-torsion/N D 0, i.e. that N does not admit �-torsion. Then
consider the long Tor sequence associated to the short exact sequence

0 � N � N ˝A Adb��1ec � T � 0

where T is a �-torsion module, i.e. .�-torsion/T D T . Since

TorAq .M;N ˝A Adb��1ec/ D TorAŒ�
�1�.M ˝A Adb��1ec; N ˝A Adb��1ec/ D 0

for q > 0 by our assumption, we see from (d) that TorA1 .M;N / D 0 for q > 0.

Finally, that condition (ii) of the lemma implies the flatness of M over A follows
from steps (d) and (e) if we consider the long Tor sequence associated to the short
exact sequence

0 � .�-torsion/N � N � N=.�-torsion/N � 0:

ut

Lemma 2 (Gabber). As in Sect. 7.3, let R be an adic ring of type (V) or (N).
Furthermore, let A be anR-algebra of topologically finite type and C an A-algebra
of finite type. Then the I -adic completion yC of C is flat over C .

Proof. If R is of type (N), then A and, hence, C are Noetherian, and the assertion
of the lemma is well-known; see [AC], Chap. III, Sect. 5, no. 4, Cor. of Prop. 3.
Therefore, we can assume that R is an adic valuation ring of type (V). Let I D .�/
be an ideal of definition of R.

We start with the special case where C D Adb�ec, with a finite system of variables
� D .�1; : : : ; �r /. Then the �-adic completion yC of C equals the algebra Ah�i
of restricted power series in � with coefficients in A. Furthermore, let us assume
that yC does not admit �-torsion. Then, by Lemma 1, we have only to show that
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yC˝RRdb��1ec is flat over C˝RRdb��1ec. Observing thatK D Rdb��1ec is a field, we
may interpret K as the field of fractions of the valuation ring obtained by localizing
R at its minimal non-zero prime ideal rad.I / D rad.�/. Thus, K is the field of
fractions of a valuation ring of height 1. Consequently, we may view AK D A˝RK
as an affinoid K-algebra, and we can use the identifications

C ˝R K D AKdb�ec; yC ˝R K D AKh�i;

where AKh�i is the K-algebra of strictly convergent power series over AK in the
sense of classical rigid geometry. In order to show that AKh�i is flat over AKdb�ec,
it is enough to show that, for any maximal ideal m � AKh�i and its restriction
n to AKdb�ec, the canonical morphism AKdb�ecn � AKh�im is flat. Since we are
dealing with Noetherian rings, see 3.1/3, we may apply the above mentioned result
of [AC] and thereby are reduced to showing that the preceding map induces an
isomorphism between the n-adic completion of AKdb�ecn and the m-adic completion
of AKh�im. Thus, it is enough to show that the inclusion of AKdb�ec into AKh�i
induces isomorphisms AKdb�ec=nn �� AKh�i=mn for n 2 N.

To do this, we proceed similarly as in the proof of 3.3/10. For any maximal ideal
m � AKh�i, we know from 3.1/4 that the quotient AKh�i=m is of finite vector
space dimension over K. Then, being a subspace of AKh�i=m, the same is true for
AKdb�ec=n and it follows that the latter is a field. Therefore n is a maximal ideal in
AKdb�ec. The same argument shows that n\AK is a maximal ideal in AK . From this
we can conclude that dimK AKdb�ec=nn <1 for all n. Indeed, the restriction nn\AK
has radical n \ AK in AK , and the latter implies dimK AK=.n

n \ AK/ < 1, again
by 3.1/4. Hence, AKdb�ec=nn is a K-algebra of finite type, which is local, and it
follows from Noether normalization, that dimK AKdb�ec=nn <1.

Now look at the following commutative diagram

where the square consists of canonical maps and where the map ˛ still has to
be explained. Fixing a residue norm on the affinoid K-algebra AK , we consider
on AKdb�ec and AKh�i the associated Gauß norms, as well as on the quotients
AKdb�ec=nn and AKh�i=nnAKh�i the corresponding residue norms. Then all maps
of the square are continuous, and AKdb�ec=nn is complete, since it is of finite vector
space dimension over K and K is complete; use Theorem 1 of Appendix A. Thus,
we can extend the projection p W AKdb�ec � AKdb�ec=nn to a continuous homo-
morphism ˛WAKh�i � AKdb�ec=nn such that the upper triangle of the diagram
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is commutative. By a density argument, the lower triangle will be commutative
as well. But then the surjectivity of p0 implies the surjectivity of � . Furthermore,
since ker˛ must contain the ideal generated by nn, it follows that � is injective and,
hence, bijective. In particular, we see that AKh�i=nAKh�i is a field, since the same
is true for AKdb�ec=n, and we get m D nAKh�i, as well as mn D nnAKh�i for all
n 2 N. Thus, � WAKdb�ec=nn �� AKh�i=mn is an isomorphism as claimed, settling
the assertion of Gabber’s Lemma in the special case where C D Adb�ec for some
R-algebra of topologically finite type A that does not admit �-torsion.

In the general case we choose an epimorphism A0 � A where A0 is an
R-algebra of topologically finite type without �-torsion. For example, A0 could be
an R-algebra of restricted power series over R. The epimorphism can be extended
to an epimorphism of type � WA0db�ec � C , since C is of finite type over A.
Then, by the above special case, A0h�i is flat over A0db�ec, and we see by base
change that A0h�i ˝A0Œ�� C is flat over C . It remains to exhibit the tensor product
as the �-adic completion of C . To do this, let a D ker � so that C D A0db�ec=a
and, hence, A0h�i ˝A0Œ�� C D A0h�i=aA0h�i. Now look at the canonical map
'WA0db�ec=a � A0h�i=aA0h�i. Tensoring it with R=.�n/ over R yields an
isomorphism ' ˝R R=.�n/, for any n. Since A0h�i=aA0h�i is an R-algebra of
topologically finite type, it is �-adically complete and separated by 7.3/8. It follows
that A0h�i=aA0h�i is the �-adic completion of C D A0db�ec=a and we are done. ut

The notion of coherent modules applies, in particular, to ideals in the structure
sheaf OX of a formal R-scheme X . Such an ideal A � OX is called open, if locally
on X , it contains powers of type I nOX . In the following we will always assume
that X is a formal R-scheme of locally of topologically finite presentation since
then, by 8.1/5, a coherent open ideal A � OX is associated on any affine open part
SpfA � X to a coherent open ideal a � A.

Definition 3. Let X be a formal R-scheme that is locally of topologically finite
presentation and let A � OX be a coherent open ideal. Then the formal R-scheme

XA D lim�!
n2N

Proj
� 1M

dD0
Ad ˝OX

�
OX=I

nOX

��

together with the canonical projection XA
� X is called the formal blowing-up

of A on X . Any such blowing-up is referred to as an admissible formal blowing-up
of X .

To explain the construction of XA in more detail, let jX j be the topological space
underlying the formal scheme X . Then OX=I

nOX is a sheaf of rings on jX j and
the pair .jX j;OX=I

nOX/ may be viewed as an ordinary scheme over R or R=In.
The latter is locally of finite presentation since X is supposed to be locally of
topologically finite presentation; see 7.3/10. All schemesXn D .jX j;OX=I

nC1OX/

for n 2 N live on the same topological space jX j and we will writeX D lim�!n2NXn,
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which means that X consists of the topological space jX j with the inverse limit
OX D lim �n2N OX=I

nOX as structure sheaf on it.
Next observe that the direct sum

1M

dD0
Ad ˝OX

�
OX=I

nC1OX

�

is a quasi-coherent sheaf of graded OXn -algebras on Xn and, hence, that

XA;n D Proj
� 1M

dD0
Ad ˝OX

�
OX=I

nC1OX

��

is a well-defined scheme over Xn. Since the tensor product commutes with
localization and, in particular, homogeneous localization, we obtain

XA;n D XA;nC1 �XnC1
Xn

for n 2 N. Thus, all XA;n live on the same topological space, say on jXAj, and the
equation

XA D lim�!
n2N

XA;n

in Definition 3 expresses the fact that XA consists of the topological space jXAj
with OXA

D lim �n2N OXA;n
as structure sheaf on it. That OXA

really is a sheaf
follows along the lines of Sect. 7.2 from the fact that lim � is left exact. Also note
that the structural morphisms XA;n

� Xn give rise to a canonical morphism of
formal R-schemes XA

� X . As a caveat, let us point out that the components
Ad˝OX

.OX=I
nC1OX/ for d 2 N cannot generally be viewed as powers of an ideal

in OX=I
nC1OX . This is a clear hint for the fact that XA;n is not to be interpreted as

a scheme theoretic blowing-up on Xn.
If X is affine, say X D SpfA, an ideal A � OX is coherent open if and only if

it is associated to a coherent open ideal a � A, see 8.1/5, where coherent may be
replaced by finitely generated as A is a coherent ring by 7.3/6. Furthermore, if A is
associated to the ideal a � A, the definition of XA amounts to

XA D lim�!
n2N

Proj
� 1M

dD0
ad ˝R

�
R=In

��
:

It is easily deduced from this fact that admissible formal blowing-ups of coherent
open ideals on formal R-schemes of locally topologically finite presentation yield
formal R-schemes that are locally of topologically finite type; for example, this
will be a consequence of Proposition 6 below. However, we are not able to show
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that admissible formal blowing-up maintains the property of a formal R-scheme to
be locally of topologically finite presentation. The latter property will only come
in via 7.3/5, when we blow up admissible formal R-schemes and show that the
blowing-up does not admit I -torsion; see Proposition 7 and Corollary 8 below.

We want to establish some basic properties of admissible formal blowing-up. Let
us call a morphism of formal R-schemes of topologically finite type 'WX 0 � X

flat if for every affine open part U � X and every affine open part U 0 � X 0 where
'.U 0/ � U , the inherent morphism of R-algebras OX.U / � OX 0.U 0/ is flat. It
is easily checked using 7.3/11 that for ' to be flat it is enough to find affine open
coverings .Ui /i2I of X and .U 0

i /i2I of X 0 such that '.U 0
i / � Ui and the attached

morphisms of R-algebras OX.Ui / � OX 0.U 0
i / are flat for all i 2 I . Also it is

possible to characterize the flatness of a morphism ' in the usual way via the flatness
of the local maps between stalks of structure sheaves.

Proposition 4. Admissible formal blowing-up commutes with flat base change.

Proof. It is enough to consider a situation where X is affine, say X D SpfA, and
where A is associated to a finitely generated open ideal a � A. Then

XA D lim�!
n2N

Proj
� 1M

dD0
ad ˝R

�
R=In

��
:

Now consider a base change morphism 'WX 0 � X where we may assume X 0
to be affine, too, say X 0 D SpfA0 with an R-algebra A0 of topologically finite
presentation. Then

XA �X X 0 D lim�!
n2N

Proj
� 1M

dD0
ad ˝A A0 ˝R

�
R=In

��
:

If A0 is flat over A, the canonical map ad ˝A A0 � adA0 is an isomorphism and,
hence,

XA �X X 0 D lim�!
n2N

Proj
� 1M

dD0

�
aA0�d ˝R

�
R=In

��

equals the admissible blowing-up of the coherent open ideal AOX 0 � OX 0 on X 0.
Note that the same argument works if A0 is replaced by a complete adic ring R0 of
type (V) or (N) over R such that IR0 is an ideal of definition of R0. ut

In particular, it follows that the notion of admissible formal blowing-up is local
on the base (although this can just as well be deduced directly from Definition 3,
without the intervention of Proposition 4):
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Corollary 5. Let X be a formal scheme that is locally of topologically finite
presentation, and let A � OX be a coherent open ideal. Then, for any open formal
subscheme U � X , the restriction XA �X U of the formal blowing-up XA of A on
X to U coincides with the formal blowing-up of the coherent open ideal AjU � OU

on U .

Next, we want to relate admissible formal blowing-up to scheme theoretic
blowing-up.

Proposition 6. Let X D SpfA be an affine formal R-scheme of topologically finite
presentation. Furthermore, let A D a� be a coherent open ideal in OX that is
associated to a coherent open ideal a � A. Then the formal blowing-up XA equals
the I -adic completion of the scheme theoretic blowing-up .SpecA/a of a on SpecA.
In other words, it equals the formal completion of .SpecA/a along its subscheme
defined by the ideal IA � A.

Proof. The scheme theoretic blowing-up of a on the affine scheme SpecA is
given by

P D Proj
� 1M

dD0
ad

�
:

Since tensoring with R=In over R for n 2 N is compatible with localization and, in
particular, homogeneous localization of

L1
dD0 ad , the I -adic completion of P is

yP D lim�!
n2N
.P ˝R R=In/ D lim�!

n2N
Proj

� 1M

dD0
ad ˝R R=In

�

and, thus, coincides with the formal blowing-up of A on X . ut
Relying on this result, we can describe admissible formal blowing-ups in quite

precise terms, at least when X is admissible.

Proposition 7. Let X D SpfA be an admissible formal R-scheme that is affine, and
let A D a� be a coherent open ideal in OX associated to a coherent open ideal
a D .f0, : : : ,fr/ � A. Then the following assertions hold for the formal blowing-up
XA of A on X :

(i) The ideal AOXA
� OXA

is invertible, i.e., in terms of OXA
-modules, it is

locally isomorphic to OXA
.

(ii) Let Ui be the locus in XA where AOXA
is generated by fi , i D 0, : : : ,r . Then

the Ui define an open affine covering of XA.
(iii) Write
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Ci D A
Dfj
fi

; j ¤ i
E
D Ah�j ; j ¤ iiı�

fi�j � fj ; j ¤ i�:

Then the I -torsion of Ci coincides with its fi -torsion, and Ui D SpfAi holds
for Ai D Ci=.I -torsion/Ci .

Proof. Viewing S D L1
dD0 ad as a graded ring, the scheme theoretic blowing-up

of a on zX D SpecA is given by

zX 0 D ProjS D Proj
1M

dD0
ad :

The latter admits the canonical open covering zX 0 DSr
iD0 DC.fi / withDC.fi / the

open set of all homogeneous prime ideals in S where fi , viewed as a homogeneous
element of degree 1 in a1 � S , does not vanish. One knows thatDC.fi / is equipped
with the structure of an affine open subscheme of ProjS , namely DC.fi / D
SpecS.fi / where S.fi / is the homogeneous localization of S by fi , i.e. the degree 0
part of the ordinary localization Sfi of S by fi .

The ideal a � A induces an invertible ideal aO zX 0

on zX 0 D ProjS , since for any i ,
the ideal aS.fi / � S.fi / is generated by fi and the latter is not a zero divisor in S.fi /.
Furthermore, from the construction of ProjS one knows that DC.fi / coincides
precisely with the locus in zX 0 where the ideal aO zX 0

is generated by fi .
Now observe that the formal blowing-up XA of A on X is covered by the I -adic

completions Spf yS.fi / of the affine schemes DC.fi / D SpecS.fi /. Since yS.fi / is flat
over S.fi / by the Lemma of Gabber (Lemma 2), the ideal a yS.fi / � yS.fi / is invertible.
Thus, AOXA

is an invertible ideal on XA, which settles assertion (i). Furthermore,
(ii) follows from the fact that, in terms of sets, Ui is the restriction of DC.fi / to
XA. In fact, Ui D Spf yS.fi /. Thus, it remains to verify assertion (iii) for Ai D yS.fi /.

To do this, we give a more specific description of S.fi /. Choose variables
�0; : : : ; �r and, for each i , look at the canonical epimorphism

A
	
�j I j ¤ i


 � S.fi / � Sfi ; �j � fj

fi
:

The latter factors through the quotient

zCi D A
�
fj

fi
I j ¤ i

�
D A	

�j I j ¤ i

ı�

fi�j � fj I j ¤ i
�
;

and it is easily seen that it induces an isomorphism

zCi=.fi -torsion/ �� S.fi /;

since S.fi /, due to its nature as a localization by fi , does not admit fi -torsion.
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Being an open ideal, a contains a power of I . Thus, since a zCi is generated by fi ,
we must have

.fi -torsion/ zCi � .I -torsion/ zCi :

Since X is admissible, A and, hence, the graded ring S D L1
dD0 ad , as well as

its homogeneous localizations S.fi / do not have I -torsion. Therefore the preceding
inclusion must be an equality:

.fi -torsion/ zCi D .I -torsion/ zCi

Now let us pass to the I -adic completion Ci of zCi . Applying 7.3/14, we see that
Ci D zCi ˝AŒ�j I j¤i � Ah�j I j ¤ ii and, hence, that

Ci D A
Dfj
fi
I j ¤ i

E
D Ah�j I j ¤ ii

ı�
fi�j � fj I j ¤ i

�
:

By the Lemma of Gabber (Lemma 2), the I -adic completion Ci of zCi is flat over
zCi . This implies that

.I -torsion/Ci D .I -torsion/ zCi ˝ zCi Ci

and, likewise,

.fi -torsion/Ci D .fi -torsion/ zCi ˝ zCi Ci ;

so that both torsions coincide. But then, again by 7.3/14,

Ai D yS.fi / D A
Dfj
fi
I j ¤ i

Eı
.I -torsion/;

and Ui D SpfAi is as claimed. ut
In particular, we see:

Corollary 8. Let X be an admissible formal R-scheme and A � OX a coherent
open ideal. Then the formal blowing-up XA of A on X does not admit I -torsion
and, thus, by 7.3/5, is an admissible formal R-scheme again.

Next, let us show that admissible formal blowing-up is characterized by a certain
universal property.

Proposition 9. For an admissible formal R-scheme X and a coherent open ideal
A � OX the formal blowing-up XA

� X satisfies the following universal
property:
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Any morphism of formalR-schemes 'WY � X such that AOY is an invertible
ideal in OY factorizes uniquely through XA.

Proof. We may assume that X is affine, say X D SpfA, and that A is associated
to a finitely generated ideal a D .f0; : : : ; fr / � A. Then consider a morphism of
formal schemes 'WY � X such that the ideal AOY � OY is invertible. We may
assume that Y is affine, say Y D SpfB , and that the ideal AOY is generated by fi ,
for some i . Then AOY is associated to the ideal fiB D aB � B .

Let '�WA � B be the morphism of R-algebras, given by the morphism
'WY � X . Since by our assumption, the ideal aB is invertible, the fractions
fj f

�1
i are well-defined in B . Therefore, using the terminology of the proof of

Proposition 7, there is a unique homomorphism

Ai D A
Dfj
fi
I j ¤ i

Eı
.fi -torsion/ � B

that extends '�WA � B and maps the fractions fj f �1
i 2 Ai to the corresponding

fractions in B . The attached morphism Y � XA settles the existence part of the
assertion.

To justify the uniqueness part, it is enough to show that, in the above considered
special situation, any factorization Y � XA of the morphism 'WY � X maps
Y into Ui D SpfAi . However, this is easily checked, since Ui coincides with the
locus in X where the ideal AOXA

� OXA
is generated by fi . ut

We need to work out some basic properties of admissible formal blowing-up. Let
us start with a simple observation.

Remark 10. Let X be an admissible formal R-scheme and let A,B � OX be
coherent open ideals on X . Let XA be the formal blowing-up of A on X , and set
B 0 D BOXA

. Then the composition

.XA/B0

� XA
� X

of the formal blowing-up of B 0 on XA with the formal blowing-up of A on X is
canonically isomorphic to the formal blowing-up of the ideal AB on X .

Proof. The assertion is a direct consequence of the universal property of admissible
blowing-up in Proposition 9, once we know that the ideal generated by A on
.XA/B0 is invertible. However, the latter follows from the construction of blowing-
up. Consider an R-algebra A of topologically finite presentation and a coherent
open ideal a � A. Then, if for some g 2 A the g-torsion of A is trivial, the same is
true for all localizations of the graded ring S DL

d2N ad and there is no g-torsion
on the scheme theoretic blowing-up ProjS of a on SpecA. Using Gabber’s Lemma
(Lemma 2), the same holds for the formal blowing-up of a on SpfA. ut
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Proposition 11. LetX be an admissible formalR-scheme that is quasi-compact and
quasi-separated, and consider two admissible formal blowing-ups 'WX 0 � X

and '0WX 00 � X 0. Then the composition ' ı '0WX 00 � X is an admissible
formal blowing-up again.

Proof. Let A � OX and A0 � OX 0 be coherent open ideals of the structure sheaves
of X and X 0 such that 'WX 0 � X is the formal blowing-up of A on X and
'0WX 00 � X 0 is the formal blowing-up of A0 onX 0. We start with the special case
whereX is affine, sayX D SpfA. Then A is associated to a coherent open ideal a �
A by 8.1/5. Setting zX D SpecA, let z'W zX 0 � zX be the scheme theoretic blowing-
up of the ideal a on zX . By Proposition 6, the formal blowing-upX 0 equals the I -adic
completion of zX 0. More specifically, we choose a system of generators fi of a, i D
0; : : : ; r , and consider for each i the affine open subscheme Spec zA0

i � zX 0 where
fi generates the invertible ideal aO zX 0

. Then the schemes Spec zA0
i cover zX 0 and the

associated affine formal schemes SpfA0
i where A0

i is the I -adic completion of zAi ,
form an open covering of X 0. For each i , the canonical map zAi � Ai induces
isomorphisms zAi=.I `/ �� Ai=.I

`/, ` 2 N. Since the coherent ideal A0 � OX

is open and, thus, contains some power of I , we see that there exists canonically a
coherent open ideal zA0 � O zX 0

satisfying A0 D zA0OX 0 .
Now, writing z'0W zX 00 � zX 0 for the scheme theoretic blowing-up of zA0 on zX 0,

it is enough to show that the composition z' ı z'0W zX 00 � zX is the scheme theoretic
blowing-up of a coherent open ideal zA00 � O zX on zX , as then 'ı'0WX 00 � X will
be the formal blowing-up of the ideal A00 D zA00OX on X . To exhibit such an ideal,
note that L D aO zX 0

is an ample invertible sheaf on zX 0. Thus, by Grothendieck and
Dieudonné [EGA II], 4.6.8, or see [Bo], 9.4/14, there is an integer n0 2 N such
that, for all n � n0, the sheaf zA0 ˝ Ln, which we may view as an ideal in O zX 0

, is
generated by its global sections.

We conclude from the universal property of blowing-up (or by direct computa-
tion) that the morphism z'W zX 0 � zX is an isomorphism over the complement
of the closed subscheme in zX defined by the sections f0; : : : ; fr . In particular, the
canonical maps between localizationsAfi � zAi;fi are isomorphisms. As a result,
any given section in zAi is induced from a section in A, provided we multiply it by
a suitable power of fi . Thus, we can take n0, as introduced above, big enough such
that, for all n � n0, there is a (finite) set of global generators of zA0 ˝ Ln that are
induced from sections inA. Thus, if we choose some n � n0 and define an O zX -ideal
zA00 via the canonical exact sequence

0 � zA00 � O zX � z'�O zX 0

ız'�. zA0 ˝Ln/;

we get an open ideal on zX that generates zA0 ˝Ln on zX 0. Due to its definition, zA00
is a quasi-coherent ideal on zX and therefore is associated to an open ideal a00 � A.
Since zA0˝Ln is generated by finitely many global sections on zX , there is a finitely
generated open ideal a000 � a00 satisfying a000O zX 0

D zA0 ˝ Ln. Then a000 induces a
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coherent open ideal on zX , and it follows that the composition zX 00 � zX 0 � zX
is the scheme theoretic blowing-up of aa000 on zX . Likewise, X 00 � X 0 � X

will be the formal blowing-up of aa000 on X ; see Remark 10 and its proof.
Next, in order to approach the general case, we want to show that the construction

of the quasi-coherent ideal zA00 � O zX above is compatible with affine flat base
change on X . Thus, let Y � X be a morphism of affine formal R-schemes of
topologically finite presentation where X D SpfA and Y D SpfB . Then we know
from Proposition 4 that

 WY 0 D X 0 �X Y � Y

is the formal blowing-up of the ideal B D AOY on Y and, likewise,

 0WY 00 D X 00 �X Y D X 00 �X 0 Y 0 � Y 0

is the formal blowing-up of B 0 D A0OY 0 on Y 0. Writing zBi D zAi ˝A B and
Bi D Ai y̋ A B , the commutative diagrams

for ` 2 N show that zB 0 D zA0OzY 0

� OzY 0

is the canonical ideal on zY 0 generating the
ideal B 0 � OY 0 . Now consider the ideal zB 00 � OzY given by the exact sequence

0 � zB 00 � OzY � z �OzY 0

ı z �. zB 0 ˝LnjzY 0

/

where z W zY 0 � zY D SpecB is the scheme theoretic blowing-up of the coherent
ideal b � B corresponding to the coherent sheaf of ideals B D AOY � OY . Since
for any quasi-coherent O zX 0

-module F 0 on zX 0 and its pull-back F 0˝O
zX0

OzY 0

on zY 0,
there is a canonical isomorphism

 �.F 0 ˝O
zX0

OzY 0

/ �� '�.F 0/˝O
zX

OzY

by Grothendieck and Dieudonné [EGA III], 1.4.15, the flatness of B over A implies
zB 00 D zA00 ˝O

zX
OzY and, hence, that the construction of zA00, respectively zB 00, is

compatible with flat base change on X .
Finally, to conclude the proof of the proposition for an arbitrary admissible formal

R-scheme X that is quasi-compact, we can consider a covering of X by finitely
many affine open formal subschemes Xi D SpfAi , i 2 J . On each of these Xi ,
we can construct an open ideal sheaf A00

i as above that is associated to some open
ideal a00

i � Ai . The construction of A00
i depends on the choice of a sufficiently
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big integer n. However, as the index set J is finite, we may pick some n working
uniformly on all Xi . Then, since the construction of the Ai is compatible with flat
base change, we can apply 7.3/12 and thereby see that the ideals A00

i can be glued to
produce an open ideal sheaf A00 � OX satisfying A00OX 0 D A0AnOX 0 . We may call
A00 a “quasi-coherent” ideal of OX since, on each Xi , it is associated to some ideal
a00
i � Ai . By standard methods we can now find an open ideal A000 � A00 � OX

of finite type and, hence, coherent, such that A000OX 0 D A0AnOX 0 . Indeed, we can
reduce the problem to the scheme X` obtained from X by dividing out a sufficiently
high power I `C1. By our assumption onX , any suchX` is quasi-compact and quasi-
separated. Therefore we know from [EGA I], 6.9.9, that the quasi-coherent ideal
A000OX` � OX` is the direct limit of its subideals of finite type. Any such ideal will
be coherent, due to 7.3/6. Taking it big enough, its inverse image in OX , which is of
finite type and, hence, coherent, will generate the ideal A0AnOX 0 in OX 0 . For this to
work, we can divide again by some power of I and thereby reduce the problem to
the scheme case. Since X 0 is quasi-compact and A0AnOX 0 is an ideal of finite type,
we may apply [EGA I], Chap. 0, 5.2.3. ut

The assumption in Proposition 11 that X is quasi-compact is quite restrictive.
For example, if we are in the situation of 8.4/7 where we work over a complete
non-Archimedean field K and consider a separated K-scheme X of finite type,
then its rigid analytification X rig in the sense of 5.4/3 is not necessarily quasi-
compact any more. Just look at the affine n-space X D AnK . Consequently, formal
R-models X of X rig over the valuation ring R of K, as defined in 7.4/4, will not
automatically be quasi-compact. On the other hand, we will see in 8.4/7 that X rig

is quasi-paracompact and, as a consequence, admits formal R-models X that are
quasi-paracompact as well. In the following we show that quasi-paracompactness
interacts quite well with admissible formal blowing-up. Thereby we are able to
adapt the assertion of Proposition 11 to the quasi-paracompact case, as will be seen
in Proposition 15 below.

Definition 12. A topological (resp. G-topological) space X is called quasi-para-
compact if there exists an open (resp. admissible open) covering X D S

i2J Xi
such that:

(i) Xi is quasi-compact for all i 2 J in the sense that each open (resp. admissible
open) covering of Xi admits a finite (resp. finite admissible) refinement.

(ii) The covering .Xi /i2J is of finite type, i.e. for each index i 2 J the intersection
Xi \Xj is non-empty for at most finitely many indices j 2 J .

Proposition 13. Let X be an admissible formal R-scheme that is quasi-
paracompact and quasi-separated, and let U � X be an open formal subscheme
that is quasi-compact. Then any coherent open ideal AU � OU extends to a
coherent open ideal A � OX . Furthermore, we can construct A in such a way that
AjV coincides with OX jV for any formal open subscheme V � X disjoint from U .

In particular, any admissible formal blowing-up on U admits an extension on X .
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Proof. Since AU is open andU is quasi-compact, there is an integer ` 2 N such that
I `OU � AU . Then we can consider AU =I

`OU as a coherent ideal in OU =I
`OU ,

and it is enough to extend it to an ideal of finite type in OX=I
`OX . The latter is

possible by Grothendieck and Dieudonné [EGA I], 6.9.6. The construction shows
that the extended ideal coincides with OX=I

`OX on all formal open subschemes
V � X such that U \ V D ;. ut

Proposition 14. Let X be an admissible formal R-scheme, that is quasi-paracom-
pact and quasi-separated. Consider a covering X D S

i2J Xi of finite type by
quasi-compact formal open subschemes Xi � X , together with admissible formal
blowing-ups 'i WX 0

i
� Xi , i 2 J . Then there is an admissible formal blowing-up

'WX 0 � X dominating all 'i in the sense that for each i 2 J there is a unique
morphism '�1.Xi / � X 0

i such that the diagram

commutes for all i 2 J .

Proof. Let Ai � OXi be a coherent open ideal giving rise to the formal blowing-up
'i WX 0

i
� Xi . As explained in Proposition 13, we can extend Ai to a coherent

open ideal Ai � OX , and we may assume Ai jU D OX jU for each open formal
subscheme U � X such that Xi \ U D ;. In particular, Ai coincides with OX

on Xj for almost all indices j 2 J . Therefore, A D Q
i2J Ai is a well-defined

coherent open ideal in OX , and we can consider the associated formal blowing-up
'WX 0 � X . Since Ai induces an invertible ideal on X 0 for each i , the universal
mapping property of formal blowing-up implies the stated mapping property for '.

ut
For later use, we need two consequences of the above results.

Proposition 15. Let '00WX 00 � X 0 and '0WX 0 � X be admissible
formal blowing-ups of admissible formal R-schemes where X is quasi-
separated and quasi-paracompact. Then there is an admissible formal blowing-up
'000WX 000 � X dominating the composition '0 ı '00WX 00 � X , i.e. such that
there is a morphism � WX 000 � X 00 satisfying '000 D '0 ı '00 ı � .

Proof. We choose a covering X D S
i2J Xi of finite type by quasi-compact open

formal subschemes Xi � X . Then, over each Xi , the composition '0 ı '00 is
an admissible formal blowing-up of Xi by Proposition 11. Let Ai � OXi be
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the corresponding coherent open ideal. Due to Proposition 13, we can extend Ai

to a coherent open ideal Ai � OX coinciding with OX on each open formal
subscheme V � X where V \ Xi D ;. Then A D Q

i2J Ai is a well-defined
coherent open ideal in OX and, blowing up A onX , we obtain an admissible formal
blowing-up of X which, due to the universal property of blowing-up, dominates
'0 ı '00. ut

Proposition 16. Let X � Y be a morphism of admissible formalR-schemes and
Y 0 � Y an admissible formal blowing-up. Then these morphisms are part of a
commutative diagram

where X 0 � X is an admissible formal blowing-up.

Proof. Let B � OY be the coherent open ideal corresponding to the blowing-up
Y 0 � Y and set A D BOX . Then A is a coherent open ideal in OX , and the
corresponding formal blowing-up X 0 � X , composed with X � Y will
factor through Y 0, due to the universal property of admissible formal blowing-up.

ut

8.3 Rig-Points in the Classical Rigid Setting

In this section, we want to deal with admissible formal R-schemes in the classical
rigid case. So we assume in the following that R is a complete valuation ring of
height 1with field of fractionsK and with j�jWK � R�0 a corresponding absolute
value. Then, as in Sect. 7.4, we can consider the functor

rigW .admissible formal R-schemes/ � .rigid K-spaces/

that is constructed by associating to an affine admissible formal R-scheme SpfA
the affinoid K-space SpA˝R K. Any point x 2 SpA˝R K is given by a maximal
ideal in A˝R K and, since A˝R K is a localization of A, is induced from a well-
defined prime ideal p � A. Of course, p cannot be an open ideal in A. However, we
will see that there is a unique maximal ideal m � A, which is open and contains p.
Thereby we get a specialization map from the points of SpA˝R K to the (closed)
points of SpfA. To describe this map in convenient terms, we introduce the notion
of rig-points.
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Definition 1. Let X be an admissible formal R-scheme. A rig-point of X , also
called a locally closed rig-point, is a morphism uWT � X of admissible formal
R-schemes such that

(i) u is a locally closed immersion, and
(ii) T is affine, T D SpfB , with B a local integral domain of dimension 1. The

field of fractions of B is called the residue field of u.

A rig-point uWT � X is called closed if u is a closed immersion.1

Similarly as in the scheme case, a morphism of admissible formal R-schemes
'WY � X is called a closed immersion if there exists an affine open cover
.Xi /i2J of X such that .'�1.Xi //i2J defines an affine open cover of Y and
the induced morphisms '�1.Xi / � Xi , i 2 J , correspond to epimorphisms
'#
i WOX.Xi / � OY .'

�1.Xi //. Note that then the kernel ker'#
i is saturated in

OX.Xi / in the sense of Lemma 7.3/7 and, hence, is finitely generated. In particular,
'�.OY / is a coherent OX -module via the canonical morphism '#WOX

� '�OY ,
and the kernel I D ker'# is a coherent ideal in OX . It follows for any affine open
formal subscheme U � X that the inverse image '�1.U / is affine open in Y . More
generally, a morphism of admissible formal R-schemes 'WY � X is called a
locally closed immersion if it factors through a closed immersion Y � U � X
where U is an open formal subscheme of X .

First we want to check, which type of rings B can occur within the context of the
above definition. As usual, let I � R be an ideal of definition.

Lemma 2. Let T D SpfB be an admissible formal R-scheme where B is a local
integral domain of dimension 1. Then B is finite over R and the integral closure of
B in its field of fractions Q.B/ is a valuation ring.

Proof. First, let us note that the maximal ideal of B is open, since B is I -adically
separated. In particular, B ˝R k is a local ring where k is the residue field of R.
Due to the fact that B is of topologically finite type over R, it follows that B ˝R k
is of finite type over k. Hence, by Noether normalization, it must be module-finite
over k. Now choose an epimorphism of R-algebras � WRh�1; : : : ; �ri � B such
that the residue classes of the elements xi D �.�i /, i D 1; : : : ; r , form a k-basis in
B ˝R k. There is an element � 2 R, 0 < j�j < 1, such that

�.�i �j / D xixj 2
rX

iD1
Rxi C �B; i; j D 1; : : : ; r:

In addition, we may assume 1 2Pr
iD1 Rxi C �B . Then it follows by iteration that

1 Beyond the classical rigid case, the notion of rig-points is useful when R is a general adic ring
of type (V) or (N). Such rig-points will not necessarily be closed, as is the case in classical rigid
geometry; cf. Lemma 3 below.
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B D
rX

iD1
Rxi C �B;

and by �-adic approximation, that B DPr
iD1 Rxi .

Hence, B is finite over R and its field of fractions Q.B/ is finite over the field
of fractions K D Q.R/. Let B � Q.B/ be the valuation ring corresponding to
the unique extension of the absolute value from K to Q.B/. By construction of the
latter, B is integral over R and, being normal, it equals the integral closure of R
in Q.B/. Then B must contain B and, hence, equals the integral closure of B in
Q.B/. ut

As a consequence, we can observe:

Lemma 3. Every rig-point of an admissible formal R-scheme X is closed.

Proof. It is enough to look at the case where X is affine. Thus, consider an
affine admissible formal R-scheme X D SpfA, and an open formal subscheme
SpfAhf �1i � X induced by some element f 2 A, as well as a closed rig-point
uWSpfB � SpfAhf �1i. Then there is a canonical commutative diagram

where u# is surjective. We have to show that the composition u# ı  WA � B

is surjective as well. To do this, write B 0 for the image of A in B . Then B 0 is an
R-algebra of topologically finite type and, hence, by 7.3/8, I -adically complete and
separated. Since B is finite over R by Lemma 2, it is finite over B 0. In particular,
if f is the residue class in B of f 2 Ahf �1i, we know that its inverse f �1 2 B
is integral over B 0. Considering an integral equation of f �1 over B 0, the usual trick
shows f �1 2 B 0, since we know f 2 B 0. But then, as the I -adic topology of
B restricts to the I -adic topology of B 0 (use Lemma 7.3/7, or a direct argument
involving absolute values), B 0 is dense in B and, thus, must coincide with B . It
follows that the composition u# ı  WA � B is surjective. ut

In the following, we will consider rig-points only up to canonical isomorphism.
To be more precise, call two rig-points uWT � X and u0WT 0 � X

of an admissible formal R-scheme X equivalent if there is an R-isomorphism
� WT �� T 0 such that u D u0 ı � . The set of equivalence classes of rig-points
of X will be denoted by rig-pts.X/.
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Proposition 4. Let 'WX 0 � X be a morphism of admissible formal R-schemes
and uWT 0 � X 0 a rig-point of X 0. Then the composition

' ı u0WT 0 � X 0 � X

factors uniquely through a rig-point uWT � X in the sense that we have a
commutative diagram

In particular, ' gives rise to a well-defined map

rig-'W rig-pts.X 0/ � rig-pts.X/, u0 � u,

between the rig-points of X 0 and X .

Proof. We may assume that X and X 0 are affine, say X D SpfA, X 0 D SpfA0.
Furthermore, let T 0 D SpfB 0. If uWSpfB � SpfA is a rig-point through which
the composition ' ı u0 factors, then there is a commutative diagram

where the vertical maps are surjective. Since B and B 0 are local integral domains of
dimension 1, which are finite over R by Lemma 2, we see that B � B 0 must be
injective. Hence, we can identify B with the subring of B 0 that equals the image of
u0# ı'#, and we see that the rig-point uWSpfB � X through which ' ıu0 factors,
is unique.

To show the existence part of the assertion, set B D u0# ı '#.A/. Then, by its
definition, B is of topologically finite type and, hence, by 7.3/5, an admissible
R-algebra. Furthermore, since B 0 is a local integral domain of dimension 1, the
same must hold for B , as B 0 is integral over B by Lemma 2. Thus, A � B gives
rise to a rig-point uWT � X , through which the composition ' ı u0 factors. ut

The construction of the map rig-' in Proposition 4 shows that the residue field of
a rig-point uWT � X can shrink under this map. The latter is not possible if ' is
an admissible formal blowing-up.
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Proposition 5. Let 'WX 0 � X be an admissible blowing-up on an admissible
formal R-scheme X . Then the associated map

rig-'W rig-pts.X 0/ � rig-pts.X/

is bijective and respects residue fields.

Proof. We may assume that X is affine, say X D SpfA. Let a D .f0; : : : ; fr / � A
be a coherent open ideal such that ' is the formal blowing-up of a on X . In order to
exhibit an inverse of rig-', consider a rig-point uWSpfB � X . Then a becomes
invertible over the integral closure B of B in Q.B/, since B is a valuation ring
by Lemma 3 and since any finitely generated ideal of a valuation ring is principal.
Interpreting B as a direct limit of finite extensions of B and using the fact that a is
finitely generated, we can find a finite subextension B 0 � B over B such that the
ideal aB 0 � B 0 is invertible. Clearly, B 0 is a local ring of dimension 1, just as R and
B are. Furthermore, it is I -adically complete and separated by 7.3/8. Thus, using
the universal property of the formal blowing-up ', the morphism

SpfB 0 � SpfB � X

factors through a unique morphism u0WSpfB 0 � X 0. More precisely, if aB 0 is
generated by fi and SpfAi is the open formal subscheme of X 0 where the invertible
sheaf aOX 0 � OX 0 is generated by fi , then u0 maps SpfB 0 into SpfAi . Replacing
B 0 by the image of the attached map Ai � B 0, we may even assume that
u0WSpfB 0 � X 0 is a closed immersion and, therefore, is a rig-point of X 0. Thus,
associating to any u 2 rig-pts.X/ the rig-point u0 2 rig-pts.X 0/, as just constructed,
we obtain a map rig-pts.X/ � rig-pts.X 0/, which clearly is an inverse of rig-'.

ut
We want to show that the rig-points of an admissible formal R-scheme X

correspond bijectively to the points of the associated rigid K-space Xrig.

Lemma 6. Let X D SpfA be an affine admissible formal R-scheme. Then there are
canonical bijections between the following sets of points:

(i) Rig-points of SpfA, up to identification via natural isomorphism.
(ii) Non-open prime ideals p � A with dimA=p D 1.

(iii) Maximal ideals in A˝R K.

In more detail, the stated bijections can be described as follows:

(a) Given a point of type (i), i.e. a rig-point uWSpfB � SpfA defined by an
epimorphism u#WA � B , associate to it the prime ideal p D ker u# � A as
point of type (ii).

(b) Given a point of type (ii) represented by a prime ideal p � A, associate to it the
ideal generated by p in A˝R K as point of type (iii).
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(c) Given a point of type (iii), represented by a maximal ideal m � A ˝R K, let
p D m \ A and associate to m the canonical morphism SpfA=p � SpfA
as point of type (i).

Proof. First we show that the maps described above are well-defined in the sense
that they produce points of the stated types. Starting with points of type (i), let
uWSpfB � SpfA be a rig-point of X , and let u#WA � B be the associated
epimorphism of R-algebras. Then p D ker u# is a prime ideal that satisfies
dimA=p D dimB D 1. Furthermore, since A=p contains R as a subring, p cannot
be open. It follows that p is a point of type (ii). Next, consider a prime ideal p � A
giving rise to a point of type (ii), and assume that there is a prime ideal q � A

with p ¨ q. Then q is a maximal ideal, due to dimA=p D 1. Furthermore, such
a maximal ideal must be open in A, since otherwise we would have �A C q D A

for � 2 R, 0 < j�j < 1, thus, implying an equation of type 1 � a� D q for
some elements a 2 A and q 2 q. But then, due to the geometric series, q would be
invertible which, however, is impossible. It follows that p � .A˝R K/ is a maximal
ideal in A˝R K and, thus, a point of type (iii).

Finally, consider a point of type (iii), i.e. a maximal ideal m � A ˝R K. Then
K 0 D .A ˝R K/=m is a field that is finite over K by 2.2/12 and, using 7.3/5, the
image of A in K 0 is an admissible R-algebra, which we denote by B . Extending
the absolute value of K to K 0, which is possible in a unique way, let R0 � K 0 be
the corresponding valuation ring. Then R0 equals the integral closure of R in K 0,
and we claim that B � R0. In fact, choose an epimorphism Rh�i � A where
� is a finite system of variables, and consider on the affinoid K-algebra A ˝R K
the residue norm derived from the induced epimorphism Kh�i � A ˝R K.
Fixing some � 2 R, 0 < j�j < 1, the topology of A˝R K restricts to the �-adic
topology of A; the latter is true, since A, as an admissible R-algebra, does not admit
�-torsion and, thus, embeds into A˝RK. But then, by continuity, any bounded part
of A ˝R K, such as A, must be mapped into a bounded part of K 0, and it follows
that B � R0. Since the extensions R � B � R0 are integral and R, R0 are local
rings of dimension 1, the same must be true for B . It follows that A � B gives
rise to a rig-point SpfB � SpfA. Furthermore, writing p D m\A, we see that
the quotient A=p is isomorphic to B .

To show that the above described canonical maps are, indeed, bijections, note
that these maps are all injective by definition. Furthermore, going from points of
type (i) to points of type (ii), then of type (iii) and, finally, of type (i) again, we get
the identity map on points of type (i). This is enough to conclude that all three maps
are bijective. ut

Using the map from points of type (i) in Lemma 6 to those of type (iii), we obtain
the following statement:

Proposition 7. Let X be an admissible formal R-scheme and let Xrig be the
associated rigid K-space. Then there is a canonical bijection
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rig-pts.X/ �� Xrig

between sets of points, which is functorial in X and associates to a rig-point
T � X the image of the corresponding closed immersion Trig

� Xrig.

Choosing an element � 2 R, 0 < j�j < 1, we may use I D .�/ as an ideal
of definition of R. As usual, we set A` D A=I `C1A for any R-algebra A and let
X` D X ˝R R=I `C1 for any formal R-scheme X . Then the underlying topological
spaces of the schemes X` are canonically identified via the closed immersions
X` � X`C1. If k is the residue field of R, we may, in terms of underlying
topological spaces, identify each X` even with X` ˝R` k D X ˝R k. The latter
is a k-scheme of finite type if X is a formal R-scheme of topologically finite type;
it will be denoted by Xk . Let us call Xk the special fiber of X . Since any rig-point
uWT � X of an admissible formal R-scheme X induces a closed immersion
uk WTk � Xk , we see that u determines a closed point of the special fiber Xk .
Thus, using Proposition 7, we get a canonical specialization map

spWXrig
� Xk

that is characterized as follows. Consider a point x 2 Xrig. To determine its image
sp.x/ 2 Xk , choose an affine open subscheme U D SpfA in X such that x belongs
to Urig D SpA ˝R K, and let m � A ˝R K be the corresponding maximal ideal.
Then consider the projection K WA ˝R K � .A ˝R K/=m D K 0 where K 0 is
finite over K by 3.1/4. Let  WA � B for B D K.A/ be the restriction of K . As
we have seen, B is a local integral domain of dimension 1 lying between R and the
valuation ring of K 0. In fact,  gives rise to the rig-point of X corresponding to x,
and the surjections A˝R k � B ˝R k � B ˝R k= rad.B ˝R k/ determine
the closed point of the special fiber Uk D SpecA˝R k � Xk that equals the image
of x under the specialization map sp. Note that the construction of sp is similar to
the one considered in [BGR], 7.1.5, although we never use “canonical reductions”
of affinoid algebras in the style of [BGR], 6.3.

We want to show:

Proposition 8. For any admissible formal R-scheme X , the specialization map
spWXrig

� Xk is surjective onto the set of closed points of Xk .

Proof. We may assume that X is affine, say X D SpfA, and we first look at the
special case where A is an algebra of restricted power series, say A D Rh�i for a
finite set of variables � D .�1; : : : ; �n/. Then consider a closed point x 2 Xk and let
m � Ak D A˝Rk be the associated maximal ideal. We set k0 D Ak=m and choose a
finite field extensionK 0=K lifting the extension k0=k. It follows thatK 0 is endowed
with an absolute value extending the one given on K, and we denote by R0 � K 0
the corresponding valuation ring; it equals the integral closure of R in K 0. In order
to show that x belongs to the image of the specialization map spWXrig

� Xk ,
it is enough to show that the canonical projection pk WA � Ak � k0 can
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be lifted to an R-homomorphism pWA � R0. Then, since R0 is integral over R
and, hence, over p.A/, we see that p.A/ is a local ring of dimension 1. Therefore
the epimorphism A � p.A/ gives rise to a rig-point of X specializing into the
closed point x 2 Xk .

To construct the desired lifting p of pk is easy. Choose a representative ai 2 R0
of pk.�i / for each i and define a lifting of pk by

pWRh�1; : : : ; �ni � R0; �i � ai ; i D 1; : : : ; n:

In the general case, we choose an epimorphism  WRh�i � A whereRh�i is an
R-algebra of restricted power series as before. We can extend  to an epimorphism
K WKh�i � A ˝R K between associated affinoid K-algebras. Then A may be
interpreted as the subring in A˝R K consisting of all elements a 2 A˝R K such
that a has residue norm � 1 with respect to the projection K ; use 2.3/9. Due to
Noether Normalization 2.2/11, there is a K-morphism

�K WKh�i � Kh�i

with a finite set of variables � D .�1; : : : ; �d / such that the composition

K ı �K WKh�i � A˝R K

is a finite monomorphism. Since �K is contractive with respect to the Gauß norm,
�K restricts to an R-morphism �WRh�i � Rh�i. We claim that the resulting
R-morphism  ı �WRh�i � A is finite. This fact is readily checked by redoing the
proof of Noether normalization in 2.2/11, using coefficients in R instead of K. The
important fact is the estimate provided by the Weierstrass division formula in 2.2/8:
given any �n-distinguished element g 2 Kh�i of Gauß norm 1 and of order s, any
element f 2 Kh�i can uniquely be written as

f D qgC r with q 2 Kh�i; r 2 Kh�1; : : : ; �n�1idb�nec;

where deg�n r < s and jqj; jr j � jf j.
Knowing that  ı �WRh�i � A is a finite monomorphism, we want to apply the

Going-down Theorem to it. In order to do this, assume that A is an integral domain.
Furthermore, we need to know that Rh�i is a normal ring. The latter follows from
the fact thatKh�i is a normal ring; see 2.2/15. In fact, observe that the fraction field
Q of Rh�i coincides with the one of Kh�i and consider an element q 2 Q that is
integral over Rh�i. Then q 2 Kh�i by 2.2/15, and if we look at an integral equation

qs C c1qs�1 C : : :C cs D 0

with coefficients ci 2 Rh�i, it follows that q has necessarily Gauß norm � 1 and,
thus, belongs to Rh�i. Therefore Rh�i is a normal ring.



202 8 Raynaud’s View on Rigid Spaces

Now, as in the beginning, let m be the maximal ideal in A corresponding to the
given closed point x 2 Xk . Set n D m \ Rh�i. Using the characterization of rig-
points in Lemma 6, we know from the above considered special case that there is
a non-open prime ideal q � n satisfying dimRh�i=q D 1. Furthermore, by the
Going-down Theorem, there is a prime ideal p � m � A such that p \ Rh�i D q.
Clearly, p is non-open and satisfies dimA=p D 1. Thus, by Lemma 6, p gives rise
to a rig-point of SpfA that specializes into the point corresponding to the given
maximal ideal m � A.

In the general case, consider the injection A � � AK D A ˝R K, and let
p1; : : : ; ps � AK be the minimal prime ideals in AK . Set p0

i D pi \ A. Then
radAK D Ts

iD1 pi and, hence, radA D Ts
iD1 p0

i . In particular, for any given
maximal ideal m � A, there is an index i0 such that p0

i0
� m. Write p0 D p0

i0

and p D pi0 and consider the commutative diagram

In particular, A=p0 is an R-algebra of topologically finite type. Since it does not
have I -torsion, it is an admissible R-algebra by 7.3/5. Therefore we know from
the above considered special case that the projection A=p0 � A=m lifts to an
epimorphism A=p0 � B giving rise to a rig-point T � SpfA=p0. Then, as
desired, T � SpfA=p0 � SpfA is a rig-point specializing into x. ut

8.4 Rigid Spaces in Terms of Formal Models

We consider again the classical rigid situation where R is a complete valuation
ring of height 1 with field of fractions K. As usual, let k be the residue field of
R and choose a non-unit � 2 R � f0g so that the topology of R coincides with
the �-adic one. If X is an admissible formal R-scheme and Xrig its associated
rigid K-space, we call X a formal R-model of Xrig; cf. 7.4/4. Given any rigid
K-space XK , one may ask if there will always exist a formal R-model X of XK ,
and if yes, in which way such formal models will differ. Assuming some mild
finiteness conditions, we will work out satisfying answers to these questions. We
thereby obtain a characterization of the category of rigid K-spaces (with certain
finiteness conditions) as a localization of an appropriate category of admissible
formal R-schemes.

To begin with, let us explain the process of localization of categories.
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Definition 1. Let C be a category and S a class of morphisms in C. Then a
localization of C by S is a category CS together with a functor QWC � CS
such that:

(i) Q.s/ is an isomorphism in CS for every s 2 S .
(ii) If F WC � D is a functor such that F.s/ is an isomorphism for every s 2 S ,

then F admits a unique factorization as follows:

To be more precise, the commutativity of the diagram, as well as the uniqueness
of G are meant up to natural equivalence of functors. Without any further assump-
tion, one can show that localizations of categories do always exist.

Proposition 2. The functor

rigW .F=R/ � .R=K/, rigWX � Xrig,

from the category .F=R/ of admissible formal R-schemes to the category .R=K/
of rigid K-spaces, as defined in 7.4/3, factors through the localization of .F=R/ by
admissible formal blowing-ups.

Proof. We just have to show that the functor rig transforms an admissible formal
blowing-upXA

� X of some admissible formalR-scheme into an isomorphism
XA;rig

�� Xrig. To do this, we may assume that X is affine, say X D SpfA. Then
the coherent open ideal A � OX is associated to a finitely generated open ideal
a D .f0; : : : ; fr / � A. Choosing a non-zero non-invertible element � 2 R, we may
assume I D .�/ and we see from 8.2/7 that XA is covered by the affinoidK-spaces
associated to the admissible R-algebras

Ai D A
Df0
fi
; : : : ;

fr

fi

Eı
.�-torsion/; i D 0; : : : ; r:

Thus, applying the functor rig to the projection SpfAi � SpfA and writing
AK D A˝R K, we obtain the canonical map

SpAK
Df0
fi
; : : : ;

fr

fi

E
� SpAK
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defining Xrig.
f0
fi
; : : : ;

fr
fi
/ as a rational subdomain of Xrig D SpAK . More specif-

ically, one checks that rig transforms the covering .SpfAi/iD0:::r of XA into the
rational covering generated by f0; : : : ; fr on Xrig, preserving intersections. Of
course, one has to realize that, a being open in A, it contains a power of � so that
the functions f0; : : : ; fr will generate the unit ideal in AK . Thus, we see that rig
transforms the morphism XA

� X into an isomorphism. ut
Under certain mild conditions we can strengthen Proposition 2 to yield an

equivalence of categories. To give a precise statement, recall from 8.2/12 that a
formal R-scheme X is called quasi-paracompact if it admits an open covering
of finite type by quasi-compact open subschemes Ui � X , i 2 J , i.e. such that
each Ui is disjoint from almost all other Uj , j 2 J . In a similar way the notion
of quasi-paracompactness is defined for rigid K-spaces. Furthermore, recall 6.3/2
and 6.3/4 for the characterization of quasi-separated rigid K-spaces.

Theorem 3 (Raynaud). Let R be a complete valuation ring of height 1 with field of
fractions K. Then the functor rig induces an equivalence between

(i) .FSch=R/S , the category of all admissible formal R-schemes that are quasi-
paracompact, localized by the class S of admissible formal blowing-ups, and

(ii) .Rig=K/, the category of all quasi-separated rigid K-spaces that are quasi-
paracompact.

The proof will consist in establishing the following steps:

Lemma 4.

(a) The functor rig transforms admissible formal blowing-ups into isomorphisms.
(b) Two morphisms ', WX � Y of admissible formal R-schemes coincide if

the associated rigid morphisms 'rig, rig coincide.
(c) Let X ,Y be admissible formal R-schemes that are quasi-paracompact, and let

'K WXrig
� Yrig be a morphism between the associated rigid K-spaces. Then

there exist an admissible formal blowing-up  0WX 0 � X and a morphism of
formal R-schemes '0WX 0 � Y such that '0

rig D 'K ı  0
rig.

(d) Assume that 'K WXrig
� Yrig as in (c) is an isomorphism and that X ,Y are

quasi-compact. Then we can choose '0WX 0 � Y satisfying '0
rig D 'K ı  0

rig
with the additional property that it is an admissible formal blowing-up of Y .

(e) Each rigidK-spaceXK that is quasi-separated and quasi-paracompact, admits
a quasi-paracompact admissible formal R-scheme X as a formal model, i.e.
with X satisfying Xrig ' XK .

First note that, in the classical rigid case, an admissible formal R-scheme X is
automatically quasi-separated, since its special fiber is a scheme of locally finite
type over the residue field k of R; see Sect. 8.3. Therefore it is clear that the functor
of associating to an admissible formalR-schemeX its corresponding rigidK-space
Xrig restricts to a functor
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rigW .FSch=R/ � .Rig=K/:

We begin by showing that the assertions (a)–(c) and (e) of Lemma 4 imply that
the functor rig satisfies the conditions of a localization of (FSch=R) by the class S
of all admissible formal blowing-ups; note that assertion (d) of Lemma 4 will be
necessary for the proof of assertion (e).

Of course, we realize from (a) that rig.s/ is an isomorphism for every s 2 S .
Next, consider a functor F W .FSch=R/ � D to some category D where F.s/ is
an isomorphism for all s 2 S . In order to define a functorGW .Rig=K/ � D with
F D G ı rig, we proceed as follows. For any object XK in .Rig=K/ we pick an
R-model X in .FSch=R/ (with Xrig ' XK) and set G.XK/ D F.X/. The latter is
possible due to assertion (e). Furthermore, let 'K WXK � YK be a morphism in
.Rig=K/. Then, if X and Y are the R-models we have picked for XK and YK , we
use (c) and choose an admissible formal blowing-up  0WX 0 � X such that there
is an R-morphism '0WX 0 � Y satisfying '0

rig D 'K ı  0
rig. Then we define the

composition

G.'K/WF.X/ F. 0/�1� F.X 0/ F.'0/� F.Y /

as the image of the morphism 'K under G. To show that G.'K/ is well-defined,
consider a second admissible blowing-up  00WX 00 � X and an R-morphism
'00WX 00 � Y such that '00

rig D 'K ı  00
rig. Let A0;A00 � OX be the coherent open

ideals corresponding to  0;  00, and let  000WX 000 � X be the formal blowing-up of
the product A0A00 on X . Then  000 dominates  0;  00, and we thereby get a diagram

where the square with the diagonal  000 is commutative. Furthermore, the composi-
tions '0 ı � 0 and '00 ı � 00 coincide by (b), since they coincide when applying the
functor rig. Therefore the whole diagram is commutative. Since  0;  00;  000 2 S , it
follows that the compositions

F.X/
F. 0/�1� F.X 0/ F.'0/� F.Y /

F.X/
F. 00/�1� F.X 00/ F.'00/� F.Y /
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coincide and, hence that G.'K/ is well-defined. For G being a functor, it remains to
show that G respects the composition of morphisms. Thus, consider a composition

of morphisms XK
'K� YK

 K� ZK in .Rig=K/. Then the corresponding
composition G. K/ ıG.'K/ in D is constructed via a diagram of type

in .FSch=R/ where the vertical arrows are admissible formal blowing-ups.
By 8.2/16, there is a commutative diagram

with an admissible blowing-up X 00 � X 0 and furthermore, by 8.2/15, we can
dominate the composition of admissible blowing-ups X 00 � X 0 � X by an
admissible blowing-up X 000 � X , thereby getting the following commutative
diagram:

Since the compositionG. K ı'K/ can be thought to be constructed via the resulting
diagram
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we see that G. K ı 'K/ D G. K/ ıG.'K/. That G is unique, as required, is clear
from the construction.

Next, in order to prove the assertions of Lemma 4, we gather some general facts
that will be needed.

Lemma 5. LetX be an admissible formalR-scheme that is quasi-paracompact, and
let UK be an admissible covering of finite type of the associated rigid K-space Xrig,
consisting of quasi-compact open subspaces of Xrig. Then there is an admissible
formal blowing-up  WX 0 � X together with an open covering U0 of X 0 such
that the associated family U0

rig of rigid K-subspaces of Xrig coincides with UK .

Proof. We start with the case whereX is affine. Then UK is a finite covering. By the
Theorem of Gerritzen–Grauert 3.3/20, each UK 2 UK is a finite union of rational
subdomains of Xrig, and we may assume that UK itself is a rational subdomain in
Xrig. Then UK is of type

Xrig

�
f1

f0
; : : : ;

fn

f0

�

for some global sections f0; : : : ; fn generating the unit section in OX . Multiplying
the fi with a suitable constant in R, we may even assume fi 2 OX for all i . So we
can consider the coherent open ideal A � OX generated by the fi , as well as the
associated formal blowing-up X 0 � X . Then the part of X 0 where f0 generates
the ideal AOX 0 � OX 0 constitutes an open formal subscheme U � X 0 inducing
the admissible open subspace UK � Xrig. Working with all UK 2 UK this way, we
can blow up the product of the corresponding coherent open ideals in OX . Thereby
we obtain an admissible formal R-scheme X 0 admitting a system U0 of open formal
subschemes that induce the system UK on Xrig. That U0 covers X 0 will be shown
below.

In the general case we work locally on X with respect to an affine open covering
.Xj /j2J of finite type. Restricting UK to any Xj;rig and using the fact that Xrig is
quasi-separated, we obtain an admissible covering of finite type of Xj;rig, consisting
of quasi-compact admissible open subspaces of Xj;rig. As shown above, one can
construct a coherent open ideal Aj � OXj such that, after blowing up Aj on Xj ,
there exist open formal subschemes of the blowing-up Xj;Aj

of Aj on Xj , giving
rise to formalR-models of the members of UK jXj . Extending each Aj to a coherent

open ideal Aj � OX as in 8.2/13 and setting A D Q
j2J Aj , we can represent all
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members of UK as open formal subschemes of the blowing-up X 0 D XA of A on
X , thereby obtaining a family U0 as required.

Finally, to show that U0 coversX 0, we can use the surjectivity of the specialization
map from X 0

rig to the closed points of X 0
k , for k the residue field of R. In fact, if x

is a closed point of X 0, we may view it as a closed point of X 0
k . Then we know

from 8.3/8 that x is induced by a rig-point uWT � X 0 or, using 8.3/7, by the
corresponding closed point urigWTrig

� X 0
rig. Consequently, urig factors through a

member of UK , and it follows that u factors through a member of U0. In particular,
the open formal subscheme V D S

U 02U0

U 0 � X 0 contains all closed points of
X 0. But then the closed part X 0 � V does not contain any closed point of X 0 and,
therefore, must be empty; just look at the special fiber X 0

k of X 0, which is locally
of finite type over k, and consult [Bo], 8.3/6, for example. Thus, U0 covers X 0, as
claimed. ut

Lemma 6. Let A be an admissible R-algebra. Consider A as a subring of the
associated affinoid K-algebraArig D A˝RK, and let f1, : : : ,fn 2 Arig be elements
satisfying jfi jsup � 1 for i D 1, : : : ,n. Then A0 D Adbf1, : : : ,fnec is an admissible
R-algebra that is finite over A. Furthermore, if c 2 R�f0g is chosen in such a way
that cf1, : : : ,cfn belong to A, the canonical morphism  WSpfA0 � SpfA can be
viewed as the formal blowing-up of the coherent open ideal a D .c,cf 1, : : : ,cf n/ of
A on SpfA.

Proof. We choose an epimorphism Rh�i � A for a finite system of variables �
and consider on Arig the residue norm with respect to the induced epimorphism
Kh�i � Arig. Then A consists of all elements a 2 Arig with jaj � 1,
use 3.1/5 (iii), and we see from 3.1/17 that A0 is integral and, hence, finite over
A, since it is of finite type over A. Furthermore, as cA0 � A, it is easily seen that
A0 is an R-algebra of topologically finite type. Then A0 is an admissible R-algebra
by 7.3/5, since it does not admit �-torsion.

In order to show that  WSpfA0 � SpfA is the formal blowing-up of the ideal
a � A, it is enough to show that  satisfies the universal property of admissible
formal blowing-up. To do this note that the ideal aA0 � A0 is generated by c and,
hence, is invertible, since c is not a zero divisor in A0 � Arig. Furthermore, consider
a homomorphism of admissible R-algebras A � D such that the ideal aD � D
is invertible. Let us write fi for the image of fi inD again. If aD is generated by c,
then cf i 2 cD and, hence, fi 2 D for all i , since c is not a zero divisor in D. But
then A � D admits a unique extension A0 � D. If, on the other hand, aD is
generated by cf i for some i , then look at the inclusionsD � � Ddbfiec � � D˝R
K. Since c 2 .cf i /D and c is not a zero divisor in D, we see that fi is invertible in
Ddbfiec with an inverse f �1

i 2 D. Using the fact that fi is integral over D, there is
an integral equation

f s
i C d1f s�1

i C : : :C ds D 0
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with coefficients dj 2 D. Multiplication with f �sC1
i 2 D yields

fi C d1 C : : :C dsf �sC1
i D 0

and, hence, fi 2 D. Thus, fi is a unit in D and, as before, aD is generated by c.
Again, A � D admits a unique extension A0 � D, and this is enough for
showing that  WSpfA0 � SpfA satisfies the universal property of blowing up a
on SpfA. ut

Now we are able to establish the assertions (a)–(e) of Lemma 4.

(a) This is a consequence of Proposition 2.
(b) Consider two morphisms '; WX � Y in .FSch=R/ such that 'rig coincides

with  rig. It follows from 8.3/7 that ' and  coincide on the level of rig-
points as maps rig-pts.X/ � rig-pts.Y /. Since this map is compatible with
the specialization maps spW rig-pts.X/ � Xk and spW rig-pts.Y / � Yk ,
we see from 8.3/8 that ' and  coincide as maps from closed points of X to the
closed points of Y . But then, since Xk and Yk are of locally finite type over k, it
is clear that ' and  must coincide as maps between the underlying point sets
of X and Y . Therefore, in order to show ' D  , we can assume that X and Y
are affine, say X D SpfA and Y D SpfB . But then, since the canonical maps
A � A˝R K and B � B ˝R K are injective, due to the fact that X and
Y are admissible, it is obvious that 'rig D  rig implies ' D  , thereby finishing
the proof of Lemma 4 (b).

(c) Consider two admissible formal R-schemes X; Y that are quasi-paracompact,
and a morphism 'K WXrig

� Yrig between associated rigidK-spaces. We have
to look for an admissible blowing-up  WX 0 � X together with a morphism
of formalR-schemes 'WX 0 � Y satisfying 'rig D 'K ırig. To do this, let us
start with the case where X and Y are affine, say X D SpfA and Y D SpfB .
Then 'K WXrig

� Yrig is given by a morphism '#
K WBrig

� Arig between
associated affinoid K-algebras Brig D B ˝R K and Arig D A ˝R K. Since
B is an admissible R-algebra, we can view it as a subalgebra of Brig, and we
claim that

B � ˚
g 2 Brig I jgjsup � 1

�
:

Indeed, choose an epimorphism ˛WRh�1; : : : ; �ri � B , for a finite system of
variables �i , and look at the resulting epimorphism ˛K WKh�1; : : : ; �ri � Brig

obtained via tensoring with K over R. Then all elements g 2 B have residue
norm jgj � 1 with respect to ˛K and, hence, satisfy jgjsup � 1 by 3.1/9. Let
gi D ˛.�i / and set fi D '#

K.gi /, i D 1; : : : ; r .
Since '#

K is contractive with respect to the supremum norm by 3.1/7, we see
that jfi jsup � 1 for all i . Furthermore, A0 D Adbf1; : : : ; frec is an admissible
R-algebra according to Lemma 6, and it follows from the completeness of A0
that the map
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Rh�1; : : : ; �ri ˛� B � � Brig
'#
K� Arig

will factor through A0. Thus, '#
K WBrig

� Arig restricts to a well-defined
R-morphism '#WB � A0 giving rise to a morphism of admissible formal
R-schemes 'WX 0 � Y with X 0 D SpfA0. But then the inclusion A � � A0
induces an admissible formal blowing-up  WX 0 � X by Lemma 6 satisfying
'rig D 'K ı rig, as required.

Now let us consider the general case where X and Y are quasi-paracompact.
We fix affine open coverings of finite type U of X and V of Y , and consider
the induced admissible coverings Urig and Vrig of the associated rigid K-spaces
Xrig and Yrig. Then Urig and Vrig are of finite type. Restricting the pull-back
'�1
K .Vrig/, which is an admissible covering of Xrig, to each member Urig 2 Urig,

we can find a refinement UK of Urig that is an admissible affinoid covering
of finite type again, but where, in addition, any member UK 2 UK is mapped by
'K into some member Vrig 2 Vrig. Furthermore, using Lemma 5 in conjunction
with 8.2/15, we may even assume that the covering UK is induced from an
affine open covering of X , which we will denote by U again. Now, for any
U 2 U, there is a member Vrig 2 Vrig such that Urig, the admissible open
subspace of Xrig induced from U , is mapped into Vrig. From the affine case
we know that there is an admissible formal blowing-up U WU 0 � U

together with a morphism of formal R-schemes 'U WU 0 � V � � Y such
that 'U;rigWU 0

rig
� Yrig coincides with the composition 'K jUrig ı U;rig. Using

Proposition 8.2/14, we can dominate all blowing-ups U by an admissible
formal blowing-up  WX 0 � X that, restricted to �1.U / for each U 2 U,
factors through �1

U .U / via some morphism �U W �1.U / � �1
U .U /. It

follows from assertion (b) that the compositions 'U ı �U can be glued to
yield a well-defined morphism of admissible formal R-schemes 'WX 0 � Y

satisfying 'rig D 'K ı rig. This settles assertion (c) of Lemma 4.
(d) Assume that X; Y are quasi-compact and that we have an isomorphism

'K WXrig
�� Yrig. Then, using (c), there is a diagram

with admissible formal blowing-ups 1; 2, say given by the coherent open ideals
A � OX and B � OY , such that

'1;rig D 'K ı 1;rig; '2;rig D '�1
K ı 2;rig:

Furthermore, if �1 is the formal blowing-up of BOX 0 on X 0 and �2 the formal
blowing-up of AOY 0 on Y 0, the morphism '1 ı �1 factors uniquely through
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Y 0, and '2 ı �2 factors uniquely through X 0, due to the universal property of
admissible blowing-up. Thus, we can enlarge the diagram as follows:

Since all vertical maps of the diagram induce isomorphisms on the level of
associated rigid spaces and since all diagonal maps give rise to 'K or its inverse
on the level of Xrig and Yrig, we can conclude from (b) that the diagram is
commutative. Furthermore, using the universal property of the formal blowing-
up �2 and the fact that the ideal AOX 00 � OX 00 is invertible, we see that the
morphism  1 factors uniquely through a morphism ˛1WX 00 � Y 00. Likewise,
 2 will factor through a unique morphism ˛2WY 00 � X 00. Since, on the level
ofXrig and Yrig, the morphisms ˛1; ˛2 coincide with 'K and its inverse, it follows
from (b) again that ˛1 and ˛2 are inverse to each other. But then, using 8.2/11,
namely that in the quasi-compact case the composition of two admissible formal
blowing-ups yields an admissible formal blowing-up again, the assertion (d) of
Lemma 4 follows.

(e) Consider a quasi-separated and quasi-paracompact rigid K-space XK and an
admissible covering of finite type .Xi;K/i2J of XK by quasi-compact open
subspaces Xi;K � XK . We may even assume that Xi;K is affinoid for all
i 2 J . Any finite union of affinoid open subspaces of XK yields a quasi-
compact open subspace of XK and we will start by showing that quasi-compact
open subspaces of XK admit formal R-models. Thus, assuming that J is finite,
we can proceed by induction on the cardinality of J . If J consists of just
one element, XK is affinoid, say XK D SpAK . Fixing an epimorphism of
type ˛WKh�1; : : : ; �ri � AK , let A D ˛.Rh�1; : : : ; �ri/. Then X D SpfA
is a formal R-model of XK . Next, taking care of the induction step, assume
XK D U1;K [ U2;K with quasi-compact admissible open subspaces Ui;K � XK
that admit formal R-models Ui for i D 1; 2. Let WK D U1;K \ U2;K .
Since XK is quasi-separated, WK is quasi-compact. Thus, there is a finite
admissible affinoid covering of WK , and the latter can be enlarged to yield a
finite admissible affinoid covering of U1;K . Then, applying Lemma 5, there is
an admissible formal blowing-up U 0

1
� U1 such that the open immersion

WK
� � U1;K is represented by an open immersion of admissible formal

R-schemes W 0
1

� � U 0
1. In the same way, we can find an admissible formal

blowing-up U 0
2

� U2 such that the open immersion WK
� � U2;K is rep-
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resented by an open immersion of admissible formal R-schemes W 0
2

� � U 0
2.

In particular, W 0
1 and W 0

2 are two formal R-models of WK and, by applying
(d), there exists a common admissible formal blowing-up W 00 of W 0

1 and W 0
2 .

By 8.2/13, the blowing-upsW 00 � W 0
i can be extended to admissible formal

blowing-ups U 00
i

� U 0
i for i D 1; 2. But then we can glue U 00

1 to U 00
2 along

W 00, thereby obtaining a formal R-model X of XK . This settles Lemma 4 (e) in
the case where XK is quasi-compact.

To prove Lemma 4 (e) in the general case, we need to recall the concept of
connectedness and of connected components for rigid spaces from 5.3/9 and 5.3/10.
In fact, we will reduce assertion (e) to the case where XK is connected and, being
quasi-paracompact, admits a countable admissible covering by quasi-compact open
subspaces.

Decomposing XK into its connected components in the sense of 5.3/10, we
may assume that XK is connected. Then we will construct a countable admissible
covering .Un;K/n2N of XK consisting of quasi-compact open subspaces Un;K � XK
with the additional property that

Un;K \ Um;K D ; for m < n � 1:

To do this, fix an admissible covering of finite type .Xi;K/i2J of XK where all Xi;K
are connected. We start with U0;K D Xi0;K for some i0 2 J and define UnC1;K for
n 2 N inductively as the union of all Xi;K that are not yet contained in the union

Vn;K D U0;K [ : : : [ Un;K;

but meet Un;K . As .Xi;K/i2J is a covering of finite type, UnC1 consists of only
finitely many sets Xi;K and, hence, is quasi-compact. Furthermore, it is easily seen
that

S1
nD0 Un;K equals the connected component of XK containing Xi0;K . However,

asXK was supposed to be connected, this component coincides withXK . Therefore
.Un;K/n2N is an admissible covering of XK consisting of admissible open subsets
that are quasi-compact.

To construct a formal R-model X of XK , we proceed by induction on n via
the procedure we have used above in the quasi-compact case. Thus, assume that
we have already obtained a formal R-model Vn of the union Vn;K , together with
open immersions Ui � � Vn for i � n representing the open immersions
Ui;K � � Vn;K . To obtain a formal R-model of VnC1;K D Vn;K [ UnC1;K , we start
out from the formal R-model Un of Un;K and a certain formal R-model UnC1 of
UnC1;K , which exists, since UnC1;K is quasi-compact. Then, in order to glue Un to
UnC1, we need to perform suitable admissible formal blowing-ups on Un and UnC1
first. Since UnC1;K does not meet any Ui;K for i < n, we can glue UnC1 to Vn after
extending the blowing-up on the side of Un to all of Vn. Now, due to 8.2/13, such
an extension exists and can be chosen in such a way that it is an isomorphism over
any open V � Vn disjoint from Un. In particular, the extension of the blowing-up
leaves all Ui with i < n � 1 unchanged. From this it follows that the R-models
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Vn of Vn;K “converge” towards a well-defined R-model X of XK , as n progresses
towards infinity. This settles assertion (e) of Lemma 4 and thereby also the proof of
Theorem 3. ut

In Sect. 5.4 we have associated to any K-scheme of locally finite type X a rigid
K-space X rig, called the rigid analytification of X . We want to show:

Proposition 7. Let X be a separated K-scheme of finite type. Then the associated
rigid analytification X rig is a separated and quasi-paracompact rigid K-space and,
hence, admits a formal R-model X .

Proof. The explicit construction of rigid analytifications in Sect. 5.4 shows that
for any closed immersion f WX � Y of K-schemes (of locally finite type)
the associated rigid analytification f rigWX rig � Y rig is a closed immersion.
Furthermore, it is seen in the same way that rigid analytification respects cartesian
products (in fact, more generally, fiber products). Therefore, if X is separated, its
rigid analytification will be separated as well.

To show that X rig is quasi-paracompact, we use the fact that X , as a separated
scheme of finite type, admits a so-called Nagata compactification X ; see Conrad
[C]. This is a proper K-scheme containing X as a dense open subscheme. Then,
by Chow’s Lemma [EGA II], 5.6, there is an epimorphism !WP � X from
a projective scheme P onto X . Now consider the associated morphism of rigid
K-spaces !rigWP rig � X rig, which is surjective as well. As we have seen in
Sect. 5.4, the rigid analytification P

n;rig
K of the projective n-space PnK admits an

admissible affinoid covering that is finite. Likewise, the same is true for P rig, and
it follows from the surjectivity of !rig that any admissible affinoid covering of X rig

admits a finite refinement. In particular, there is a finite admissible affinoid covering
.U�/�2N of X rig, say for N D f1; : : : ; ng.

Let Z D X rig � X rig. It follows that U� \ Z is Zariski closed in U� for each
� 2 N , and we claim that its complement U� � Z is quasi-paracompact. In fact,
choose global sections f1; : : : ; fr on U� whose zero set is U� \ Z. Then, fixing
some � 2 R, 0 < j�j < 1, the final term of the equation

U� �Z D
r[

iD1

˚
x 2 U� I jfi .x/j > 0

�

D
[

m2Z

˚
x 2 U� I j�jmC1 � max

iD1;:::;r jfi .x/j � j�j
m

�

yields an admissible covering of finite type of U� � Z by quasi-compact open
subsets. Hence, U� �Z is quasi-paracompact for each � 2 N , and we claim that the
same is true for

X rig D .U1 �Z/ [ : : : [ .Un �Z/:
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To justify this, we can proceed by induction on n. Writing U 0 D U1 [ : : : [ Un�1,
assume that

U 0 �Z D .U1 �Z/ [ : : : [ .Un�1 �Z/

is quasi-paracompact. Then, choosing admissible affinoid coverings of finite type U0
on U 0 �Z and U00 on Un �Z and using the fact that X rig is separated, these restrict
to admissible coverings of finite type U0

res and U00
res on the intersection

.U 0 �Z/ \ .Un �Z/ D .U 0 �Z/ \ Un D U 0 \ .Un �Z/;

where the members of U0
res are affinoid and the members of U00

res are at least quasi-
compact, since U 0 has this property. We claim that the union U0

res [ U00
res is an

admissible covering of finite type again. To verify this, fix an open affinoid subspace
V � .U 0 \ Un/ � Z. It is covered by finitely many members of U0

res and, likewise,
of U00

res. Then, since U0
res;U

00
res are coverings of finite type, V will meet only finitely

many members of U0
res and U00

res. Therefore it follows that the covering U0
res [ U00

res
must be of finite type. Hence, the same is true for the covering U0 [ U00. Since the
latter is an admissible affinoid covering of X rig, we are done. ut

A typical example of a rigid K-space XK that is not quasi-paracompact, can be
obtained by gluing an infinity of unit discs B1K D SpKh�i along the open unit disk
B1C D fx 2 B1K I j�.x/j < 1g. Since XK is not quasi-separated, it cannot admit a
formal R-model.



Chapter 9
More Advanced Stuff

9.1 Relative Rigid Spaces

So far we have considered formal schemes over adic base rings R that are part of
the following classes mentioned in Sect. 7.3:

(V) R is an adic valuation ring with a finitely generated ideal of definition
(which automatically is principal by 7.1/6).
(N) R is a Noetherian adic ring with an ideal of definition I such that R does not
have I -torsion.

Instead of S D SpfR we can just as well work over more global bases. The
following types of formal base schemes S will be of interest:

(V0) S is an admissible formal R-scheme where R is an adic valuation ring of
type (V) as above. Thus, the topology of OS is generated by the ideal �OS where
� 2 R is a suitable element generating the adic topology of R.
(N0) S is a Noetherian formal scheme (of quite general type) such that the
topology of its structure sheaf OS is generated by a coherent ideal I � OS and
such that OS does not admit I-torsion.

Over base schemes S of this type, it is possible to consider admissible formal
S -schemes, or just formal S -schemes that are locally of topologically finite
presentation. Then, taking into account the Theorem of Raynaud 8.4/3, we can
extend the notion of rigid spaces to such more general situations as follows:

Definition 1 (Raynaud). Let S be a formal scheme of type (V0) or (N0), as defined
above, and let .FSch=S/ be the category of admissible formal S -schemes. Then the
category .Rig=S/ of rigid S -spaces is defined as the localization of .FSch=S/ by
admissible formal blowing-ups.

Thus, as object, a rigid S -space is the same as an admissible formal S -scheme,
whereas on the level of morphisms, admissible formal blowing-ups are viewed

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0__9,
© Springer International Publishing Switzerland 2014
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as isomorphisms. To get an intuitive picture of such a rigid space, one may
generalize the concept of rig-points as developed in Sect. 8.3 and view any rigid
S -space X as a family of classical rigid spaces Xs over the rig-points s 2 S .

We want to work out in more detail how the category .Rig=S/ of rigid S -spaces is
obtained from .FSch=S/, assuming that we restrict ourselves to formal S -schemes
that are quasi-separated and quasi-paracompact. To define .Rig=S/, take as objects
the objects of .FSch=S/. Furthermore, for two objectsX; Y of .Rig=S/, a morphism
X � Y is given by an equivalence class of diagrams in .FSch=S/ of type

where X 0 � X is an admissible formal blowing-up. Two such diagrams

X � X 0
1

� Y; X � X 0
2

� Y;

are called equivalent if there is a third diagram X � X 00 � Y of this type,
together with factorizations X 00 � X1 and X 00 � X2 making the following
diagram commutative:

It is not difficult to check directly, using 8.2/10, that the just described relation really
is an equivalence relation.

On the other hand, it might be more appropriate to interpret the set of morphisms
Hom.Rig=S/.X; Y / as the direct limit of the sets Hom.FSch=S/.X

0; Y / where X 0 varies
over all admissible formal blowing-ups ofX ; here direct limits are meant in the style
of Artin [A], Sect. I.1. To do this, consider the full subcategory B of the category of
all X -objects X 0 � X in .FSch=S/ whose structural morphisms are admissible
formal blowing-ups, and consider the contravariant functor B � .Sets/ associ-
ating to any object X 0 � X of B the set Hom.FSch=S/.X

0; Y /. Viewing this as a
covariant functor B0 � .Sets/, we have

Hom.Rig=S/.X; Y / D lim�!
X 02B0

Hom.FSch=S/.X
0; Y /:
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To compose two morphisms X � Y and Y � Z in .Rig=S/, say given by
diagrams

X � X 0 � Y; Y � Y 0 � Z

in .FSch=S/, we use a diagram of type

where X 00 � X 0 is the pull-back (in the sense of 8.2/16) of the admissible
formal blowing-up Y 0 � Y and where X 000 � X is an admissible formal
blowing-up dominating the composition X 00 � X 0 � X ; see 8.2/15. It is
straightforward to show that the objects of .FSch=S/, together with the described
morphisms, satisfy the universal property of a localization of .FSch=S/ by the class
of admissible formal blowing-ups.

9.2 An Example: Raynaud’s Universal Tate Curve

As a typical example of a rigid space in the sense of 9.1/1, we want to construct
Raynaud’s universal family of Tate elliptic curves. The latter is defined over the
formal base scheme S D SpfZdbdbQecec where Q is a variable. Note that ZdbdbQecec is
not a valuation ring and neither a ring that can be accessed in terms of classical
rigid geometry, since it is not of class (V) or (V0). However, it is an adic ring of
class (N) with ideal of definition generated by Q. To begin with, we first carry out
the construction of Tate curves over a complete valuation ring R of height 1 with
field of fractions K. Let q 2 R where 0 < jqj < 1. Then the multiplicative group
scheme Gm;K can be viewed as a rigid K-group via rigid analytification. The set
of K-valued points Gm;K.K/ coincides with K� and, thus, we may consider the
infinite cyclic group qZ generated by q as a closed analytic subgroup of Gm;K . Then
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we can build the quotient Eq D Gm;K=q
Z in the category of rigid K-spaces, in fact,

in the category of rigid K-groups, and this is the Tate elliptic curve over K that is
associated to the parameter q. To describe Eq in more concrete terms, consider the
unit disk B D B1K D SpKh�i and look at the affinoid subdomains given by the
annuli

U1 D B.q��2/ D ˚
x 2 B I jqj 12 � j�.x/j � 1�

D SpKh�; q��2i;

U2 D B.q��1; q�1�2/ D ˚
x 2 B I jqj � j�.x/j � jqj 12 �

D SpKh�; q��1; q�1�2i:

Furthermore, looking at the peripheries of these annuli, note that U1 contains the
affinoid subdomains

UC
1 D B.��1/ D ˚

x 2 B I j�.x/j D 1�

D SpKh�; ��1i;

U�
1 D B.q�1�2; q��2/ D ˚

x 2 B I j�.x/j D jqj 12 �

D SpKh�; q�1�2; q��2i;

just as U2 contains the affinoid subdomains

UC
2 D B.q�1�2; q��2/ D ˚

x 2 B I j�.x/j D jqj 12 �

D SpKh�; q�1�2; q��2i;

U�
2 D B.q�1�; q��1/ D ˚

x 2 B I j�.x/j D jqj�

D SpKh�; q�1�; q��1i:

Then, clearly, U�
1 coincides with UC

2 and there is a canonical isomorphism

Kh�; q�1�; q��1i �� Kh�; ��1i; � � q�;

which corresponds to an isomorphism

 WUC
1
�� U�

2 ; x � qx:

Now observe that

Gm;K D
[

n2Z
qn.U1 [ U2/
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is an admissible affinoid covering of Gm;K viewed as a rigid K-space, in fact a
covering of finite type by annuli. In order to construct the quotient Eq D Gm;K=q

Z,
one just glues the union U1 [ U2 to itself by identifying UC

1 with U�
2 via the

isomorphism  .
Let us exhibit a formal R-model Eq of Eq . Looking at the canonical epimor-

phisms

'1 W Kh�; �i � Kh�; q��2i ' Kh�; �i=.q�1�2� � 1/;
'2 W Kh�; �; 
i � Kh�; q�1�2; q��1i ' Kh�; �; 
i=.q�1�2 � �; q�1�
 � 1/;

one can check that

ker'1 \Rh�; �i D .�2� � q/Rh�; �i;
ker'2 \Rh�; �; 
i D .�2 � q�; �
 � q; � � �
/Rh�; �; 
i:

This is done using the multiplicativity of the Gauß norm on Kh�; �i and, in the case
of the second equation, by dividing out the generator

� � �
 D q�1
.�2 � q�/ � q�1�.�
 � q/

first. The ideals just constructed give rise to flat and, hence, admissible formal
R-schemes

U1 D SpfRh�; q��2i D SpfRh�; �i=.�2� � q/;
U2 D SpfRh�; q�1�2; q��1i D SpfRh�; �; 
i=.�2 � q�; �
 � q; � � �
/;

which are formal R-models of U1 and U2. Then we can consider the open formal
subschemes

UC
1 D U1.�

�1/; U�
1 D U1.q

�1�2/;

UC
2 D U2.q�

�2/; U�
2 D U2.q

�1�/

of U1 and U2, and one checks that U�
1 coincides canonically with UC

2 . Further-
more, multiplication with q yields an isomorphism UC

1
�� U�

2 . In fact, the open
immersions

UC
1

� � U1; U�
1

� � U1; UC
2

� � U2; U�
2

� � U2;

together with the just mentioned canonical isomorphisms, represent the open
immersions

UC
1

� � U1; U�
1

� � U1; UC
2

� � U2; U�
2

� � U2;
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and their identifications on the level of formal R-models. In other words, we can
identify U�

1 with UC
2 , as well as UC

1 with U�
2 , and thereby construct a formal

R-model Eq of Eq .
The latter model can also be obtained as a quotient of a formal R-model G of the

multiplicative group Gm;K . Indeed, glue U1 to U2 via the canonical identification
U�
1
�� UC

2 and define an admissible formal R-scheme

G D
[

n2Z
qn.U1 [U2/

by using an infinite number of copies of U1 [U2, say denoted by qn.U1 [U2/ for
n 2 Z, and glue qnC1.U1 [U2/ to qn.U1 [U2/ via the canonical isomorphism
UC
1
�� U�

2 induced from multiplication by q. The resulting formal R-scheme G

is a formal R-model of Gm;K , although G cannot be viewed as a formal R-group
scheme. However, multiplication by q is defined on G and we see that the formal
model Eq of Eq may be viewed as the quotient G=qZ.

Now observe that the construction of the admissible formal scheme Eq is already
possible over the base S D SpfZdbdbQecec, for a variable Q replacing the parameter
q. Associated to this object of .FSch=S/ is a rigid S -space EQ in .Rig=S/, which
may be viewed as the family of all Tate elliptic curves. In fact, ifEq is a Tate elliptic
curve over some complete valuation ringR of height 1, we can look at the canonical
morphism � WSpfR � S given by

ZdbdbQecec � R; Q � q;

thereby obtaining Eq as the pull-back of EQ with respect to � .

9.3 The Zariski–Riemann Space

In the following, let S be a formal scheme of type (V0) or (N0), as introduced in
Sect. 9.1, and letX be an admissible formal S -scheme where we will always assume
that X is quasi-separated and quasi-paracompact. Then we can consider the family
.XA/A2B.X/ of all admissible formal blowing-ups XA

� X , parametrized by
the set B.X/ of coherent open ideals A � OX . For A;B 2 B.X/ we write A � B

if the ideal A becomes invertible onXB . Due to the universal property of admissible
formal blowing-up 8.2/9, the latter implies that the blowing-up XB

� X

factors through a unique morphism ˚AB WXB
� XA. Furthermore, given

A;B 2 B.X/, we have AB 2 B.X/, as well as A � AB and B � AB. It
is clear that the XA together with the morphisms ˚AB define a projective system of
S -morphisms so that we can look at the projective limit

hXi D lim �
A2B.X/

XA:
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This projective limit is, first of all, meant in terms of topological spaces. Further-
more, for each A 2 B.X/, there is a canonical projection �AW hXi � XA, and
we can consider

OhXi D lim�!
A2B.X/

��1
A .OXA

/

as a sheaf of rings on hXi. It is not hard to see that the stalks

OhXi;x D lim�!
A2B.X/

OA;�A.x/; x 2 hXi;

being direct limits of local rings, are local again so that hXi D �hXi;OhXi
�

is a
locally ringed space.

Definition 1. Let X be an admissible formal S -scheme (by the convention of the
present section assumed to be quasi-separated and quasi-paracompact). Then the
associated locally ringed space

hXi D lim �
A2B.X/

XA

is called the Zariski–Riemann space1 associated to X .

Without proof, let us mention a few facts on the topology of hXi. For more details,
consult [FK], Chap. II.3.

Proposition 2. Let X be an admissible formal S -scheme and hXi the associated
Zariski–Riemann space. Then:

(i) hXi is non-empty if X is non-empty.
(ii) hXi is sober2 and, in particular a T0-space, but not necessarily Hausdorff.

(iii) hXi is quasi-separated and locally quasi-compact, even quasi-paracompact.
It is quasi-compact if X is quasi-compact.

Passing from X to the associated rigid S -space Xrig, we see that the Zariski–
Riemann space hXi, in a certain sense, takes into account all formal S -models
of Xrig, just as Xrig itself does. Thus, one can well imagine that there is a certain
equivalence between Xrig and hXi, although one must be aware of the fact that, in
the classical rigid case, Xrig is a locally ringed space with respect to a Grothendieck

1Zariski–Riemann spaces were first introduced by Zariski calling them Riemann manifolds.
Later, Nagata preferred the term Zariski–Riemann space when he used these spaces for the
compactification of algebraic varieties.
2A topological space is called sober if every irreducible closed subset admits a unique generic
point.
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topology, whereas hXi is a locally ringed space in the ordinary sense. Of course,
this difference is in accordance with the fact that hXi includes “much more” points
than Xrig.

To look a bit closer on the relationship between Xrig and hXi, let us restrict to
the classical rigid case where S consists of an adic valuation ring R of height 1
with field of fractions K. As we have shown in Sect. 8.3, there is a well-defined
specialization map

spWXrig
� X;

mapping a point of Xrig to a closed point of X . Since sp is functorial, the map
factors through all formal models XA, as A varies in B.X/, thus, giving rise to a
specialization map

spWXrig
� hXi:

Proposition 3. In the classical rigid case, let X be an admissible formal R-scheme.
Then the specialization map spWXrig

� hXi enjoys the following properties:

(i) sp is injective.
(ii) The image of sp is dense in hXi with respect to the constructible topology.3

There are examples of abelian sheaves F on a rigidK-space XK where all stalks
Fx for x 2 XK are trivial, although F is not trivial itself; see 5.2/2. This shows that
in order to handle general abelian sheaves, rigid K-spaces are not equipped with
sufficiently many points that can give rise to stalk functors. On the other hand, the
Zariski–Riemann space associated to a formal model of XK does not suffer from
such a problem and, indeed, can serve as an excellent replacement for XK , due to
the following fact:

Proposition 4. In the classical rigid case, let XK be a rigid K-space with a formal
R-model X . Then the specialization map spWXK � hXi induces a natural
equivalence between the category of abelian sheaves on XK and the category of
abelian sheaves on hXi.

Without giving a full proof, let us just indicate how to pass back and forth between
abelian sheaves onXK and hXi. For any admissible open subsetUK � XK , consider
the open subset

sp�.UK/ D
[
W

3The definition of the constructible topology is based on the notion of constructible sets [EGA I],
Chap. 0, 2.3.10, and ind-constructible sets [EGA I], Chap. I, 7.2.2. For a convenient adaptation to
our situation see [W], 3.3.
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of the Zariski–Riemann space hXi where the union runs over all open subsets
W � hXi such that W \ sp.XK/ � sp.UK/. For example, if UK is quasi-compact
and, thus, is represented by some open formal subscheme U 0 � XA for a coherent
open ideal A 2 B.X/, then sp�.UK/ D ��1

A
.U 0/. Furthermore, one shows for any

admissible open subset UK � XK that a given union UK D S
i2J Ui;K , consisting

of admissible open subsets Ui;K � UK , is an admissible covering of UK if and only
if sp�.UK/ D

S
i2J sp�.Ui;K/. Now start with an abelian sheaf FK on XK and set

F .sp�.UK// D FK.UK/ for any quasi-compact admissible open subset UK � XK .
Since the associated sets of type sp�.UK/ define a basis of the topology on hXi,
we can view F as a sheaf on hXi. Conversely, given any abelian sheaf F on hXi,
we can define an abelian sheaf FK on XK by setting FK.UK/ D F .sp�.UK//
for any quasi-compact admissible open subset UK � XK . It is not hard to see
that the described correspondence between abelian sheaves on Xrig and hXi is an
equivalence of categories.

9.4 Further Results on Formal Models

Working with a scheme XK over the field of fractionsK of a discrete valuation ring
R, the arithmetic nature of XK can quite often be uncovered by looking at suitable
R-models X of XK . In fact, one is interested in models where certain properties
already present on XK extend to the level of X . For example if XK is a proper
smooth curve, we can construct the minimal regular model X of XK , so to say a
best possible R-model that is still proper. Or we can consider an abelian variety XK
over K and look at the Néron model X of XK . This is a best possible R-model that
is smooth.

In the same spirit we can start with a classical rigid space XK , or with a rigid
space in the style of 9.1/1, and try to extend certain properties from XK to the
level of suitable formal models. This is the theme we want to discuss in the present
section. However, for rigid spaces in the style of 9.1/1, which are given as objects in
a localized category, specific properties have still to be introduced in a way that is
compatible with the classical rigid case. The whole subject is rather extensive and so
we can only highlight some of the main points at this place. For further information
we refer to the series of articles on Formal and rigid geometry [F I], [F II], [F III],
[F IV], as well as to the monograph [EGR].

Let S be a formal base scheme of type (V0) or (N0), as in Sect. 9.1, and let Xrig be
a rigid S -space in the sense of 9.1/1. Without explicitly saying so, we will always
assume such rigid spaces, as well as their formal S -models, to be quasi-separated
and quasi-paracompact.

If .P / is a property applicable to schemes or formal schemes, we can basically
proceed in two ways in order to extend the notion of .P / to rigid S -spaces like
Xrig. The first possibility is to say that Xrig satisfies .P / if there exists a formal
S -model X of Xrig satisfying .P /. For example, on the level of morphisms, one
can proceed like this with open (resp. closed) immersions. Thus, call a morphism
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of rigid S -spaces rigWUrig
� Xrig an open immersion (resp. a closed immersion)

if rig admits an open (resp. closed) immersion of admissible formal S -schemes
 WU � X as a formal S -model. That such a definition coincides with the usual
one in the classical rigid case follows from 8.4/5 for open immersions, whereas
closed immersions can be handled relying on 8.4/6. Similarly one can proceed
with proper morphisms; for the compatibility of properness in terms of formal
schemes with the definition 6.3/6 in the classical rigid case see Lütkebohmert [L] or
Temkin [Te].

Another more direct approach to define certain properties on general rigid spaces
consists in looking at the validity of .P / on the “complement” of the special fiber of
formal S -modelsX associated toXrig. To be more precise, let I � OS be an ideal of
definition. Then, for any formal S -modelX , the schemeX0 D X˝S OS=I is called
the special fiber of X . If .Ui /i2J is an affine open covering of X , say Ui D SpfAi ,
and if, on Ui , the coherent open ideal IOX � OX is associated to the ideal ai � Ai ,
we view the ordinary scheme SpecAi�V.ai / as the complement of the special fiber
on Ui . In general, such a complement is not well-defined globally onX . However, if
we restrict ourselves to closed points and consider the classical rigid situation, then
the complement of the special fiber of X makes sense globally, as it coincides with
the point set of the rigid space Xrig associated to X in the sense of Sect. 7.4.

Now, if .P / is a scheme property, we can consider an affine open covering
.Ui /i2J ofX as before and say thatXrig satisfies .P / if all schemes SpecAi � V.ai /
satisfy .P /. Of course, in order that .P / defines a reasonable property on the asso-
ciated rigid S -space Xrig, one has to check that the validity of .P / is independent
of the chosen covering .Ui /i2J and invariant under admissible formal blowing-up.
Then, in most cases, it is a truly demanding venture, to find out whether or not a
rigid S -space satisfying .P / will always admit a formal S -model satisfying .P /.

As a first example that can successfully be handled along these lines, let us
mention the property .P / of being flat, for morphisms of rigid S -spaces or coherent
modules on rigid S -spaces and their formal models. Flatness on the rigid level is
defined via flatness on complements of the special fiber, a method that is compatible
with the usual notion of flatness in the classical rigid case. The main result on
flatness is then the existence of flat formal models, due to Raynaud and Gruson;
see [RG], as well as [F II].

Theorem 1 (Flattening Theorem). Let 'WX � Y be a quasi-compact mor-
phism of admissible formal S -schemes and assume that the associated morphism
'rigWXrig

� Yrig between rigid S -spaces is flat. Then there exists a commutative
diagram of admissible formal S -schemes
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where '0 is flat, Y 0 � Y is the formal blowing-up of some coherent open ideal
A � OY , and where X 0 � X is the formal blowing-up of the ideal AOX � OX

on X .

Let us point out that X 0 can also be viewed as the strict transform of X with
respect to the admissible formal blowing-up Y 0 � Y . The latter is constructed
from the fiber product X 00 D X �Y Y 0 (a formal S -scheme of locally topologically
finite presentation, but not necessarily admissible) by dividing out all torsion with
respect to the ideal generated by the pull-back of A. The existence of flat models
has an interesting consequence for classical rigid spaces.

Corollary 2. In the classical rigid case, let R be an adic valuation ring of height 1
with field of fractions K. Furthermore, let 'K WXK � YK be a flat morphism
of quasi-compact and quasi-separated rigid K-spaces. Then its image 'K.XK/ is
admissible open in YK .

Proof. Due to Theorem 1, there exists a flat formal R-model 'WX � Y of
'K . Tensoring ' with the residue field k of R yields a morphism of k-schemes
'k WXk � Yk that is flat and of finite presentation. It is known that the image
of 'k is a quasi-compact open subscheme Vk � Yk ; see [EGA IV], 2.4.6. Now, if
V � Y is the corresponding open formal subscheme of Y , then, clearly, ' factors
through V , and the induced morphism X � V is faithfully flat. Finally, a local
consideration involving rig-points, as introduced in Sect. 8.3, shows that 'K must
map XK onto the admissible open subspace Vrig � XK associated to V . ut

Another property .P / that can be defined on general rigid S -spaces Xrig by
requiring .P / to be satisfied on complements of the special fiber, is the notion of
smoothness. Also in this case one may ask if any smooth (or even étale) morphism
of rigid S -spaces will admit a smooth (resp. étale) formal S -model. However, the
answer will be negative in general. To give a simple example, one may look at
the classical rigid situation where R is an adic valuation ring of height 1 with a
fraction field K that is algebraically closed. Then, for any q 2 R, 0 < jqj < 1,
the annulus XK D SpKh�; q��1i is a smooth rigid K-space, which does not admit
a smooth R-model. A canonical R-model of XK is given by the formal R-scheme
X D SpfRh�; �i=.�� � q/, which is not smooth. If there were a smooth formal
R-model X of XK , it would be connected, since XK is connected. In particular,
the special fiber Xk over the residue field k of R would be connected and, hence,
integral sinceXk is smooth. Then, starting out from an affine open covering .Ui /i2J
of X , all special fibers Ui;k would be integral and we would get a finite affinoid
covering .Ui;K/i2J on XK such that there is a multiplicative residue norm on each
of the affinoid K-algebras Ai D OXK .Ui;K/. The latter norm would coincide with
the supremum norm on Ai , as can be concluded from 3.1/17. However, over an
algebraically closed field K, the affinoid subdomains of the unit ball B1K are well-
known, [BGR], 9.7.2/2, and it follows that such a covering cannot exist.
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Thus, expecting the existence of smooth formal S -models for smooth rigid
S -spaces would be too much. Stepping back a bit, one may replace smoothness
by the weaker property .P / that the structural morphism Xrig

� Srig has
geometrically reduced fibers. Here is an advanced result on the existence of formal
S -models with such a property .P /4:

Theorem 3 (Reduced Fiber Theorem). Let X be a quasi-compact admissible
formal S -scheme such that X=S is flat and Xrig=Srig has reduced geometric fibers,
equidimensional of dimension d . Then there is a commutative diagram of admissible
formal S -schemes

where

(i) X 0 D X �S S 0,
(ii) S 0 � S is surjective and S 0

rig
� Srig is étale,

(iii) Y 0 � X 0 is finite and Y 0
rig

� X 0
rig is an isomorphism,

(iv) Y 0 � S 0 is flat and has reduced geometric fibers.

So in order to transform the formal model X=S of Xrig=Srig into a flat one that
has reduced geometric fibers, one has to apply, first of all, a base change S 0=S that
is étale on the rigid level. Then, still, the resulting formal S 0-scheme X 0 D X �S S 0
needs a finite extension Y 0=X 0 that is an isomorphism on the rigid level.

Also note that, due to Theorem 1, the assumption of X=S to be flat may be
replaced by requiring Xrig=Srig to be flat. Furthermore, at least in the Noetherian
case (N0), the assumption on the equidimensionality of the fibers of Xrig=Srig can be
avoided.

Finally, let us point out that Theorem 3 is, in fact, a relative version of the
so-called Finiteness Theorem of Grauert and Remmert in [GR], a deep result
from the beginnings of classical rigid geometry. To state the theorem, consider
an algebraically closed fieldK occurring as field of fractions of a complete valuation
ring R of height 1, as well as a reduced affinoidK-algebra AK . The theorem asserts
that, together with its t -adic topology for arbitrary t 2 R, 0 < jt j < 1, theR-algebra

4For details see [F IV]. The theorem has been proved in the classical rigid case and in the
Noetherian case (N0).
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A D ˚
f 2 AK I jf jsup � 1

�
;

is of topologically finite type. From this one deduces that the special fiber A˝R k
for k the residue field of R is reduced. There is also a version of this result for
fields K that are not necessarily algebraically closed and where we assume that
AK is geometrically reduced. Then it might be necessary to apply a finite separable
extension K 0 of K to the situation before one can assert that A is of topologically
finite type and the special fiber A ˝R k is geometrically reduced. The extension
K 0=K corresponds to the étale base change S 0

rig=Srig in Theorem 3.



Appendix A

Classical Valuation Theory

In the following, let K be a field with a non-Archimedean absolute value denoted
by j � jWK � R�0; cf. 2.1/1. We will always assume that such an absolute value is
non-trivial, i.e. that its values in R�0 are not restricted to 0 and 1. Furthermore, let V
be aK-vector space. A vector space norm on V (cf. 2.3/4) is a map k�kWV � R�0
satisfying the following conditions for elements x; y 2 V and ˛ 2 K:

(i) kxk D 0” x D 0,
(ii) kx C yk � max

˚kxk; kyk�.
(iii) k˛xk D j˛j kxk,
When no confusion is possible, we will usually make no notational difference
between the absolute value j � j on K and the vector space norm k � k on V , thus
always writing jxj instead of kxk for elements x 2 V . To give an example of a
K-vector space norm, let V be a finite dimensional K-vector space and fix a basis
v1; : : : ; vd on it. Then we define the corresponding maximum norm j � jmax on V as
follows. Given an element x 2 V , write it as a linear combination x D Pd

iD1 ˛ivi
with coefficients ˛i 2 K and set

jxjmax D max
iD1:::d j˛i j:

One easily checks that j � jmax defines a vector space norm on V . Furthermore, if K
is complete under its absolute value, V is complete under such a maximum norm.

As usual, any vector space norm on aK-vector space V defines a topology on V .
Two such norms j � j1 and j � j2 are called equivalent if they induce the same topology
on V . The latter amounts to the fact that there exist constants c; c0 > 0 such that
jxj1 � cjxj2 � c0jxj1 for all x 2 V ; use the fact that the absolute value on K is
non-trivial. It is clear that any two maximum norms, attached to certain K-bases on
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a finite dimensional K-vector space V , are equivalent. If K is complete, a stronger
assertion is possible.

Theorem 1. Let V be a finite dimensional K-vector space and assume that K is
complete. Then all K-vector space norms on V are equivalent. In particular; V is
complete under such a norm.

Proof. Choose aK-basis v1; : : : ; vd of V and consider the attached maximum norm
j � jmax on V . Let j � j be a secondK-vector space norm on V . Then there is a constant
c > 0 such that jxj � cjxjmax for all x 2 V . In fact, if x DPd

iD1 ˛ivi , we have

jxj � max
iD1:::d j˛i jjvi j � max

iD1:::d j˛i j max
iD1:::d jvi j D cjxjmax

for c D maxiD1:::d jvi j. Thus, it remains to show that there is a constant c0 > 0

satisfying jxjmax � c0jxj for all x 2 V .
We want to do this by induction on the dimension d of V . For d D 0 the assertion

is trivial. Thus, let d > 0 and assume that a constant c0 as desired does not exist.
Then we can construct a sequence xn 2 V such that

jxnjmax D 1 for all n and lim
n!1 jxnj D 0:

Write xn D Pd
iD1 ˛nivi with coefficients ˛ni 2 K and consider the elements ˛nd

for i D d fixed as a sequence in K. If it is a zero sequence, look at the sequence
x0
n D xn � ˛nd vd in V 0 D Pd�1

iD1 Kvi . Then, due to the non-Archimedean triangle
inequality, jx0

njmax D 1 for almost all indices n and limn!1 jx0
nj D 0. However, this

is impossible by the induction hypothesis, since j � jmax and j � jmust be equivalent on
the subspace V 0 � V , which is of dimension d � 1. Therefore ˛nd cannot be a zero
sequence. Replacing the xn by a suitable subsequence, we may assume that there is
some " > 0 satisfying j˛nd j � " for all n. Then

yn D ˛�1
nd xn D vd C

d�1X

iD1
˛�1
nd ˛nivi

is still a zero sequence in V . Hence, we see that

vd D � lim
n!1

d�1X

iD1
˛�1
nd ˛nivi :

In other words, vd belongs to the closure of V 0 in V . However, by induction
hypothesis, V 0 is complete and, hence, closed in V . As vd 62 V 0, we get a
contradiction. ut
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Corollary 2. Let j�j1 and j�j2 be two absolute values on an algebraic field extension
L=K restricting to the given absolute value j � j on K. Assume that K is complete
with respect to j � j. Then j � j1 and j � j2 coincide on L.

Proof. Since L is a union of finite subextensions of L=K, we may assume that the
extensionL=K is finite. Then, viewingL as a normedK-vector space under j�j1 and
j � j2, these norms are equivalent by Theorem 1. Thus, there are constants c; c0 > 0

such that j˛j1 � cj˛j2 � c0j˛j1 for all ˛ 2 L. Replacing ˛ by ˛n for any integer
n > 0 and using the multiplicativity of j � j1 and j � j2, we get

j˛j1 � c 1n j˛j2 � c0 1n j˛j1
and therefore, by taking limits, j˛j1 D j˛j2 for all ˛ 2 L. ut

We have just seen that for any algebraic field extension L=K, there is at most one
way to extend the given absolute value j � j from K to L, provided K is complete
with respect to j � j. We want to show now that such an extension will always exist.

Theorem 3. Let L=K be an algebraic extension of fields whereK is complete with
respect to a given absolute value j � j. Then there is a unique way to extend j � j to an
absolute value j � j0 of L. In fact;

j˛j0 D jNK.˛/=K.˛/j 1d

for elements ˛ 2 L where NK.˛/=K denotes the norm of K.˛/ over K and where d
is the degree of ˛ over K.

If L is finite over K; we see from Theorem 1 that L is complete with respect to
the absolute value j � j0.
Proof. As NK.˛/=K.˛/ D ˛ for elements ˛ 2 K, it is clear that j � j0 extends j � j.
To show that j � j0 defines a non-Archimedean absolute value on L, let us verify the
conditions of 2.1/1. Clearly, NK.˛/=K.˛/ D 0 if and only if ˛ D 0 and therefore
j˛j0 D 0 if and only if ˛ D 0. Furthermore, if ˛ 2 L is contained in a finite
subextension L0 of L=K, say of degree n, then we conclude from the definition of
norms that j˛j0 D jNL0=K.˛/j 1n . Since the norm NL0=K is multiplicative, we see that
j � j0 is multiplicative as well.

Thus, it remains to show j˛ C ˇj0 � maxfj˛j0; jˇj0g for ˛; ˇ 2 L. This
estimate does not follow right away from properties of the norm, some more work
is necessary. First note that for j˛j0 � jˇj0 and ˇ 6D 0, we can divide by ˇ and
thereby are reduced to showing j1 C ˛j0 � 1 for ˛ 2 L satisfying j˛j0 � 1. Let
R D f˛ 2 K I j˛j � 1g be the valuation ring of K. With the aid of Hensel’s
Lemma, see Lemma 4 below, we will show in Lemma 5 that an element ˛ 2 L
is integral over R if and only if NK.˛/=K.˛/ 2 R, i.e. if and only if j˛j0 � 1. But
then the non-Archimedean triangle inequality is easily derived. If j˛j0 � 1 for some
˛ 2 L, then ˛ is integral over R. Hence, the same is true for 1 C ˛ and we get
j1C ˛j0 � 1. ut
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In order to state Hensel’s Lemma, let R D f˛ 2 K I j˛j � 1g be the valuation
ring of K and let k D R=f˛ 2 R I j˛j < 1g be the attached residue field. The
canonical projection R � k, which will be denoted by ˛ � Q̨ , induces for a
variable (or a system of variables) X a projection

RdbXec � kdbXec; f D
X

ciX
i � Qf D

X
QciXi ;

on the level of polynomial rings.

Hensel’s Lemma 4. Let f 2 RdbXec be a polynomial in one variable X such that
there exists a factorization Qf D Qp � Qq with coprime factors Qp; Qq 2 kdbXec; i.e. where
Qp and Qq are non-zero and their greatest common divisor in kdbXec is 1. Then Qp; Qq

can be lifted to polynomials p; q 2 RdbXec satisfying

f D p � q; deg q D deg Qq:

Before giving the proof, let us derive the statement on integral dependence that
was used in the proof of Theorem 3.

Lemma 5. As in Theorem 3, let L=K be an algebraic extension of fields and
let R be the valuation ring of K. Then; for elements ˛ 2 L; the following are
equivalentW
(i) ˛ is integral over R.

(ii) NK.˛/=K.˛/ 2 R.

Proof. To begin with, assume condition (i), namely that ˛ is integral over R. Then
there is a monic polynomial h 2 RdbXec satisfying h.˛/ D 0. Let f 2 KdbXec
be the minimal polynomial of ˛ over K. As f must divide h in KdbXec, there is a
decomposition of type h D fg in KdbXec. We claim that both, f and g belong to
RdbXec. To justify this, consider the Gauß norm on KdbXec, which is given by

ˇ̌
ˇ̌
ˇ̌
ˇ̌

nX

iD0
aiX

i

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D max

iD0:::n jai j:

As in Sect. 2.2, one shows that the Gauß norm is multiplicative and this implies
1 D khk D kf k � kgk. Since f is a monic polynomial, we have kf k � 1 and there
is a constant c 2 K such that jcj D kf k�1. Setting f 0 D cf and g0 D c�1g, we
get h D f 0g0 with kf 0k D kg0k D 1. In particular, h D f 0g0 is a decomposition
in RdbXec, which can be transported into kdbXec, thus implying the decomposition
Qh D Qf 0 Qg0. As

deg Qf 0 C deg Qg0 D deg Qh D deg h D deg f C degg;

deg Qf 0 � deg f; deg Qg0 � degg;
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we have necessarily deg Qf 0 D deg f and deg Qg0 D degg. However, since f is
monic, kf k > 1would imply deg Qf 0 < deg f . Therefore we must have jcj D 1 and,
hence, f; g 2 RdbXec. Thus, if f DPn

iD0 ciXi 2 RdbXec is the minimal polynomial
of ˛ over K, we get NK.˛/=K.˛/ D .�1/nc0 2 R, which implies condition (ii).

Conversely, assume NK.˛/=K.˛/ 2 R as in condition (ii). As before, consider the
minimal polynomial f D Pn

iD0 ciXi 2 KdbXec of ˛ over K. We want to show
that f .˛/ D 0 is, in fact, an integral equation of ˛ over R. Proceeding indirectly,
assume that f 62 RdbXec. Then we have kf k > 1 and we can choose a constant
c 2 K such that jcj D kf k�1 < 1. Writing f 0 D cf , we get kf 0k D 1. Since
c0 D .�1/nNK.˛/=K.˛/ 2 R and cn D 1, it follows 0 < deg Qf 0 < deg f . Now look
at the decomposition Qf 0 D Qp Qq with Qp D 1 and Qq D Qf 0. Due to Hensel’s Lemma 4,
we can lift Qp and Qq to polynomials p; q 2 RdbXec such that cf D f 0 D pq and
deg q D deg Qq. Since deg Qq is strictly between 0 and deg f , we see that cf D pq is a
non-trivial decomposition which, however, contradicts the fact that f is irreducible.
Therefore we must have f 2 RdbXec, thus, implying condition (i). ut

It remains to do the proof of Hensel’s Lemma. Starting out from the decompo-
sition Qf D Qp Qq, we choose a lifting q0 2 RdbXec of Qq satisfying deg q0 D deg Qq.
Then the highest coefficient of q0 is a unit in R and, by Euclid’s division, there
is an equation f D p0q0 C r1 with suitable polynomials p0; r1 2 RdbXec where
deg r1 < deg q0. From this we get Qf D Qp0 Qq C Qr1. Since we have

deg Qr1 � deg r1 < deg q0 D deg Qq

and Qq divides Qf , Euclid’s division in kdbXec implies Qr1 D 0. In particular, kr1k < 1

and p0 is a lifting of Qp. Let m D degp0 and n D deg q0. It is now our strategy, to
construct polynomials a; b 2 RdbXec with

kak; kbk � kr1k; deg a < m; deg b < n;

such that

f D p0q0 C r1 D .p0 C a/.q0 C b/;

or, equivalently

bp0 C aq0 C ab D r1: (�)

Then the decomposition f D .p0 C a/.q0 C b/ will be a lifting of Qf D Qp Qq, as
required.

To do this, we neglect the quadratic term ab in the Eq. (�) for a moment. Let
KdbXeci for i 2 N be the R-submodule of KdbXec consisting of all polynomials in
KdbXec of degree � i . For the valuation ring R and its residue field k the notations
RdbXeci and kdbXeci are used in a similar way. Then consider the R-linear map
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'WRdbXecm�1 ˚RdbXecn�1 � RdbXecmCn�1; .a; b/ � bp0 C aq0;

as well as its versions '˝K overK and '˝k over k. We claim that all of these are
isomorphisms. In fact, start with ' ˝ k. This map is injective, since Qb Qp C Qa Qq D 0

implies that Qq divides Qb, due to the fact that Qp and Qq are coprime. However, since
deg Qb < m D deg Qq, we get Qa D Qb D 0. But then, by reasons of dimensions, ' ˝ k
is surjective and, hence, bijective. From this we can conclude that ' and ' ˝K are
isometric in the sense that

ˇ̌̌̌
.' ˝K/.b; a/ˇ̌̌̌ D max

˚kak; kbk�; a 2 KdbXecm�1; b 2 KdbXecn�1:

In particular, ' ˝K is injective, and the same dimension argument, as used before,
shows that ' ˝ K is bijective. Furthermore, relying on the fact that ' ˝ K is
isometric, we finally see that ' is bijective. Now, to lift the decomposition Qf D Qp Qq
as stated, let " D krk. We claim:

There are sequences pi 2 RdbXecm�1, qi 2 RdbXecn�1, and riC1 2 RdbXecmCn�1,
starting with the initial elements p0; q0; r1 constructed above, such that

f D
� jX

iD1
pi

�� jX

iD1
qi

�
C rjC1; j D 0; 1; : : : ;

where

kpj k; kqj k � "j ; krjC1k � "jC1:

Then, as the field K is complete, p DP1
iD1 pi and q DP1

iD1 qi make sense as
polynomials in RdbXec of degree m, respectively n, and by a limit argument, we get
the desired decomposition f D pq.

To justify the claim, we proceed by induction on j . So assume that the
polynomials pi , qi and riC1 have already been constructed, up to some index j � 0.
Then, writing p0 D Pj

iD1 pi and q0 D Pj
iD1 qi and applying the above properties

of the R-linear map ', now with p0; q0 in place of p0; q0, we can solve the equation

rjC1 D qjC1p0 C pjC1q0

for some elements pjC1 2 RdbXecm�1 and qjC1 2 RdbXecn�1 satisfying

kpjC1k; kqjC1k � "jC1:

But then we have

f D .p0 C pjC1/.q0 C qjC1/C rjC2

with rjC2 D �pjC1qjC1 2 RdbXecmCn�1 where krjC2k � "2.jC1/ � "jC2. Thus,
our claim is justified, and Hensel’s Lemma is proved. ut
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The problem of extending a non-Archimedean absolute value j � j from a field
K to an algebraic extension L has been settled in Theorem 3 for the case where
K is complete. If K is not complete with respect to j � j, we can pass to its
completion OK, which can be constructed as follows. Consider the ring KN of all
infinite sequences in K, addition and multiplication being defined componentwise.
The Cauchy sequences define a subring C.K/ of KN and the zero sequences an
ideal Z.K/ � C.K/. It is easy to see that the quotient OK D C.K/=Z.K/ is a
field and that the canonical map K � OK sending an element ˛ to the residue
class of the constant sequence ˛; ˛; : : : is a homomorphism of fields. In particular,
we can view K as a subfield of OK. We can even define an absolute value j � j0 on
OK extending the one given on K. Indeed, given any ˛ 2 OK, choose a representing

Cauchy sequence .˛i / in K. Then the sequence .j˛i j/ is a zero sequence or, due
to the non-Archimedean triangle inequality, it becomes constant at a certain index
i0. Therefore the limit c D limi!1 j˛i j exists and is well-defined, and we can set
j˛j0 D c. One can show that OK is complete with respect to j � j0 and that it contains
K as a dense subfield.

Now if L=K is an algebraic field extension, we can consider the completion OK
of K and its algebraic closure OKalg. Extending the absolute value of K to OK, as just
described, and prolonging it to OKalg with the help of Theorem 3, we get a canonical
non-Archimedean absolute value on OKalg, which may be denoted by j � j again. Then
we can choose aK-morphism  WL � OKalg and pull back the absolute value from
OKalg to L via  . Thereby we obtain an absolute value on L extending the one given

on K. However, the latter will not be unique in general, which corresponds to the
fact that the K-morphism  WL � OKalg may not be unique.

Taking the algebraic closure of a complete field, we may loose completeness. In
particular, the field OKalg may not be complete again. However, if we start with an
algebraically closed field, its completion will remain algebraically closed. This way
it is possible to construct extension fields that are algebraically closed and complete
at the same time.

Krasner’s Lemma 6. LetK an algebraically closed field with a non-Archimedean
absolute value j � j. Then its completion OK is algebraically closed.

Proof. Consider an algebraic closure L of OK and extend the absolute value of OK to
L, using the assertion of Theorem 3. Let f D Pn

iD0 ciXi be a monic polynomial
of degree > 0 in OKdbXec. Then f admits a zero ˛ 2 L, and it is enough to
show that ˛ can be approximated by elements in K. To verify this, choose " > 0

and approximate the coefficients ci by elements di 2 K in such a way that the
polynomial g D Pn

iD0 diXi 2 KdbXec satisfies jg.˛/j � "n. Assuming dn D 1,
write g D Qn

iD1.X � ˇi / with zeros ˇi 2 K. Then jg.˛/j D Qn
iD1 j˛ � ˇi j � "n

implies that there is an index i such that j˛ � ˇi j � ". Consequently, ˛ can be
approximated by elements in K. ut

The argument used in the proof is referred to as the principle of continuity of
roots.
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Completed Tensor Products

In the following we want to show that the category of affinoid K-algebras admits
amalgamated sums where, as usual,K is a field endowed with a non-trivial complete
non-Archimedean absolute value. Such amalgamated sums are constructed as
completions of ordinary tensor products.

To handle completed tensor products, we need a slightly more general setting.
Let R be a ring with a ring norm j � j on it, see 2.3/1, and M a normed R-module.
Thereby we mean an R-module M together with a map M � R�0, denoted by
j � j again, such that for all x; y 2M and a 2 R we have

(i) jxj D 0” x D 0,
(ii) jx C yj � max

˚jxj; jyj�,
(iii) jaxj � jaj � jxj.
The map j � jWM � R�0 is called a semi-norm on M if only conditions (ii) and
(iii) are satisfied and (i) possibly not. Furthermore, an R-linear map 'WM � N

between normed R-modules is called bounded if there exists a real constant � > 0

such that j'.x/j � � jxj for all x 2M . In this case � is referred to as a bound for '.
Looking at topologies that are generated by module norms, we see immediately

that bounded morphisms of normed R-modules are continuous. The converse is not
always true. However, if there exists a subfield K � R such that the norm on R
restricts to a non-trivial absolute value on K, then every continuous morphism of
normed R-modules is bounded. To justify this, assume that R contains a field K
with the stated properties. Then, by restriction of scalars, any R-module M can be
viewed as a K-vector space and, in fact, as a normed K-vector space in the sense
of 2.3/4. Clearly we have jaxj � jaj � jxj for a 2 K and x 2M , but also

jaj � jxj � jaj � ja�1axj � jaj � ja�1j � jaxj D jaj � jaj�1 � jaxj D jaxj

S. Bosch, Lectures on Formal and Rigid Geometry, Lecture Notes
in Mathematics 2105, DOI 10.1007/978-3-319-04417-0,
© Springer International Publishing Switzerland 2014
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for a ¤ 0, which shows jaxj D jaj � jxj for all a 2 K and x 2 M . Then, if
'WM � N is a continuous morphism of normed R-modules, there exists a
constant ı > 0 such that j'.x/j � 1 for all x 2 M satisfying jxj � ı. Fixing
an element t 2 K such that 0 < jt j < 1, we choose an integer n 2 Z such that
jt jn�1 � ı. Now, considering an arbitrary element x 2 M , there exists an integer
r 2 Z satisfying jt jn � jt jr jxj � jt jn�1. Then jt rxj � ı and, hence, j'.t rx/j � 1,
as well as 1 � jt jr�njxj, and we get

ˇ
ˇ'.x/

ˇ
ˇ D ˇ

ˇt
ˇ
ˇ�r � ˇˇ'.t rx/ˇˇ � ˇ

ˇt
ˇ
ˇ�r � ˇ

ˇt
ˇ
ˇ�r � ˇˇt ˇˇr�n � ˇˇxˇ

ˇ D ˇ
ˇt

ˇ
ˇ�n � ˇˇxˇ

ˇ;

which shows that jt j�n is a bound for '. Thus, we have shown:

Lemma 1. (i) Any bounded morphism of normed R-modules is continuous.
(ii) Conversely; assume that R contains a fieldK such that the norm on R restricts

to a non-trivial absolute value on K. Then every continuous morphism of
R-modules is bounded.

Note that the assumption in (ii) is satisfied if R is a non-zero affinoid K-algebra,
for K a field with a non-trivial complete non-Archimedean absolute value. Thus,
in this case a morphism of normed R-modules is continuous if and only if it is
bounded.

Now let us turn to tensor products and their related bilinear maps. Let M , N , E
be normed modules over a normed ringR. AnR-bilinear map˚ WM �N � E is
called bounded if there exists a real constant � > 0 such that j˚.x; y/j � � � jxj � jyj
for all x 2 M and y 2 N . Again, � is called a bound for ˚ . An R-linear or
R-bilinear map that is bounded by 1 is called contractive.

Proposition 2. Let M; N be normed modules over a normed ring R. There exists
a contractive R-bilinear map  WM �N � T into a complete normed R-module
T such that the following universal property holdsW

Given any R-bilinear map ˚ WM � N � E; bounded by some � > 0; into a
complete normed R-module E; there exists a unique R-linear map 'WT � E;

bounded by � as well; such that the diagram

is commutative.

Proof. To construct the map  , we view the ordinary tensor product M ˝R N as a
semi-normed R-module using the semi-norm j � jWM ˝R N � R�0 given by
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jzj D inf
�

max
iD1;:::;r jxi j � jyi j

�
; z 2M ˝R N;

where the infimum runs over all possible representations

z D
rX

iD1
xi ˝ yi ; xi 2M; yi 2 N:

That we really get a semi-norm on M ˝R N is easily verified. Thus, we can define
T D M y̋ R N as the separated completion of M ˝R N . It is an R-module again
and, in fact, a complete normed R-module, since the semi-norm on M ˝R N gives
rise to an R-module norm on M y̋ R N . For elements x 2 M and y 2 N , we write
x y̋ y for the element in M y̋ R N that is induced by the tensor x ˝ y 2M ˝R N .
Then it is clear that the map

 WM �N � M y̋ R N; .x; y/ � x y̋ y;

is R-bilinear and contractive. The R-module M y̋ R N , together with its R-module
norm, is called the completed tensor product of M and N over R.

Now let us show that the R-bilinear map  satisfies the universal property of
the assertion. So let ˚ WM � N � E be a bounded R-bilinear map into a
complete normed R-module E and let � > 0 be a bound for ˚ . Using the universal
property of ordinary tensor products in terms of the canonical R-bilinear map
 0WM �N � M˝RN sending a pair .x; y/ to the tensor x˝y, there is a unique
R-linear map '0WM ˝R N � E making the following diagram commutative:

Then consider some element z D Pr
iD1 xi ˝ yi 2 M ˝R N where xi 2 M and

yi 2 N . Since '0.z/ DPr
iD1 ˚.xi ; yi /, we get

ˇ̌
'0.z/

ˇ̌ � max
iD1;:::;r

ˇ̌
˚.xi ; yi /

ˇ̌ � � max
iD1;:::;r

ˇ̌
xi

ˇ̌ � ˇ̌yi
ˇ̌
:

Taking the infimum over all representations of z as a sum of tensors
Pr

iD1 xi ˝ yi
yields j'0.z/j � � jzj, and we see that '0 is bounded by � .

Since E is complete, '0 gives rise to an R-linear map 'WM y̋ R N � E that
is bounded by � as well. Furthermore, we can enlarge the above diagram to obtain
the following commutative diagram:
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It remains to show that ' is uniquely determined by the relation˚ D 'ı . However,
this is clear since ' is unique on the image .M � N/, which generates a dense
R-submodule in M y̋ R N . ut

In the situation of Proposition 2, the normed R-module T together with the
contractive R-bilinear map  WM � N � T is uniquely determined up to
isometric isomorphism and will be denoted by M y̋ R N . It is called the completed
tensor product of M and N over R. For the attached contractive R-bilinear map
 WM � N � M y̋ R N we will use the notation .x; y/ � x y̋ y. In other
words, we set x y̋ y D .x; y/ for .x; y/ 2 M � N . Note that, independent of
the construction in the proof of Proposition 2, there is a canonical R-linear map
M ˝R N � M y̋ R N , namely the one given by x ˝ y � x y̋ y. It has a
dense image in M y̋ R N , since the closure of this image, just as M y̋ R N , satisfies
the universal property of completed tensor products.

As in the case of ordinary tensor products, the universal property defining
completed tensor products can be used to derive various standard facts. To list some
of them, look at normed R-modules M , N , P . Then there are canonical isometric
isomorphisms

R y̋ R M 'M;
M y̋ R N ' N y̋ R M;

�
M y̋ R N

� y̋ R P 'M y̋ R
�
N y̋ R P

�
;

�
M ˚N � y̋ R P '

�
M y̋ R P

�˚ �
N y̋ R P

�
;

where the norm on a direct sum like M ˚N is given by jx ˚ yj D max
�jxj; jyj�.

Furthermore, the completed tensor product of two bounded morphisms of normed
R-modules can be constructed. Indeed, let 'i WMi

� Ni for i D 1; 2 be
morphisms of normed R-modules that are bounded by constants �i > 0. Then the
R-bilinear map

M1 �M2
� N1 y̋ R N2; .x1; x2/ � '1.x1/ y̋ '2.x2/;

is bounded by �1�2 and, thus, gives rise to an R-linear map

'1 y̋ '2WM1 y̋ R M2
� N1 y̋ R N2; x1 y̋ x2 � '1.x1/ y̋ '2.x2/;
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that is bounded by �1�2 as well. The map '1 y̋ '2 is referred to as the completed
tensor product of '1 and '2.

Also note that the associativity isomorphism above admits the following general-
ization:

Proposition 3. Let S � R be a contractive homomorphism between normed
rings and let M be a normed S -module; as well as N and P normed R-modules.
Then there is a canonical isometric isomorphism of normed S -modules

.M y̋ S N / y̋ R P 'M y̋ S .N y̋ R P /

where M y̋ S N is a normed R-module via the R-module structure of N .

The proof is straightforward, see [BGR], 2.1.7/7.
Next let us discuss completed tensor products on the level of normed algebras.

To do this, fix a normed ring R and consider two normed R-algebras A1, A2;
by the latter we mean normed rings Ai that are equipped with a contractive
ring homomorphism R � Ai . In particular, we may view the Ai as normed
R-modules, which implies that the completed tensor product A1 y̋ R A2 exists
as a complete normed R-module. We want to show that A1 y̋ R A2 is, in fact, a
normed R-algebra, based on the R-algebra structure of the ordinary tensor product
A1˝RA2. Using the semi-norm onA1˝RA2 as defined in the proof of Proposition 2,
we see that the canonical ring homomorphism R � A1 ˝R A2 is contractive.
Furthermore, for two elements

z D
mX

iD1
xi ˝ yi ; z0 D

nX

jD1
x0
j ˝ y0

j 2 A1 ˝R A2;

we get

ˇ̌
z � z0 ˇ̌ D

ˇ̌
ˇ
mX

iD1

nX

jD1
xix

0
j ˝ yiy0

j

ˇ̌
ˇ � max

i;j

ˇ̌
xix

0
j

ˇ̌ � ˇ̌yiy0
j

ˇ̌

� max
iD1;:::;m

ˇ̌
xi

ˇ̌ � ˇ̌yi
ˇ̌ � max

jD1;:::;n
ˇ̌
x0
j

ˇ̌ � ˇ̌y0
j

ˇ̌
;

which yields

ˇ̌
zz0 ˇ̌ � ˇ̌

z
ˇ̌ � ˇ̌z0 ˇ̌:

when taking the infimum over all representations of z and z0 as sums of tensors.
Thus, passing fromA1˝RA2 to its completion, it follows that, indeed, the completed
tensor product A1 y̋ R A2 is a normed R-algebra where the multiplication is
characterized by
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.x y̋ y/ � .x0 y̋ y0/ D xx0 y̋ yy0

and the structural morphism R � A1 y̋ R A2 by a � a y̋ 1 D 1 y̋ a.
We want to characterize A1 y̋ R A2 in terms of a universal property for normed

R-algebras.

Proposition 4. Let R be a normed ring and A1; A2 normed R-algebras. Then the
contractive R-algebra homomorphisms

�1WA1 � A1 y̋ R A2; a1 � a1 y̋ 1;
�2WA2 � A1 y̋ R A2; a2 � 1 y̋ a2;

admit the following universal property of amalgamated sumsW
Let '1WA1 � D and '2WA2 � D be two homomorphisms of normed

R-algebras that are bounded by constants �1 > 0 and �2 > 0 and assume that D is
complete. Then there is a unique R-algebra homomorphism 'WA1 y̋ R A2 � D;

bounded by �1�2; such that the diagram

is commutative.

Proof. Consider homomorphisms of normed R-algebras '1WA1 � D as well as
'2WA2 � D where D is complete and assume that '1 and '2 are bounded by
constants �1 > 0 and �2 > 0. Then

A1 � A2 � D; .a1; a2/ � '1.a1/ � '2.a2/;

is an R-bilinear map that is bounded by �1�2. Thus, by the universal property of
completed tensor products in Proposition 2, it gives rise to an R-linear map

'WA1 y̋ R A2 � D; a1 y̋ a2 � '1.a1/ � '2.a2/;

that is bounded by �1�2. Furthermore, ' satisfies
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'
�
.a1 y̋ a2/ � .a0

1
y̋ a0

2/
� D '.a1a0

1
y̋ a2a0

2/ D '1.a1a0
1/ � '2.a2a0

2/

D '1.a1/ � '2.a2/ � '1.a0
1/ � '2.a0

2/

D '.a1 y̋ a2/ � '.a0
1
y̋ a0

2/

for a1; a
0
1 2 A1 and a2; a

0
2 2 A2. This shows that ' is multiplicative on the image of

A1 ˝R A2 in A1 y̋ R A2 and, hence, by continuity, on A1 y̋ R A2 itself. Since

'.a1 y̋ a2/ D '
�
.a1 y̋ 1/ � .1 y̋ a2/

� D '1.a1/ � '2.a2/

for a1 2 A1 and a2 2 A2, it is clear by a continuity argument as before that ' is
unique on A1 y̋ R A2. ut

If  i WAi � Bi , i D 1; 2, are bounded morphisms of normedR-algebras, their
completed tensor product

 1 y̋  2WA1 y̋ R A2 � B1 y̋ R B2; a1 y̋ a2 �  1.a1/ y̋  2.a2/;

is defined as a bounded R-linear map, but can also be obtained within the context
of normed R-algebras using the universal property of Proposition 4; both versions
coincide.

Next we want to study the behavior of restricted power series under completed
tensor products. To do this, let A be a complete normed ring and � D .�1; : : : ; �n/

a set of variables. Then, as usual, the A-algebra of restricted power series in � with
coefficients in A is given by

Ah�i D
n X

�2Nn
a��

n 2 Adbdb�ecec I a� 2 A; lim
�2Nn a� D 0

o
:

It is a complete normed A-algebra under the Gauß norm

ˇ̌
ˇ
X

�2Nn
a��

n
ˇ̌
ˇ D max

�2Nn
ˇ̌
a�

ˇ̌
:

Proposition 5. LetR be a complete normed ring; A a complete normedR-algebra;
and � D .�1; : : : ; �n/ a set of variables. Then; using the Gauß norm on Rh�i and
Ah�i; there is a canonical isometric isomorphism of normed R-algebras

A y̋ R Rh�1; : : : ; �ni �� Ah�1; : : : ; �ni:

Proof. We want to show that the canonical maps

�1WA � Ah�i; �2WRh�i � Ah�i;
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which are contractive, satisfy the universal property mentioned in Proposition 4. To
do this, consider two morphisms of R-algebras

'1WA � D; '2WRh�i � D

into a complete normed R-algebra D such that '1 and '2 are bounded by constants
�1; �2 > 0. Then there is a well-defined R-algebra homomorphism

'WAh�i � D;
X

�2Nn
a��

� �
X

�2Nn
'1.a�/ � '2.��/:

Indeed, if the a� form a zero sequence in A, their images form a zero sequence in
D since j'1.a�/j � �1ja� j. Furthermore, we have j'2.��/j � �2 for all � so that the
infinite sums of type

P
� '1.a�/ � '2.��/ are converging. Hence, ' is well-defined,

and it is bounded by �1�2, as shown by the estimate

ˇ̌
ˇ
X

�2Nn
'1.a�/ � '2.��/

ˇ̌
ˇ � �1�2 �max

�

ˇ̌
a�

ˇ̌ D �1�2 �
ˇ̌
ˇ
X

�2Nn
a��

�
ˇ̌
ˇ:

By continuity, ' is even a homomorphism of R-algebras and, in fact, the unique
bounded homomorphism making the diagram

commutative. Thus, we are done. ut
For the remainder of this section, we want to look at affinoid K-algebras where,

as usual, K is a field with a complete non-Archimedean absolute value that is non-
trivial. Any such algebra A may be viewed as a complete normed K-algebra by
choosing a residue norm on it. Furthermore, we know from 3.1/20 that any two
residue norms j � j and j � j0 on A are equivalent in the sense that they induce the same
topology on A. In particular, the identity map .A; j � j/ � .A; j � j0/ and its inverse
are bounded due to Lemma 1.

Now let 1WR � A1 and 2WR � A2 be two homomorphisms of affinoid
K-algebras. In order to construct the completed tensor product A1 y̋ R A2, we need
to specify appropriate norms on R, A1, and A2 in such a way that 1 and 2 are
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contractive. We do this in terms of residue norms. In fact, choosing epimorphisms
˛WTm � R and ˛i WTni � Ai , i D 1; 2, we can use 3.1/19 in conjunction
with 3.1/7 and 3.1/9 to construct commutative diagrams

where ˛0
1 and ˛0

2 are extensions of ˛1 and ˛2 and, hence, are surjective. Considering
the residue norms associated to ˛, ˛0

1, and ˛0
2 on R and the Ai , it is clear that

the maps 1 and 2 are contractive and, hence, that the completed tensor product
A1 y̋ R A2 can be constructed. If we consider a second set of residue norms on R,
A1, and A2 such that 1 and 2 are contractive, then the resulting semi-norms on
A1 ˝R A2 that are used to construct the completed tensor product, are seen to be
equivalent. As a result, the attached completions can canonically be identified and
it follows that, indeed, the completed tensor product A1 y̋ R A2 is well-defined, up
to a set of equivalent ring norms on it, just as is the case for affinoid K-algebras
and their possible residue norms on them. We will keep this in mind and talk about
“the” completed tensor product of A1 and A2 over R. However, when it comes to
particular norms on A1 y̋ R A2, we have to be more specific.

Our main objective for the remainder of this section is to show:

Theorem 6. Let 1WR � A1 and 2WR � A2 be homomorphisms of affinoid
K-algebras. Then the completed tensor product A1 y̋ R A2 is an affinoid K-algebra
as well. In other words; the category of affinoid K-algebras admits amalgamated
sums.

To prepare the proof of the theorem, we start with some consequences of
Proposition 5.

Proposition 7. Let 
1; : : : ; 
m and �1; : : : ; �n be sets of variables; and K 0 an
extension field of K with a complete absolute value extending the one given on
K. Then there are canonical isometric isomorphisms

Kh
1; : : : ; 
mi y̋K Kh�1; : : : ; �ni �� Kh
1; : : : ; 
m; �1; : : : ; �ni;
K 0 y̋K Kh�1; : : : ; �ni �� K 0h�1; : : : ; �ni;

with respect to the Gauß norm on the occurring Tate algebras.

Proposition 8. Let A1 and A2 be affinoid K-algebras. Then A1 y̋K A2 is an
affinoid K-algebra as well. Similarly; if K 0 is an extension field of K with a
complete absolute value extending the one given onK; thenK 0 y̋K Ai is an affinoid
K 0-algebra.
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More specifically; choose epimorphisms of K-algebras ˛i WTni � Ai for
i D 1; 2; and consider the attached residue norms onA1 andA2. Then the canonical
morphism of K-algebras

˛WTn1Cn2 D Tn1 y̋K Tn2 � A1 y̋K A2
is surjective and its kernel is generated by ker˛1 and ker˛2; thus giving rise to an
isomorphism of K-algebras

Tn1Cn2
ı�

ker˛1; ker˛2
� �� A1 y̋K A2:

The latter is an isometric isomorphism if we consider on Tn1Cn2=.ker˛1; ker˛2/ its
canonical residue norm. Likewise; the homomorphisms of K-algebras

˛0
i WK 0h�1; : : : ; �ni i D K 0 y̋K Tni � K 0 y̋K Ai ; i D 1; 2;

are surjective; and their kernels are generated by ker˛i ; thus giving rise to isometric
isomorphisms

�
K 0 y̋K Tni

�ı�
ker˛i

� �� K 0 y̋K Ai ; i D 1; 2:

Proof. We show that Tn1Cn2=.ker˛1; ker˛2/ and, likewise,K 0h�1; : : : ; �ni i=.ker˛i /
satisfy the universal property of completed tensor products. To do this, consider a
commutative diagram of type

where �i is induced by the inclusion Tni � � Tn1Cn2 , i D 1; 2, and where Q̨ is
the canonical projection. Concerning the right part of the diagram, D is a complete
normed K-algebra and the 'i WAi � D, i D 1; 2, are homomorphisms that are
bounded by constants �1; �2 > 0. Using Proposition 7 and interpreting Tn1Cn2 as
the completed tensor product Tn1 y̋K Tn2 , there exists a canonical homomorphism
of K-algebras Tn1Cn2 � D that is bounded by �1�2 and that, apparently, will
factor through the quotient Tn1Cn2=.ker˛1; ker˛2/ via a unique homomorphism of
K-algebras
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'WTn1Cn2
ı�

ker˛1; ker˛2
� � D

making the above diagram commutative. Let us equip now the affinoid K-algebra
Tn1Cn2=.ker˛1; ker˛2/ with its residue norm via Q̨ . Then, by the definition of
residue norms, we see that the maps �1 and �2 are contractive since the canonical
inclusions of Tni into Tn1Cn2 preserve Gauß norms. Furthermore, by the definition of
residue norms again, ' is bounded by �1�2 since the same is true for the composition
'ı Q̨ ; one may also use the fact that for every f 2 Tn1Cn2=.ker˛1; ker˛2/ there is an
inverse image f 2 Tn1Cn2 satisfying jf j D jf j, cf. 3.1/5. Altogether we conclude
that Tn1Cn2=.ker˛1; ker˛2/ along with the contractions �1, �2 satisfy the universal
property of a completed tensor product A1 y̋K A2. Thus, we are done with the first
part of the assertion. The completed tensor products of typeK 0 y̋K Ai are dealt with
similarly. ut
Proposition 9. Let � WS � R as well as 1WR � A1 and 2WR � A2 be
homomorphisms of affinoid K-algebras. Then there is a canonical homomorphism
of normedK-algebras A1 y̋ S A2 � A1 y̋ RA2; and the latter is an epimorphism.

More specifically; consider residue norms on R; S; A1; and A2; and assume that
� and the i are contractive. Then the norm on A1 y̋ R A2 coincides with the residue
norm derived from the norm on A1 y̋ S A2.
Proof. We proceed similarly as in the proof of Proposition 8 and consider a
commutative diagram of type

where D is a complete normed R-algebra and the 'i WAi � D, i D 1; 2,
are homomorphisms of R-algebras that are bounded by constants �1; �2 > 0.
Furthermore, ' is the unique homomorphism of R-algebras, bounded by �1�2, that
is derived from the universal property ofA1 y̋ RA2. It follows that 'ı˛ is the unique
homomorphism of S -algebras derived from the universal property of A1 y̋ S A2; it
is bounded by �1�2 as well. Now consider the factorization

˛WA1 y̋ S A2 � �
A1 y̋ S A2

�ı
ker˛ � � A1 y̋ R A2

where ker˛ is a closed ideal in A1 y̋ S A2 since ˛ is contractive and, hence,
continuous. Thus, proceeding in the manner of 3.1/5 (i) and (ii), we can equip
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the quotient .A1 y̋ S A2/= ker˛ with the residue norm derived from the norm
on A1 y̋ S A2. Clearly, the homomorphisms �1 and �2 factor through contractive
homomorphisms of R-algebras Q�i WAi � .A1 y̋ S A2/= ker˛, i D 1; 2, and it is
easily seen that .A1 y̋ SA2/= ker˛ along with Q�1 and Q�2 satisfy the universal property
of the completed tensor product A1 y̋ R A2. Thus, we are done. ut

Now the Proof of Theorem 6 can be carried out without problems. We assume
that 1WR � A1 and 2WR � A2 are contractive homomorphisms of
affinoid K-algebras, the latter being equipped with suitable residue norms. Then
the completed tensor product A1 y̋K A2 is an affinoid K-algebra by Proposition 8
and so is the completed tensor product A1 y̋ R A2, since it is a quotient of A1 y̋K A2
by Proposition 9.

Finally, we want to mention the following generalization of the first part of
Proposition 8:

Proposition 10. Let 1WR � A1 and 2WR � A2 be homomorphisms of
affinoidK-algebras; and consider ideals a1 � A1 as well as a2 � A2. Furthermore;
fix residue norms on R; A1; and A2 such that 1 and 2 are contractive; and provide
the quotients A1=a1 and A2=a2 with the residue norms derived from the given
residue norms on A1 and A2 via the canonical projections ˛i WAi � Ai=ai . Then

˛1 y̋ ˛2W A1 y̋ R A2 � .A1=a1/ y̋ R .A2=a2/

is surjective and its kernel is generated by the images of a1 and a2 in A1 y̋ R A2.
This way ˛1 y̋ ˛2 gives rise to an isomorphism of R-algebras

�
A1 y̋ R A2

�ı�
a1; a2

� �� �
A1=a1

� y̋ R
�
A2=a2

�
;

which is isometric if we consider on .A1 y̋ R A2/=.a1; a2/ the residue norm derived
from the completed tensor product norm on A1 y̋ R A2.
Proof. Use the same arguments as in the proof of Proposition 8. ut
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