
On the Google Search

25 Billion Dollar Eigenvector

T.T.Moh
The title of my talk is a copy of the title of an article by K. Bryan and

T. Leise (however they used a title $ 25,000,000,000 Eigenvector,). I think
it is fun. BTW, they did not copy-right it.

What we will discuss is the method to rank many elements (sometimes
10, 000 websites). The principle involved in the following discussions can
be applied to the ranking of teams (for instance, Olympic Games, college
football teams, etc.), or search engine for websites (Google search engine and
Baidu search engine, etc.). We shall give a discussion about the mathematics
involved and the speed of solving the ranking problems,

First before we get to the problem of ranking a large number of elements,
we will have a simple example.

The Ranking Problem of A Chess Tournament:

Ranking of Chess Players: Let us consider a round robin chess tour-
nament for six players P1, P2, P3, P4, P5, P6. We use their records to form
the following matrixr,. where aij = 1 if Pi defeats Pj , and in this situation
aji = 0. If Pi ties with Pj , then aij = aji = 0.5. We always take aii = 0.5.
Let the results of this tournament be represented by the following matrix of
the relative strengths,

A =



















0.5, 1, 1, 0, 1, 1
0, 0.5, 0, 1, 1, 0
0, 1, 0.5, 1, 1, 1
1, 0, 0, 0.5, 0, 0
0, 0, 0, 1, 0.5, 1
0, 1, 0, 1, 0, 0.5



















At the beginning we are ignorant of the relative strength of each player and
let e1 be the vector [1, 1, 1, 1, 1, 1]T to assume their equal strengths. Then
we may take e2 as follows to indicate their temporary strengths after the
tournament,
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e2 = Ae1 =



















0.5, 1, 1, 0, 1, 1
0, 0.5, 0, 1, 1, 0
0, 1, 0.5, 1, 1, 1
1, 0, 0, 0.5, 0, 0
0, 0, 0, 1, 0.5, 1
0, 1, 0, 1, 0, 0.5





































1
1
1
1
1
1



















=



















4.5
2.5
4.5
1.5
2.5
2.5



















We may take e2 as the ranking vector, and conclude the order of palyers as
P1 = P3 > P2 = P5 = P6 > P4. This kind of ranking is used in newspapers
and Olympic Games. However, there are two problems: (1) the first player
and the third player have the same score 4.5. Does the fact that the first
player defeated the third player at their head-on contest mean something?
(2) The fourth player defeated a strong player (the first player), does it mean
something?

To amend the situation, we shall consider the strengths of all players
as indicated by temporary vector e2 = Ae1, and adopt the rule that (1)
if player Pi defeats player Pj , then Pi adds Pj ’s strength to his/her own
strength, and (2) if player Pi ties with player Pj , then Pi adds half of Pj ’s
strength to his/her own strength. In the comparison of all college football
teams in US, this step is called consider the schedules or consider the strength

of the oponents. We then compute e3 = Ae2 = A2e2. We have

e3 = Ae2 = A2e1 =



















0.25, 3, 1, 4, 3, 3
1, 0.25, 0, 2, 1, 1
1, 2, 0.25, 4, 2, 2
1, 1, 1, 0.25, 1, 1
1, 1, 0, 2, 0.25, 1
1, 1, 0, 2, 1, 0.25





































1
1
1
1
1
1



















=



















14.25
5.25

11.25
5.25
5.25
5.25



















We may now use e3 as the new temporary relative strength vector and use
it as the ranking vector. At this iteration, the first player is pulled apart
from the third player, and the fourth player gets an equal rank iwith the
remaining players. Note that this is the way that the ”computer ranking”
works for the college football teams in USA. If we carry the argument one
step further, we find e4 = Ae3 = A3e1 as follows,
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e4 = Ae3 = A2e2 = A3e1 =


















4.125, 5.75, 0.75, 12, 5.75, 5.75
2.5, 2.125, 1, 3.25, 1.75, 2.5
4.5, 4.25, 1.125, 8.25, 4.25, 4.25

0.75, 3.5, 1.5, 4.125, 3.5, 3.5
2.5, 2.5, 1, 3.25, 2.125, 1.75
2.5, 1.75, 1, 3.25, 2.5, 2.125





































1
1
1
1
1
1



















≈



















34
13
27
17
13
13



















We can show that if we carry on the argument further, the order P1 >
P3 > P4 > P2 = P5 = P6 will remain the same. We may conclude that the
preceding order is correct.

Note that A is a non-negative matrix (see the definition below) and Ak

is a positive matrix (see the definition below) for k ≥ 3.
Using Matlab, we found the largest eigenvalue of A is λ = 2.6106 which

is a positive real number, and the ratio of the largest eigenvalue over
the next largest absolute value of eigenvalues is 1.8596, which shows that
limk 7→∞(A/λ)kv converges fast for any random vector v. Let limk 7→∞(A/λ)kv
= u, then we have (A/λ)u = u, thus u is an eigenvector of (A/λ). Further-
more, either u or −u is positive and can be treated as the ranking vector
which we shall use eventually. (see below)

The principle involved in the above discussions can be applied to other
duel games and explained by Perron theorem.

Before we discuss the statement of Perron theorem, let us give the
following definitions.

Definition 1: Let M = (mtj) be a real matrix. We say M is positive,
M > 0, iff mtj > 0 for all t, j.

Definition 2: Let M = (mtj) be a real matrix. We say M is non-negative,
M ≥ 0, iff mtj ≥ 0 for all t, j.

Notations: Let M = (mtj) be a square matrix. Let σ(M) be the set of
eigenvalues of M . Let ρ(M) be the largest absolute value of all eigenvalues.
Let |M | = (|mtj |). Especially, |v| is defined for any vector v.

We have the following important Perron Theorem (1907) for positive
square matrices, which is later generalized to Perron-Frobenius Theo-

rem for some non-negatve matrices by Frobenius (1912). In the following
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statements, we only use the matrix A to act from left as Av. Similar state-
ments also work for the matrix A to act from right as vT A. Since both
ways share the same characteristic polynomial, the eigenvalues from both
ways must be the same. The only thing we have to pay attention is that for
a fixed eignevalue r, the left eigenspace associated with r may be different
from the right eigenspace associated with the same eigenvalue r.

Perron Theorem: Let M = (mtj) be a real positive square matrix. Then
we have,
(1): Let r = ρ(M), then r > 0 and r ∈ σ(M). Further, r > the absolute
value of any other eigenvalue.
(2): The eigenvalue r has a positive vector v as its associated eigenvector.
Any other eigenvalue has no non-negative associated eigenvector.
(3): The eigenvalue r is a simple root of the characteristic polynomial of
M .

Proof: (1) If r = 0, then M is nilpotent, which is not true. Let us define
a set S = {s : Mv ≥ sv for some v non-negative and 6= 0}. Clearly
the set S is non-empty and has some positive elements. For instance, let
v = [1, 1, · · · , 1]T and s = min({

∑

j mtj}). Then s > 0 and Mv ≥ sv. Let

r = supS. We claim r ∈ σ(M), i.e., r is an eigenvalue.
By considering only the vector v such that ||v|| = 1 for any norm || ||, we

have a compact set. Then we pick a subsequence vi such that Mvi ≥ λivi

where λi : 7→ r with the further property that vi : 7→ v, and we have Mv ≥ rv.
If it is an equality, then r is an eignevalue. Let us assume that it is not
an equality (which does not mean that it is a straight inequality). Let
u = Mv − rv. Then u is non-negative and non-zero. Therefore 0 < Mu =
M(Mv) − r(Mv). Let w = Mv, we have Mw > rw. We may increase the
value of r by ǫ, and the preceding inequality would still work. It contradicts
the assumption that r is the maximal possible one. Hence we show that r
is an eigenvalue.

Let λ be any other eigenvalue (i.e., λ 6= r) with associated eigenvector
z. Then we have Mz = λz. Take the absolute values on both sides, we have
M |z| ≥ |Mz| = |λ||z|. Therefore |λ| ∈ S and |λ| ≤ r. Suppose |λ| = r and
we must have M |z| = |λ||z| (otherwise,by a previous argument, r can be
increased, a contradiction). Hence M |z| = |Mz|,

∑

j mtj |zj | = |
∑

j mtjzj |.

The preceding equation happens only if zj = eθi|zj | for all j. Furthermore,
we have Meθi|z| = λeθi|z|, thus M |x| = λ|z|. Therefore, λ = |λ|. We
conclude λ = r which contradicts with the assumption that λ is distinct
from r.
(2) We have Mv = rv for some non-negative v. The left side Mv is a
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positive vector, hence the right side rv is a positive vector, thus v is positive.
Similarly M has a positive left eigenvector wT associated with r. Let u be
an (right) eigenvector associated with another eigenvalue λ. Then we have

rwT u = wT Mu = λwT u and r 6= λ

hence
wT u = 0

Since wT is positive, then wT u is positive.A contradiction. Therefore (2) is
verified.
(3) Let us make some simplifications. We replace M by M/r, and assume
ρ(M) = 1. Furthermore, we may select the basis so that M is in the Jordan
canonical form J . In other words, we may assume that

J = P−1MP =















J1, 0, 0, 0, 0
0, J2, 0, 0, 0
0, 0, · 0, 0
· · · · ·

0, 0, 0, 0, Jh















.

where Jts are Jordan blocks. It is easy to see that

Jk = P−1MkP =















Jk
1 , 0, 0, 0, 0
0, Jk

2 , 0, 0, 0
0, 0, · 0, 0
· · · · ·

0, 0, 0, 0, Jk
h















.

We assume that J1 is associated with eigenvalue 1 with the largest size
m. We claim that m = 1. Let us assume that m > 1. Note that we have
M = PJP−1. Let v = [v1, v2, · · · , vn]T be a positive eigenvector associated
with 1. Clearly we have Mkv = v for all integer k ≥ 1. Note that mint{vt} =
c > 0. Let || ||∞ be the norm defined as

||B||∞ = max{
∑

j

|btj |}

Then ||v||∞ = max{|vt|}. Let us compute ||Jk
1 ||∞ for J1 associated with

eigenvalue 1 and of size m > 1. We have

Jk
1 =















1, 0, 0, 0, 0
k, 1, 0, 0, 0
·, k, 1 0, 0
· · · · ·
·, ·, ·, k, 1















.

5



It follows easily that ||Jk||∞ : 7→ ∞ as k 7→ ∞. We have ||Jk||∞ = ||P−1MP ||∞ ≤
||P−1||∞||Mk||∞||P ||∞, which means

||Mk||∞ ≥
||Jk||∞

||P−1||∞||P ||∞
7→ ∞.

Let Mk = (m
(k)
tj ). Recall that Mkv = v. Then we have

||v||∞ = max{|vt|} = ||Mkv||∞ = max{
∑

j

m
(k)
tj |vj |} ≥

max{
∑

j

m
(k)
tj }min{|vt|} = ||Mk||∞c 7→ ∞

which is impossible.
We conclude that all Jordan blocks associated with 1 are 1×1. We want

to show that there is only one Jordan block associated with 1. Suppose
that there are two. Let u, v be linearly independent eigenvectors. We may
assume that t-th component vt of v is not zero. Let w = u− (ut/vt)v. Then
w is also an eigenvector associated with 1. We have Mw = w. Take absolute
values on both sides, we have |M ||w| ≥ |Mw| = |w|. If the inequality is not
equal, we may find a larger eigenvalue, which is impossible. Therefore, we
must have M |w| = |w|. Since the left hand is positive, so must be the right
hand side, which is impossible as we know that the t-th component is zero.

Definition 3: The number r in the preceding theorem is called the Perron

root. The unique eigenvector v = [v1, v2, · · · , vn]T associated with r such
that

∑

t vt = 1 is called the Perron vector.

Although it will not be used in our discussions of Google, we will mention
the generalization made by Frobenius for the completeness. Frobenius found
a class of non-negative matrices such that the statements of Perron theorem
are valid. A square matrix said to be irreducible if the following definition
is satisfied.

Definition 4: A matrix An×n is said to be irreducible iff there is no per-
mutation matrix P such that

P−1AP =

[

X, Y
0, Z

]
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where X, Z are square matrices.

Definition 5: A matrix An×n is said to be primitive iff Ak is positive for
some positive integer k.

Proposition 1: Every primitive matrix is irreducible.

Proof: It is sufficient to prove that the k-th power of a reducible (i.e., not
irreducible) matrix A is reducible, which is trivial.

We will state the following proposition without giving a proof. Interest-
ing reader may consult C. Meyer: Chapter 8 of Matrix Analysis and Applied

linear algebra, SIAM, http://www.matrixanalysis.com/Chapter8.pdf.

Proposition 2: An irreducible matrix A = (atj) is a primitive matrix iff
att is not 0 for some t.

We have the following theorem,

Perron-Frobenius Theorem: Let M = (mtj) be a real irreducible non-
negative square matrix. Then we have,
(1): Let r = ρ(M), then r > 0 and r ∈ σ(M). We have r is a simple root of
the characteristic polynomial.
(2): The eigenvalue r has a positive vector v as its associated eigenvec-
tor. If an eigenvalue λ with λ 6= r, then it has no non-negative associated
eigenvector.
(3): Furthermore if M is primitive, then the root r is the only eigenvalue
which has the largest absolute value.

Proof: We shall only prove the case that A is primitive. For the gen-
eral case, see C. Meyer’s book Chapter 8 of Matrix Analysis and Applied

linear algebra, SIAM, http://www.matrixanalysis.com/Chapter8.pdf. Ap-
plying Perron theorem to Mk. We have the above statement for Mk. We
have to establish a relation between the eigenvalues of M and Mk. Let
us select a suitable basis for the vector space so that M is expressed in it
Jordan canonical form. Then it is easy to see that the diagonal items are
the eigenvalues {λt} of M . Furthermore, the diagonals of Mk will be {λk

t }.
It follows that the characteristic polynomial of Mk is

∏

(λ − λk
t )

nt , which
establishs a bijictive correspondent between the set of eigenvalues of {λt} of
M and the eigenvalues {λk

t } of Mk.
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The only thing we have to prove is that there is a positive eigenvector
v associated with the largest eigenvalue r. Pass to Mk, we know that v
is a eigenvector associated with the largest eigenvalue rk of Mk. Hence it
must be either positive or eiθv is positive, for some θ. So r has a positive
associated eigenvector.

We have the following definition,

Definitin 6: A non-negative square matrix A = (atj) is called a stochastic

matrix iff every column adds to 1, i.e.,

∑

t

atj = 1 for all j

A vector u is called a stochastic vector iff it is a stochastic matrix.

We have the following proposition for a stochastic matrix.

Propositioni 3: Let A = (atj) be a irreducible stochastic matrix. Then 1
is its largest eigenvalue.

Proof: Let v = [1, 1, · · · , 1]. Then clearly vA = v. Therefore 1 is an
eigenvalue of A and with a (left) positive eigenvector v. It follows from
Perron-Frobenius Theorem that 1 is the largest eigenvalue of A for all vectors
from the right.

PageRank

Note that any non-negative matrix A without a zero column can be
normalized to a stochastic matrix. Now we have enough Mathematical
background to discuss the Google search. (1) Once the user inputs some
keywords, the Google Engine collects all website W1, W2, · · · , Wn (In gener-
ali, it assumes that n ≤ 10, 000) with those keywords (this is common to all
search engine, and we will not discuss it). (2) the Google engine ranks all
collected websites. For this purpose, let us precede as follows.

Let us form a matrix A = (atj), where atj = the number of references
from website Wj to website Wt (it is our way to count citations). Then we
normalize every non-zero column by replacing atj by atj/

∑

t atj and still
call the matrix A = [a1, a2, · · · , an], where aj are the column vectors of A.
We now define a new matrix B = [b1, b2, · · · , bn] where bj are the column
vectors of B as follows: if aj = 0, then bj = [1/n, 1/n. · · · , 1/n]T ; if aj 6= 0,
then bj = 0. Then A + B will be a stochastic matrix. The trouble is that
A + B is only non-negative, while may not be primitive. Anyway, it is

8



troublesome to check if it is primitive. We may speculate the way Google
uses to proceed. (1), This is very likely to be the way Google uses. Google
creates another n×n stochastic matrix Q named taste, it is a randam matrix
and take a randam vector u, and formulate C = x(A+B)+ (1−x)Q where
0 < x < 1. Then C is primitive for x closed to 1 (in fact, Sergey Brin and
Larry Page state that it is good to take x = 0.85) and we know that the
largest eigenvalue is 1. Now the work is to find the all-important eigenvector
(Perron vector) v associated with 1. The values of components of v will give
us the ranking of the websites. We shall find the Perron vector v using the
following power methed,

Let us use the notations of a basis {v = w1, w2, · · · , wn} such that

Cw1 = w1 or Cwt = λjwt or Cwt = λjwt + wt+1 where |λj | < 1

Then we have

C2w1 = w1 or C2wt = λ2
jwt or C2wt = λ2

jwt+c2
1λjwt+1+λjwt+2 where |λj | < 1

It is easy to see that

Ckw1 = w1 or Ckwt = λk
j wt or Ckwt = λk

j wt+ck
1λ

k−1
j wt+1+· · · where |λj | < 1

We can easily conclude that

limk 7→∞Ckw1 = w1 limk 7→∞Ckwt = 0 for all t > 1

Let us randamly pick up a vector u = a1w1 + w2v2 + · · · + anwn with
a1 6= 0. Then by the above argument, we have limk 7→∞Cku = a1w1. After
normalizing a1w1, we find the Perron vector w1 = v. Hence we have the
Google ranking.

According to Larry Page (an inventor of PageRank, the other inventor
is Sergey Brin), starting with a randam vector u it suffices to take k = 50 to
get a good approximation of a1w1 for the ranking purpose. There are many
fast ways of computing Ck in computational mathematics.

Or (2) We take a matrix O such that otj = 1/n for all t, j, a vector
u = (1/n, 1/n, · · · , 1/n)T , and D = x(A + B) + (1− x)O. Similarly, we take
x = 0.85. Note that u is a stochastic vector, and Dv is stochastic iff D, v
are stochastic and Ov = u if v is stochastic. Let u1 = u and inductively

um+1 = Dum = x(A + B)um + (1− x)Oum = xAum + xBum + (1− x)Oum

= xAum + xBum + (1 − x)u.
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since it is easy to see that inductively all um’s are stochastic. In the pre-
ceding expression, the first term xAum is with a sparse matrix A where
most entries are zero. It is likely that there are only n non-zero entries (we
assume that among the 10,000 websites, there are only about 10,000 cross
references), so to compute it out, first we pre-compute xA and xB (it will
used throughtout the computing process), likely we need only n multiplica-
tions for the computation of xA, since xB is a matrix with 0 or x/n (for
those columns corresponding to 0 columns of A only), we need only 1 mul-
tiplication, then we compute (xA)um. With xA known, then only needs n
multiplications. The second term xBum is with the columns of B either 0
or u. It is easy to see that xBum = (a, a, · · · , a)T , where a = x/n(

∑

tj
utj )

where tj runs through only those 0 columns of A and utj are the entries
of um which corresponding to tj and there are at most 1 multiplications
needed. To find um+1 from um we need n + 1 multiplications plus n + 1
multiplications of pre-computations (which can be used again and again),
Note that the number of multiplications is linear in n. For instance let
n = 10, 000 and m = 50. Then we need 510, 051 multiplications to find the
Google rank. It is a fast job.

Note that the value of x does not affect the speed of computation, we
may take x to be as close to 1 as possible, say x = 0.99.
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