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Abstract

This is a survey talk on the Jacobian Conjecture. The main results
of T. T. Moh, S. 8. Abhyankar, S. S. S. Wang, H. Bass, E. Connell,
D. Wright, A. Sathaye and others are presented, Possible research lines
are mentjoned.

1  Introduction

The Jacobian Conjecture is a fun problem.

There are only two theorems in Calculus: the fundamental theorem of
Calculus and the (local) implicit function theorem. The rest are definitions
and rules of computations. The second theorcm siates that if the Jacobian
of a map does not vanish at a point, then the inverse map exists locally.
We wish to globalize the abave theorem and generalize it to other fields if
possible.

It is easy to observe that if the ground field k is of positive characteristic
7, then even in one variable case for n(z) = z + 2P, w'(z) = 1, and there
is no inverse map of =, Le., there is no polynomial o such that o(z} +
o{z)? = z. We'd better consider only characteristic 0 case. Furthermore,
in our possible generalization of (local) implicit function theorem, if we allow
differentizble or analytic functions, then the generalization fails when we
consider

f(m,y) = ¢”
glz,y) = ye " 0
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Note that the Jacobian of the map is 1, and ¢* is not invertible, We conclude
that we'd better consider only polynomial maps.

Another possible way is to require that the Jacobian of the map which
is a polynomial vanishes at no point in the space. We have, for instance,
the Real Jacobian Conjecture: if the Jacobian of the map of B" — R
vanishes at nowhere, then the map is globally invertible. Although fhere
were two proofs of this Conjecture circulated around, last year there was a
counter-example by Serguey Pinchuk of Russia [22]. His counter-example is
a polynomial map of R? 3 R? consisting of a pair of polynomials of degrees
40 and 9 with Jacobian sum of squares. It is easily checked.

The true property required is the constancy of the Jacobian of the map,
i.e., the change of the volume should be a constant through out.

We shall formulate the Jacobian Conjecture as fallows:

Conjecture 1.1 (Jacobian Conjecture). Let k be a fleld of characteris-
tie 0 and i @ positive integer. Consider a polynemial map 7 : K" — K7 which
is given as follows,

g1 = (o) = filz. o)

4o = wlas) = folzn, - 5 Tn) (1.2)

Jf the Jacobian J of the map defined as usual as

aet [ 9
J = det (3:(:3.-) (1.3)

is a non-zero constent, then the map is bijective.

Note that it follows from a result of Ax that for polynomial maps, in-
jection implies bijection. The reasoning of Ax is as follows, (1) for finite
fields, and bounded degree, it follows from ‘pigeon hole principle’ that injec-
tion implics bijection. (2) using a theorem of Tarski and Lowenheim Skolemn
theorem from logic, we conclude that the statement is true in general. The
preceding sounds mysterious, Recently, Ming-Chang Kang gives a short
mathematical proof of the above statement.

Lot us assume from now on that the field & s algebraically closed (which
is convenient while non-essential) and the Jacabian J is a non-zero constant.

Certainly, we have Efi,... ] © klmL..-,ze] We claim that
k{zy, -+ ,%n) 18 an algebraic extension of k(yy, - ,yn). QOtherwise, let
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te k(zy,-++ ,3n) be transcendental over k(y1,...,¥s). Then we have

O3+ dey Gy
T 2Ty A

Oy _ dzq My
at - 21: 8'!;’:' at (14)

Ony By, B
ot Z: By; Ot

It follows from the non-zero constant Jacobian that %-‘;f exists, and from the

transcendental property of ¢ that %'-’Ei are all zerocs. Therefore %%L arc all

zeroes. We conclude that g% is zero! A contradiction.

We claim that the map is bijective if and only if k[z1, - 3] =
Efys - vl

If the above is an equality, then the map is an automorphism of &™, and
hence an injection and a bijection.

On the other hand if the map is bijective, let the minimal primitive
polynomial satisfied by x; over ki, <+, yu] be as follows,

ﬂ'lj
Zhji(ylr"' 1y‘-‘1)$; =0 (1'5)

0
If my > 1, recall that k is an infinit field, there are points (e, - , &y} such
that Ajm, (a1, - ,an) # 0, and there are mn; possible solutions lor z;, then

the map is not injective. We conclude that my; = 1 for all §. If hj; is not
a constant, then we may select a root (b1, ,by), then there is no point
mapping to it, We now have established our claim.

We may reformulate the Jacobian Conjecture as follows,

Conjecture 1.2 (Jacobian Conjecture for n variables). Given a poly-
nomial map 7 of the ring k[zy,--- ,&x] of n variables over an algebraically
closed fleld of characteristic 0. Let w(w;) = yi. The Jacobian J of the map
is @ non-zero constant, if and only if k[z1, 2] = k[y1,--~ 9l

The Jacobian Conjecture as stated is unknown except the trivial case of
1= 1. We shall start with n = 2, We will restate

Conjecture 1.3 {Jacobian Conjecture for two variables). Given lwo
polynomials f(x,y),g{z,y) in two varichles over an algebraically closed field
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k of characteristic 0, suppose that the following Jacobien condition is salis-
fied,

af,9) ek (1.6)

Juy (2,1, 93 y) = 3z, v)

Then we have klz,y] = k[f, g].

The above conjectures are beautiful and clegant. Are there any truths
to them? Could they just be illusions? In 1972 we obfained a verification
for polynomial maps of degree less than or equal to 100 for the two variables
cases. Later R. C. Heitmann {16] used a different method to get similar
results. Could nature (or God) be 50 mean? It is likely that the Jacebian
Conjecture is true for two variables, Tor three or more variables, there is
hardly any evidence for an affirmative answer. In the 70's, while we started
learning the computer software ‘macsyma’, A. Sathaye helped us to use it
to compute all degree 3 peolynomial maps of three variables with constant
Jacobian. The Jacobian Conjecture i true for those cases. However, the
computer printout (without any details of computations) is 100 pages long,.
Since nobody (including us) ever double check the program, we could only
say that it is very probably to be true for three variables in the cases of
degree three maps.

We'd better clarify the concept of the degrees of a paolynomial map. Let
us consider the following,

m{z)=a 2 (L)
wy)=y+2
The degree of m with respect to variables 2,7 is 2 (or the pair (i, 2)). Let
us consider a different pair of generabors u, ¥ with & = y,v = 2+ y". Then
we have
qlu)=y+3° =ut v —um)?

1.8
7(v) =o+{y+e)=(w-u")+ (vt (v — ™))" (L8

Thercfore, the degree of # with respect to the variables u, v is 2n?. If we allow
all possible pairs of variables, then we may define the degree of & polynormial
map 7 as the minimal degreec with respect to all pairs of variables in the
domain and all pairs of variables in the range. Then this degree is a property
of the map. The Jacobian Conjecture states in a different way that if the
Jacobian is a constant, then the {minimal) degree is 1.

9 A Brief History

The history of the Jacobian conjecture is well-known, over a hundred papers
has been published on it. Originally the conjecture was formulated by Keller
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[1] as a problem associated with the “Ganze Cremona -Transtormationen”
in 1939, The article [2] of Bass, Connell and Wright is indispensable reading.
Besides history, the authors presented many equivalent forms of the conjec-
ture and discussed many lines of rescarch. Personally, in the late 60’s, we
were giving a talk about other materials in a seminar at Purdute University
while Professor O. Zariski was in the andience. We use the Jacobian Con-
jecture as a proved theorem in our presentation. At once Professor Zariski
pointed out it is unknown. Shafarevich used Jacobian Conjeciure for » vari-
ables as a known fact in one of his paper of 1967, and later made a sirnilar
mistake in hig talk in 1970. We are in good company. Since the kernel of
the problem is about the Jacobian of a transformation, we decided to call 1%
the Jacobian Conjecture. It becomes the ‘official nare' of this problem,

This problem had been athacked from all angles. Several wrong proofs
were published. The victims include . Scgre [6], Grébner, W. Engel et
al [15]. B. Segre had the distinction of published three foulty proofs. One
faulty proof was reviewed by a great French Mathematician to be ‘corvect’.
The other contributions of mathematicians to our enlightenments will be
reported in the later part of this article.

The approaches used by analysts and geomcters are beyond the scope of
this report. Let us consider the essential alpebraic approaches.

3 K-theoretic Approach

Using a generalization of ‘mean value theorem’, 8. 8. 8. Wang [5] was able
to prove

Theorem 3.1. Let k be o field of characteristic # 2, end max{degm(zi)} <
9. Then w is invertible,

Proof. Tt suffices to prove that = is injective. Suppose the contrary. Al
ter translations we may assume that {0, ,0) and (a5, .an) arc sent to
(0, ,0). Let

p=aidfori=1,--,n (3.1)
Thenr we have
fi(-’l':h e axn) = f:;l(al; A :mn){v + fiz(al; e :an)tz (32)

The above equations vanish at ¢ = 0,1, and they are parabolic, thercfore
their derivatives vanish at £ = 1/2. We have
df ofi q
- = 3 2t w (3.3)
Qince the Jacobian is non-zero, then the above system of linear equations in
a; with £ = 1/2 will imply a; = 0 for all 5. A contradiction. a
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Lel us compare the above theorem with the following theorem of
D. Wright {15):

Theorem 3.2. If the Jucobian Conjeclure for m varinbles is true for all
positive integer m with the further restriction thai degw(z;) < 3, then the
Jacobian Conjecture for n variables is true for a given number n without the
resiriction on the degree of the map.

Proof. Let.
d = max{deg v (z:)} (3.4)

If d < 3, then there is nothing to be proved. Suppose that d > 3. Let the
mumber of terms of degree d in the set { fi(1,--- ,@n}} be 5. We shall make
induction on 5. Note that if s drops to zero, then d has to drep.

Let ¢ [T} be a term in one of fi{wy, -+ y2q), say ¢ = 1. Since the total
degree is at least 4, we may separale it into two terms, say ¢ [12% and [1=¥,
of degrees at least 2 cach. Let us introduce two more variables %41, Tn+2,
extend the map « as 7 (Tnt1) = Tnss +c[[ 2l and F(Fneg) = Tnpa+ [] 20
It is easy to see the Jacobian of the extended map stays the same. Let
us consider the automorphism ¢ defined as o(c1) = ¥1 —~ Tn+1Zni2 and
ol = 2 for £ > 1. Tet us consider the composition en. The we have
onl{z1) = f1 ~ (Tni1 +e[] a0 wnso + [12F). Therefore the particular term
cJ 2% disappears from on{z1), and there is a drop of s. By induction, we
conshide that o7 is bijective. It follows that 7 is bijective. We are done. [

If the Jacobian Conjecture is true for n variables, then the above the-
orem is a possible step in proving it. It is clear from the above proof that
we are trading the number of cocficients with the number of variables. Fur-
thermore, it is unlikely that the degrees can be further reduced to 2. There
seems to be an abyss between degrees 2 and 3.

By more linear transformations we may assume the degree 3 polynomials
are all ‘pure’ in the sense that the quadratic terms are missing, and linear
part yield identity map. Along this road, it was proved that we may assume
the map w = I + H where [ is the identity map and the Jacobian matrix
of H is nilpotent. These line of attack was carried on by H. Bass, 5. Con-
nell, D. Wright {2] and a group of Polish Mathematicians. There are many
interesting results, for instance, if the square of the pilpotent matrix is zero,
then the Jacobian conjecture for n variables is true (c. f. Bass 2.

4 Formal Inverse Approach

We may consider kfz1,--- 7. C Ellzi,-o2al] the formal power se-
ries ring. The Jacobian criteria of formal power series ring implies that
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K1, ,@a]] = El[y1, - »ynll (thisis another way to see y1, -~ , Yn a1€ al-
gebraically independent). Therefore z; arc formal power serics in g1, ¢y Une
The Jacobian conjecture simply states that these formal power serics are
polynomials, i.e., all but finitely many coefficients vanish. This is a beautiful
and mysterious phenomexon that finitely vanishing, i.e., in the computation
of the Jacobian, all finitely many but one equations vanish, implies the van-
ishing of infinitely many equations. To carry out this line of attack, we need
an estimate of the degree of the inverse map, and a forinula to compute the
inverse power scries map. We have the following theorem conjectured by
$.8.8.Wang, and proved by Ofer Gabber,

Theorem 4.1. Let us fiw a set of variables z1,+++ ,Tn- If 7 i3 an auiomor-

phism, then we hove degn™" < (deg Yk

The next thing we need is the formal inverse. There are two inverse
formula due to Gurjar and Abhyankar based on a formula of Goursat;
Gurjar's formula:
1 : gre
&y =
=2 T 155! (Bz1)7t - (Bzn) ™ (By1) -« ()™
(aid [[l— )y ] {of (A1)

Abhyankar’s formula:

1 a
5= Z [1r;! (B ) - (D)™

(i [ (2 — w)™) (4.2)

It becomes a complicated game played by Bass, Connell and Wright [2}.

5 Field and Ring Extensions

As we point out before that k{zp, - , ) is an algebraic extension of
kg, o+ 2tn). I k{zy, - ,Tn) i a Galois extension of k{1, ++ yYn), then
L. A. Campbell [14] and later 8. Abhyankar {13], proved that the Jacobian
Conjecture is true. Let D be the fleld degree (g, van) k(. Yn)]-
I D = 1, then certainly we have Galois extension cage, and the Jacobian
Conjecture is true. Nevertheless, let us present the following proof due to 5.
Abhyankar,

Theorem 5.1. If D = 1, then the Jacobinn Conjecture is true.

Proof. Let P be a prime ideal of A= k[y1, - ,yn) of height 1. Then P = ad
for some non-unit @. This element @ remains a non-unitin B = Klzy, - o)
So there exists a prime @ in B of height 1 with @ O ¢B. Hencc QnA>P.
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The Jacobian being non-zero constant implies that height {Q N A) = height
@ =1. Hence QN A D P and Ap C Bg. Since Ap and Bg are valuation
rings with the same quotient field, il follows that Ap = Bg O B. Hence we
have

A=n{Ap:heighiP=1} D B,A=B (5.1)

]

It is meaningful to study the relation between the two rings k{zy,- -+ , Zn]
and kfy1,--- ,¥s]. For instance, we have the following theorem,

Thearem 5.2. If Cz1,--- ,Ta] is an integral extension of Clyr,-- , m),

then the Jacobian Conjecture is frue.

Proof. The constancy of Jacobian implics that the mapping is a local home-
omorphism. Integral extension implies that under the mapping, C" is a
covering of C*. We know that C" is simply connected. Therefore the cov-
ering degree is 1. Hence the map is a bijection. O

An algebraic proof of the above theorem shows that the complex field C
can be replaced by any field.

Let us consider the two variable case. In general we may wish to bound
the ficld degrec. A result of our formal student Zhang [7} shows that the
ficld degree is bounded by ged (deg f,deg g}

6 Analysis of Singularities at oo

We shall only consider the case of two variables. Let f(,%),9(z,y) € klz,y]
such that the map « defined by n(z) = f(z,y) and n{y} = g, p} is with non-
zero constant Jacobian., Since z, f(2,y), g(r, y) are algebraically dependent,
let F{z, f,9) = 0 be the defining equation. We [3] wish to study the two
curves f = 0,g = 0 over the ficld k¥ and the curve F{z, f,g) = 0 over the
field k(z), especially the singularitics of them at infinity.

We observe that k(z) C Uik{{z~'/%)) = K. As classically known, the
ficld K is algebraically closed. We may find the roots in X, and establish
the expanding technique at co. Lel us consider the following equation

fle) =0 (6.1)
in variable y over the field K. Therefore it splits completcly. Let wy =
ord,—1 (i — y;) where y;,y; are roots of the above equation. Then the set
{vi;} gives us the configuration {11] of the roots and the geometric proper-
ties of the singularitics at co. We shall study the influence of the constant
Jacobian on this sef.
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Another way to study the configuration of roots is the following. Let 7
be an indeterminate. We shall consider the following substitution o : y =
a+ 7278 where @ € K and § € Q. Let us consider

o(f(z,9)) = [z, 0y) = fo{r)a* -+ (6.2)

where deg f,{7) gives us the number of roots y; of f{z,y) such that
ord,-1{cx — ;) > 6. Let o be one of the roots, and let § go to co. We
shall mark down deg fo(7) as it drops. This way we get a sequence of nuni-
bers {v;rn/d, : i = s5,-+-,1} along a rook «, where d; will be defined below
as intcgers. It turns out w; is an integer. Note the reversing order of the
SCQuUence.

It is not hard to sce that by letting @ go through all roots, the preceding
equation will provide us all informations about the configurations of roots.
Thus we may be able to detect Lhe influcnce of the constant Jacobian by
changing variables from z,y to «,7. That computation was carried out in
our previous work (3],

Note that F(z, f,y) defines a genus zero curve with one place at oo. We
build a machine, the tool of approzimate roots, to handle it in one of our
previous work. Mixing the cenfiguration of rosts and approximate roots, we
were able to detect the implications on the singularities at oo, First the curve
Flz, f,4) = 0 or its parametric form {f (z, 4}, g(z, y)) with 5 as constant and
y as variable produces a sequence of numbers, i.c., the characteristic data,
as follows; let

deg, , f(z,y) = deg, f(z,y) =m, deg, , gz, y) = deg, g(»,y} = n
glz,yy =", nekly™")
Fay) =0+ Y file)y €klz)((n)

jm—m
dy = deg:}:,yg{m} y) = degy Q(Tu y) =T
my = minfi : f; #0,dy t4}
dip1 = ged{n,my,- -+ ,m;}
My = min{i : fi # 0,djp {2}
(6.3)
Note that the above sequences are independent of all roots of f(z, %), ¢(z, y).
The characteristic data control the configurations of roots of f(z,y) and
g{z,y) under the assumption that the Jacobian is a constant as follows.
If for a root o, the associated sequence {v;m/d;} has the following prop-
erty for all 1,

vipidifdip1 2 05 > di/{n — ma) (6.4)
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Then the root is called a major root. Otherwise it is called a miner rool,
For a major root ¢, the value of the place such that deg f,(v) drops is given
by

L (n —my) H;=£+1['Uj.(” - my) — dj] .
d=1 (n—my; —1) H;:;‘H["j(” -1} — dj] (6:5)

Trom the above formula, we conclude that

Proposition 6.1. Ifms #n—2, then the Jacobian Conjecture is true. If
ms = n—2, then there are two points af oo, Moreover, if s = 2, i.e., there are
two characteristic pairs, then 83 has loo large a denominator to be possible
(consider cunjugations of the field Kj.

The above proposition was discovered independently by 8. 8. Abhyankar.
The important phenomena are the existence ol major roots, the values of
possible &;, and the non-splithing of the minor roots until ord f = ord g == 0.
We used the above analysis in a computer prograin for assigned values of
the characteristic pairs to check if the denominators are too large along a
major root. It enables us to verify all maps with degrees up to 160.

Heitmann studies dz/ %&[’ on the family of curves f + A to deduce similar
results later,

Recently Hai-chau Chang and Lih-chung Wang obtain similar results
using group actions.

7 Resultant

Let us assume that

deg, , f(z,y) = deg, flm,y} =m,  degsy glz,y) = degy glz,y) =n
(7.1)

Note that the above can be achieved by a general lincar transformation. Let
us consider the resultant of f(z,y) +p,9(z, y) 4+ q with respect to y. Then
we get a polynomial

$(p, ¢, 2) = Resultant{f +p, 9 + ¢, y) = d{p, g)z’ + - + lower lerms in x
(7.2)

If ¢(p,q) i8 2 non-zero constant, then z is integral over k[f,g}. Since y
is integral over klz, f, then k[z,y] is integral over k[f,g]. if ¢ = 1, then
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z € k{f,g). Both cases are simple and have been discussed hefore. Let us
use the materials of our analysis of singularities at oo. Then we have

fay = I w-uw) [] v —w)

major miror (7 3)
g@y) = I] w—w) [] —w)
mdjoi’ minor

Note that all major roots split before ord(f) and ord{g) reach 0, and all
ninor roots will not split completely before ord{f) and ord(g) reach 0. Due
to the arbitrary numbers p, ¢, we have

t = —ord.—(®(p,q,2)) = — ordy-1 (Resultant(f +p, g + g, ¥))
= Drdx—l( H {'U,J -_ U;‘)) (?‘4)

major

and let o(y) = a+ 72% be a typical minor root such that ord o(f(z,y)) =0,
then we have

¢(p.a) = ][ Resultant(f(z,0) +p,g(z,0) + q,7 (7.5)

minor

Therefore the most important informations about the resultant are provided
by our analysis of singularitios at oo.

8 Pencil of Curves

We may study the pencil of curves f(z,y) + A. If the Jacobian Conjecture
ig true, then f(z,y} serves as a variable. We shall expect thai Jlz,y)+Xis
indistinguishable from x4- A, For instance, f(z, %) + A should be irreducible
for all A. But this is unknown.

Since last year, we had constantly discussed the Jacobian problem with
A. Sathaye. The following is the base of our discussions. Let us assume that

degyy f2,y) =degy fla,y) =m,  deg,, g(z,y} = deg, g(z,3) =n
(8.1)

We shall study the pencil f + ag + b over the field % and pay attention to
the pencil af co. The essential tool is the ‘Zeuthen-Segre-Jung’ formulas.
We shall use the *Zeuthen-Segre-Junyg’ formula as follows. [n general, we
have
{1)Let f, g be arbitrary polynomials, First, Consider the projective plane
P?. Tor any projective curve £, we consider the following:
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(A) P shall denotc the reduced part of /. Al any point P, we define:
J(F, Py = J(F', P} = (F,, I}, I’) (8.2)

Here, the last notation describes the local intersection multiplicity of
partial derivatives with respect to local parameters u, v at the point P. Since
F' has no multiple factors, the intersection multiplicity is a finite nonnegative
integer.

(B} J(F} shall denote the sum of J{F, P} over all points of .

{C) We define:

r(F) = r{F') = 2p,{F") — J(F) (8.3)

here P, stands for the arithmetic genus.
An easy reformulation for irreducible I gives that

() = 2p,(F) + Y _(v(F,P) —1) (8.4)

Here v(¥", P) denotes the number of branches to ' at P.
(D) Consider 2 noncomposite pencil Fy = F -+ AG. The Zeuthen-Segre-
Jung formula states that:

r(F)+o(GY+ T =) r(H) —r(F) (8.5)

A2

Here H stands for a generic member of the pencil and T' is one less than
the number of base points. Note that the points are determined over the
whole projective plane and we only count their number withouf any attached
multiplicities.

(2) We apply the above ‘Zeuthen-Segre-Jung’ formula to a pair of poly-
nomials satisfying the Jacobian Condition. Let

®(p,q,7) = Resultant(f +p,¢ +4Y) = ¢(p, qizt + - - - + lower terms in X
' (8.6)

Then ¢{p,q) is completely determined by the numerical minor roots in our
previous work. This is one of the connections between our old approach
and the new one jointly with A. Sathaye. There are many consequences of
‘Zeuthen-Segre-JTung' formula in this particular case. For instance, we have

T =Y dfl+ > e — vip) (8.7)
i B

where ¢(p,q) = [1; ¢i(p, @)%, and where v; oo s the number of branches of
C; at infinity and p;0 is the multiplicity of the corresponding point.

All mumbers above can be computed given the the analysis of singularities
at oo in [3]. Some new restrictions are discovered by using “Zeuthen-Segre-
Jung’ formula.
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