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We derive numerical estimates controlling the intertwined properties of the 
normalization of an ideal and of the computational complexity of general processes 
for its construction. In [18], this goal was carried out for equimultiple ideals via the 
examination of Hilbert functions. Here we add to this picture, in an important case, 
how certain Hilbert functions provide a description of the locations of the generators 
of the normalization of ideals of dimension zero. We also present a rare instance of 
normalization of a class of homogeneous ideals by a single colon operation.
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1. Introduction

Let R be a Noetherian ring and let I be an ideal. The normalization of I is the integral closure A in R[t]
of the Rees algebra A = R[It] of I. The properties of A add significantly to an understanding of I and of 
the constructions it supports. The index terminology refers to the integers related to the construction of

A =
∑
n≥0

Intn = R[It, . . . , Is0ts0 ].

In addition to the overall task of describing the generators and relations of A, we wish to understand the 
following quantities:
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(i) Numerical indices for module generation: find s such that

(A)n+s = (A)n · (A)s for all n ≥ 0.

(ii) Complexity of algorithms: estimate the number of steps that effective processes must traverse between 
A and A,

A = A0 ⊂ A1 ⊂ · · · ⊂ Ar−1 ⊂ Ar = A.

(iii) Generators of A: number and distribution of their degrees in cases of interest.

The main goal becomes the estimation of these indices in terms of invariants of I. This paper is a sequel 
to [18], where some of the notions developed here originated. The focus in [18] was on deriving bounds 
on the coefficient e1(A) of the Hilbert polynomial associated to ideals of finite co-length in local rings, 
and its utilization in the estimation of the length of general normalization algorithms. Here we introduce 
complementary notions and use them to address some of the same goals for more general ideals, but also 
show how known initial knowledge about the normalization allows us to give fairly detailed descriptions 
of A, particularly those affecting the distribution of its generators.

We now outline the organization of the paper. Section 2 gives the precise definitions of the indices 
mentioned above and describes some relationships amongst them (Proposition 2.3 and Theorem 2.4). These 
indices acquire a sharp relief when the normalization 

∑
n≥0 Intn is Cohen–Macaulay (Theorem 2.5). This 

result, whose proof follows ipsis literis the characterization of Cohen–Macaulayness for the Rees algebras 
of I-adic filtrations ([1], [15], [21]), has various consequences. It is partly used to motivate the treatment in 
Section 3 of the Sally module of the normalization algebra as a vehicle to study the number of generators 
and their degrees. In case the associated graded ring of the integral closure filtration F of a zero-dimensional 
ideal I, grF (R), is Cohen–Macaulay or has depth at least dim R − 1, there are several positivity relations 
on the Hilbert coefficients, leading to descriptions of the distribution of the new generators (usually fewer 
as the degrees go up), and overall bounds for their numbers (Corollary 3.3 and Theorem 3.7).

In Section 4, we present one of the rare instances where the normalization of the Rees ring is computed 
using an explicit expression as a colon. Our formula applies to homogeneous ideals that are generated by 
forms of the same degree and satisfy some additional assumptions (Theorem 4.1).

2. Normalization of ideals

This section introduces auxiliary constructions and devices to examine the integral closure of ideals, and 
to study applications to normal ideals.

2.1. Indices of normalization

We begin by introducing some measures for the normalization of ideals. Suppose R is a Noetherian ring, 
F = {In, n ≥ 0} is a weakly decreasing multiplicative filtration of ideals with I0 = R, and J is an ideal 
contained in I1. One says that J is a reduction of F if there exists an integer r ≥ 0 so that In+1 = JIn for 
all n ≥ r. The least such r is the reduction number of F with respect to J ; it is denoted rJ(F). Whenever 
{In, n ≥ 0} is an ideal adic filtration, we talk about a reduction J of the ideal I and its reduction number 
rJ(I) with respect to J . We will often deal with the integral closure filtration {In, n ≥ 0} of an ideal I; if 
this filtration is the I-adic filtration, we say that I is a normal ideal.

If I is an ideal of a Noetherian local ring R with infinite residue field k, then I has a minimal reduction. 
The minimal number of generators of any minimal reduction of I is the Krull dimension of the ring k⊗RR[It]; 



C. Polini et al. / Journal of Pure and Applied Algebra 223 (2019) 3681–3694 3683
this dimension is called the analytic spread of I and denoted by �(I). For a proper ideal the analytic spread 
satisfies the inequality ht I ≤ �(I) ≤ min{dim R, μ(I)}.

Recall that if R is an analytically unramified Noetherian local ring then A =
∑

n≥0 Intn is finitely 
generated as a module over A = R[It], according to [19, Theorem 1.4]. Hence the following indices are well 
defined integers.

Definition 2.1. Let (R, m) be an analytically unramified Noetherian local ring and let I be an ideal.

(i) The normalization index of I is the smallest non-negative integer s = s(I) such that

In+1 = I · In for all n ≥ s.

(ii) The generation index of I is the smallest non-negative integer s0 = s0(I) such that

∑
n≥0

Intn = R[It, . . . , Is0ts0 ].

For example, if R = k[x1, . . . , xd] is a polynomial ring in d ≥ 1 variables over a field and I = (xd
1, . . . , xd

d), 
then I = (x1, . . . , xd)d, which is a normal ideal. It follows that s0(I) = 1, while s(I) = rI(I) = d − 1.

These indices have an expression in terms of the special fiber ring F of the normalization map A −→ A.

Proposition 2.2. With the above assumptions let

F = A/(m, It)A =
∑
n≥0

Fn.

We have

s(I) = sup{m | Fm �= 0},

s0(I) = inf{m | F = F0[F1, . . . , Fm]} if A �= A .

Furthermore, if the index of nilpotency of Fn is rn, then

s(I) ≤
(

� s0(I)
2 	 + 1

2

)
+

s0(I)∑
n=� s0(I)

2 �+1

n(rn − 1) .

Proof. The equalities for s(I) and s0(I) are a consequence of the Nakayama Lemma.
To prove the final inequality we use the equality for s(I). We write m = s0(I) so that F = F0[F1, . . . , Fm]. 

Let z = z1 · · · zm be a non-zero element of F , where each zn is a product of an ≥ 0 factors from Fn. First 
let n ≤ � m

2 	. In this case 2n ≤ m, and if an ≥ 2 we may replace 2 factors from Fn in zn by 1 factor from 
F2n in z2n, without changing z. Repeating this procedure, we achieve that an ≤ 1 for 1 ≤ n ≤ � m

2 	. Next 
assume that �m

2 	 + 1 ≤ n ≤ m. In this range an ≤ rn − 1, since otherwise zn = 0 and then z = 0. Therefore

deg z =
m∑

n=1
nan ≤

� m
2 �∑

n=1
n +

m∑
n=� m

2 �+1

n(rn − 1) =
(

� m
2 	 + 1

2

)
+

m∑
n=� m

2 �+1

n(rn − 1) ,

as required. �
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It is not clear, even when R is a regular ring, which invariants of R and of I have a bearing on the 
determination of s(I). An affirmative case is that of a monomial ideal I of a polynomial ring over a field in 
d ≥ 1 variables – when s ≤ d − 1 (according to Corollary 2.6).

2.2. Zero-dimensional ideals

For zero-dimensional ideals there are relations between the two indices of normalization.

Proposition 2.3. Let (R, m) be an analytically unramified Cohen–Macaulay local ring of dimension d ≥ 1 and 
assume that m is a normal ideal. Let I be an m-primary ideal with multiplicity e(I) and write m = s0(I). 
Then

s(I) ≤ e(I) d

d + 1

(
(m + 1)d+1 − (�m

2 	 + 1)d+1
)

+ 2d

(
� m

2 	 + 1
2

)
− (2d − 1)

(
m + 1

2

)
.

Proof. Without loss of generality, we may assume that the residue field of R is infinite. Following Proposi-
tion 2.2, we estimate s(I) in terms of the indices of nilpotency of the components Fn, for n ≤ s0(I).

Let J = (z1, . . . , zd) be a minimal reduction of I. For each component In = In of A, we collect the 
following data:

Jn = (zn
1 , . . . , zn

d ), a minimal reduction of In

e(In) = e(I) nd, the multiplicity of In

rJn
(In) ≤ e(In)

n
d − 2d + 1, a bound on the reduction number of In .

The last inequality follows from [27, Theorem 2.45 and Remark 2.46], once it is observed that In ⊂ mn = mn, 
by the normality of m.

We are now ready to estimate the index of nilpotency rn of the component Fn. With the notation above, 
we have In

r+1 = JnIr
n for r = rJn

(In), hence In
r+1 ⊂ I · Irn+n−1. When this containment is read in F , it 

means that rn ≤ rJn
(In) + 1.

From Proposition 2.2 and the last inequality for the index of nilpotency we obtain

s(I) ≤
(

� m
2 	 + 1

2

)
+

m∑
n=� m

2 �+1

n · rJn
(In)

=
(

�m
2 	 + 1

2

)
+

m∑
n=� m

2 �+1

n ·
(

e(I) nd d

n
− 2d + 1

)

= e(I) d

m∑
n=� m

2 �+1

nd + 2d

(
� m

2 	 + 1
2

)
− (2d − 1)

(
m + 1

2

)
.

Finally, approximating the sum with an elementary integral we get the assertion. �
We can do considerably better when I is a homogeneous ideal in a polynomial ring over a field of 

characteristic zero.

Theorem 2.4. Let R = k[x1, . . . , xd] be a polynomial ring over a field of characteristic zero and let I be a 
homogeneous ideal that is (x1, . . . , xd)-primary. One has
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s(I) ≤ (e(I) − 1)
(

s0(I) + 1
2

)
− (e(I) − 2)

(
� s0(I)

2 	 + 1
2

)
.

Proof. We begin by localizing R at the maximal homogeneous ideal. We are going to prove that the indices 
of nilpotency of the components Fn as in Proposition 2.2 are bounded above by e(I). An application of the 
proposition and delocalizing back to the original homogeneous ideals then implies the assertion.

Let J be a minimal reduction of I. We denote the associated graded ring of the filtration of integral 
closures {In = In} by G,

G =
∑
n≥0

In/In+1.

This ring has dimension d, it is integral over G0[z1, . . . , zd], where the zi’s are the images in G1 of a minimal 
generating set of J , and G0 is a finite dimensional vector space over k. It follows that C = k[z1, . . . , zd] is a 
homogeneous Noether normalization of G.

There are two basic facts about the ring G. First, its rank as a C-module is the same as its multiplicity as 
a graded C-module, which is equal to e(I). Second, since the Rees algebra of the integral closure filtration 
is a normal domain, so is the extended Rees algebra

D =
∑
n∈Z

Intn,

where we set In = R for n ≤ 0. Consequently the algebra G = D/(t−1) satisfies Serre’s condition S1. Since 
this algebra is also equidimensional, it follows that it is torsionfree as a C-module.

We now apply the theory of Cayley–Hamilton equations to the elements of the components of G (see [26, 
Chapter 9]): Write r = e(I). Recall that r = rankC G and that G is a torsionfree C-module. Thus by [26, 
Proposition 9.3.4], every u ∈ Gn satisfies an equation of integrality over C of degree at most r,

ur + a1ur−1 + · · · + ar = 0 ,

with ai ∈ Cni. Since k has characteristic zero, using the argument of [26, Proposition 9.3.5], we then obtain 
an equality

Gr
n = CnGr−1

n .

At the level of the filtration, this equality means that

Ir
n ⊂ JnIr−1

n + Irn+1 .

As k has characteristic zero and I is the localization of a homogeneous ideal, we have It ⊂ (x1, . . . , xd) It−1

by [27, Corollary 7.15]. It follows that

Ir
n ⊂ I · Irn−1 + (x1, . . . , xd) Irn for every n ≥ 1.

Finally, in F , this equation shows that the indices of nilpotency of the components Fn are bounded by 
r = e(I), as desired. �
2.3. Cohen–Macaulay normalization

Not surprisingly, normalization indices are easier to obtain when the normalization of the ideal is Cohen–
Macaulay. The following is directly derived from the known characterizations of Cohen–Macaulayness of 
Rees algebras of ideals in terms of associated graded rings and reduction numbers ([1], [15], [21]).
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Theorem 2.5. Let R be a Cohen–Macaulay local ring and let {In, n ≥ 0} be a weakly decreasing multiplicative 
filtration of ideals, with I0 = R, I1 = I, and the property that the corresponding Rees algebra B =

∑
n≥0 Intn

is finitely generated as a module over R[It]. Assume that ht I ≥ 1, write � = �(I), and let J be a reduction 
of I.

If B is a Cohen–Macaulay ring, then

reg B ≤ � − 1 .

In particular, the R[Jt]-module B is generated by forms of degrees at most � − 1,

In+1 = JIn = IIn for n ≥ � − 1,

and

B = R[I1t, . . . , I�−1t�−1]

unless � = 1, in which case B = R[It] = R[Jt].

By reg B we denote the Castelnuovo–Mumford regularity of B as a finitely generated graded module over 
the standard graded Noetherian R-algebra R[It] or, equivalently, over R[Jt]. Notice that the above bound 
for reg B also shows that the ideal defining the R-algebra B can be generated by forms of degrees at most �.

If R is analytically unramified, then the assumption that B is finitely generated as an R[It]-module 
simply means that the filtration {In, n ≥ 0} is a subfiltration of the integral closure filtration of the powers 
of I, In ⊂ In.

The proof of Theorem 2.5 relies on substituting in any of the proofs mentioned above ([1, Theorem 5.1], 
[15, Theorem 2.3], [21, Corollary 3.6]) the I-adic filtration {In} by the filtration {In}. We provide an outline 
here.

Proof of Theorem 2.5. We may assume that the residue field of R is infinite, that I �= R, and that J

is a minimal reduction of I, which is necessarily generated by � elements. Let G =
∑

n≥0 In/In+1 be the 
associated graded ring of the filtration {In, n ≥ 0}. One has dim B = d +1 and dim G = d, where d = dim R. 
From the Cohen–Macaulayness of B and the exact sequences (originally paired in [12]),

0 → B+ −→ B −→ R → 0
0 → B+(1) −→ B −→ G → 0 ,

one sees, as in the proof of [22, Theorem 1.1], that the local cohomology modules of G with support in 
the maximal homogeneous ideal of G are concentrated in negative degrees. The same is true if one replaces 
R by Rp for any p ∈ Spec(R). Thus by [15, Proposition 2.1(i)], also the local cohomology modules of G
with support in the irrelevant ideal G+ are concentrated in negative degrees. Since G is a finitely generated 
graded module over R[Jt] and J is generated by � elements, one has Hi

G+
(G) = 0 for i > �. It follows that 

reg G ≤ � − 1. Finally, reg G = reg B, as can be seen as in the proof of [14, Proposition 4.1]. �
Corollary 2.6. Let (R, m) be an analytically unramified Cohen–Macaulay local ring and let I be an ideal 
of height ≥ 1. If R[It] is Cohen–Macaulay, then both indices of normalization s(I) and s0(I) are at most 
�(I) − 1 (unless �(I) = 1, in which case s0(I) = 1). In particular, if In is integrally closed for n < �(I), 
then I is normal.

A case this applies to is that of monomial ideals in a polynomial ring over a field, since then R[It] is 
Cohen–Macaulay by Hochster’s theorem ([10, Theorem 1]) (see also [20]).
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Example 2.7. Let I = I(C) = (x1x2x5, x1x3x4, x2x3x6, x4x5x6) be the edge ideal associated to the clutter

Consider the incidence matrix M of this clutter, i.e., the matrix whose columns are the exponent vectors 
of the monomials of I. Since the polyhedron Q(M) = {x | xM ≥ 1; x ≥ 0} is integral, we have the equality 
R[It] = Rs(I), where Rs(I) denotes the symbolic Rees algebra of I ([7, Proposition 3.13]; see also [12, 
Theorem 2.1]). The ideal I is not normal because the monomial m := x1x2x3x4x5x6 is in I2 \ I2.

The minimal primes of I are:

p1 = (x1, x6), p2 = (x2, x4), p3 = (x3, x5),
p4 = (x1, x2, x5), p5 = (x1, x3, x4), p6 = (x2, x3, x6), p7 = (x4, x5, x6).

For any n,

I(n) =
7⋂

i=1
pn

i .

A computation with Macaulay 2 ([8]) gives that I2 = (I2, m) and I3 = II2. Since �(I) ≤ μ(I) = 4, 
Theorem 2.5 shows that In+1 = IIn for n ≥ 3. As a consequence,

Rs(I) = R[It] = R[It, mt2].

Question 2.8. Given the usefulness of Theorem 2.5, it would be worthwhile to look at the situation short 
of Cohen–Macaulayness. For the integral closure of a standard graded affine algebra A satisfying Serre’s 
condition R1, it was possible in [24, Theorem 6.5] to derive a bound for the generation degree of the 
A-module A assuming only that depth A ≥ dim A − 1.

3. Sally modules and normalization of ideals

In this section, we apply the notion of Sally module to obtain, among other things, upper bounds for the 
normalization index of an ideal I and for the number of generators of the integral closure R[It].

Let (R, m) be a Noetherian local ring of dimension d ≥ 1 and I an m-primary ideal. Let F = {In, n ≥ 0}
be a weakly decreasing multiplicative filtration of ideals, with I0 = R, I1 = I. We will examine in detail the 
case when the corresponding Rees algebra

B = R(F) =
∑
n≥0

Intn

is finitely generated as a module over R[It].
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There are several algebraic structures attached to F , among which we single out the associated graded 
ring of F and its Sally modules. The first is

grF (R) =
∑
n≥0

In/In+1,

whose properties are closely linked to R(F). It is a finitely generated graded module over the standard 
graded algebra grI(R).

To define the Sally module, we choose a minimal reduction J of I (if need be, we may assume that the 
residue field of R is infinite). Note that B is a module finite extension of the Rees algebra A = R[Jt] of 
the ideal J . The corresponding Sally module S is defined by the exact sequence of finitely generated graded 
A-modules,

0 → IA −→ B+(1) −→ S =
∞⊕

n=1
In+1/JnI → 0 . (1)

The Sally module S is annihilated by mt for some t ≥ 1, hence it is a finitely generated graded module 
over A/mtA. It follows that dim S ≤ d, with equality if S �= 0 and R is Cohen–Macaulay. The Artinian 
A-module

S/JtS =
⊕
n≥1

In+1/JIn

gives some control over the number of generators of B as an A-module via the exact sequence (1). Indeed, 
the length of S/JtS bounds the number of generators of S as an A-module. If R and S are Cohen–Macaulay, 
this number is also the multiplicity of the Sally module.

The cohomological properties of B, grF (R), and S become more entwined when R is Cohen–Macaulay. 
Indeed, under this condition, the exact sequence (1) and the exact sequences from the proof of Theorem 2.5,

0 → B+(1) −→ B −→ grF (R) → 0 (2)

0 → B+ −→ B −→ R → 0 , (3)

together with the (inhomogeneous) isomorphism

B+(1) ∼= B+ ,

give a fluid mechanism to pass cohomological information around.

Proposition 3.1. Let R be a Cohen–Macaulay local ring of dimension d ≥ 1 and F a filtration as above. 
Then

(a) depth B ≤ depth grF (R) + 1, with equality if grF (R) is not Cohen–Macaulay.
(b) depth B ≥ d if grF (R) is Cohen–Macaulay.
(c) depth S = depth grF (R) + 1 if grF (R) is not Cohen–Macaulay.
(d) S is Cohen–Macaulay if grF (R) is Cohen–Macaulay.

Proof. For (a), see the proofs of [11, Lemma 3.3 and Theorem 3.10]. Part (b) follows from the proof of 
[11, Proposition 3.6]. To prove (c) one uses (a), the exact sequences (2) and (1), and the fact that IA is a 
maximal Cohen–Macaulay A-module. Part (d) follows from (b) and the exact sequences (3) and (1). �
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3.1. Hilbert functions

Again, we assume that R is a Cohen–Macaulay local ring of dimension d ≥ 1. Another connection between 
F and S is realized via their Hilbert functions. Set

HF (n) = λ(R/In) and HS(n − 1) = λ(In/IJn−1) .

The associated Poincaré-series

PF (t) = f(t)
(1 − t)d+1 and

PS(t) = g(t)
(1 − t)d

are related by

PF (t) = λ(R/J) · t

(1 − t)d+1 + λ(R/I)(1 − t)
(1 − t)d+1 − PS(t)

= λ(R/I) + λ(I/J) · t

(1 − t)d+1 − PS(t).

This fact follows as in [25, Proposition 3.1] (see also [29, Proposition 1.3.3]), replacing the I-adic filtration 
by the filtration F . It implies immediately:

Proposition 3.2. The h-polynomials f(t) and g(t) are related by

f(t) = λ(R/I) + λ(I/J) · t − (1 − t) g(t). (4)

In particular, if f(t) =
∑

i≥0 ait
i and g(t) =

∑
i≥1 bit

i, then for i ≥ 2

ai = bi−1 − bi.

Corollary 3.3. If grF (R) is Cohen–Macaulay, then the h-vector of S is non-negative and weakly decreasing,

bi ≥ 0, b1 ≥ b2 ≥ · · · ≥ 0.

Moreover, bk = 0 for some k ≥ 1 if and only if B is generated as an A-module by homogeneous elements of 
degree at most k.

Proof. That bi ≥ 0 follows because S is Cohen–Macaulay by Proposition 3.1(d). For the same reason ai ≥ 0. 
Now the difference relation in Proposition 3.2 shows that bi−1 ≥ bi.

For the other assertion, since S is Cohen–Macaulay, bi = λ(Ii+1/JIi). The proof of this fact is a mod-
ification of [28, Theorem 1.1(iii)], using the filtration F instead of the I-adic filtration. Since the bi’s are 
weakly decreasing, it now follows that bk vanishes if and only if Ii = J i−kIk for i ≥ k. �
Remark 3.4. The equality (4) has several useful consequences, of which we remark the following. For k ≥ 2, 
one has

f (k)(1) = k g(k−1)(1),
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that is, the Hilbert coefficients of grF (R) and S satisfy

ei+1(F) = ei(S) for i ≥ 1.

Observe that when depth grF (R) ≥ d −1, S is Cohen–Macaulay by Proposition 3.1(c), (d), so its h-vector 
is non-negative, and therefore all its Hilbert coefficients along with it. As e0(F) and e1(F) are always 
non-negative, it follows that all ei(F) are non-negative. This recovers [17, Corollary 2].

Corollary 3.5. If grF (R) is Cohen–Macaulay and g(t) is a polynomial of degree at most 4, then

e2(F) ≥ e3(F) ≥ e4(F) ≥ e5(F).

Proof. By our assumption

g(t) = b1t + b2t2 + b3t3 + b4t4.

As

ei+1(F) = ei(S) = g(i)(1)
i! for i ≥ 1,

we have the following equations:

e2(F) = b1 + 2b2 + 3b3 + 4b4

e3(F) = b2 + 3b3 + 6b4

e4(F) = b3 + 4b4

e5(F) = b4 .

Now the assertion follows because b1 ≥ b2 ≥ b3 ≥ b4 ≥ 0 according to Corollary 3.3. �
This considerably lowers the possible number of distinct Hilbert polynomials for such algebras.

Remark 3.6. The assumptions of Corollary 3.5 are satisfied for instance if dim R ≤ 6 and B is Cohen–
Macaulay, as can be seen from Proposition 3.1(a), Theorem 2.5, and Corollary 3.3.

3.2. Number of generators

Another application of Sally modules is to obtain a bound for the number of generators (and the distri-
bution of their degrees) of B as an A-algebra or as an A-module.

Theorem 3.7. Let R be a Cohen–Macaulay local ring of dimension d ≥ 1 and F a filtration as above.

(a) If depth grF (R) ≥ d − 1, the A-module B/A can be generated by e1(F) elements; in particular, the 
A-algebra B can be generated by the same number of elements.

(b) If depth grF (R) = d, the A-module B can be generated by e0(F) elements; in particular, the A-algebra 
B can be generated by e0(F) − 1 elements.

(c) If B is Cohen–Macaulay, the A-module B/A can be generated by

μ(I/J) + max{0, d − 2} λ(I2/JI)

elements; in particular, the A-algebra B can be generated by the same number of elements.



C. Polini et al. / Journal of Pure and Applied Algebra 223 (2019) 3681–3694 3691
Proof. (a) From the relation (4), we have

e1(F) = f ′(1) = λ(I/J) + g(1).

The sequence (1) defining S shows that

μA(B/A) ≤ μR(I/J) + μA(S) ≤ λ(I/J) + μA(S).

By Proposition 3.1(c), (d), S is a Cohen–Macaulay module over the standard graded ring A/mtA for some 
t ≥ 1. We factor out a system of parameters of this module consisting of linear forms to see that

μA(S) ≤ e0(S) = g(1).

These facts combined imply the assertion.
(b) Since grF (R) is a Cohen–Macaulay module over A/msA for some s ≥ 1, it is generated by e := e0(F)

homogeneous elements. Let x1, . . . , xe be homogeneous lifts of these elements to B. For every i and every 
j ≥ 1 one has

Bi ⊂ Ax1 + . . . + Axe + Bi+j .

Since B is finitely generated as an A-module, there exists j so that Bi+j = JBi+j−1 ⊂ JBi. Now Nakayama’s 
Lemma shows that

Bi ⊂ Ax1 + . . . + Axe for every i.

(c) Since B is Cohen–Macaulay, the reduction number of F with respect to J is at most d − 1 by 
Theorem 2.5. Recall that grF (R) is Cohen–Macaulay by Proposition 3.1(a). Thus the h-polynomial of 
grF (R) has degree ≤ d − 1, and consequently the h-polynomial of the Sally module has degree at most 
d − 2 by Proposition 3.2. The Sally module S is Cohen–Macaulay by Proposition 3.1(d), and its h-vector 
(b1, b2, . . .) is weakly decreasing with b1 = λ(I2/JI) by Corollary 3.3 and its proof. It follows that its 
multiplicity satisfies e0(S) ≤ max{0, d − 2} λ(I2/JI), and we conclude as in the proof of (a). �
Remark 3.8. A typical application is to the case d = 2 with F = {In, n ≥ 0}.

Remark 3.9. An issue is to get bounds for e1(F). This is addressed in [18]. For instance, when R is a regular 

local ring, e1(F) ≤ (d − 1)e0

2 by [18, Corollary 3.4].

4. One-step normalization of Rees algebras

In this section we present one of the rare instances where the normalization of the Rees ring can be 
computed in a single step using an explicit expression as a colon. Our formula applies to homogeneous 
ideals that are generated by forms of the same degree and satisfy some additional assumptions.

Let I be an ideal of a Noetherian ring R. The Gd assumption in the next theorem means that the minimal 
number of generators μ(Ip) is at most dim Rp for every prime ideal p containing I with dim Rp ≤ d − 1. In 
the proof of the theorem we use the theory of residual intersections. Let s ≥ 0 be an integer (for convenience, 
we drop the usual requirement that s ≥ ht I); the ideal a : I is an s-residual intersection of I if a is an 
s-generated R-ideal properly contained in I and ht a : I ≥ s.

An ideal is said to be of linear type if the natural epimorphism from the symmetric algebra onto the 
Rees algebra is an isomorphism. We will frequently use the fact that an ideal of linear type has no proper 
reductions.
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Theorem 4.1. Let k be an infinite field, R = k[x1, . . . , xd] a positively graded polynomial ring in d ≥ 1
variables, and I an ideal of height g generated by forms of degree δ ≥ 1. Assume I satisfies Gd, depth R/Ij ≥
dim R/I −j+1 for 1 ≤ j ≤ d −g, and I is normal locally on the punctured spectrum. Let J be a homogeneous 
minimal reduction of I and write σ =

∑d
i=1 deg xi. Then

R[It] = R[Jt] :R[t] R≥gδ−δ−σ+1 ;

in particular, I = J :R R≥gδ−δ−σ+1. Furthermore, I is a normal ideal of linear type if and only if δ ≤ σ−1
g−1

(:= ∞ if g = 1) or μ(I) ≤ d − 1.

Proof. We may assume g ≥ 1 and d ≥ 2. By � we denote the analytic spread �(I) = �(J). As before we 
write A = R[Jt]. Notice that R[It] = A.

Locally on the punctured spectrum of R, the ideal I is of linear type by [23, Theorem 2.9(a) and 
Proposition 1.11], hence I and J coincide locally, and so J is locally normal. The ideal J is of linear type and 
A is Cohen–Macaulay by [23, Theorem 2.9(a), Remark 1.12, and Proposition 1.11] and [9, Theorem 6.1]. 
Write m for the maximal homogeneous ideal of R. Since J is of linear type, mA is a prime ideal in A, 
necessarily of height d + 1 − �, and every other prime ideal of smaller or equal height contracts to a prime 
ideal of R properly contained in m. We write b = R≥gδ−δ−σ+1.

First assume that � < d. Since A is Cohen–Macaulay, since J is normal locally on the punctured spectrum 
of R, and since htmA = d + 1 − � ≥ 2, it follows that A = A. On the other hand A :R[t] b = A, because 
ht bA ≥ htmA ≥ 2 and A is Cohen–Macaulay. Therefore A = A :R[t] b in this case. Also notice that I = J

is a normal ideal of linear type and μ(I) = � ≤ d − 1. Thus we may from now on assume that � = d, or 
equivalently, htmA = 1.

We prove the displayed equality A = A :R[t] b. Notice that A :R[t] b = A :Quot(R[t]) b, as ht b ≥ d ≥ 2 and 
R is Cohen–Macaulay. Since the two A-modules A and A :Quot(R[t]) b satisfy S2 and since locally on the 
punctured spectrum of R, J is normal, it suffices to prove the equality

AmA = (A :Quot(R[t]) b)mA .

Let f1, . . . , fd be a generating set of J consisting of forms of degree δ and let ϕ be a minimal homogeneous 
presentation matrix of f1, . . . , fd. Notice that the entries along any column of ϕ are forms of the same 
degree. As J is of linear type, one has A ∼= R[T1, . . . , Td]/I1(T · ϕ). Let K = k(T1, . . . , Td) and B =
K[x1, . . . , xd]/I1(T · ϕ). Notice that

BmB
∼= AmA .

Since B is a positively graded K-algebra with maximal homogeneous ideal mB, we conclude that B is a 
domain of dimension one because AmA is.

The elements T1, . . . , Td are non-zero in K; hence in the ring R′ = K[x1, . . . , xd], the ideal I1(T · ϕ) can 
be written as a : J , where a is generated by d − 1 forms in JR′ of degree δ. Since this ideal has height d − 1, 
it is a (d − 1)-residual intersection of JR′. On the other hand,

(a : J)(JR′ : I) ⊂ a : I ⊂ a : J ,

where ht JR′ : I ≥ d. Hence a : I is also a (d − 1)-residual intersection of IR′. Thus this ideal is unmixed of 
height d −1 by [23, Theorem 2.9(a) and Proposition 1.7(a)], and applying the above containments once more, 
we deduce that a : I = a : J . From this we conclude that I1(T · ϕ) is a (d − 1)-residual intersection of IR′. 
Now [23, Theorem 2.9(b)] and [16, the proof of Proposition 2.1] imply ωB

∼=
(
Id−gR′/Id−g−1a

)
((d −1)δ−σ)

(where In = R if n ≤ 0). Thus the a-invariant of B satisfies
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a(B) = (g − 1)δ − σ .

We are now going to apply this information to compute the conductor of B.
Since B is a positively graded K-domain, it follows that B is a positively graded L-domain for some finite 

field extension L of K. As dim B = 1, B is a principal ideal domain, hence B = L[t] for some homogeneous 
element t of degree α > 0. Since the conductor of B is a homogeneous B-ideal, it is of the form B :B B = B≥ε

for some ε, where ε = max {i | [B/B]i �= 0} + 1.
The sequence

0 → B −→ B −→ B/B → 0

yields an exact sequence

0 → B/B −→ H1
mB(B) −→ H1

mB(B) → 0 .

If B/B �= 0, then a(B) ≥ 0 since B/B is concentrated in non-negative degrees. On the other hand a(B) =
−α < 0. Thus ε = a(B) + 1 = gδ − δ − σ + 1, and we obtain B :B B = B≥gδ−δ−σ+1. If on the other hand 
B/B = 0, then a(B) = a(B), hence gδ − δ − σ = −α < 0. Thus B≥gδ−δ−σ+1 = B = B :B B. Therefore in 
either case B :B B = B≥gδ−δ−σ+1 = bB, or equivalently,

B = B :Quot(B) b .

Localizing at mB and using the equalities BmB = BmB = AmA = AmA, we conclude that

AmA = (A :Quot(R[t]) b)mA ,

as required.
As to the additional assertion of the theorem, recall that μ(I) ≥ � = d by our standing assumption. By 

the equality A = A :R[t] b and since J is of linear type, the ideal I is normal and of linear type if and only if 
A = A :R[t] b. This equality obviously holds if δ ≤ σ−1

g−1 , since then b = R. Conversely, assume that δ > σ−1
g−1 . 

Since � = d, we have depth R/Jn = 0 for some n ≥ 1 by [4, Corollary, p. 373] (even for all n 
 0 by [3, 
Theorem, p. 36]). It follows that A � A :R[t] m. This colon is contained in A :R[t] b, because δ > σ−1

g−1 and 
so b ⊂ m. Thus A �= A :R[t] b. �
Remark 4.2. Notice that if in the previous theorem R is standard graded then R≥gδ−δ−σ+1 = mgδ−δ−σ+1.

Remark 4.3. In the presence of the Gd assumption the depth conditions in Theorem 4.1 are satisfied, 
for example, if I is strongly Cohen–Macaulay, which means that the Koszul homology modules of I are 
Cohen–Macaulay [23, Remark 2.10]. The ideal I is strongly Cohen–Macaulay if I is perfect and generated 
by g + 2 elements [2, p. 259] or if I is in the linkage class of a complete intersection [13, Theorem 1.11]. 
Examples of ideals in the linkage class of a complete intersection are perfect ideals of height 2 [6] and 
Gorenstein ideals of height 3 [30, the proof of Thm.].

In the presence of the depth assumptions in Theorem 4.1, the ideal I is normal locally on the punctured 
spectrum of R if I is reduced and the Gd assumption is replaced by the condition �(Ip) ≤ dim Rp − 1 for 
every prime ideal p containing I with g +1 ≤ dim Rp ≤ d −1 (see [23, Theorem 2.9(a) and Proposition 1.11], 
[9, Theorem 6.1], and [5, Proposition 3.3]).

Another class of ideals satisfying the assumptions of the theorem are one-dimensional ideals:
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Example 4.4. Let k be an infinite field, R = k[x1, . . . , xd] a standard graded polynomial ring with maximal 
homogeneous ideal m, I a one-dimensional reduced ideal generated by forms of degree δ, and J an ideal 
generated by d general forms of degree δ in I. Then for every n,

In = Jn : m(d−2)(δ−1)−1.
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