LIAISON OF MONOMIAL IDEALS
CRAIG HUNEKE AND BERND ULRICH

ABSTRACT. We give a simple algorithm to decide whether a monomial ideal of finite colength
in a polynomial ring is licci, i.e., in the linkage class of a complete intersection. The algorithm
proves that whether or not such an ideal is licci does not depend on whether we restrict the

linkage by only allowing monomial regular sequences, or homogeneous regular sequences, or

arbitrary regular sequences. We apply our results on monomial ideals to compare when an

ideal is licci versus when its initial ideal in some term order is licci. We also apply an idea

of Migliore and Nagel to prove that monomial ideals of finite colength are always glicci, i.e.,
in the Gorenstein linkage class of a complete intersection. However, our proof requires the

use of non-homogeneous Gorenstein links.

1. INTRODUCTION

Let R be a commutative Noetherian ring, and let I and .J be two proper ideals in K. These

ideals are said to be directly linked if there exists a regular sequence fi,... , f, contained in
I'nJ such that (fi,...,f,) : I =Jand (fi,...,fy) : J =1. Wesay I and J are in the
same linkage class (or liaison class) if there exists a sequence of ideals I = I,... I, = J

such that I; is directly linked to I;;; for 0 < j <n — 1, the case n = 2 being referred to as
double linkage. Such a sequence of links connecting I and J is far from unique. We call the
ideal I licci if I is in the linkage class of a complete intersection, i.e., of an ideal generated
by a regular sequence.

In a similar manner, at least when R is regular, we say that [ and J are Gorenstein
directly linked if there exists an ideal K C I N .J such that R/K is Gorenstein, K : [ = J,
and K : J = I; the last equality is actually a consequence of the previous one in case [
is unmixed and has the same height as K. The Gorenstein linkage class of I is defined by
making this relation an equivalence relation as above, and [ is said to be glicci if it is in the
Gorenstein linkage class of a complete intersection. Finally, by a Gorenstein double link we
mean a sequence of two direct Gorenstein links.

This paper studies when monomial ideals in polynomials rings are licci or glicci. Our main
theorem, Theorem 2.6, gives a simple algorithm to decide whether a monomial ideal of finite
colength is licci. This theorem is one of the few instances where one has not only necessary,
but also sufficient conditions for an ideal to be licci. In Theorem 3.2 we compare when an
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ideal of finite colength is licci to when its initial ideal with respect to some term order is
licci. In Theorem 4.2 we prove that any monomial ideal of finite colength is glicci.
For basic information on linkage we refer the reader to [6], [8], and [3].

2. Licct MONOMIAL IDEALS

We begin by establishing some notation. We will always write S = k[zy,...,24] for a
polynomial ring over a field k& and m for its homogeneous maximal ideal (z1,...,2z4). By
a monomial in S we mean an element of the form z*---z%*. We simplify this notation
by using capital letters to denote d-tuples of non-negative integers, A = (ay,...,aq), and
writing 24 = z{* - -xg'. A monomial ideal is an ideal generated by monomials. Every m-
primary monomial ideal I can be written uniquely in standard form I = (z(*,...,z5)+1T#,
where I# is generated by monomials that together with {x{*,... 24’} generate I minimally.
Notice that I# = 0 if and only if I is a complete intersection. We will use the fact that
if o8 = 202l ¢ (@), ... 2%), then (29%,...,2%) : 2B = (29", . 2% %), In

particular, any m-primary monomial almost complete intersection ideal is directly linked to
a complete intersection by a monomial regular sequence.
We will need the following theorem that is a special case of a main result in [3]:

Theorem 2.1. Let S = klxy,... ,xq4] be a polynomial ring over a field k and let I be an m-
primary ideal generated by homogeneous polynomials of degrees at least §. If m\@=10=1 T
then Iy is not licci in Sy.

Proof. The maximal last shift in a minimal homogeneous free S-resolution of S/I is at most
(d —1)4. Now [3, 5.13(a)] implies that I, cannot be licci. (The essential point in applying
[3, 5.13(a)] is that the maximal last shift in a minimal homogeneous free S-resolution of S/
is at most d — 1 times the minimal degree of a generator of I.) O

Theorem 2.4 below gives a necessary condition for an m-primary monomial ideal to be
licci. The condition is rather strong and was surprising to us. To prove this theorem we
need Proposition 2.3, which basically says that an ideal J is licci if and only if J + yS' is
licci for y a regular element on S and S/J. This result is not unexpected, but does not
seem to be in the literature. Its proof requires the use of universal linkage as developed in
[3]. We briefly review the definition. Let ( R, m) be a local Gorenstein ring and let I be an
unmixed ideal of height ¢ > 0 in R. Fix a generating sequence fi,..., f, of I. Let x;; be
variables for 1 < i < g and 1 < j < n, and write R(X) for the ring R[{zi;}|mr[{z;}- In
R(X) consider the regular sequence oy, ... ,a, where o; = Z?Zl z;jf;. We define the first
universal link L'(I) of I to be the ideal (ay,...,ay)R(X) : IR(X) in R(X). Inductively
we set L"(I) = LY(L"1(I)) for n > 1 as long as L"'(I) is not the unit ideal, and call this
ideal the nth universal link. Write L%(T) = I. Although these definitions apparently depend
upon generating sets, it turns out that universal links are essentially unique (see [3, 2.11(b)]
for a precise statement). One of the basic facts about universal linkage says that [ is licci if
and only if L™(I) is generated by a regular sequence for some n > 0, at least when R has an
infinite residue field (see [4, 2.9]).
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Lemma 2.2. Let R be a local Gorenstein ring and let J be an ideal such that R/J is Cohen-
Macaulay. Let y € R be regular on R and R/J. Then L'((J,y)) = (K, z), where K is an
ideal in R(X) directly linked to JR(X) and z € R(X) is regular on R(X) and R(X)/K.

Proof. Fix a generating sequence fi,..., f, 1 of J. Set f, = y and define o; in R(X)
as above. Let z = ay. We may write (aq,...,q)R(X) = (b1,...,04-1,2)R(X), where
Bi,..., P41 form a regular sequence contained in JR(X). Set K = (f1,...,0,-1)R(X) :
JR(X). We have that L'((J,y)) = (a1, ... ,a)R(X) : (J,y)R(X) = (b1, .-, By—1,2)R(X) :
(J,2)R(X) = (K, z), where the last equality holds by [2, 2.12]. Finally, the element z is
regular on R(X) and R(X)/K because [, ..., fy_1, 7z form an R(X)-regular sequence.

U

Proposition 2.3. Let R be a local Gorenstein ring with infinite residue field. Let .J be an
ideal such that R/J is Cohen-Macaulay, and let y € R be reqular on R and R/J. Then (J,y)

is licei if and only if J is licci.

Proof. Assume that (J,y) is licci. According to [3, 2.17(b)], L™((J,y)) is generated by a
regular sequence for some n > 0. By repeated use of Lemma 2.2, L™((J,y)) = (K, z) for
some ideal K in the linkage class of JR(X) and some z € R(X) which is regular on R(X)
and R(X)/K. Hence K is generated by a regular sequence, showing that JR(X) is licci in
R(X). Then J is licci in R by [4, 2.12], which states that the property of being licci descends
from flat local extensions of local Gorenstein rings with infinite residue fields.

Conversely, if .J is licci, then L™(.J) is generated by a regular sequence for some n > 0, and
it is clear that y is regular modulo L*(.J) for every 0 < i < n. By [2, 2.12] it then follows that
(J,y)R(X) is in the same linkage class as (L™(J),y)R(X). Using [4, 2.12] again we obtain
that (J,y) is licci. O

Theorem 2.4. Let S = k[xy,... ,x4] be a polynomial ring over a field k and let I be an
m-primary monomial ideal. If I* has height at least two then I is not licci in Sy. In
particular, T is not licci.

Proof. We may assume that k is infinite and we write I = (21, ... ,25%) + I*. Assume that
I# has height at least two. If I contains a variable, say x4, we may write [ = IS + (z4),
where Iy is a (z1,... ,24 1)-primary ideal in k[zq,... , x4 1]. Clearly z4 is regular on S and
on S/IyS. According to Proposition 2.3, if I, is licci, then so is IySy. By [4, 2.12] we obtain
that Iok[z1,... ,T4—1)(z1,.. 2,_,) 18 also licci. Since I# = ]fS, If has height at least two.
Inducting on the number of variables proves that Iok[z1, ... ,xd,l](m,m,md_l) is not licci, and
hence neither is I,,. Thus we may assume that a; > 2 for 1 <17 < d.

Let T be the polynomial ring Sy, ... , y4] with homogeneous maximal ideal n. We define
a map ¢ on the set of monomials in S to the set of monomials in 7" by first specifying its
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action on pure powers of the variables,

1 ifn=20
PaM) =< Yy ly fl1<n<a
yr22? ifn > a;.

We then extend ® to a map on the set of all monomials by setting
®(2) = d(ay') - B(a).

Notice that ® is not multiplicative, but that it preserves divisibility. Finally, for K any
monomial ideal in S, we define a monomial ideal KinT by applying ® to the monomial
generators of K and letting K be the ideal in T generated by their images.

Consider the epimorphism of S-algebras m : T' — S mapping y; to x;. Notice that
W(I? ) = K and that the kernel of this map is generated by the T-regular sequence y; —
1, ,Ya — 4. We claim that this sequence is regular on the quotient ring T/I? as well.
The claim is equivalent to the vanishing of the first Koszul homology Hi(y1 — 1, ... , Y4 —
24;T/K). This homology is Tor” (S, 7/K). Thus it suffices to prove that generating relations
on the monomial minimal generators {z%} of K lift via 7 to relations on the corresponding
monomial generators {®(x%)} of K. Indeed, a set of generating syzygyies for K can be
obtained as follows: let ¢ and 2 be any two monomial minimal generators of K, and let
z¥ be the greatest common divisor of ¢ and z”. The syzygy module is generated by the
Syzygies given by 2720 = %xD. This relation lifts to <I>(”:D)CD(J(:C) = M@(:cD). Notice

o(zF) o(zF)
that 2 ( an d are monomials in 7" because the map ® preserves divisibility, and that
we have 1ndeed obtalned a lift because the map 7 is multiplicative.

Thus in the language of [3, 2.2(a)], the pair (T, K) is a deformation of (S, K). Hence
according to [3, 2.16], if I, is licci then so is I,. In particular, the further localization
Iy would be licci as well. Set J = I#. Since (T),J) is a deformation of (S,.J) and J is
homogeneous, we also obtain ht J=htJ>2.

Now write ' = k(y1,...,yq), S' = k/[l‘l,... yxg), M= (xq,...,x4)8", I' = IS" and
J' = JS'. Notice that Twr = S}y and hence Iy = I, reducing us to prove that I, cannot
be licci. By the definition of the map ®, I' = (z1,...,23) + J' and J' is generated by
squarefree monomials of degrees at least 2. Moreover, ht J' = ht JS" > htJ > 2 by the
above. It follows that J' contains every squarefree monomial of degree d —1. Indeed if #--*4
is not in .J’ then J' cannot contain a squarefree monomial not divisible by x;. Thus z; d1V1des
every squarefree monomial in .J' and hence every monomial in .J'. This forces .J' to have
height at most one, a contradiction. Therefore I' contains every monomial of degree d — 1.
As m'4=! C I, Theorem 2.1 now shows that I, cannot be licci. O

Lemma 2.5. Let S = k[x1,... ,z4) be a polynomial ring over a field k and let I be an m-

primary monomial ideal. If 17 = xB K for some monomial z? = :7(:’{1 . xd and a monomial
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ideal K with 0 # K # S, then the ideal I' = (z% 7", ... ,xzdfbd) + K s obtained from I by

a double link defined by the monomial reqular sequences z1*,... x5 and x‘l”fbl, . ,xidibd.
Proof. Tt suffices to prove that (z{*,...,z5") : I = (470 ,wgd_bd) : I'. This follows
from the chain of equalities (x§',... ,z5) : [ = (z{*,...,2%%) : 2BK = ((25},... ,z3%) :
gBY K= (a0b gty = (Tt ety O

Let S = k[xy,... ,x4] be a polynomial ring over a field k, let I be an m-primary monomial
ideal, and consider the standard form I = (2{",...,25%) + I**. We set I{®} = . Tf T is not a

complete intersection then I# can be written uniquely as I# = 2P K, where 2% = a:’{l e de

is a monomial and K a monomial ideal of height at least two. We define
W= (@92 + K

If on the other hand I is a complete intersection we set It} = S. For n > 1 we define
inductively 1" = (I{"=1H){1} provided 11"~} # S. Observe that the representation of
It £ S above may not be in standard form since K could contain a pure power of a
variable; in fact this happens exactly when u(I{*}) < p(I). Also notice that according to
Lemma 2.5, the ideals I and I{"} # S are linked by a sequence of 2n links defined by
monomial regular sequences.

If A C RY, is a finite set of points we can define a set A"} ¢ R¢ obtained from A
by removing the points on the coordinate axes and then translating the remaining set until
each coordinate hyperplane contains a point of the set. Iterating one defines A{"™. The set
A = {C} of exponents of the minimal monomial generators ¢ of I can be reduced to the
empty set by this procedure, i.e., A™ =@ for some m if and only if 11"} = S for some n.
It is this condition that characterizes the licci property:

Theorem 2.6. Let S = k[xy,... ,x4] be a polynomial ring over a field k and let I be an
m-primary monomial ideal. The following conditions are equivalent :

(1) I can be linked to a complete intersection by a sequence of links defined by monomial
reqular sequences.

(2) I can be linked to a complete intersection by a sequence of links defined by homoge-
neous reqular sequences.

(3) I is licci in Sp.

(4) (I'")# has height at most one whenever " #£ S,

(5) 1"} = S for some n.

Proof. (1) = (2) = (3): The implications are obvious.

(3) = (4): According to Lemma 2.5 the ideals ( 1{"}),, are licci as well. Now apply Theorem
2.4.

(4) = (5): Write o for the sum of the degrees of homogeneous minimal generators of a
homogeneous ideal. We use induction on o(I). We may assume that I{'} # S. Since I# has
height at most one it follows that 2% # 1 in the definition of I%. Therefore o(It4) < (1)
and we may apply the induction hypothesis to I}
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(5) = (1): By Lemma 2.5 we may replace I by I1"~1} to assume that I{"} = S. But
then [ is an almost complete intersection and hence linked to a complete intersection by a
monomial regular sequence. O

Notice that Theorem 2.6 immediately implies the well known fact that I is licci if d < 2,
as can be seen from condition (4).

Corollary 2.7. Let S = k[x1,... ,x4] be a polynomial ring over a field k and let I and L be
m-primary monomial ideals with 1% = L*. Then I is licci if and only if L is licci.

Proof. The ideals 1"} and L1} have the same monomial minimal generators except possibly
for the pure powers. Hence (I{'M# = (LUH# and inductively (I1"h# = (L{"H# whenever
either ideal is defined. Now use condition (4) of Theorem 2.6. O

Remark 2.8. Let S = k[z1,...,24] be a polynomial ring over a field k and let T be an
m-primary ideal generated by at most 5 monomials. Then [ is licci. Indeed since [ is licci
if it is an almost complete intersection or if d < 2, we may assume that d = 3. Hence I is
generated by at most two monomials, and the same is true for ( 11"})# as long as 11"} # .
The two monomials generating ( I{"})# must have a common factor # 1. Therefore condition
(4) of Theorem 2.6 implies that I is licci.

Discussion 2.9. Let S = k[zy,... , x4 be a polynomial ring over a field k and let I be an m-
primary monomial ideal. If I is licci then Theorem 2.6 and Lemma 2.5 show that the sequence
of double links I, 711 ... 71" . leads to a monomial almost complete intersection 11"}

which is either a complete intersection or directly linked to a complete intersection. Part
(4) of Theorem 2.6 provides an algorithm for deciding when an m-primary monomial is licci.
Furthermore, the following statements hold:
W IctYc...crimtc... .
(2) The chain of ideals in (1) stabilizes at .S if and only if I is licci.
(3) The sequence of double links 1,711 .. 11} is the unique sequence of double
links defined by using monomial regular sequences of smallest possible degrees at
every step.

Part (1) is obvious from the definition and (2) follows from Theorem 2.6. To see (3)
we may assume that I is not a complete intersection. Consider the standard form I =
(z, ..., 2%)+T# and write I# = 2P K with 2% = 2% - .- 2% a monomial and K a monomial
ideal of height at least two. According to Lemma 2.5 it suffices to show that 27", ..., xgd_bd
is the monomial regular sequence of minimal degrees in (z{*,... ,z3") : I. Suppose without
loss of generality that z7 € (z{',...,z%?) : I for some n < a;. It follows that 2K C
(zP 7", 292, ..., 29%). However, no minimal monomial generator of zP K lies in (25%,... , 24%)
by definition of I# = P K. We conclude that 22K C (z{*™"), hence 2P € (z{*7") as K has
height at least two. Therefore by > ay — n, which gives n > a; — by. This proves part (3).

Since Theorem 2.6 gives a complete characterization of when an m-primary monomial ideal
is licci, a natural question becomes the following: when is an arbitrary m-primary ideal in the
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same linkage class as a monomial ideal? Obviously this is a broader class than licci ideals,
but we do not know any criterion for an ideal to be in the linkage class of a monomial ideal.
However, there is an obstruction: if S = k[xy,...,x,4] is a polynomial ring over a field k& and
I a Cohen-Macaulay ideal in the linkage class of a monomial ideal, then (S/I), = T/(z),
where 1" is a reduced local ring and z is regular on 7.

3. STRONG LIAISON

In this section we consider the consequences of Theorem 2.6 for non-monomial ideals. In
particular we study the relationship between an ideal being licci and its initial ideal in some
term order being licci. Fix a polynomial ring S = k[zy,... ,24] and a term order >. When
I is an ideal in S, we let in(J) denote the initial ideal of I with respect to >. We call a
sequence of elements fi,..., f, super regular if in(fy),... ,in(f,) form a regular sequence.
When fi,..., f, generate a zero-dimensional ideal, this condition means that after possibly
reordering f, ..., f,, one has in(f;) = z;" for some positive integers ay, ... ,a,. We say I is
strongly licci if T can be linked to an ideal generated by a super regular sequence in such a
way that all the regular sequences used in the chain of links are super regular. Notice that in
this language Theorem 2.6 implies that an m-primary licci monomial ideal is strongly licci.
Finally, observe that a super regular sequence is a Grobner basis for the ideal it generates
[1, 15.15].

Lemma 3.1. Let S = klxy, ... ,x4] with a fized term order >, and let I and J be two zero-
dimensional ideals linked via the super reqular sequence fi,..., f4. Then in(I) and in(J) are
linked via the regular sequence in(fy), ... ,in(fy).

Proof. We first prove that in(I) -in(J) C (in(f1),... ,in(fq)). Let in(f) € in() and in(g) €
in(J) for elements f € I and g € J. Then in(f) - in(g) = in(fg) € in((f1,...,fs)) =
(in(f1),... ,in(fq)), where the last equality follows from the fact that fi,..., fq are a Grébner
basis for (fi,..., f4).

Hence in(J) C (in(f1),...,in(fq)) : in(Z). To prove equality, it suffices to show that
dimy(S/in(J)) = dimy S/((in(f1), ... ,in(fs)) : in(7)). But dimg(S/in(J)) = dim,(S/J) =
dimy (S/ (. + fa)) — dimy(S/T) = dimy (5] in((fr,. . . fa))) — cimy(S) in(D)) =
dimg (S/((in(f1), ... ,in(fa)) : in(1))). O

Theorem 3.2. Let S = klxy,... x4 with a fized term order >, and let I be a zero-
dimensional ideal. Then in(I) is licci if and only if I is strongly licci.

Proof. Lemma 3.1 immediately implies that if I is strongly licci then in(7) is licci. For the
proof of the converse suppose that in(I) is licci. Theorem 2.6 shows that in this case in( /)
can be linked to a complete intersection by a sequence of links only using monomial regular
sequences. Let z7',...,z* be the first such regular sequence contained in in( /). Choose
fi € I such that in(f;) = x{*. By construction fi,..., fs is a super regular sequence in /.
Setting J = (f1,..., fq4) : I, we use Lemma 3.1 to conclude that in(.J) is the link of in([)
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with respect to (z7',...,z%?). Inducting on the least number of links needed to link in( )
to a complete intersection via monomial linkage completes the proof. U

It is worth remarking that the conclusion that [ is strongly licci if in(7) is licci relies on
Theorem 2.6 and does not follow directly from standard techniques of “Grobner deforma-
tion”.

Corollary 3.3. Let S = k[z,y] and let I be a zero-dimensional ideal. Then I is strongly
licci with respect to every term order.

Proof. Tt suffices to prove in([I) is licei, which is well-known (see also the remark after The-
orem 2.6). O

Remark 3.4. Notice that Theorems 2.6 and 3.2 give a complete characterization for when
a zero-dimensional ideal is strongly licci with respect to a given term order. However, one
might want to change either the variables or the term order as the next example shows.

Example 3.5. Let S = k[z,y, 2] and T = (2> + y*,y* + 2%, 2y, 12, 92). Use the term order
revlex with the variables ordered x > y > z. The initial ideal is in(I) = (22, y?, vy, 2, yz, 2°)
which is not licci since (in(1))# has height two. Hence I is not strongly licci with respect to
this order. However, I is licci as it is a height three Gorenstein ideal.

On the other hand, one has I = ((z —y)?, (y—2)?, zy, (v —y)z,yz), and changing variables
tox' =z —y,y =y—2zand 2/ = z allows us to rewrite the ideal I = ((z')%, (y)?, (2')? —
2y ' 2y +y'2"). In revlex order with 2’ > ¢’ > 2’ these generators form a Grobner basis
and the initial ideal is ((z)?, (v')?, (2/)%,2'2',y'2"). This is a licci monomial ideal.

The above theorem and example raise the question of whether or not zero-dimensional
licci ideals have licci initial ideals with respect to some term order if in addition we allow
a change of variables. Equivalently, are zero-dimensional licci ideals strongly licci after
a suitable change of variables and choice of term order? This seems unlikely. A weaker
question is whether there exists a monomial licci ideal with the same Hilbert function as
any given m-primary homogeneous ideal [ linked to a complete intersection by a sequence
of links defined by homogeneous regular sequences. There is an “obvious” way to try to
construct such a monomial ideal: starting with a sequence of links from I to (z1,...,z4),
simply go backwards by always using monomial regular sequences of the same degrees as
the homogeneous regular sequences in the original linking sequence. The problem with this
idea is that there may not be the appropriate pure powers in the monomial ideals obtained
via this algorithm. It is an interesting question whether or not the appropriate pure powers
would actually exist.

4. GLicct MONONIAL IDEALS

The next proposition can be found in [5, 5.10] in the graded case; the local case given
below follows easily from the same proof. We give an easy proof for the benefit of the reader.
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Proposition 4.1. Let (R,m) be a local Gorenstein ring, J and K proper ideals of R, and
x € m. Assume that the ring R/.J is Cohen-Macaulay and generically Gorenstein and that
the ideal J + xK 1is unmized of height greater than ht.J. Then J 4+ xK and J + K are
Gorenstein doubly linked.

Proof. We write ~ for images in R = R/.J. Notice that T is a regular element on R and
that K is an unmixed ideal of height one. Since the ring R is generically Gorenstein it
has a canonical ideal, meaning an ideal w of positive height that is a canonical module of
R. Multiplying with an R-regular element we may assume that w C K. Let H be an
ideal in S with J ¢ H C J+ K and H = w. Since w and Zw are canonical ideals, it
follows that both R/H 2 R/w and R/J + xH = R/Tw are Gorenstein rings. The element
7 being R-regular one also has Tw : ZK = w : K in R. Therefore back in R we obtain
(J+zH): (J+z2K)=H:(J+K). AsJ+zH C J+zK and H C J + K and all four
ideals are unmixed of the same height, we conclude that J + 2K and J + K are Gorenstein
doubly linked. O

The proof of the next theorem was inspired by the work of Migliore and Nagel in [7, 3.5],
where they prove that strongly stable Cohen-Macaulay monomial ideals are glicci in the
graded sense, i.e., using only homogeneous Gorenstein ideals in the links. The problem for
such monomial ideals reduces at once to the m-primary case. Their proof can be generalized
as follows:

Theorem 4.2. Let S = k[z1,... ,x4] be a polynomial ring over an infinite field k and let T
be an m-primary monomial ideal. Then I s glicci in Sy.

Proof. Write z = x4, We use induction on a, the smallest integer so that z* € [. If
a = 1 we are done by induction on d. Otherwise we may write I = [,S + 2K with [, =
INklzy,...,z4-1]) and K a proper monomial ideal in S. By induction on « it will suffice to
prove that I, and (1S + K),, are Gorenstein doubly linked.

To this end we wish to apply Proposition 4.1. Thus write y = 2® and let {o;|j € N} be a
sequence of pairwise distinct elements in k. Similar to the proof of Theorem 2.4 we define a
map W from the set of monomials in k[z1,...,24 1] to S. For 1 <i <d—1 we set

U(a) = [ [ (@ + ajm),
j=1
and we extend this definition multiplicatively,
Wy agy) = W) - Ulagly).
Finally, we define J to be the ideal in S generated by the images ¥(xz¢) of the monomials
ZCC in IO-

Obviously IpS +yS = .J+yS. Since y € xK it then follows that I = I[pS+ 2K = J+ 2K
and [pS+ K = J+ K. Hence it suffices to prove that (J+2K)y, and (J+ K),, are Gorenstein
doubly linked. As in the proof of Theorem 2.4 one sees that the element y is regular on S/J.
In particular Sy, /Jy, is a one-dimensional Cohen-Macaulay ring. In view of Proposition 4.1
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is remains to show that this ring is reduced, hence generically Gorenstein. Thus let p be a
minimal prime of .J. Let n be an integer so that x}' € Iy for 1 <i < d — 1, and consider the

products contained in .J,
n

T2 U(al) = [J(xi + ).
j=1
For every ¢, the ideal p contains at most one factor z;+a;;)y, because ay, . .. , a, are pairwise
distinct elements of k& and p does not contain y. Therefore in the ring S, we obtain

Jp 2 (W), - W(rg 1))y = (B + )Y - Tt + Qja1)Y)p-
This shows that indeed J, = p,. U

The special type of Gorenstein double linkage that arises in Proposition 4.1 has been
dubbed Gorenstein biliaison. In this language the proof of Theorem 4.2 gives the stronger
statement that I, is linked to a complete intersection in S, by a sequence of Gorenstein
biliaisons.
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