
LIAISON OF MONOMIAL IDEALS
CRAIG HUNEKE AND BERND ULRICH

Abstract. We give a simple algorithm to decide whether a monomial ideal of �nite colengthin a polynomial ring is licci, i.e., in the linkage class of a complete intersection. The algorithmproves that whether or not such an ideal is licci does not depend on whether we restrict thelinkage by only allowing monomial regular sequences, or homogeneous regular sequences, orarbitrary regular sequences. We apply our results on monomial ideals to compare when anideal is licci versus when its initial ideal in some term order is licci. We also apply an ideaof Migliore and Nagel to prove that monomial ideals of �nite colength are always glicci, i.e.,in the Gorenstein linkage class of a complete intersection. However, our proof requires theuse of non-homogeneous Gorenstein links.

1. Introduction
Let R be a commutative Noetherian ring, and let I and J be two proper ideals in R. Theseideals are said to be directly linked if there exists a regular sequence f1; : : : ; fg contained inI \ J such that (f1; : : : ; fg) : I = J and (f1; : : : ; fg) : J = I. We say I and J are in thesame linkage class (or liaison class) if there exists a sequence of ideals I = I0; : : : ; In = Jsuch that Ij is directly linked to Ij+1 for 0 � j � n� 1, the case n = 2 being referred to asdouble linkage . Such a sequence of links connecting I and J is far from unique. We call theideal I licci if I is in the linkage class of a complete intersection, i.e., of an ideal generatedby a regular sequence.In a similar manner, at least when R is regular, we say that I and J are Gorensteindirectly linked if there exists an ideal K � I \ J such that R=K is Gorenstein, K : I = J ,and K : J = I; the last equality is actually a consequence of the previous one in case Iis unmixed and has the same height as K . The Gorenstein linkage class of I is de�ned bymaking this relation an equivalence relation as above, and I is said to be glicci if it is in theGorenstein linkage class of a complete intersection. Finally, by a Gorenstein double link wemean a sequence of two direct Gorenstein links.This paper studies when monomial ideals in polynomials rings are licci or glicci. Our maintheorem, Theorem 2.6, gives a simple algorithm to decide whether a monomial ideal of �nitecolength is licci. This theorem is one of the few instances where one has not only necessary,but also su�cient conditions for an ideal to be licci. In Theorem 3.2 we compare when an
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2 CRAIG HUNEKE AND BERND ULRICH
ideal of �nite colength is licci to when its initial ideal with respect to some term order islicci. In Theorem 4.2 we prove that any monomial ideal of �nite colength is glicci.For basic information on linkage we refer the reader to [6], [8], and [3].

2. Licci Monomial Ideals
We begin by establishing some notation. We will always write S = k[x1; : : : ; xd] for apolynomial ring over a �eld k and m for its homogeneous maximal ideal (x1; : : : ; xd). Bya monomial in S we mean an element of the form xa11 � � � xadd . We simplify this notationby using capital letters to denote d-tuples of non-negative integers, A = (a1; : : : ; ad), andwriting xA = xa11 � � � xadd . A monomial ideal is an ideal generated by monomials. Every m-primary monomial ideal I can be written uniquely in standard form I = (xa11 ; : : : ; xadd )+I#,where I# is generated by monomials that together with fxa11 ; : : : ; xadd g generate I minimally.Notice that I# = 0 if and only if I is a complete intersection. We will use the fact thatif xB = xb11 � � � xbdd =2 (xa11 ; : : : ; xadd ), then (xa11 ; : : : ; xadd ) : xB = (xa1�b11 ; : : : ; xad�bdd ). Inparticular, any m-primary monomial almost complete intersection ideal is directly linked toa complete intersection by a monomial regular sequence.We will need the following theorem that is a special case of a main result in [3]:

Theorem 2.1. Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k and let I be an m-primary ideal generated by homogeneous polynomials of degrees at least �. If m(d�1)(��1) � Ithen Im is not licci in Sm.
Proof. The maximal last shift in a minimal homogeneous free S-resolution of S=I is at most(d � 1)�. Now [3, 5.13(a)] implies that Im cannot be licci. (The essential point in applying[3, 5.13(a)] is that the maximal last shift in a minimal homogeneous free S-resolution of S=Iis at most d� 1 times the minimal degree of a generator of I.) �
Theorem 2.4 below gives a necessary condition for an m-primary monomial ideal to belicci. The condition is rather strong and was surprising to us. To prove this theorem weneed Proposition 2.3, which basically says that an ideal J is licci if and only if J + yS islicci for y a regular element on S and S=J . This result is not unexpected, but does notseem to be in the literature. Its proof requires the use of universal linkage as developed in[3]. We brie
y review the de�nition. Let (R;m) be a local Gorenstein ring and let I be anunmixed ideal of height g > 0 in R. Fix a generating sequence f1; : : : ; fn of I. Let xij bevariables for 1 � i � g and 1 � j � n, and write R(X) for the ring R[fxijg]mR[fxijg]. InR(X) consider the regular sequence �1; : : : ; �g where �i = Pnj=1 xijfj . We de�ne the �rst

universal link L1(I) of I to be the ideal (�1; : : : ; �g)R(X) : IR(X) in R(X). Inductivelywe set Ln(I) = L1(Ln�1(I)) for n > 1 as long as Ln�1(I) is not the unit ideal, and call thisideal the nth universal link. Write L0(I) = I. Although these de�nitions apparently dependupon generating sets, it turns out that universal links are essentially unique (see [3, 2.11(b)]for a precise statement). One of the basic facts about universal linkage says that I is licci ifand only if Ln(I) is generated by a regular sequence for some n � 0, at least when R has anin�nite residue �eld (see [4, 2.9]).
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Lemma 2.2. Let R be a local Gorenstein ring and let J be an ideal such that R=J is Cohen-Macaulay. Let y 2 R be regular on R and R=J . Then L1((J; y)) = (K; z), where K is anideal in R(X) directly linked to JR(X) and z 2 R(X) is regular on R(X) and R(X)=K .
Proof. Fix a generating sequence f1; : : : ; fn�1 of J . Set fn = y and de�ne �i in R(X)as above. Let z = �g. We may write (�1; : : : ; �g)R(X) = (�1; : : : ; �g�1; z)R(X), where�1; : : : ; �g�1 form a regular sequence contained in JR(X). Set K = (�1; : : : ; �g�1)R(X) :JR(X). We have that L1((J; y)) = (�1; : : : ; �g)R(X) : (J; y)R(X) = (�1; : : : ; �g�1; z)R(X) :(J; z)R(X) = (K; z), where the last equality holds by [2, 2.12]. Finally, the element z isregular on R(X) and R(X)=K because �1; : : : ; �g�1; z form an R(X)-regular sequence. �

Proposition 2.3. Let R be a local Gorenstein ring with in�nite residue �eld. Let J be anideal such that R=J is Cohen-Macaulay, and let y 2 R be regular on R and R=J . Then (J; y)is licci if and only if J is licci.
Proof. Assume that (J; y) is licci. According to [3, 2.17(b)], Ln((J; y)) is generated by aregular sequence for some n � 0. By repeated use of Lemma 2.2, Ln((J; y)) = (K; z) forsome ideal K in the linkage class of JR(X) and some z 2 R(X) which is regular on R(X)and R(X)=K . Hence K is generated by a regular sequence, showing that JR(X) is licci inR(X). Then J is licci in R by [4, 2.12], which states that the property of being licci descendsfrom 
at local extensions of local Gorenstein rings with in�nite residue �elds.Conversely, if J is licci, then Ln(J) is generated by a regular sequence for some n � 0, andit is clear that y is regular modulo Li(J) for every 0 � i � n. By [2, 2.12] it then follows that(J; y)R(X) is in the same linkage class as (Ln(J); y)R(X). Using [4, 2.12] again we obtainthat (J; y) is licci. �

Theorem 2.4. Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k and let I be anm-primary monomial ideal. If I# has height at least two then Im is not licci in Sm. Inparticular, I is not licci.
Proof. We may assume that k is in�nite and we write I = (xa11 ; : : : ; xadd ) + I#. Assume thatI# has height at least two. If I contains a variable, say xd, we may write I = I0S + (xd),where I0 is a (x1; : : : ; xd�1)-primary ideal in k[x1; : : : ; xd�1]. Clearly xd is regular on S andon S=I0S. According to Proposition 2.3, if Im is licci, then so is I0Sm. By [4, 2.12] we obtainthat I0k[x1; : : : ; xd�1](x1;::: ;xd�1) is also licci. Since I# = I#0 S, I#0 has height at least two.Inducting on the number of variables proves that I0k[x1; : : : ; xd�1](x1;::: ;xd�1) is not licci, andhence neither is Im. Thus we may assume that ai � 2 for 1 � i � d.Let T be the polynomial ring S[y1; : : : ; yd] with homogeneous maximal ideal n. We de�nea map � on the set of monomials in S to the set of monomials in T by �rst specifying its
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action on pure powers of the variables,

�(xni ) =
8<
:

1 if n = 0yn�1i xi if 1 � n < aiyn�2i x2i if n � ai:
We then extend � to a map on the set of all monomials by setting

�(xC) = �(xc11 ) � � ��(xcdd ):
Notice that � is not multiplicative, but that it preserves divisibility. Finally, for K anymonomial ideal in S, we de�ne a monomial ideal eK in T by applying � to the monomialgenerators of K and letting eK be the ideal in T generated by their images.Consider the epimorphism of S-algebras � : T ! S mapping yi to xi. Notice that�( eK) = K and that the kernel of this map is generated by the T -regular sequence y1 �x1; : : : ; yd � xd. We claim that this sequence is regular on the quotient ring T= eK as well.The claim is equivalent to the vanishing of the �rst Koszul homology H1(y1 � x1; : : : ; yd �xd;T= eK). This homology is TorT1 (S; T= eK). Thus it su�ces to prove that generating relationson the monomial minimal generators fxCig of K lift via � to relations on the corresponding
monomial generators f�(xCi)g of eK . Indeed, a set of generating syzygyies for K can beobtained as follows: let xC and xD be any two monomial minimal generators of K , and letxE be the greatest common divisor of xC and xD. The syzygy module is generated by the
syzygies given by xDxE xC = xCxE xD. This relation lifts to �(xD)�(xE)�(xC) = �(xC)�(xE)�(xD). Notice
that �(xD)�(xE) and �(xC)�(xE) are monomials in T because the map � preserves divisibility, and thatwe have indeed obtained a lift because the map � is multiplicative.Thus in the language of [3, 2.2(a)], the pair ( T; eK) is a deformation of (S;K). Hence
according to [3, 2.16], if Im is licci then so is eIn. In particular, the further localizationeImT would be licci as well. Set J = I#. Since (T; eJ) is a deformation of (S; J ) and eJ is
homogeneous, we also obtain ht eJ = ht J � 2.Now write k0 = k(y1; : : : ; yd), S 0 = k0[x1; : : : ; xd], m0 = (x1; : : : ; xd)S 0, I 0 = eIS 0 and
J 0 = eJS 0. Notice that TmT = S 0m0 and hence eImT = I 0m0 , reducing us to prove that I 0m0 cannotbe licci. By the de�nition of the map �, I 0 = (x21; : : : ; x2d) + J 0 and J 0 is generated by
squarefree monomials of degrees at least 2. Moreover, ht J 0 = ht eJS 0 � ht eJ � 2 by theabove. It follows that J 0 contains every squarefree monomial of degree d� 1. Indeed if x1���xdxiis not in J 0 then J 0 cannot contain a squarefree monomial not divisible by xi. Thus xi dividesevery squarefree monomial in J 0 and hence every monomial in J 0. This forces J 0 to haveheight at most one, a contradiction. Therefore I 0 contains every monomial of degree d � 1.As m0d�1 � I 0, Theorem 2.1 now shows that I 0m0 cannot be licci. �
Lemma 2.5. Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k and let I be an m-primary monomial ideal. If I# = xBK for some monomial xB = xb11 � � � xbdd and a monomial
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ideal K with 0 6= K 6= S, then the ideal I 0 = (xa1�b11 ; : : : ; xad�bdd ) + K is obtained from I bya double link de�ned by the monomial regular sequences xa11 ; : : : ; xadd and xa1�b11 ; : : : ; xad�bdd .
Proof. It su�ces to prove that (xa11 ; : : : ; xadd ) : I = (xa1�b11 ; : : : ; xad�bdd ) : I 0. This followsfrom the chain of equalities (xa11 ; : : : ; xadd ) : I = (xa11 ; : : : ; xadd ) : xBK = ((xa11 ; : : : ; xadd ) :xB) : K = (xa1�b11 ; : : : ; xad�bdd ) : K = (xa1�b11 ; : : : ; xad�bdd ) : I 0: �
Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k, let I be an m-primary monomialideal, and consider the standard form I = (xa11 ; : : : ; xadd ) + I#. We set If0g = I. If I is not acomplete intersection then I# can be written uniquely as I# = xBK , where xB = xb11 � � � xbddis a monomial and K a monomial ideal of height at least two. We de�ne

If1g = (xa1�b11 ; : : : ; xad�bdd ) +K:
If on the other hand I is a complete intersection we set If1g = S. For n > 1 we de�neinductively Ifng = (Ifn�1g)f1g provided Ifn�1g 6= S. Observe that the representation ofIf1g 6= S above may not be in standard form since K could contain a pure power of avariable; in fact this happens exactly when �(If1g) < �(I). Also notice that according toLemma 2.5, the ideals I and Ifng 6= S are linked by a sequence of 2n links de�ned bymonomial regular sequences.If A � Rd�0 is a �nite set of points we can de�ne a set Af1g � Rd�0 obtained from Aby removing the points on the coordinate axes and then translating the remaining set untileach coordinate hyperplane contains a point of the set. Iterating one de�nes Afmg. The setA = fCg of exponents of the minimal monomial generators xC of I can be reduced to theempty set by this procedure, i.e., Afmg = ; for some m if and only if Ifng = S for some n.It is this condition that characterizes the licci property:
Theorem 2.6. Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k and let I be anm-primary monomial ideal. The following conditions are equivalent :

(1) I can be linked to a complete intersection by a sequence of links de�ned by monomialregular sequences.(2) I can be linked to a complete intersection by a sequence of links de�ned by homoge-neous regular sequences.(3) Im is licci in Sm.(4) (Ifng)# has height at most one whenever Ifng 6= S.(5) Ifng = S for some n.
Proof. (1) ) (2) ) (3): The implications are obvious.(3) ) (4): According to Lemma 2.5 the ideals ( Ifng)m are licci as well. Now apply Theorem2.4.(4) ) (5): Write � for the sum of the degrees of homogeneous minimal generators of ahomogeneous ideal. We use induction on �(I). We may assume that If1g 6= S. Since I# hasheight at most one it follows that xB 6= 1 in the de�nition of If1g. Therefore �(If1g) < �(I)and we may apply the induction hypothesis to If1g.
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(5) ) (1): By Lemma 2.5 we may replace I by Ifn�1g to assume that If1g = S. Butthen I is an almost complete intersection and hence linked to a complete intersection by amonomial regular sequence. �
Notice that Theorem 2.6 immediately implies the well known fact that I is licci if d � 2,as can be seen from condition (4).

Corollary 2.7. Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k and let I and L bem-primary monomial ideals with I# = L#. Then I is licci if and only if L is licci.
Proof. The ideals If1g and Lf1g have the same monomial minimal generators except possiblyfor the pure powers. Hence (If1g)# = (Lf1g)#, and inductively (Ifng)# = (Lfng)# whenevereither ideal is de�ned. Now use condition (4) of Theorem 2.6. �
Remark 2.8. Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k and let I be anm-primary ideal generated by at most 5 monomials. Then I is licci. Indeed since I is licciif it is an almost complete intersection or if d � 2, we may assume that d = 3. Hence I# isgenerated by at most two monomials, and the same is true for ( Ifng)# as long as Ifng 6= S.The two monomials generating ( Ifng)# must have a common factor 6= 1. Therefore condition(4) of Theorem 2.6 implies that I is licci.
Discussion 2.9. Let S = k[x1; : : : ; xd] be a polynomial ring over a �eld k and let I be an m-primary monomial ideal. If I is licci then Theorem 2.6 and Lemma 2.5 show that the sequenceof double links I; If1g; : : : ; Ifng; : : : leads to a monomial almost complete intersection Ifng,which is either a complete intersection or directly linked to a complete intersection. Part(4) of Theorem 2.6 provides an algorithm for deciding when an m-primary monomial is licci.Furthermore, the following statements hold:

(1) I � If1g � : : : � Ifng � : : : .(2) The chain of ideals in (1) stabilizes at S if and only if I is licci.(3) The sequence of double links I; If1g; : : : ; Ifng; : : : is the unique sequence of doublelinks de�ned by using monomial regular sequences of smallest possible degrees atevery step.
Part (1) is obvious from the de�nition and (2) follows from Theorem 2.6. To see (3)we may assume that I is not a complete intersection. Consider the standard form I =(xa11 ; : : : ; xadd )+I#, and write I# = xBK with xB = xb11 � � � xbdd a monomial and K a monomialideal of height at least two. According to Lemma 2.5 it su�ces to show that xa1�b11 ; : : : ; xad�bddis the monomial regular sequence of minimal degrees in ( xa11 ; : : : ; xadd ) : I. Suppose withoutloss of generality that xn1 2 (xa11 ; : : : ; xadd ) : I for some n � a1. It follows that xBK �(xa1�n1 ; xa22 ; : : : ; xadd ). However, no minimal monomial generator of xBK lies in (xa22 ; : : : ; xadd )by de�nition of I# = xBK . We conclude that xBK � (xa1�n1 ), hence xB 2 (xa1�n1 ) as K hasheight at least two. Therefore b1 � a1 � n, which gives n � a1 � b1. This proves part (3).
Since Theorem 2.6 gives a complete characterization of when an m-primary monomial idealis licci, a natural question becomes the following: when is an arbitrary m-primary ideal in the
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same linkage class as a monomial ideal? Obviously this is a broader class than licci ideals,but we do not know any criterion for an ideal to be in the linkage class of a monomial ideal.However, there is an obstruction: if S = k[x1; : : : ; xd] is a polynomial ring over a �eld k andI a Cohen-Macaulay ideal in the linkage class of a monomial ideal, then ( S=I)m �= T=(x),where T is a reduced local ring and x is regular on T .

3. Strong Liaison
In this section we consider the consequences of Theorem 2.6 for non-monomial ideals. Inparticular we study the relationship between an ideal being licci and its initial ideal in someterm order being licci. Fix a polynomial ring S = k[x1; : : : ; xd] and a term order >. WhenI is an ideal in S, we let in(I) denote the initial ideal of I with respect to >. We call asequence of elements f1; : : : ; fn super regular if in(f1); : : : ; in(fn) form a regular sequence.When f1; : : : ; fn generate a zero-dimensional ideal, this condition means that after possiblyreordering f1; :::; fn, one has in(fi) = xaii for some positive integers a1; : : : ; an. We say I isstrongly licci if I can be linked to an ideal generated by a super regular sequence in such away that all the regular sequences used in the chain of links are super regular. Notice that inthis language Theorem 2.6 implies that an m-primary licci monomial ideal is strongly licci.Finally, observe that a super regular sequence is a Gr�obner basis for the ideal it generates[1, 15.15].

Lemma 3.1. Let S = k[x1; : : : ; xd] with a �xed term order >, and let I and J be two zero-dimensional ideals linked via the super regular sequence f1; : : : ; fd. Then in(I) and in(J) arelinked via the regular sequence in(f1); : : : ; in(fd).
Proof. We �rst prove that in(I) � in(J) � (in(f1); : : : ; in(fd)). Let in(f) 2 in(I) and in(g) 2in(J) for elements f 2 I and g 2 J . Then in(f) � in(g) = in(fg) 2 in((f1; : : : ; fd)) =(in(f1); : : : ; in(fd)), where the last equality follows from the fact that f1; : : : ; fd are a Gr�obnerbasis for (f1; : : : ; fd).Hence in(J) � (in(f1); : : : ; in(fd)) : in(I). To prove equality, it su�ces to show thatdimk(S= in(J)) = dimk S=((in(f1); : : : ; in(fd)) : in(I)). But dimk(S= in(J)) = dimk(S=J ) =dimk(S=(f1; : : : ; fd)) � dimk(S=I) = dimk(S= in((f1; : : : ; fd))) � dimk(S= in(I)) =dimk(S=((in(f1); : : : ; in(fd)) : in(I))). �
Theorem 3.2. Let S = k[x1; : : : ; xd] with a �xed term order >, and let I be a zero-dimensional ideal. Then in(I) is licci if and only if I is strongly licci.
Proof. Lemma 3.1 immediately implies that if I is strongly licci then in(I) is licci. For theproof of the converse suppose that in( I) is licci. Theorem 2.6 shows that in this case in( I)can be linked to a complete intersection by a sequence of links only using monomial regularsequences. Let xa11 ; : : : ; xadd be the �rst such regular sequence contained in in( I). Choosefi 2 I such that in(fi) = xaii . By construction f1; : : : ; fd is a super regular sequence in I.Setting J = (f1; : : : ; fd) : I, we use Lemma 3.1 to conclude that in(J) is the link of in(I)
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with respect to (xa11 ; : : : ; xadd ). Inducting on the least number of links needed to link in( I)to a complete intersection via monomial linkage completes the proof. �
It is worth remarking that the conclusion that I is strongly licci if in(I) is licci relies onTheorem 2.6 and does not follow directly from standard techniques of \Gr�obner deforma-tion".

Corollary 3.3. Let S = k[x; y] and let I be a zero-dimensional ideal. Then I is stronglylicci with respect to every term order.
Proof. It su�ces to prove in(I) is licci, which is well-known (see also the remark after The-orem 2.6). �
Remark 3.4. Notice that Theorems 2.6 and 3.2 give a complete characterization for whena zero-dimensional ideal is strongly licci with respect to a given term order. However, onemight want to change either the variables or the term order as the next example shows.
Example 3.5. Let S = k[x; y; z] and I = (x2 + y2; y2 + z2; xy; xz; yz). Use the term orderrevlex with the variables ordered x > y > z. The initial ideal is in(I) = (x2; y2; xy; xz; yz; z3)which is not licci since (in(I))# has height two. Hence I is not strongly licci with respect tothis order. However, I is licci as it is a height three Gorenstein ideal.On the other hand, one has I = ((x�y)2; (y�z)2; xy; (x�y)z; yz), and changing variablesto x0 = x � y, y0 = y � z and z0 = z allows us to rewrite the ideal I = ((x0)2; (y0)2; (z0)2 �x0y0; x0z0; x0y0+ y0z0). In revlex order with z0 > y0 > x0 these generators form a Gr�obner basisand the initial ideal is ((x0)2; (y0)2; (z0)2; x0z0; y0z0). This is a licci monomial ideal.
The above theorem and example raise the question of whether or not zero-dimensionallicci ideals have licci initial ideals with respect to some term order if in addition we allowa change of variables. Equivalently, are zero-dimensional licci ideals strongly licci aftera suitable change of variables and choice of term order? This seems unlikely. A weakerquestion is whether there exists a monomial licci ideal with the same Hilbert function asany given m-primary homogeneous ideal I linked to a complete intersection by a sequenceof links de�ned by homogeneous regular sequences. There is an \obvious" way to try toconstruct such a monomial ideal: starting with a sequence of links from I to (x1; : : : ; xd),simply go backwards by always using monomial regular sequences of the same degrees asthe homogeneous regular sequences in the original linking sequence. The problem with thisidea is that there may not be the appropriate pure powers in the monomial ideals obtainedvia this algorithm. It is an interesting question whether or not the appropriate pure powerswould actually exist.

4. Glicci Mononial Ideals
The next proposition can be found in [5, 5.10] in the graded case; the local case givenbelow follows easily from the same proof. We give an easy proof for the bene�t of the reader.
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Proposition 4.1. Let (R;m) be a local Gorenstein ring, J and K proper ideals of R, andx 2 m. Assume that the ring R=J is Cohen-Macaulay and generically Gorenstein and thatthe ideal J + xK is unmixed of height greater than ht J . Then J + xK and J + K areGorenstein doubly linked.
Proof. We write � for images in R = R=J . Notice that x is a regular element on R andthat K is an unmixed ideal of height one. Since the ring R is generically Gorenstein ithas a canonical ideal, meaning an ideal ! of positive height that is a canonical module ofR. Multiplying with an R-regular element we may assume that ! � K . Let H be anideal in S with J � H � J + K and H = !. Since ! and x! are canonical ideals, itfollows that both R=H �= R=! and R=J + xH �= R=x! are Gorenstein rings. The elementx being R-regular one also has x! : xK = ! : K in R. Therefore back in R we obtain(J + xH) : (J + xK) = H : (J + K). As J + xH � J + xK and H � J + K and all fourideals are unmixed of the same height, we conclude that J + xK and J +K are Gorensteindoubly linked. �
The proof of the next theorem was inspired by the work of Migliore and Nagel in [7, 3.5],where they prove that strongly stable Cohen-Macaulay monomial ideals are glicci in thegraded sense, i.e., using only homogeneous Gorenstein ideals in the links. The problem forsuch monomial ideals reduces at once to the m-primary case. Their proof can be generalizedas follows:

Theorem 4.2. Let S = k[x1; : : : ; xd] be a polynomial ring over an in�nite �eld k and let Ibe an m-primary monomial ideal. Then Im is glicci in Sm.
Proof. Write x = xd. We use induction on a, the smallest integer so that xa 2 I. Ifa = 1 we are done by induction on d. Otherwise we may write I = I0S + xK with I0 =I \ k[x1; : : : ; xd�1] and K a proper monomial ideal in S. By induction on a it will su�ce toprove that Im and (I0S +K)m are Gorenstein doubly linked.To this end we wish to apply Proposition 4.1. Thus write y = xa and let f�j jj 2 Ng be asequence of pairwise distinct elements in k. Similar to the proof of Theorem 2.4 we de�ne amap 	 from the set of monomials in k[x1; : : : ; xd�1] to S. For 1 � i � d� 1 we set

	(xni ) =
nY

j=1(xi + �jy);
and we extend this de�nition multiplicatively,

	(xc11 � � � xcd�1d�1 ) = 	(xc11 ) � � �	(xcd�1d�1 ):
Finally, we de�ne J to be the ideal in S generated by the images 	(xC) of the monomialsxC in I0.Obviously I0S + yS = J + yS. Since y 2 xK it then follows that I = I0S + xK = J + xKand I0S+K = J+K . Hence it su�ces to prove that (J+xK)m and (J+K)m are Gorensteindoubly linked. As in the proof of Theorem 2.4 one sees that the element y is regular on S=J .In particular Sm=Jm is a one-dimensional Cohen-Macaulay ring. In view of Proposition 4.1
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is remains to show that this ring is reduced, hence generically Gorenstein. Thus let p be aminimal prime of J . Let n be an integer so that xni 2 I0 for 1 � i � d� 1, and consider theproducts contained in J ,

J 3 	(xni ) =
nY

j=1(xi + �jy):
For every i, the ideal p contains at most one factor xi+�j(i)y, because �1; : : : ; �n are pairwisedistinct elements of k and p does not contain y. Therefore in the ring Sp we obtain

Jp � (	(xn1 ); : : : ;	(xnd�1))p = (x1 + �j(1)y; : : : ; xd�1 + �j(d�1)y)p:
This shows that indeed Jp = pp. �
The special type of Gorenstein double linkage that arises in Proposition 4.1 has beendubbed Gorenstein biliaison . In this language the proof of Theorem 4.2 gives the strongerstatement that Im is linked to a complete intersection in Sm by a sequence of Gorensteinbiliaisons.
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