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A CRITERION FOR INTEGRAL DEPENDENCE OF MODULES

Bernd Ulrich and Javid Validashti

Abstract. Let R be a universally catenary locally equidimensional Noetherian ring.

We give a multiplicity based criterion for an arbitrary finitely generated R-module to be
integral over a submodule. Our proof is self-contained and implies the previously known

numerical criteria for integral dependence of ideals and modules.

1. Introduction

Let R be a Noetherian ring and U ⊂ E finitely generated R-modules. Our goal
is to give a multiplicity based criterion for U to be a reduction of E. First assume
U ⊂ E to be submodules of a free R-module F := Re. Recall that U is a reduction
of E or, equivalently, E is integral over U if Ei+1 = UEi for some i ≥ 0, where the
products and powers are taken in the polynomial ring A := Sym(F ) = R[x1, . . . , xe].
This condition can also be expressed in terms of ring extensions – it means that the
inclusion of R-subalgebras R[U ] ⊂ R[E] of A is an integral extension. One sometimes
calls R[E] the Rees algebra of E (more correctly, of E ⊂ F ), and when (R,m) is local
we write `(E) := dim R[E]⊗R R/m for the analytic spread of E. The analytic spread
satisfies the inequality `(E) ≤ d + e − 1 if d := dim R > 0, and it gives the smallest
possible number of generators of a reduction of the module E, at least when R/m is
infinite. The notions of reduction and analytic spread of a module E do not depend
on the embedding E ⊂ F into a free module, although the algebra R[E] does [5].
To define integral dependence for arbitrary finitely generated R-modules U ⊂ E, one
maps a free module Re onto the R-dual E∗ of E and replaces E by its image in Re∗,
thus reverting to the case treated above [5]. Hence we may always assume that U ⊂ E
are submodules of a free module.

Multiplicity based criteria for reductions go back to Rees [18], who treated the
case of m-primary ideals in an equidimensional universally catenary Noetherian local
ring (R,m) – two such ideals J ⊂ I are integral over each other if and only if they
have the same Hilbert-Samuel multiplicity. Conversely, whenever this equivalence
holds in a Noetherian local ring R, then R has to be equidimensional and universally
catenary [16]. Rees’ result has been generalized in various directions, most notably
to modules of finite colength in a free module and, more generally, to ideals and then
modules whose quotients have finite length or, yet more generally, have ‘sufficiently
high’ codimension [2], [3], [8], [10], [11], [12], [17], [19], [21] ([8] works for arbitrary
modules U ⊂ E, but the codimension conditions are built into the definition of the
multiplicity which uses a codimension filtration descending to the integral closure of
the module). These criteria are all based on the Hilbert-Samuel or Buchsbaum-Rim
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multiplicity, and variations thereof. The first algebraic criterion that does not rely
on any kind of finiteness or codimension condition is due to Flenner and Manaresi
[6], who use the concept of j-multiplicity introduced by Achilles and Manaresi [1].
However, their result is restricted to the case of ideals and their arguments cannot
be extended to modules. The purpose of the present article is to fill this gap and
at the same time provide a self-contained, fairly short proof that implies the earlier
algebraic results. In the complex-analytic setting Gaffney and Gassler [9] had given
a criterion for integral dependence of arbitrary ideals that precedes [6] and uses the
Segre numbers defined in [12].

Thus let (R,m) be a Noetherian local ring of dimension d and E a submodule of a
free R-module F := Re. We introduce a multiplicity j(E) for E that generalizes the
Buchsbaum-Rim multiplicity defined when E ⊂ F has finite colength as well as the
j-multiplicity of Achilles-Manaresi that applies when E ⊂ R is an ideal. We prove
that the function

Σ(n) :=
n−1∑
i=0

λR(Γm(
EiFn−i

Ei+1Fn−i−1
))

is polynomial of degree at most d + e− 1 for n � 0,

Σ(n) =
j(E)

(d + e− 1)!
nd+e−1 + lower terms .

Here λR(−) denotes length and Γm(−) = H0
m(−) zeroth local cohomology. The mul-

tiplicity j(E) so defined is a non-negative integer. It can also be described as

j(E) = (d + e− 1)! lim
n→∞

Σ(n)
nd+e−1

.

If E ⊂ F has finite colength, then Σ(n) = λR(Fn/En), and hence j(E) is the
Buchsbaum-Rim multiplicity. If on the other hand, E ⊂ R is an ideal, then Σ(n)
is the so-called first sum transform of the function λR(Γm(En/En+1)) used in the
definition of the j-multiplicity of an ideal and thus again our multiplicity coincides
with the earlier one. One may be tempted to define a multiplicity j(E) based on the
function n 7→ λR(Γm(Fn/En)) instead. This approach however fails, as the simpler
function need not be polynomial eventually [4].

Our main result is that the new multiplicity can indeed be used to detect integral
dependence of modules:

Theorem 1.1. Let R be a universally catenary locally equidimensional Noetherian
ring, let U ⊂ E be submodules of a free R-module F := Re, and assume that Up = Fp

for every minimal prime p of R. The following are equivalent :
(i) j(Uq) = j(Eq) for every q ∈ Spec(R).
(ii) j(Uq) ≤ j(Eq) for every q ∈ SuppR(F/U) with dim Rq = `(Uq)− e + 1.
(iii) U is a reduction of E.

One easily sees that the set of primes considered in (ii) is finite (Remark 4.2).
The case where U ⊂ E are ideals is the afore mentioned criterion of Flenner and

Manaresi [6, 3.3]. However, our proof is different and recovers the earlier result for
ideals without the use of hyperplane sections. We deduce Theorem 1.1 from a more
general theorem – a multiplicity based criterion for integral dependence of ideals gen-
erated by linear forms in a graded R-algebra A (Theorem 3.4). The difference to the
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Flenner-Manaresi result is that our criterion for such ideals is local in the primes of the
ground ring R, whereas theirs involves primes of the algebra A and would not suffice
to prove Theorem 1.1 (Remark 4.6). We make use of two multiplicities associated to
ideals generated by linear forms, which we call j∗ and j#. They coincide in most cases
(Proposition 3.2), but serve different purposes. The first multiplicity is more readily
seen to be additive on short exact sequences of graded modules (Theorem 2.5), and
this immediately implies that it remains constant when passing to a reduction (The-
orem 2.6). The second multiplicity on the other hand is more suited for proving that,
conversely, the constancy of the multiplicity implies integral dependence (Theorem
3.3(b)); furthermore it contains as a special case the j-multiplicity of a module, which
in turn generalizes the Buchsbaum-Rim as well as the Achilles-Manaresi multiplicity.
The main idea behind the definition of j∗ and j# is to consider an ‘internal’ grading
on associated graded rings and modules that is induced by the grading of the ambient
ring A. Our approach is partly inspired by [21].

2. The multiplicity j ∗

We begin by recalling the notion of j-multiplicity for graded modules as introduced
and developed in [7, 6.1]. Let R be a Noetherian ring with a fixed maximal ideal m,
and S a standard graded Noetherian R-algebra, i.e., a graded R-algebra with S0 = R
that is generated by finitely many homogeneous elements of degree one. Consider a
finitely generated graded S-module N . Notice that Γm(N) is a graded S-submodule of
N . In particular, Γm(N) is finitely generated over S. Thus there exists a fixed power
ms of m that annihilates it, and then Γm(N) can be regarded as a finitely generated
graded module over S/msS, a standard graded Noetherian algebra over the Artinian
local ring R/ms. Hence Γm(N) has a Hilbert function that is eventually polynomial
of degree at most dim N − 1 and gives the multiplicity e(Γm(N)). Now let D be any
integer with D ≥ dim N . One defines the j-multiplicity jD(N) of the graded module
N to be e(Γm(N)) when D = dim Γm(N) and zero otherwise. It easily follows that
jD(N) = 0 if (and only if) dim N/mN < D, a fact we will use frequently in this paper.
Also notice that

jD(N) = (D − 1)! lim
n→∞

λR(Γm(Nn))
nD−1

.

If D = dim N one simply writes j(N) instead of jD(N).

Remark 2.1. Later we will consider the set of prime ideals {q ∈ Spec(R) | j(Nq) 6= 0}
where the j-multiplicity does not vanish. Notice that this set is finite as each of its
elements is contracted from a minimal prime in SuppS(N).

We will only use the relatively easy fact about j-multiplicities that they are additive
on short exact sequences of graded modules, see [7, 6.1.2]:

Proposition 2.2. If 0 → N ′ → N → N ′′ → 0 is an exact sequence of finitely
generated graded S-modules and D is an integer with D ≥ dim N , then

jD(N) = jD(N ′) + jD(N ′′) .
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We are now ready to introduce the multiplicity j∗. The main idea here is to
consider a suitable grading on extended Rees modules that we call ‘internal grading’.
A similar grading has been used in [13, 8.1.3].

Definition and Discussion 2.3. Let (R,m) be a Noetherian local ring, A a standard
graded Noetherian R-algebra, I an A-ideal generated by linear forms, and M a finitely
generated graded A-module.

Let t be a variable. Using the convention that Ii = A whenever i ≤ 0, we write

RI(M)+ := ⊕i∈ZMIiti ⊂ M ⊗R R[t, t−1]

for the extended Rees module of M with respect to I or of I on M . This is a module
over the extended Rees ring RI(A)+. It gives rise to the associated graded module of
M with respect to I or of I on M ,

GI(M) := RI(M)+/t−1RI(M)+ = ⊕∞i=0I
iM/Ii+1M ,

which is a module over the associated graded ring GI(A) of the same dimension as
M .

Assigning degree zero to the variable t, the Laurent polynomial ring A[t, t−1] be-
comes a standard graded Noetherian R[t, t−1]-algebra, and M [t, t−1] := M⊗RR[t, t−1]
a finitely generated graded module over this algebra. The extended Rees ring RI(A)+

is a homogeneous R[t−1]-subalgebra of A[t, t−1], and hence a standard graded Noe-
therian R[t−1]-algebra. Furthermore RI(M)+ is a graded RI(A)+-submodule of
M [t, t−1], thus a finitely generated graded module over RI(A)+. With respect to
this grading, GI(A) = RI(A)+/t−1RI(A)+ becomes a standard graded Noetherian
R-algebra and GI(M) = RI(M)+/t−1RI(M)+ a finitely generated graded module
over this algebra. Notice that

[GI(M)]n = ⊕∞i=0[I
iM/Ii+1M ]n .

The grading so defined on the extended Rees module and the associated graded mod-
ule will be referred to as internal grading – for it is induced by the grading on the
module M .

Now let D be an integer with D ≥ dim M . We define the j∗-multiplicity of M with
respect to I or of I on M , as

j ∗D(I,M) := jD(GI(M)) ,

where GI(M) is graded by the internal grading. Again notice that

j ∗D(I, M) = (D − 1)! lim
n→∞

∑∞
i=0 λR(Γm([IiM/Ii+1M ]n))

nD−1
.

If D = dim M we simply write j∗(I, M) instead of j ∗D(I,M).

Remark 2.4. In the setting of Definition 2.3 one can also consider the usual j-
multiplicity jD(I,M) in the sense of [1, 1.2] and [7, 6.1.5]. It is defined as jD(GI(M)⊗
AAn), where n denotes the homogeneous maximal ideal of A and GI(M) is endowed
with the usual grading, assigning degree zero to the elements of A and degree one to
t. Again one writes j(I,M) := jD(I,M) when D = dim M . This notion does not
coincide with ours and, as we will see in Remark 4.6, would not be suitable for the
purpose of the present paper.
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For example, let R = k[[y1, . . . , yd]] be a power series ring over a field k in d >
0 variables y1, . . . , yd, M := A := R[x1, . . . , xd] a polynomial ring over R in the
variables x1, . . . , xd, and I the A-ideal (yixi | 1 ≤ i ≤ d). With the internal grading
GI(M) is again a standard graded algebra over (R,m). In fact, it is a polynomial
ring (A/I)[z1, . . . , zd] because I is a complete intersection. The ideal Γm(GI(M)) in
this ring is generated by the image, x say, of x1 · · ·xd. Hence it is isomorphic to
GI(A)/annGI(A)(x) and so to k[x1, . . . , xd, z1, . . . , zd]. Therefore j∗(I, M) = 1. In
the usual grading however, the graded components of GI(M)n all have positive depth
as modules over [GI(A)n]0 = An/In, hence their zeroth local cohomology vanishes.
Thus j(I,M) = 0.

We will need the fact that the multiplicity j∗ is additive on short exact sequences:

Theorem 2.5. Let R be a Noetherian local ring, A a standard graded Noetherian
R-algebra, and I an A-ideal generated by linear forms. If 0 → M ′ → M → M ′′ → 0
is an exact sequence of finitely generated graded A-modules and D is an integer with
D ≥ dim M , then

j ∗D(I,M) = j ∗D(I,M ′) + j ∗D(I,M ′′) .

Proof. The proof is similar to that of [7, 1.2.6 and 6.1.7]. Throughout we consider all
extended Rees modules as graded by the internal grading. Thus RI(A)+ is a standard
graded R[t−1]-algebra. When computing j-multiplicities of graded modules over this
algebra we use the maximal ideal (m, t−1) of R[t−1], where m stands for the maximal
ideal of R. Also notice that t−1 is homogeneous of degree zero.

One has the following commutative diagram of graded RI(A)+-modules with exact
rows and columns,
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One has the following commutative diagram of gradedRI(A)+-modules with exact rows
and columns,

0 0 0

0 - N
?

- RI(M)+
?

- RI(M ′′)+
?

- 0

0 - N

t−1

?
- RI(M)+

t−1

?
- RI(M ′′)+

t−1

?
- 0

The Snake Lemma yields an exact sequence of finitely generated graded RI(A)+-modules
of dimension at most D,

0 −→ N/t−1N −→ GI(M) −→ GI(M ′′) −→ 0 . (1)

Next consider the following commutative diagram with exact rows and columns,

0

0 0 U
?

0 - RI(M ′)+
?

- N
?

- L := N/RI(M ′)+
?

- 0

0 - RI(M ′)+

t−1

?
- N

t−1

?
- L := N/RI(M ′)+

t−1

?
- 0

V
?

0
?

Again from the Snake Lemma we obtain the exact sequence of finitely generated graded
RI(A)+-modules having dimension at most D,

0 −→ U −→ GI(M ′) −→ N/t−1N −→ V −→ 0 . (2)

.

The Snake Lemma yields an exact sequence of finitely generated graded RI(A)+-
modules of dimension at most D,

(1) 0 −→ N/t−1N −→ GI(M) −→ GI(M ′′) −→ 0 .
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Next consider the following commutative diagram with exact rows and columns,
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0 0 0

0 - N
?

- RI(M)+
?

- RI(M ′′)+
?

- 0

0 - N

t−1

?
- RI(M)+

t−1

?
- RI(M ′′)+

t−1

?
- 0

The Snake Lemma yields an exact sequence of finitely generated graded RI(A)+-modules
of dimension at most D,

0 −→ N/t−1N −→ GI(M) −→ GI(M ′′) −→ 0 . (1)

Next consider the following commutative diagram with exact rows and columns,

0

0 0 U
?

0 - RI(M ′)+
?

- N
?

- L := N/RI(M ′)+
?

- 0

0 - RI(M ′)+

t−1

?
- N

t−1

?
- L := N/RI(M ′)+

t−1

?
- 0

V
?

0
?

Again from the Snake Lemma we obtain the exact sequence of finitely generated graded
RI(A)+-modules having dimension at most D,

0 −→ U −→ GI(M ′) −→ N/t−1N −→ V −→ 0 . (2)

.

Again from the Snake Lemma we obtain the exact sequence of finitely generated
graded RI(A)+-modules having dimension at most D,

(2) 0 −→ U −→ GI(M ′) −→ N/t−1N −→ V −→ 0 .

The above diagram also yields the exact sequence of finitely generated gradedRI(A)+-
modules

(3) 0 −→ U −→ L
t−1

−−→ L −→ V −→ 0 .

For i ≤ 0 the coefficient modules of ti in RI(M ′)+ and in N coincide, hence the action
of t−1 on L is nilpotent. Therefore the dimension of L is at most that of N/t−1N ,
which is bounded by D. Thus all modules occurring in the exact sequence (3) have
dimension at most D.

Now (1), (2) and (3) are exact sequences of finitely generated graded RI(A)+-
modules of dimension at most D. Hence we may compute the j-multiplicity jD of
graded modules along these sequences. Using the additivity of this multiplicity as
stated in Proposition 2.2 we deduce that indeed

j ∗D(I,M) = j ∗D(I,M ′) + j ∗D(I,M ′′) .

�
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We will use the previous theorem to prove that the multiplicity j∗ does not change
when passing to a reduction. For J ⊂ I two A-ideals and M a Noetherian A-module,
we say that J is a reduction of I on M or I is integral over J on M if Ii+1M = JIiM
for some i ≥ 0.

Theorem 2.6. Let A be a standard graded Noetherian algebra over a Noetherian
local ring, J ⊂ I A-ideals generated by linear forms, M a finitely generated graded
A-module, and D an integer with D ≥ dim M . If J is a reduction of I on M then
j ∗D(J,M) = j ∗D(I,M).

Proof. Let i ≥ 0 be an integer such that I(IiM) = Ii+1M = J(IiM). One has
GI(IiM) = GJ(IiM) and thus j ∗D(I, IiM) = j ∗D(J, IiM). On the other hand, set
Mk := IkM/Ik+1M for k ≥ 0. Notice that IMk = 0 = JMk, hence GI(Mk) = Mk =
GJ(Mk) and then j ∗D(I,Mk) = j ∗D(J,Mk).

Using the additivity of the multiplicity j∗ as proved in Theorem 2.5, we now
conclude that

j ∗D(I,M) = j ∗D(I, IiM) +
∑i−1

k=0 j ∗D(I,Mk)
= j ∗D(J, IiM) +

∑i−1
k=0 j ∗D(J,Mk)

= j ∗D(J,M) .

�

3. The multiplicity j#

To prove a converse of Theorem 2.6 we introduce yet another multiplicity, j#, that
is more suited for this purpose. The definition is inspired by [21, 3.2].

Definition and Discussion 3.1. In addition to the assumptions of Definition 2.3
suppose that M is generated in degree zero. Again consider GI(M) as graded by the
internal grading. We set

j #
D (I,M) := jD(A1GI(M)) ,

and call this integer the j#-multiplicity of M with respect to I or of I on M .
To be more explicit, the module A1GI(M) has graded components

[A1GI(M)]n = ⊕∞i=0[I
iA1M/Ii+1M ]n = ⊕n−1

i=0 [IiM/Ii+1M ]n ,

where the last equality holds because M is generated in degree zero. Thus the Hilbert
function of Γm(A1GI(M)) is

Σ#
I,M (n) := λR(Γm([A1GI(M)]n)) =

n−1∑
i=0

λR(Γm([IiM/Ii+1M ]n)) .

The corresponding Hilbert polynomial has degree at most D − 1 and is of the form

j #
D (I,M)
(D − 1)!

nD−1 + lower terms .

It follows that

j #
D (I,M) = (D − 1)! lim

n→∞

∑n−1
i=0 λR(Γm([IiM/Ii+1M ]n))

nD−1
.

Again if D = dim M we write j#(I, M) instead of j #
D (I,M).
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Even when R is not local, one has as an immediate consequence of Remark 2.1
that the set {q ∈ Spec(R) | j#(Iq,Mq) 6= 0} is finite and that each of its elements is
contracted from a minimal prime in SuppGI(A)(A1GI(M)). Hence for 0 ≤ i ≤ dim R
we may define the ‘layered multiplicities’

ji #(I,M) :=
∑

q

j#(Iq,Mq) ,

where the sum is taken over all prime ideals q of R with dim(R/annR(M))q = i.

It will be useful to clarify the relationship between the two multiplicities j∗ and
j#:

Proposition 3.2. We use the notation of Definition 3.1. If dim M/mM < D then
j ∗D(I,M) = j #

D (I,M).

Proof. Factoring out the annihilator of M we may assume that M is a faithful A-
module. Again we consider GI(M) as graded by the internal grading. There is an
exact sequence of graded GI(A)-modules,

0 −→ A1GI(M) −→ GI(M) −→ GI(M)/A1GI(M) −→ 0 .

By the additivity of the j-multiplicity, Proposition 2.2, we have

jD(GI(M)) = jD(A1GI(M)) + jD(GI(M)/A1GI(M)) .

Recall that jD(GI(M)) = j ∗D(I,M) and jD(A1GI(A)) = j #
D (I,M).

To obtain jD(GI(M)/A1GI(M)) = 0 we show that GI(M)/A1GI(M) + mGI(M)
has dimension less than D, in fact that GI(A)/A1GI(A)+mGI(A) has dimension less
than D. Thus write B := GI(A)/A1GI(A) and notice that B = ⊕∞n=0[I

n]n. Let Q be
any minimal prime of B. We need to prove that B/Q+mB has dimension less than D.
As B can be embedded into A there exists a minimal prime P ∈ Spec(A) = SuppA(M)
that contracts to Q. The dimension formula for graded domains [22, 1.1.2] shows that
dim B/Q ≤ dim A/P. Thus if dimA/P < D then indeed dim B/Q + mB < D. If
on the other hand dim A/P = D then P cannot contain m because dim A/mA < D.
Thus Q does not contain m either and we conclude that dim B/Q+mB < dim B/Q ≤
dim A/P ≤ D. �

Returning to the example of Remark 2.4, the above proposition immediately gives
that j#(I,M) = j∗(I,M) = 1 in this case.

The next theorem provides a crucial step in the proof of our main result.

Theorem 3.3. Let (R,m) be a Noetherian local ring, A a standard graded Noe-
therian R-algebra, J ⊂ I A-ideals generated by linear forms, and M a graded A-
module generated by finitely many homogeneous elements of degree zero. Assume that
dim M/mM < dim M and Jq is a reduction of Iq on Mq for every prime q of R with
q 6= m.

(a) j#(J,M) ≥ j#(I,M).
(b) Suppose that R is universally catenary, M is equidimensional as an A-module,

and (I1)p = (A1)p for every prime p of R that is the contraction of a minimal
prime in SuppA(M). If j#(J,M) ≤ j#(I,M) then J is a reduction of I on
M .
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Proof. We may factor out the annihilator of M to assume that M is a faithful A-
module, say of dimension D. In particular, A is equidimensional of dimension D in
the setting of (b). Theorem 2.6 and Proposition 3.2 show that j#(J,M) does not
change when we replace J by the ideal generated by all linear forms in I that are
integral over J on M . Thus by our assumption on J and I we may suppose that
[IM/JM ]1 has finite length over R.

For any 0 ≤ i ≤ n− 1 consider the following inclusions,
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Theorem 3.3. Let (R,m) be a Noetherian local ring, A a standard graded Noetherian
R-algebra, J ⊂ I A-ideals generated by linear forms, and M a graded A-module generated
by finitely many homogeneous elements of degree zero. Assume that dim M/mM < dim M
and Jq is a reduction of Iq on Mq for every prime q of R with q 6= m.

(a) j#(J,M) ≥ j#(I,M).
(b) Suppose that R is universally catenary, M is equidimensional as an A-module,

and (I1)p = (A1)p for every prime p of R that is the contraction of a minimal
prime in SuppA(M). If j#(J,M) ≤ j#(I,M) then J is a reduction of I on M .

Proof. We may factor out the annihilator of M to assume that M is a faithful A-module,
say of dimension D. In particular, A is equidimensional of dimension D in the setting
of (b). Theorem 2.6 and Proposition 3.2 show that j#(J,M) does not change when we
replace J by the ideal generated by all linear forms in I that are integral over J on M .
Thus by our assumption on J and I we may suppose that [IM/JM ]1 has finite length
over R.

For any 0 ≤ i ≤ n− 1 consider the following inclusions,

[IiM ]n

[J iM ]n

-

[Ii+1M ]n

6

[J i+1M ]n

6

-

Recall that [IM/JM ]1 has finite length and that we can dispense of the functor Γm(−)
for modules of finite length. The left exactness of Γm(−) gives

λR(Γm(
[ J iM

J i+1M

]
n
)) + λR(

[ IiM

J iM

]
n
) ≥ λR(Γm(

[ IiM

J i+1M

]
n
)) . (4)

On the other hand, since Γm(−) is exact on short exact sequences where the left most
module has finite length, we obtain

λR(Γm(
[ IiM

J i+1M

]
n
)) = λR(

[ Ii+1M

J i+1M

]
n
) + λR(Γm(

[ IiM

Ii+1M

]
n
)) . (5)

Taking sums over i in (4) and (5) we deduce that

Σ#
J,M (n) +

n−1∑
i=0

λR(
[ IiM

J iM

]
n
) ≥

n∑
i=1

λR(
[ IiM

J iM

]
n
) + Σ#

I,M (n)

and hence

Σ#
J,M (n) ≥ λR(

[ InM

JnM

]
n
) + Σ#

I,M (n) , (6)

.

Recall that [IM/JM ]1 has finite length and that we can dispense of the functor Γm(−)
for modules of finite length. The left exactness of Γm(−) gives

(4) λR(Γm(
[ J iM

J i+1M

]
n
)) + λR(

[ IiM

J iM

]
n
) ≥ λR(Γm(

[ IiM

J i+1M

]
n
)) .

On the other hand, since Γm(−) is exact on short exact sequences where the left most
module has finite length, we obtain

(5) λR(Γm(
[ IiM

J i+1M

]
n
)) = λR(

[ Ii+1M

J i+1M

]
n
) + λR(Γm(

[ IiM

Ii+1M

]
n
)) .

Taking sums over i in (4) and (5) we deduce that

Σ#
J,M (n) +

n−1∑
i=0

λR(
[ IiM

J iM

]
n
) ≥

n∑
i=1

λR(
[ IiM

J iM

]
n
) + Σ#

I,M (n)

and hence

(6) Σ#
J,M (n) ≥ λR(

[ InM

JnM

]
n
) + Σ#

I,M (n) ,

where Σ# is the Hilbert function introduced in Definition 3.1. Recall that this function
is eventually polynomial of degree at most D − 1 and that it gives rise to the j#-
multiplicity of a module.
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Comparing coefficients in degree D− 1 in (6), one sees that j#(J,M) ≥ j#(I,M),
which is part (a). If j#(J,M) ≤ j#(I,M) then the function λR([InM/JnM ]n) is
bounded above by a polynomial of degree at most D−2. Part (b) will follow once we
have shown that this forces J to be a reduction of I on M , provided the assumptions
of (b) hold. Here we use the proof of [21, 3.3], which we repeat for the convenience
of the reader.

Thus consider the standard graded R-algebra B := R[I1] = ⊕∞n=0[I
n]n ⊂ A and

the graded B-module N := BM0 = ⊕∞n=0[I
nM ]n ⊂ M , which is generated by finitely

many homogeneous elements of degree zero. Again we consider the internal grading
on the associated graded module GJ1B(N). As [IM/JM ]1 has finite length over R,
it follows that B1GJ1B(N) = Γm(B1GJ1B(N)) and that the Hilbert function of this
module is Σ#

J1B,N (n) = λR([N/Jn
1 N ]n) = λR([InM/JnM ]n). If the latter function is

bounded by a polynomial of degree at most D− 2, we conclude that B1GJ1B(N) has
dimension less than D as a module over GJ1B(B).

Next we claim that the B-module N is equidimensional of dimension D. Indeed,
as M = AN0 is A-faithful and B ⊂ A, it follows that N is B-faithful. Hence it suffices
to show that B is equidimensional of dimension D. Thus let Q be a minimal prime
of B. There exists a minimal prime P of A lying over it because B ⊂ A. Write p
for the contraction of P to R. Since (I1)p = (A1)p by our assumption, we obtain
(B/Q)p = (A/P)p. Hence the dimension formula for graded domains [22, 1.1.2] gives

dim B/Q = dim R/p + trdegR/p B/Q = dim R/p + trdegR/p A/P = dim A/P .

But the latter dimension is D, showing that the B-module N is indeed equidimensional
of dimension D. Since R is universally catenary, the GJ1B(B)-module GJ1B(N) is
then equidimensional of dimension D as well – a standard fact proved by passing
through the extended Rees module [16, proof of 3.8].

Finally, as B1GJ1B(N) has dimension less than D and GJ1B(N) is equidimensional
of dimension D, we conclude that B1GJ1B(B) is contained in every minimal prime of
the annihilator of GJ1B(N). Hence a power of B1GJ1B(B) annihilates GJ1B(N). In
particular, a power of B1B/J1B = I1B/J1B annihilates N/J1N , showing that J is a
reduction of I on M . �

We are now ready to assemble the proof of our main theorem.

Theorem 3.4. Let R be a universally catenary Noetherian ring, A a standard graded
Noetherian R-algebra, J ⊂ I A-ideals generated by linear forms, and M a graded
A-module generated by finitely many homogeneous elements of degree zero. Assume
that the A-module M is equidimensional locally at every maximal ideal of R, and
(J1)p = (A1)p for every prime p of R that is the contraction of a minimal prime in
SuppA(M). The following are equivalent :

(i) j#(Jq,Mq) = j#(Iq,Mq) for every prime ideal q of R.
(ii) j#(Jq,Mq) ≤ j#(Iq,Mq) for every prime ideal q of R.
(iii) ji #(J,M) = ji #(I,M) for 1 ≤ i ≤ dim R.
(iv) ji #(J,M) ≤ ji #(I,M) for 1 ≤ i ≤ dim R.
(v) J is a reduction of I on M .

Proof. To prove that (v) implies (i) we replace R by any localization Rq and show that
if (v) holds then j#(J,M) = j#(I,M). Now (R,m) is local. If dim M/mM = dim M
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and M 6= 0, then J1 = A1 by our assumption and hence J = I. Thus we may
assume that dim M/mM < dim M as otherwise M = 0 or J = I. Now the asserted
implication follows from Theorem 2.6 and Proposition 3.2.

To show that (v) follows from (iv) we let q be any prime ideal of R. Assuming
that (iv) holds we prove by induction on d := dim Rq that Jq is a reduction of Iq on
Mq. We may suppose d > 0. Consider the union of q and the finitely many primes
in R of height ≤ d where j#(J,M) or j#(I,M) does not vanish. Localizing R at the
complement of this union does not change ji #(J,M) or ji #(I,M) for 1 ≤ i ≤ d. The
equidimensionality assumption on M is preserved as well, according to the dimension
formula for graded domains [22, 1.1.2]. Thus by our induction hypothesis, J is a
reduction of I on M locally at every prime in R, except for the primes m of height
d. For every such m either Mm = 0 or Jm = Im or dim Mm/mMm < dim Mm. In
any case j#(Jm,Mm) ≥ j#(Im,Mm) according to Theorem 3.3(a). Since this holds
for every m and since jd #(J,M) ≤ jd #(I,M) according to (iv), we conclude that
j#(Jm,Mm) = j#(Im,Mm) for every prime m in R of height d. Now Theorem 3.3(b)
shows that indeed Jm is a reduction of Im on Mm. �

It suffices to verify condition (ii) of Theorem 3.4 for a finite set of prime ideals q
in R that contains the support of the multiplicity j#(J,M) – such a set has been
identified in Discussion 3.1.

4. The j-multiplicity of a module

We are now ready to introduce the main object of this paper, the j-multiplicity of
a module. Here the ideal I of the previous section will be replaced by a module E.

Definition and Discussion 4.1. Let (R,m) be a Noetherian local ring, E a submod-
ule of a free R-module F := Re, and N a finitely generated R-module of dimension d.
Write A := Sym(F ) for the symmetric or Rees algebra of F , and consider the A-ideal
I := EA and the A-module M := A ⊗R N . Notice that A is a polynomial ring, I is
an A-ideal generated by linear forms, and M is a finitely generated graded A-module
of dimension d + e that is generated in degree zero. Thus we may define

j(E,N) := j#(I,M)

to be the j-multiplicity of E on N .
To be more explicit, [ IiM

Ii+1M

]
n

=
EiFn−iN

Ei+1Fn−i−1N
for 0 ≤ i ≤ n−1, where the products are taken in the A-module M . Thus the Hilbert
function of Γm(A1GI(M)) is

Σ(n) := Σ#
I,M (n) =

n−1∑
i=0

λR(Γm(
EiFn−iN

Ei+1Fn−i−1N
)) .

The corresponding Hilbert polynomial has degree at most d+ e−1 and is of the form

j(E,N)
(d + e− 1)!

nd+e−1 + lower terms .
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It follows that

j(E,N) = (d + e− 1)! lim
n→∞

∑n−1
i=0 λR(Γm(EiFn−iN/Ei+1Fn−i−1N))

nd+e−1
.

If N = R we simply write j(E) instead of j(E,N) – this is the multiplicity described
in the introduction.

Finally, for R not necessarily local and 0 ≤ i ≤ dim N , we define

ji(E,N) := ji #(I,M) =
∑

q

j(Eq, Nq) ,

the sum being taken over all q ∈ SuppR(FN/EN) with dim Nq = i.

As mentioned before, if E has finite colength in F then j(E) is the Buchsbaum-
Rim multiplicity, whereas for E ⊂ R, the case of an ideal, j(E,N) coincides with
the j-multiplicity j(E,N) as introduced in [1, 1.2] and [7, 6.1.5]. Notice that like
the earlier multiplicities, the j-multiplicity j(E,N) of a module E depends on the
embedding E ⊂ F into a free module.

Remark 4.2. We use the setting of Definition 4.1, but without requiring R to be
local. In Discussion 3.1 we have seen that the set A := {q ∈ Spec(R) | j(Eq, Nq) 6= 0}
is finite. If Ep = Fp for every minimal prime p of R, there is another finite set of prime
ideals associated to E, the locus B := {q ∈ SuppR(F/E) | `(Eq) = dim Rq + e − 1}
where E has ‘maximal’ analytic spread. To see that this set is finite, choose an element
a ∈ annR(F/E) not contained in any minimal prime of R and let q ∈ B. Observe
that ht qRq[Eq] ≤ dim Rq[Eq]− `(Eq) = 1. Thus the ideals aRq[Eq] ⊂ qRq[Eq] both
have height one, showing that q is contracted from one of the finitely many minimal
primes of aR[E].

If SuppR(N) = Spec(R) and E ⊂ R is an ideal, then the two sets A and B coincide
[7, 6.1.6(1)]. However, this is no longer true for modules of higher rank, as can be
seen from the example of Remark 2.4, taking E := I1 ⊂ F := A1, N := R, and
d = dim R ≥ 2. Indeed there we have seen that j(E) = j#(I,A) = j∗(I,A) = 1 6= 0,
whereas `(E) = e < d + e− 1.

Now let U be an R-submodule of E and write J := UA for the corresponding ideal
of A. We say that U is a reduction of E on N if Ei+1N = UEiN for some i ≥ 0.
This is equivalent to J being a reduction of I on M . Thus Theorem 3.4 immediately
gives the following version of Theorem 1.1:

Theorem 4.3. Let R be a universally catenary Noetherian ring, U ⊂ E submodules
of a free R-module F := Re, and N a finitely generated locally equidimensional R-
module. Assume that Up = Fp for every minimal prime p in SuppR(N). The following
are equivalent :

(i) j(Uq, Nq) = j(Eq, Nq) for every prime ideal q of R.
(ii) j(Uq, Nq) ≤ j(Eq, Nq) for every prime ideal q of R.
(iii) ji(U,N) = ji(E,N) for 1 ≤ i ≤ dim N .
(iv) ji(U,N) ≤ ji(E,N) for 1 ≤ i ≤ dim N .
(v) U is a reduction of E on N .
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Remark 4.4. Contrary to what Remark 4.2 might suggest, we may restrict ourselves
to the finite set of primes B for the module U when verifying condition (ii) in Theorem
4.3. For simplicity assume that SuppR(N) = Spec(R), a case one can always reduce
to by factoring out the annihilator of N . Now indeed, as we shall argue, it suffices
to require the inequality of Theorem 4.3(ii) for the finitely many prime ideals q ∈
SuppR(F/U) satisfying dim Rq = `(Uq)− e + 1.

To see that this condition already implies (v) we may assume (R,m) is local, U 6= F ,
and N is faithful. We prove by induction on d := dim R that U is a reduction of E.
By our induction hypothesis, U is a reduction of E locally on the punctured spectrum
of R. If d = `(U) − e + 1 then our assumption gives that condition (ii) in Theorem
4.3 obtains for q = m. As this condition also holds for every q 6= m by our induction
hypothesis and Theorem 4.3, the same theorem implies that U is a reduction of E
on N . Hence U is a reduction of E because N is faithful. If on the other hand
d 6= `(U) − e + 1, one can use [21, 5.6] to conclude that again U is a reduction of E
(see also [10], [12], [14], [20]).

Remark 4.5. One may be tempted to replace the sequence of multiplicities ji in
Theorem 4.3 by the single multiplicity

∑
i ji involving all primes of R at the same

time, in the spirit of [15, Definition 3]. However, conditions (iii) and (iv) so modified
would not suffice anymore to imply integral dependence even when F/U and F/E
have the same support.

For instance, let R := k[[y, z]] be a power series ring over a field, a, b, c positive
integers satisfying b + c ≤ a ≤ b + bc + c2, and U := (ya) ⊂ E := yb(y, z)c ⊂
F := R. The ideals U and E have the same radical, but are not integral over each
other. On the other hand, j1(U) + j2(U) = j1(U) = a and one easily computes that
j1(E) + j2(E) = b + bc + c2.

Remark 4.6. One can also give a criterion for integral dependence of modules that is
based on the Flenner-Manaresi result about integral dependence of ideals. However,
such a criterion would not be useful as it is not local in the primes of R, but rather
involves prime ideals of the polynomial ring Sym(F ).

In fact, using the notation of Definition 4.1 and writing J ⊂ I for the ideals of
A := Sym(F ) generated by U and E, respectively, we recall that U is a reduction of E
on N if and only if J is a reduction of I on M . Now assume that R is equidimensional
and universally catenary and that SuppR(N) = Spec(R). The criterion of Flenner
and Manaresi for ideals, [6, 3.3], gives that J is a reduction of I on M if and only
if j(JQ,MQ) = j(IQ,MQ) for every prime ideal Q of the ring A containing J with
dim AQ = `(JQ). However, such primes Q are not necessarily of the form (q, A1)A or
qA for q = Q ∩R; in fact the first possibility never occurs unless dim Rq = 0. Hence
the criterion requires considering genuine primes of the polynomial ring A.
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