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EFFICIENT STRUCTURED MULTIFRONTAL FACTORIZATION
FOR GENERAL LARGE SPARSE MATRICES∗

JIANLIN XIA†

Abstract. Rank structures provide an opportunity to develop new efficient numerical methods
for practical problems, when the off-diagonal blocks of certain dense intermediate matrices have small
(numerical) ranks. In this work, we present a framework of structured direct factorizations for general
sparse matrices, including discretized PDEs on general meshes, based on the multifrontal method
and hierarchically semiseparable (HSS) matrices. We prove the idea of replacing certain complex
structured operations by fast simple ones performed on compact reduced matrix forms. Such forms
result from the hierarchical factorization of a tree-structured HSS matrix in a ULV-type scheme, so
that the tree structure is reduced into a single node, the root of the original tree. This idea is shown
to be very useful in the partial ULV factorization of an HSS matrix (for quickly computing Schur
complements) as well as the solution stage. These techniques are then built into the multifrontal
method for sparse factorizations after nested dissection, so as to convert the intermediate dense
factorizations into fast structured ones. This method keeps certain Schur complements dense so
as to avoid complicated data assembly, and is much simpler and more general than some existing
methods. In particular, if the matrix arises from the discretization of certain PDEs, the factorization
costs roughly O(n) flops in two dimensions, and roughly O(n4/3) flops or less in three dimensions.
The solution cost and memory are nearly O(n) in both cases. These counts are obtained with an
idea of rank relaxation, so that this method is more generally applicable to problems where the
intermediate off-diagonal ranks are not small. We demonstrate the performance of the method with
two- and three-dimensional discretized equations, as well as various examples from a sparse matrix
collection. The ideas here are also useful in future developments of fast structured solvers.
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1. Introduction. In scientific computations and engineering simulations, the
major computational work is often to solve large sparse linear systems. Consider a
linear system

(1.1) Ax = b, A : n× n.

Classical direct solvers for (1.1) are robust and are efficient for multiple right-hand
sides. However, they are often expensive in the costs and memory, due to the creation
of fill-in in the factorization. In fact, if A arises from the discretization of an N ×N
two-dimensional (2D) mesh, it needs at least O(n3/2) flops to factor A [24]. For
three dimensions, this cost is O(n2), and even the solution costs O(n4/3). Iterative
methods can take good advantage of the sparsity using matrix-vector multiplications.
But without good preconditioners, iterative methods may converge very slowly or
may not even converge.

A lot of recent developments focus on structured approximate factorizations. It
has been observed that some discretized PDEs and integral equations have a low-
rank property. That is, the fill-in in their direct factorization has low-rank (or low-
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numerical-rank) off-diagonal blocks [1, 2, 8, 18, 19, 26, 27, 28, 39]. Based on this prop-
erty, the fill-in can be approximated by rank-structured matrices such as quasisepara-
ble, semiseparable, or hierarchical (H-, H2-) matrices (see, e.g., [3, 4, 5, 7, 13, 22, 34]
for some introductions and surveys). Examples of such methods include H-LU meth-
ods [18, 19] and structured multifrontal methods [39]. These methods often signifi-
cantly reduce classical lower complexity bounds for direct factorizations.

The structured multifrontal method in [39] employs the multifrontal method
[12, 25] and hierarchically semiseparable (HSS) matrix representations [6, 9, 40], after
the nested dissection ordering of A [16]. For 2D elliptic equations, the method com-
putes structured approximate factorizations with nearly linear complexity and linear
storage. The major intermediate operations are performed in HSS forms, including
dense factorization, block permutation, splitting, merging, etc. This thus makes the
algorithm difficult to implement. The existing implementation in [39] concentrates
on symmetric positive definite (SPD) problems on 2D regular meshes. A variation
of the method is given in [32]. However, this variation still focuses mainly on 2D
meshes where the orientation of the mesh points roughly follow regular meshes. Also,
it uses inversions for the intermediate structured matrices, followed by matrix-vector
multiplications. These are often slower than ULV-type factorizations in [39].

This paper proposes a new structured multifrontal method which is much simpler
and more general. It can be applied to discretized matrices in both two and three
dimensions, as well as general sparse matrices. The work includes general sparse
matrix reordering with graph partitioning, new improved HSS factorizations, a flexible
factorization framework, and relaxed rank requirements. This is explained as follows.

(1) General sparse matrix. Our nested dissection reordering is performed with
the aid of graph partitioning tools. Separators [16] in nested dissection are allowed to
have general shapes and orientations. We also accommodate general connectivity of
the separators. These make the method more widely applicable than those in [32, 39].
In addition, the new formulas and concepts in this paper are given for both symmetric
and nonsymmetric situations.

(2) Improved HSS algorithms and a concept of reduced matrices. HSS
matrices are used to approximate dense intermediate fill-in, and then factored in our
modified factorization scheme with improved efficiency.

Furthermore, we introduce a very useful concept of reduced (HSS) matrices, which
is not involved in [39]. That is, the ULV factorization of an HSS matrix F generally
results in smaller intermediate matrices (called reduced matrices) after orthogonal
transformations or triangular factorizations. The original HSS matrix corresponds to
a tree structure called an HSS tree, which is also reduced accordingly. The overall
ULV factorization leads to a final reduced matrix which is generally much smaller and
corresponds to one single node of the HSS tree, or its root. We prove that various
complex operations involving F can be replaced by simple ones performed on this
final reduced matrix. The related HSS operation costs can then be reduced from, say,
O
(
r2N

)
to O

(
r3
)
, where N is the order of F and r is its maximum off-diagonal rank.

Such an idea is used for the fast computation of the intermediate Schur complements
in our structured sparse factorization and also the fast solution. It can also benefit
the method in [39] as well as our future developments.

(3) Simplified structured sparse factorization. We organize the overall
factorization into a simplified scheme. The multifrontal method converts the sparse
factorization into that of a sequence of local dense ones, called frontal matrices. Partial
factorizations of the frontal matrices provide certain columns of the factors, and the
intermediate Schur complements are called update matrices. Here, unlike the method
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in [39], we approximate the frontal matrices by HSS forms, but keep the update
matrices dense. This enables us to avoid complicated data assembly (called extend-
add operation [25]) for structured update matrices. The HSS extend-add operation
in [39] requires special separator connectivity as in regular meshes. Our new scheme
uses the classical extend-add operation so as to accommodate more general problems,
and it produces factors with the same structure as that by a fully structured version.

(4) Sparse rank relaxation. we systematically relax the classical rank require-
ment in structured sparse algorithms. Traditional HSS operations often require the
related off-diagonal (numerical) ranks to be bounded in order to achieve high effi-
ciency. In [42] it is shown that the same or similar complexity can be obtained for
HSS operations without this requirement. That is, the ranks are actually allowed
to increase along the block sizes. Such rank phenomenon is indeed observed for the
intermediate matrices in the factorization of certain sparse discretized PDEs. Thus,
we generalize the dense rank relaxation idea in [42] to sparse factorizations. This
enhances both the flexibility and the applicability of structured factorizations.

(5) Two and three dimensions. With certain flexible rank conditions, we
can achieve satisfactory factorization costs for both 2D and three-dimensional (3D)
problems, which are roughly O(n) and O(n4/3) flops, respectively (see Theorem 4.3).
The storage requirement in both two and three dimensions is nearly O(n). The
complexity of solutions with the structured factors is also nearly O(n). Different
criteria are used to choose a switching level (for allowing certain levels of dense local
factorizations) so as to optimize either the factorization or the solution complexity.

These types of structured approximate factorizations are very attractive for real
applications such as Helmholtz equations in seismic imaging, where linear systems
with a large number of right-hand sides are solved, but only modest accuracy is de-
sired.

The remaining sections are organized as follows. HSS structures are reviewed in
section 2, followed by some improved HSS algorithms. Section 3 presents our new
structured factorization and solution schemes. The algorithms are summarized and
analyzed in section 4, which shows the idea of sparse rank relaxation. Section 5
provides some numerical examples for 2D and 3D Helmholtz equations and more
general examples from a classical sparse matrix collection. We draw some concluding
remarks in section 6. The following notation is used:

• F |ti×tj is the submatrix of F specified by the row index set ti and column
index set tj , and F |:×tj is the submatrix formed by the columns of F specified
by the index set tj .
• b|ti is a vector formed by the entries of the vector b from the row index set ti.
• diag (A1, . . . , Ak) is a block diagonal matrix with the diagonal blocks A1, . . . ,
Ak.
• root (T) is the root of a binary tree T, and par(j) and sib (j) denote the
parent and sibling nodes of node j in T, respectively, with the nodes of T
labeled by j = 1, 2, . . . .
• F1↔� F2 denotes an extend-add operation [12, 25], which permutes and ex-
pands the matrices F1 and F2 following a certain global index set and then
adds the resulting matrices (section 3.2).

2. HSS structures and algorithms.

2.1. Review of HSS structures. HSS structures are very useful in handling
dense matrices with the low-rank property. An HSS representation is generally defined
recursively [6, 9]. The definition for a postordered HSS matrix is as follows [40].
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(i) Hierarchical partition (ii) Binary tree for the index sets

Fig. 2.1. Two levels of block partition of an N × N matrix and the organization of the index
sets with a binary tree.

Assume F is an N × N dense matrix, and I = {1 : N} ≡ {1, 2, . . . , N}. Let T
be a binary tree with k nodes, denoted by j = 1, 2, . . . , k ≡ root (T), and tj ⊂ I be
a subset of contiguous indices in I associated with each node j of T. (Initially, T is
used to manage the recursive splitting of I and the recursive partition of F .) We say
F is in an HSS form with the corresponding postordered HSS tree T if the following
hold:

(1) T is a full binary tree in its postordering, or each node j is either a leaf or a
nonleaf node with two children c1 and c2 which satisfy c1 < c2 < j.

(2) The index sets satisfy tc1 ∪ tc2 = tj and tc1 ∩ tc2 = ∅ for each nonleaf node j,
with tk ≡ I.

(3) For each node j, there exist matrices Dj , Uj, Vj , Rj ,Wj , Bj (called HSS gen-
erators), which satisfy the following recursions for each nonleaf node j:

Dj ≡ F |tj×tj =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c2 Dc2

)
, Uj=

(
Uc1Rc1

Uc2Rc2

)
, Vj=

(
Vc1Wc1

Vc2Wc2

)
,

where Uk, Vk, Rk,Wk, and Bk are not needed (since Dk ≡ F is the entire
diagonal block without a corresponding off-diagonal one).

Only the Dj , Uj, Vj generators associated with a leaf node j of T are stored. Here,
Uj and Vj are called basis matrices since the columns of Uj and the rows of V T

j form
bases of the HSS (off-diagonal) blocks

(2.1) F−
j ≡ F |tj×(I\tj) and F

|
j ≡ F |(I\tj)×tj ,

respectively. Also, we call the block row of F formed by Dj and F−
j the jth block row

of F . Similarly, define the jth block column. Clearly, a low-rank off-diagonal block
used in HSS representations is an entire block row or column without the diagonal
block. On the other hand, H-matrices involve low-rank blocks more general than (2.1)
[18, 19, 22], and HSS matrices can be considered as a special case of H-matrices.

For example, for an N × N matrix F as shown in Figure 2.1(i), we partition it
following a hierarchical splitting of the set t7 = {1 : N} as illustrated in the binary
tree form in Figure 2.1(ii). Then we can define an HSS form and an HSS tree T as in
Figure 2.2.

Moreover, the HSS tree can help quickly identify any off-diagonal block of the
matrix [9, 40]. For example, the block corresponding to nodes 1 and 4 in Figure 2.2(ii)
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Fig. 2.2. A block 4× 4 HSS matrix and the corresponding HSS tree.

can be decided by visiting the path connecting these two nodes: 1 → 3 → 6 → 4.
That is

F |t1×t4 = U1R1B3W
T
4 V T

4 .

An HSS form for F can be constructed with recursive compression of the HSS

blocks F−
j and F

|
j [9, 40]. For example, in a construction scheme in [36, 38], F−

j is
compressed as follows to get the U,R generators. If j is a leaf of the HSS tree T,
compute a QR factorization

F−
j = UjGj .

(Note: If rank-revealing factorizations are used for the compression, then the HSS
form approximates F .) If j is a nonleaf node with children c1 and c2, stack the
columns of Gc1 and Gc2 whose column indices match I\tj (the column indices of F−

j )
and compute a QR factorization(

Gc1 |:×(I\tj)
Gc2 |:×(I\tj)

)
=

(
Rc1

Rc2

)
Gj .

Then by recursion, we can verify that F−
j = UjF |t̂j×(I\tj). Similarly, we compress F

|
j

to get the V,W generators, and then extract the B generators [38].
If F is symmetric, only F−

j needs to be compressed. Then Dj = DT
j , and we can

set [40]

Vj = Uj, Bi = BT
j ,

where i = sib (j).

2.2. An improved ULV factorization and reduced HSS matrices. An
HSS linear system can be quickly solved with ULV-type factorizations and solutions
[9, 40, 38]. We briefly review the original version in [9] and then show a modified
one. For convenience, assume the Dj blocks corresponding to all leaves j of the HSS
tree T have sizes m, and all HSS blocks have ranks r. The scheme in [9] includes the
following major steps.

(1) For a leaf j, introduce zeros into F−
j by multiplying QT

j to F−
j , where Qj is

obtained from a full QL factorization

Uj = Qj

(
0

Ûj

)
m− r

r
.
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Also update the diagonal block Dj to

(2.2) D̄j = QT
j Dj ≡

(m− r r

D̄j;1,1 D̄j;1,2

D̄j;2,1 D̄j;2,2

)
m− r

r
.

(2) Compute an LQ factorization

(
D̄j;1,1 D̄j;1,2

)
=
(m− r r

Lj 0
)
Pj .

Multiply PT
j to D̄j and F

|
j on the right by updating D̄j and Vj , respectively:

D̄jP
T
j ≡

(m− r r

Lj

D̃j;2,1 D̃j

)
m− r

r
, PjVj ≡

(
Ṽj

V̂j

)
m− r

r
.

(3) Eliminate Lj and remove node j from the tree T.
(4) If j is a nonleaf node with children c1 and c2 which has been eliminated in

the previous steps, merge blocks to obtain new generators:
(2.3)

D̃j =

(
D̂c1 Ûc1Bc1 V̂

T
c2

Ûc2Bc2 V̂
T
c1 D̂c2

)
, Ũj =

(
Ûc1Rc1

Ûc2Rc2

)
, Ṽj =

(
V̂c1Wc1

V̂c2Wc2

)
.

Then j becomes a leaf corresponding to generators D̃j , Ũj, Ṽj , Bj , and F is
reduced to a smaller HSS matrix, called a reduced matrix.

Definition 2.1. In the ULV factorization of an HSS matrix F , a new HSS
matrix with generators in (2.3) resulting from the elimination of the children of a
node j of the HSS tree is called a reduced (HSS) matrix.

The above process then repeats for the reduced matrix.
This procedure can be modified to improve the efficiency, especially to reduce

the costs for dense block multiplications such as the one in (2.2). We convert each
diagonal block to an identity matrix and then preserve it. A similar method has been
proposed for SPD matrices [38]. Here, we handle nonsymmetric ones. The details are
presented since they are needed in Theorems 3.1 and 3.3 later.

For a leaf j of T, compute an LU factorization

(2.4) Dj = LjTj .

Then multiply L−1
j to the jth block row of F on the left, and T−1

j to the jth block
column of F on the right, so as to convert the diagonal block to an identity matrix.
This is done via the update of the generators:

(2.5) D̄j ,= I, Ūj = L−1
j Uj , V̄j = T−T

j Vj .

See Figure 2.3(i). Next, compute a full QL factorization

(2.6) Ūj = Qj

(
0

Ũj

)
,
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Fig. 2.3. An improved ULV factorization scheme for a nonsymmetric HSS matrix.

k

ck,1 ck,2

k

ck,1 ck,2

Dck,1,Uck,1,Vck,1
~ ~ ~ Dck,2,Uck,2,Vck,2

~ ~ ~

k

Dk,Uk,Vk
~ ~ ~

(i) An HSS tree with root k (ii) After eliminating lower levels (iii) Only the root left

Fig. 2.4. Elimination of the nodes of the HSS tree in the ULV HSS factorization schemes.

and multiply QT
j to Ūj on the left, so that the first m − r rows of the updated

off-diagonal block row QT
j L

−1
j F−

j are zeros. Also, update V̄j to

(2.7) QT
j V̄j ≡

(
Ṽj

V̂j

)
m− r

r
.

The diagonal block becomes an identity matrix again. See Figure 2.3(ii)–(iii). After
this, the diagonal identity matrix can be partially eliminated, as in Figure 2.3(iii)–(iv).
Then remove node j from T, which is reduced to a smaller HSS tree for a reduced
HSS matrix. See Figure 2.4.
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If j is a nonleaf node with its children c1 and c2 partially eliminated as above, we
merge appropriate blocks just like (2.3), except D̂c1 = I and D̂c2 = I in (2.3) (Figure
2.3(iv)). This is useful in improving the efficiency of upper-level eliminations. For
example, the upper-level LU factorization of Dj is

(2.8) Dj = LjTj ≡
(

I

Ũc2Bc2V
T
c1 L̃j

)(
I Ũc1Bc1 Ṽ

T
c2

T̃j

)
,

where L̃jT̃j is the LU factorization of the Schur complement I− Ũc2Bc2V
T
c1 Ũc1Bc1 Ṽ

T
c2 .

Similarly, (2.5) can also be accelerated due to the special form of Lj and Tj . The
elimination proceeds until the root k is reached. Then we compute a direct LU
factorization as in (2.4) for j = k.

Similar to the idea in [40], it can be verified that the ULV factorization has a
form

H = LU,

where L and U are given by a sequence of block orthogonal and triangular matrices.

2.3. ULV HSS solution. The ULV HSS solution scheme follows the idea in
[38], but is presented with more details here for later use.

In a forward-substitution stage, we traverse the HSS tree in a bottom-up order
to solve the system

(2.9) Ly = b.

In the process, there is a piece of b and a piece of y associated with each node j of T,
denoted bj and yj , respectively. Initially, bj ≡ b|tj for all leaves j.

For a leaf j, let

(2.10) b̃j = QT
j L

−1
j bj ≡

(
b̃j,1
b̃j,2

)
m− r

r
, yj ≡ b̃j,1, zj = Ṽ T

j yj ,

where Ṽj is given in (2.7). For a nonleaf node j with children c1 and c2, set

bj =

(
b̃c1,2
b̃c2,2

)
−
(

Ũc1Bc1zc2
Ũc2Bc1zc1

)
.

Then we similarly compute yj as in (2.10), except to set

zj = WT
c1zc1 +WT

c2zc2 + Ṽ T
j yj.

These operations can be applied recursively, until the root node k is reached,
where we compute

(2.11) yk = L−1
k bk

See Figure 2.5(i). Then we merge all yj pieces with appropriate permutations to form
y. The details are shown in the proof of Theorem 3.3 (as in (3.25)).

In a backward-substitution stage, we traverse the HSS tree in a top-down order
to solve the system

(2.12) Ux = y.

Initially, let

xk = T−1
k yk.
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Fig. 2.5. ULV HSS solution process, where the solution pieces are illustrated by horizontal bars.

For each nonleaf node j with children c1 and c2, partition yj as yj =
( yj,1
yj,2

)
r
r and

compute

(2.13) xc1 = T−1
c1 Qc1

(
ỹc1
yj,1

)
, xc2 = T−1

c2 Qc2

(
ỹc2
yj,2

)
.

When all the nonleaf nodes are visited, stack the pieces xj (by setting x|tj ≡ xj) for
all the leaves j to form x. See Figure 2.5(ii).

3. New structured multifrontal method. In this section, we present our
new structured sparse factorization method. The HSS algorithms in the previous
sections are applied to the dense intermediate matrices in a multifrontal factorization
framework. For simplicity, we assume A is SPD in the discussions. For nonsymmetric
ones, the idea of using reduced matrices is also shown (Corollaries 3.2 and 3.5), and
the algorithm can be similarly derived. Note that we do not consider pivoting issues
since they are not our focus. In fact, we may use static pivoting in a preprocessing step
similar to that in SuperLU [11], followed by iterative refinements in a postprocessing
step.

3.1. Nested dissection and separator partitioning for general adjacency
graphs. For a sparse symmetric matrix A, the adjacency graph has a vertex corre-
sponding to each row/column of A, so that there is an edge (i, j) connecting vertices i
and j if aij = aji 
= 0. For a discretized matrix, the mesh can often serve as the adja-
cency graph. In nested dissection [16], the graph is recursively divided with separators
(small sets of vertices). A top-level separator divides the graph into two subregions,
which are further divided recursively. See Figure 3.1. Lower-level separators are or-
dered and eliminated before upper-level ones. The elimination of a separator mutually
connects its (upper-level) neighbors which creates fill-in [30, 33]. (When we say the
neighbors of a separator we mean those separators which are ordered after this sepa-
rator and are connected to it due to the elimination of lower-level separators.) Nested
dissection is very useful in reducing the fill-in. In fact, it can in general help the fac-
torization of a discretized matrix in two or three dimensions achieve the theoretical
lower complexity bounds tightly [24].

Here in the context of our structured solution method, we allow the flexibility of
using an adjacency graph or mesh which is irregular. Since the graph partition is not
the major focus of this work, we only point out the following aspects:

(1) Unlike [39], we can handle separators (and their neighbors) with general ori-
entation and connectivity. We use graph partitioning tools such as METIS
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(i) Two levels of partitions of a 2D mesh (image based on [17] for a matrix from [10])

(ii) Two levels of partitions of a 3D mesh (image based on [31])

Fig. 3.1. Graph partitioning in nested dissection ordering.

[29] to construct a nested dissection ordering. The ordering needs only the
matrix A, although additional mesh information (if any) can help improve
the quality of the ordering.

(2) Each separator is partitioned into multiple pieces, which correspond to the
partitions of appropriate HSS matrices. The partition information can be
accumulated from lower levels, so as to preserve the graph connectivity.

3.2. Review of the multifrontal method. As one of the most important fac-
torization methods, the multifrontal method [12, 25] converts a sparse factorization
into a sequence of factorizations of smaller intermediate dense matrices. A tree struc-
ture called elimination tree or assembly tree is used so that these local factorizations
can be done independently at each level. For convenience, assume the sparse matrix
A is SPD with the Cholesky factorization A = LLT . The elimination tree T has n
nodes corresponding to the n rows/columns of A, and the parent of a node i of T is
defined as

par(i) = min{j > i: L|j×i 
= 0}.

Let T [i] be the subtree of T with root i, nodes c1, c2, . . . , cq be the children of
i, and Ni ≡ {j1, j2, . . . , jd} be the set of nonzero row indices in L|(1:n)×i. The ith
frontal matrix is defined to be

Fi =

(
A|i×i (A|Ni×i)

T

A|Ni×i 0

)
−

∑
j∈T [i]\i

L|(i∪Ni)×j

(
L|(i∪Ni)×j

)T
(3.1)

≡ F0
i↔� Uc1↔� Uc2↔� · · ·↔� Ucq ,
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Fig. 3.2. Nested dissection of a 3D mesh and the corresponding assembly tree T for the sepa-
rators.

where each Ucj is called the cjth update matrix obtained from Fcj by recursion as in
(3.2) below, and↔� denotes an extend-add operation, which permutes and expands the
matrices following a global index set and then adds the matrix entries. For example,
assume that F0

i , Uc1 , and Uc2 correspond to index sets {1, 2, 3}, {3, 1}, and {3, 2},
respectively, and

F0
i =

⎛
⎝ a11 a21 a31

a21 a22 a32
a31 a32 a33

⎞
⎠ , Uc1 =

(
u
(1)
11 u

(1)
21

u
(1)
21 u

(1)
22

)
, Uc2 =

(
u
(2)
11 u

(2)
21

u
(2)
21 u

(2)
22

)
.

Then the extend-add operation is performed as

F0
i↔� Uc1↔� Uc2 =

⎛
⎝ a11 a21 a31

a21 a22 a32
a31 a32 a33

⎞
⎠+

⎛
⎜⎝ u

(1)
22 0 u

(1)
21

0 0 0

u
(1)
21 0 u

(1)
11

⎞
⎟⎠+

⎛
⎜⎝ 0 0 0

0 u
(2)
22 u

(2)
21

0 u
(2)
21 u

(2)
11

⎞
⎟⎠ .

Factoring the leading entry in (3.1) yields one column of L:

(3.2) Fi =

(
L|i×i

L|Ni×i I

)(
I
Ui

)(
(L|i×i)

T
(L|Ni×i)

T

I

)
,

where Ui is the Schur complement (the ith update matrix). Following (3.1)–(3.2), the
factorization process repeats for all the nodes of T .

3.3. Structured multifrontal method. We derive an efficient structured sparse
solver based on a supernodal version of the multifrontal method. That is, nested dis-
section in section 3.1 is used to reorder the adjacency graph of A so that a binary
assembly tree T is formed, where the separators are denoted by i = 1, 2, . . . . Each
separator i is treated as a node in T and replaces the index i in section 3.2. See Figure
3.2. This is similar to the method in [39] for 2D regular meshes, but is more general.

Let Ni ≡ {j1, j2, . . . , jd} be the set of neighbor separators of separator i. For
example, for separator i = 1 in Figure 3.2, Ni = {3, 7, 15}. Assume separator j
corresponds to the index set tj for A, and t̂j is the subset of tj that is connected to
separator i (due to nonzeros in A or fill-in created by earlier eliminations [23]). If c1
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k k+1
k+2

ck,1 ck,2
Dk+1,Uk+1
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k+2

Dk+1,Uk+1Dk,Uk
~ ~

(i) HSS tree for Fi (ii) After the ULV factorization of H

Fig. 3.3. HSS tree Ti for Fi before and after the partial factorization (ULV factorization of H).

and c2 are the children of i in T , then the frontal matrix Fi is formed by the block
form extend-add operation

(3.3) Fi = F0
i↔� Uc1↔� Uc2 , with F0

i ≡
(

A|ti×ti (A|(∪d
j=1 t̂j)×ti

)T

A|(∪d
j=1 t̂j)×ti

0

)
.

Partition Fi conformably as

(3.4) Fi ≡
(

Fi,i FT
Ni,i

FNi,i FNi,Ni

)
.

Our structured multifrontal method has the following major steps:
(1) Approximate Fi by an HSS matrix.
(2) Partially factor Fi with a ULV factorization scheme.
(3) Compute the dense Schur complement or update matrix Ui with a low-rank

update.
(4) Perform the dense extend-add operation as in the standard multifrontal method

for (3.3). The details of this can be found in [12] and are skipped here.
The first three steps are elaborated as follows. First, we construct an HSS ap-

proximation to (3.4) as mentioned in section 2. (For convenience, we assume the HSS
forms are exact instead of approximate, so as to avoid using additional notation.) An
HSS tree Ti with k+2 nodes as in Figure 3.3(i) is used, and root (Ti) has children k
and k + 1. That is, we assume the HSS form of Fi is

(3.5) Fi =

(
H UkBkU

T
k+1

Uk+1B
T
k U

T
k Dk+1

)
,

where H is an HSS representation for Fi,i that corresponds to the subtree Ti[k], and
Dk+1 ≡ FNi,Ni

. See Figure 3.4(i). For convenience, assume the HSS rank of each Fi

is r.
Second, apply a symmetric ULV HSS factorization method to H (a symmetric

version of the original one in [9, 40] or the improved one in section 2.2). This yields
(see (3.23) below)

(3.6) H = LiL
T
i .
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~
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(i) Fi (ii) After the ULV factorization of H

Fig. 3.4. HSS matrix patterns for Fi before and after the partial factorization (ULV factoriza-
tion of H).

Then

(3.7) Fi =

(
Li

Uk+1B
T
k U

T
k L−T

i I

)(
I

Ui

)(
LT
i L−1

i UkBkU
T
k+1

I

)
,

where Ui is the update matrix

Ui = Dk+1 −
(
Uk+1B

T
k U

T
k

)
H−1

(
UkBkU

T
k+1

)
(3.8)

= Dk+1 −
((
L−1
i Uk

)
BkU

T
k+1

)T ((
L−1
i Uk

)
BkU

T
k+1

)
.

Ui is formed quickly in the next step, not directly with (3.8). After the ULV fac-
torization of H , its HSS tree Ti[k] is reduced to a single node k with the associated
generators D̃k and Ũk as in Figures 2.4(iii) and 3.3(ii). That is, the HSS form of Fi

is converted into a reduced matrix

(3.9)

(
D̃k ŨkBkU

T
k+1

Uk+1B
T
k Ũ

T
k Dk+1

)
.

The procedure is illustrated in 3.4.
Finally, consider the fast computation of Ui. We emphasize that Li is not ex-

plicitly available. We do not need to directly apply L−1
i to UkBkU

T
k+1 as in (3.7),

neither do we compute Ui by fully forming H−1 as in (3.8). The first issue is actually
addressed in the solution stage in section 3.4 and Theorem 3.3 below, and the second
issue is elaborated as follows. That is, although the ULV factorization H = LiL

T
i is

not a classical triangular factorization, we can still compute its Schur complement Ui

conveniently. Using the notation in section 2.2, we have the following theorem.
Theorem 3.1. Assume a symmetric ULV HSS factorization (3.6) for H is com-

puted, and D̃k and Ũk are the generators in the reduced matrix (3.9). Then

(3.10) UT
k H−1Uk = ŨT

k D̃−1
k Ũk.

Therefore,

(3.11) Ui = Dk+1 −ΘT
kΘk with Θk =

(
L−1
k Ũk

)
BkU

T
k+1,

where D̃k = LkL
T
k is the Cholesky factorization of D̃k.
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Proof. We consider the improved ULV factorization in section 2.2 only. Assume
Ti[k] (the HSS tree of H) has lmax levels with the root k at level 0 and the leaves at
level lmax. For l = lmax, lmax − 1, . . . , 1, 0, let H(l) be the reduced matrix at level l
in the ULV factorization. That is, let H(lmax) ≡ H , and H(l) be the reduced matrix
obtained fromH(l+1) after the elimination of all nodes at level l+1. This is formulated
as follows. For convenience, we denote the children of a node j of Ti[k] by cj,1 and
cj,2.

Assume the notation in section 2.2 is specifically used for H . Noting (2.4) and
(2.6), we define

U (l) = diag(Ũj1 , . . . , Ũjα), l = lmax, lmax − 1, . . . , 1, U (0) ≡ Ũk,

R(l) = diag

((
Rcj1,1

Rcj1,2

)
Rj1 , . . . ,

(
Rcjα,1

Rcjα,2

)
Rjα

)
, l= lmax−1, lmax−2, . . . , 1, R(0)≡I,

X(l) = diag

((
QT

cj1,1
L−1
cj1,1

QT
cj1,2

L−1
cj1,2

)
, . . . ,

(
QT

cjα,1
L−1
cjα,1

QT
cjα,2

L−1
cjα,2

))
,

l = lmax − 1, lmax − 2, . . . , 0,

where j1, j2, . . . , jα are the nodes at level l of Ti[k]. Clearly, the hierarchical structure
of the HSS form of H means

(3.12) Uk = U (lmax)
(
R(lmax−1)R(lmax−2) · · ·R(0)

)
≡ U (lmax)

0∏
l=lmax−1

R(l).

Also let Ωl be a permutation matrix during the elimination at level l+1 which performs
all the merging steps on H(l+1) to form H(l). Then the ULV factorization process can
be recursively represented by

(
0

U (l)

)
= Ω(l)X(l)U (l+1)R(l) (Figure 2.3(i)–(ii)),(3.13) (

I
H(l)

)
= Ω(l)X(l)H(l+1)(Ω(l)X(l))T (Figure 2.3(iii)–(iv)),(3.14)

l = lmax − 1, lmax − 2, . . . , 1, 0.

For l = lmax − 1, lmax − 2, . . . , 0, we have the recursive relationship

(R(l))T
[(

U (l+1)
)T (

H(l+1)
)−1

U (l+1)

]
R(l) (equation (3.14))

= (U (l+1)R(l))T
[(

Ω(l)X(l)
)−1

(
I

H(l)

)
(Ω(l)X(l))−T

]−1

(U (l+1)R(l))

= (Ω(l)X(l)U (l+1)R(l))T
(
I (

H(l)
)−1

)
(Ω(l)X(l)U (l+1)R(l)) (equation (3.13))

=
(

0
(
U (l)

)T )( I (
H(l)

)−1

)(
0

U (l)

)
= (U (l))T (H(l))−1U (l).
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Thus,

ŨT
k D̃−1

k Ũk =
(
U (0)

)T (
H(0)

)−1

U (0)

= (R(0))T
[(

U (1)
)T (

H(1)
)−1

U (1)

]
R(0)

= · · ·

=

(
0∏

l=lmax−1

R(l)

)T [(
U (lmax)

)T (
H(lmax)

)−1

U (lmax)

]( 0∏
l=lmax−1

R(l)

)

=

(
U (lmax)

0∏
l=lmax−1

R(l)

)T

H−1

(
U (lmax)

0∏
l=lmax−1

R(l)

)
(equation (3.12))

= UT
k H−1Uk.

Then (3.10) holds. Equation (3.11) follows from (3.8) and (3.10).
Remark 3.1. Note that D̃k is the final reduced matrix after the ULV factorization

of H . This theorem indicates that, in the computation of Ui, the roles of H and Uk

can be replaced by those of D̃k and Ũk, respectively. Thus, Ui can be computed
quickly with a low-rank update in (3.11), since D̃k is a much smaller matrix with
size equal to the HSS rank of H . In fact, if H has size N and HSS rank r, then the
computation of L−1

i Uk in (3.8) costs O
(
r2N

)
flops, while the computation of L−1

k Ũk

in (3.11) costs only O(r3).
For the nonsymmetric case, we can similarly prove the following result.
Corollary 3.2. Assume H and its ULV HSS factorization in Theorem 3.1 are

nonsymmetric. Then

V T
k H−1Uk = Ṽ T

k D̃−1
k Ũk.

(See (2.3) with j set to be k.) Therefore,
(3.15)

Ui = Dk+1 −ΘT
kΦk, with Θk =

(
T−T
k Ṽk

)
Bk+1U

T
k+1, Φk =

(
L−1
k Ũk

)
BkV

T
k+1,

where D̃k = LkTk is the LU factorization of D̃k.
After the computation of Ui, it participates in the standard extend-add operation

to form upper-level frontal matrices. This process then proceeds along the elimination
tree. When the process finishes, we have a structured sparse factorization

(3.16) A = LLT .

If rank-revealing factorizations are used in the intermediate HSS constructions, LLT

approximates A.
Remark 3.2. The structure of L from the above partially structured scheme

(with dense Ui) is the same as that produced by a fully structured version (with HSS
Ui). According to the discussions in section 4, the costs of these two schemes are also
similar. However, by keeping Ui dense, we significantly reduce the complication of the
extend-add operation. The idea of reduced matrices in Theorem 3.1 and Corollary 3.2
is also very useful in future developments of fully structured versions, where the
computation of L−1

i Uk in (3.8) dominates the cost.
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3.4. Structured multifrontal solution. After the factorization (3.16), we
solve two structured systems

Ly = b,(3.17)

LTx = y.(3.18)

For convenience, partition the vectors conformably into bi, yi, and xi pieces according
to the sizes of the separators in the nest dissection, so that bi, yi, and xi correspond
to the variables associated with separator i (node i in the assembly tree T ).

The solution of (3.17) with forward substitution involves a forward (or postorder-
ing) traversal of the assembly tree. We show the intermediate structured solution
steps associated with a node i. According to (3.7), we need to solve intermediate
systems that look like(

Li

Uk+1B
T
k U

T
k L−T

i I

)(
yi

b̃Ni

)
=

(
bi

bNi

)
,

where bNi
corresponds to the union of bj for j ∈ Ni (the set of neighbors of i). Here,

bi may have been updated in the previous solution steps associated with the lower
levels of T (see (3.19)). (We still use bi for notational convenience.)

We first solve Liyi = bi with an ULV-type forward-substitution method in sec-
tion 2.3. Then Uk+1Bk+1U

T
k L−T

i yi is the contribution of separator i to its neighbors.
That is, we update bNi

by

(3.19) bNi
← b̃Ni

= bNi
− Uk+1Bk+1U

T
k L−T

i yi.

Notice that the computation cost of (3.19) can be significantly reduced based on the
idea of reduced matrices similar to Theorem 3.1.

Theorem 3.3. For node i in the assembly tree T , denote yj in (2.10) by yi,j , and
yk in (2.11) by yi,k, which are the solution pieces obtained by the forward-substitution
procedure in section 2.3 applied to Liyi = bi. Assume the same condition as in
Theorem 3.1 holds. Then

(3.20) UT
k L−T

i yi = ŨT
k L−T

k yi,k.

Therefore, (3.19) can be computed as

(3.21) b̃Ni
= bNi

−ΘT
k yi,k,

where Θk is available from (3.11).
Proof. Consider H(l) in the proof of Theorem 3.1. Assume H(0) = L(0)(L(0))T is

the Cholesky factorization of H(0) ≡ D̃k. Then according to (3.14), we have

H(l) = L(l)(L(l))T ,

where L(l) is recursively defined as

(3.22) L(l+1) = (X(l))−1(Ω(l))T
(

I

L(l)

)
Ω(l), l = lmax − 1, lmax − 2, . . . , 1, 0.

This gives the actual form of the ULV factorization

(3.23) H = LiL
T
i , Li ≡ L(lmax).
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Also, assume the solution pieces yj ≡ yi,j in (2.10) for all nodes j at each level l of
T[k] form a vector ȳ(l) (Figure 2.5). That is, let

ȳ(l) =
(
yTj1 · · · yTjα

)T
(j1, . . . , jα: all nodes at level l of T[k]),(3.24)

y(0) = yk, y(l+1) = (Ω(l))T
(

ȳ(l+1)

y(l)

)
, l = 0, 1, . . . , lmax − 1.(3.25)

Then it can be verified that

(3.26) yi ≡ y(lmax).

According to (3.22) and (3.25), we have the following recursive relationship for
l = lmax − 1, lmax − 2, . . . , 0:

(R(l))T [(U (l+1))T (L(l+1))−T y(l+1)]

= (R(l))T

[
(U (l+1))T

(
(X(l))−1(Ω(l))T

(
I

L(l)

)
Ω(l)

)−T

(Ω(l))T
(

ȳ(l+1)

y(l)

)]

= (Ω(l)X(l)U (l+1)R(l))T
(

I
(L(l))−T

)(
ȳ(l+1)

y(l)

)

=
(
0 (U (l))T

)( I

(L(l))−T

)(
ȳ(l+1)

y(l)

)
(equation (3.13))

= (U (l))T (L(l))−T y(l).

Therefore,

ŨT
k L−T

k yi,k = (U (0))T (L(0))−T y(0)

= (R(0))T [(U (1))T (L(1))−T y(1)]

= · · ·

=

(
0∏

l=lmax−1

R(l)

)T [(
U (lmax)

)T
(L(lmax))−T y(lmax)

]

=

(
U (lmax)

0∏
l=lmax−1

R(l)

)T

(L(lmax))−T y(lmax)

= UT
k L−T

i yi,

where equations (3.12), (3.23), and (3.26) are used. Then, (3.19) and (3.20) lead to
(3.21).

Again, since Lk is generally a much smaller triangular matrix, the computation
with (3.21) is much faster than with (3.19). A direct solution of L−T

i yi needs O(rN)

flops if H has size N and HSS rank r, while L−T
k yk only costs O(r2). Such a savings

is even more significant in a fully structured version (Remark 3.2).
In the backward-substitution stage, we solve intermediate systems of the following

form for xi: (
LT
i L−1

i UkBkU
T
k+1

I

)(
xi

xNi

)
=

(
yi

xNi

)
,
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where xNi is already available from solution steps associated with upper-level sepa-
rators. That is, we actually solve

LT
i xi = ỹi with ỹi = yi − L−1

i UkBkU
T
k+1xNi

.

This involves a ULV-type backward substitution in section 2.3. Similar to Theo-
rem 3.3, we can prove that ỹi can be computed quickly as follows.

Theorem 3.4. Let yi,j and yi,k be given as in Theorem 3.3. The computation
of ỹi = yi − L−1

i UkBkU
T
k+1xNi

can be done by updating only the piece yk by

(3.27) yk ← yk −ΘkxNi
,

where Θk is available from (3.11). Then merging all yj pieces as in (3.24)–(3.26) to
update yi.

For nonsymmetric problems, similar results can be shown.
Corollary 3.5. Assume the conditions in Corollary 3.2 hold, and (3.16) is

replaced by a nonsymmetric structured factorization A = LU . Then in the solutions
of Ly = b and Ux = y, (3.21) and (3.27) are replaced by

b̃Ni
= bNi

−ΘT
k yi,k, and yk ← yk − ΦkxNi

,

respectively, where Θk and Φk are available from (3.15).

4. Algorithms and performance analysis with sparse rank relaxation.
Before presenting the algorithms, we point out the major significance of the method,
especially as compared with the method in [39]:

(1) The new method is designed to handle general sparse matrices with general
nested dissection for the mesh (which may be irregular or in three dimensions)
or the adjacency graph. The method in [39] focuses on 2D regular meshes
since it uses the coordinates of the uniform mesh points for the ordering.
Unlike [39], we do not require the sparse matrix to be SPD. For example,
Corollaries 3.2 and 3.5 show how to apply the concept of reduced matrices to
nonsymmetric factorizations and solutions, respectively.

(2) We present some improved HSS algorithms and propose the concept of re-
duced matrices for the intermediate HSS operations. That is, we avoid using
direct HSS inversions and ULV solutions needed in [39], and replace them by
simple operations on the small reduced matrices resulting from ULV factor-
izations. The concept is applicable to different types of ULV factorizations.
See Theorems 3.1, 3.3, and 3.4. Detailed proofs are given to justify the con-
cept. This idea is useful in reducing the hidden constant in the complexity of
structured factorizations. See Remarks 3.1 and 3.2.

(3) Our method is much simpler to use. One reason is the replacement of HSS
inversions and solutions by those on the reduced matrices. Another reason
is that we avoid complex structured extend-add operations by using dense
update matrices. This is suitable for arbitrary separator connectivities and
helps enhance the flexibility of the methods. The method in [39] is very
complex and difficult to implement, and cannot be easily extended to general
matrices.

(4) We show an idea of sparse rank relaxation, so that the off-diagonal ranks of
the intermediate Schur complements do not have to remain bounded by a
small constant as in [39]. We give some relaxed rank patterns in practical
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problems, so that the method yields about O(n) flops in two dimensions
and about O(n4/3) in three dimensions, where n is the order of the sparse
discretized matrix A. See section 4.2. For both two and three dimensions,
the memory size and solution costs are nearly linear in n. The method in [39]
only considers a special 2D case.

(5) In practice, the structured factorization only starts from a certain switching
level ls of the assembly tree T , not only to avoid small block operations,
but also to achieve nearly optimal complexity. This is similar to the method
in [39]. However, we use different optimization criteria to choose ls for 3D
problems. See Theorems 4.1 and 4.3 below.

The structured factorization and solution algorithms are summarized as follows.
For convenience, A is assumed to be SPD. Generalization to the nonsymmetric case
can be considered similarly.

Algorithm 1. Structured sparse factorization.
Apply general nested dissection to the mesh or adjacency graph
for node/separator i from 1 to root (T ) of the assembly tree T
(1) if i is a leaf, form Fi ≡ F0

i as in (3.3)
(2) if i is at level l > ls of T � Exact factorization before ls

(a) Compute the (exact) Cholesky factorization Fi,i = LiL
T
i

(b) Compute LNi,i = FNi,iL
−T
i

(c) Compute (dense) Ui = FNi,Ni
− LNi,iL

T
Ni,i

else � Structured factorization after ls
(a) Compute an HSS approximation H to Fi

(b) Compute an ULV HSS factorization Fi,i = LiL
T
i

� New ULV factorization in section 2.2 and producing reduced matrices
(c) Compute (dense) Ui = Dk+1 −ΘT

kΘk, with Θk = (L−1
k Ũk)BkU

T
k+1

� Dense Schur complement with the aid of the final reduced matrix
(3) if i is a left node, push Ui onto the update matrix stack

else � Exact extend-add operation
(a) Pop Uj from the update matrix stack for j = sib (i)
(b) Compute Fp = F0

p↔� Uj↔� Ui for p = par (i)

Algorithm 2. Structured sparse solution.
(1) Partition b into bi pieces according to the sizes of the leaf separators
(2) for node/separator i from 1 to root (T ) � Forward substitution

if i is at level l > ls of T � Exact solution before ls
(a) Solve a lower-triangular system Liyi = bi

(b) Update bNi
to b̃Ni

= bNi
− LNi,iyi,k

else � Structured solution after ls
(a) Solve Liyi = bi with the new ULV forward substitution in section 2.3
(b) Update bNi

to b̃Ni
in (3.21)

� Fast update with the aid of the final reduced matrix
(3) for node/separator i from root (T ) to 1 � Backward substitution

if i is at level l > ls of T � Exact solution before ls
(a) Solve an upper-triangular system LT

i xi = yi

(b) for all nodes j such that i ∈ Nj, update yj to ỹj = yj − Lj,iyi

else � Structured solution after ls
(a) Solve LT

i yi=bi with the new ULV backward substitution in section 2.3
(b) for all nodes j such that i ∈ Nj, update the piece yk of yj to ỹk in (3.27)

� Fast update with the aid of the final reduced matrix
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Table 4.1

Factorization cost ξfact, solution cost ξsol, and storage σmem of the structured multifrontal
method applied to a discretized matrix A of order n on a regular mesh.

ξfact ξsol σmem

2D O(rn logn) O(n log r) +O(n log logn) O(n log r) +O(n log logn)

3D O(rn4/3) O(r1/2n) O(r1/2n)

The algorithms and their variations can be applied to general sparse matrices.
For simplicity, we only consider the complexity in terms of sparse matrices arising
from the discretizations of 2D and 3D PDEs.

4.1. Fixed-rank complexity analysis. We first consider the usual case where
the HSS ranks of all the frontal matrices are bounded by r, and then relax this
requirement to get more flexible results.

Theorem 4.1 (complexity optimization strategies). Assume Algorithms 1 and 2
are applied to a sparse matrix A, and the HSS ranks of all the frontal matrices Fi in
Algorithm 1 are bounded by r. Denote the structured multifrontal factorization cost,
solution cost, and memory size by ξfact, ξsol, and σmem, respectively. Let root (T ) be
at level 0 and the leaves of T be at level lmax. The switching level ls (0 ≤ ls ≤ lmax)
is chosen to obtain optimal complexity as follows:

• If A is obtained from a 2D N ×N mesh and n = N2, the counts are given in
row 2 of Table 4.1. The switching level ls satisfies lmax − ls = O(logN), so
that the factorization costs before and after the switching level are the same.
• If A is obtained from a 3D N×N×N mesh and n = N3, the results are given
in row 3 of Table 4.1. The switching level ls satisfies lmax − ls = O(logN),
so that the solution costs before and after the switching level are the same.

Proof. We briefly sketch the proof. For the 2D case, with a process similar to the
proof in [39, Theorem 4.2], we can obtain the total cost for the factorization algorithm:

(4.1) ξfact =

lmax∑
l=ls+1

4lO

((
N

2l

)3
)

︸ ︷︷ ︸
before the switching level

+

ls∑
l=0

4lO

(
r

(
N

2l

)2
)

︸ ︷︷ ︸
after the switching level

= O

(
N3

2ls

)
+O(rN2ls).

Assume N and lmax are sufficiently large. ξfact is optimized when the costs before and
after the switch level ls are equal. That is,

(4.2) O

(
N3

2ls

)
= O(rN2ls) or ls = lmax −O(log r)−O(log ls) = O(logN).

Then ξfact = O(rn log n). In such a situation, the solution cost is

ξsol =

lmax∑
l=ls+1

4lO

((
N

2l

)2
)

+

ls∑
l=0

4lO

(
r
N

2l

)
= O(n(lmax − ls)) +O(r2lsN)

= O(n log r) +O(n log logn),

where (4.2) is used. The memory size σmem can be similarly estimated.
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For three dimensions we similarly have

ξfact =

lmax∑
l=ls+1

8lO

((
N

2l

)6
)

+

ls∑
l=0

8lO

(
r

(
N

2l

)4
)

= O

(
n2

(
1

8

)ls
)

+O(rn4/3),

ξsol =

lmax∑
l=ls+1

8lO

((
N

2l

)4
)

+

ls∑
l=0

8lO

(
r

(
N

2l

)2
)

= O

(
n4/3 1

2ls

)
+O(rn2/32ls).

Here, if we minimize ξfact, we get ξfact = O(rn4/3) and ξsol = O(rn). This can be
improved by minimizing ξsol instead. The optimality condition is

(4.3) 2ls = O(N/r1/2).

Then we get the results in row 3 of Table 4.1.
According to this theorem, when r is small, our factorization method has per-

formance close to the fully structured version (Remark 3.2). The solution costs and
memory requirements of the two versions are in about the same orders in both 2D
and 3D cases.

For 2D discrete elliptic equations, it is known that r = O(1) [8]. Thus, our
structured algorithms have nearly linear complexity. This similarly holds for 2D
Helmholtz equations where the rank bound is r = O(log n) under certain assumptions
[14]. For three dimensions, the bound is r = O(n1/3) [8] and Theorem 4.1 indicates
ξfact = O(n5/3), ξsol = O(n7/6). However, these bounds can be significantly improved
as follows.

4.2. Sparse rank relaxation. The estimates above are useful when the HSS
rank bound r is small. When r is large or depends on the HSS matrix size, the
analysis can highly overestimate the actual costs. In fact, the numerical ranks of the
individual HSS blocks at different levels of the HSS tree can be allowed to increase
along the level, so that even if r is large, we can still achieve satisfactory complexity.
This is explained as follows.

Lemma 4.2 ([42] dense rank relaxation). Suppose F is an N ×N dense matrix,
and T is a perfect binary tree with lmax = O(logN) levels. Partition F into O(logN)
levels of HSS blocks following T so that the HSS block rows corresponding to the nodes
at level l of T have row dimensions Nl ≡ O(N/2l) and maximum numerical rank rl.
Then for an rl value, the costs for the construction of an HSS form for F , its ULV
factorization, and the ULV solution are ξ̃constr, ξ̃fact, and ξ̃sol flops, respectively, and
the memory size is σ̃mem, as shown in Table 4.2.

We call each rl in Table 4.2 a rank pattern. Such rank patterns have been observed
in various practical problems, although an analytical proof is not yet available. As
an example, Figure 4.1 shows rl for two dense frontal matrices in the multifrontal
factorization of a 3D discretized Helmholtz equation. We observe that, for each dense

frontal matrix, rl is roughly O(N
1/2
l ).

Based on this lemma, we have the following result, whose earlier variations can
be found in [37] and the report [41].

Theorem 4.3 (sparse rank relaxation). Assume A is a discretized matrix of order
n. Suppose each order N frontal matrix Fi satisfies the condition of F in Lemma 4.2.
Let the costs of Algorithms 1–2 applied to A be ξfact and ξsol flops, respectively, and
the memory size be σmem. Then if rl satisfies the patterns as in Lemma 4.2, we have
the following results:
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Table 4.2

Costs and storage of HSS construction, ULV factorization, and ULV solution algorithms with
rank relaxation, where p ∈ N, α > 0, and r = max rl is the HSS rank of H.

rl r = max rl ξ̃constr ξ̃fact ξ̃sol σ̃mem

O(1) O(1)
O(N2) O(N)

O(N) O(N)
O((logNl)

p) O((logN)p)

p > 3 O(N1/p)

O(N
1/p
l ) p = 3 O(N1/3) O(N2) O(N logN)

p = 2 O(N1/2) O(N2 logN) O(N3/2) O(N logN) O(N logN)

O(αlmax−lr0)

α < 3
√
2 < O(N1/3) O(N2) O(N)

O(N) O(N)α = 21/3 O(N1/3) O(N2) O(N logN)

21/3<α<21/2 < O(N1/2) O(N2) O(N logα3
)

α = 21/2 O(N1/2) O(N2 logN) O(N3/2) O(N logN) O(N logN)

10
2

10
3

10
4

10
5

10
1

10
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10
3

Nl

r l

 

 

rl(N = 4 × 104)
rl(N = 2 × 104)√

Nl

Fig. 4.1. Numerical rank patterns rl of the HSS blocks at level l for two dense frontal matrices
of sizes N = 2 × 104 and 4× 104, respectively, in the multifrontal factorization of a 3D discretized
Helmholtz equation.

Table 4.3

Factorization cost ξfact, solution cost ξsol, and storage σmem of the structured multifrontal
method applied to a discretized matrix A of order n on a 2D N ×N mesh, where p ∈ N and α > 0.

rl r = max rl ξfact ξsol σmem

O(1) O(1)
O(n logn)

O(n log logn) O(n log logn)

O((logNl)
p) O((logN)p)

O(N
1/p
l )

p ≥ 3 O(N1/p)

p = 2 O(N1/2) O(n log2 n)

O(αlmax−lr0)
α ≤ 21/3 O(N1/3) O(n logn)

21/3<α≤21/2 O(N1/2) O(n log2 n)

• If A is obtained from a 2D N × N mesh and n = N2, the results are given
in Table 4.3. The switching level ls satisfies lmax− ls = O(logN), so that the
factorization costs at the levels before and after ls are the same.
• If A is obtained from a 3D N × N × N mesh and n = N3, the results are
given in Table 4.4. The switching level ls satisfies lmax − ls = O(logN), so
that the solution costs at the levels before and after ls are the same.

Proof. The proof is similar to that of Theorem 4.1, except that the results in

Lemma 4.2 are used to replace some operations. For example, when rl = O(N
1/2
l ) in
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Table 4.4

Factorization cost ξfact, solution cost ξsol, and storage σmem of the structured multifrontal
method applied to a discretized matrix A of order n on a 3D N × N × N mesh, where p ∈ N and
α > 0.

rl r = max rl ξfact ξsol σmem

O(1) O(1)
O(n4/3) O(n) O(n)O((log2 Nl)

p) O((log2 N)p)

O(N
1/p
l ), p > 3 O(N1/p)

O(N
1/p
l )

p = 3 O(N1/3) O(n4/3) O(n log1/2 n) O(n log1/2 n)

p = 2 O(N1/2) O(n4/3 logn) O(n logn) O(n logn)

O(αlmax−lr0)
α ≤ 21/3 O(N1/3) O(n4/3) O(n log1/2 n) O(n log1/2 n)

21/3<α≤21/2 O(N1/2) O(n4/3 logn) O(n logn) O(n logn)

the 2D case, (4.1) is replaced by

ξfact =

lmax∑
l=ls+1

4lO

((
n1/2

2l

)3
)

+

ls∑
l=0

4lO

((
n1/2

2l

)2

log

(
n1/2

2l

))

=

lmax∑
l=ls+1

4lO

((
n1/2

2l

)3
)

+ n

ls∑
l=0

(
1

2
log n− l

)
=

n3/2

2ls
+ nls(log n− ls).

The minimum is O(n log2 n) when O(n1/2/[ls(logn− ls)]) = 2ls .
Remark 4.1. We can see that the HSS rank r of Fi does not have to be bounded by

a small constant. For example, as long as the rank pattern rl = O(N
1/2
l ) at different

hierarchical levels of Fi holds, A can be factored in about ξfact = O(n4/3) flops, even
though r is as large as O(N1/2) and grows with N . Moreover, the solution costs and
the storage are nearly linear in n. The discretized 3D Helmholtz equation mentioned
in Figure 4.1 satisfies such a condition. On the other hand, the fixed-rank analysis
in Theorem 4.1 would give ξfact = O(n1/3 · n4/3) = O(n5/3), which overestimates the
cost.

Remark 4.2. If the solver is used as a preconditioner, we can set a relatively large
tolerance in the compression. This saves the costs of the structured factorizations after
the switching level ls. According to the complexity optimization strategies, this also
indicates that the number of structured factorization levels in T can be increased, so
as to further improve the efficiency of the factorization.

5. Numerical experiments. We demonstrate the performance of our algo-
rithms with some examples. In addition to the notation in section 4.2, we also use
the following:

• NEW: The new structured multifrontal factorization and solution.
• MF: The exact multifrontal method.
• e2 =

‖x−x̃‖2

‖x‖2
, γ2 =

‖Ax̃−b‖2

‖b‖2
, where x and x̃ are the exact and approximation

solutions of Ax = b, respectively.
Example 1. We consider a Helmholtz equation

(5.1) [−Δ+ ω2c(x)−2]u = f ,

where ω is the angular frequency, c(x) is the velocity field, and f is the forcing term.
First, consider the 2D case. The Helmholtz operator with ω = 5 Hz is discretized

on N ×N meshes. We solve linear systems Ax = b with the discretized matrix A of
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Fig. 5.1. Example 1: Flop counts and timing of NEW for (5.1) discretized on N ×N meshes in
two dimensions, as compared with MF.

Table 5.1

Example 1: Memory size σmem (number of nonzero entries in the factors) of NEW and MF for
(5.1) discretized on N ×N meshes in two dimensions.

N (n = N2) 256 512 1024 2048 4096
lmax 13 15 17 19 21

MF 5.36E6 2.54E7 1.18E84 5.34E8 2.40E9
NEW 4.88E6 2.06E7 8.59E7 3.53E8 1.44E9

order n = N2. A sequential code in Fortran 90 for NEW is tested on a 2.33 GHz Intel
E5410 processor. The flop counts and timing for the factorization method are shown
in Figure 5.1. For N = 28, 29, . . . , 212 = 4096, we use lmax as in Table 5.1. A relative
tolerance τ = 10−6 and lmax− ls = 9 are used in NEW. Such a choice of ls roughly gives
the minimum factorization cost for each N . This is also consistent with Theorem 4.3,
which indicates that lmax − ls only changes very slowly for different N .

The memory sizes σmem of the algorithms are also reported in Table 5.1. σmem of
both NEW and MF in the table scales roughly linearly, but NEW performs better. That
is, when N doubles and n quadruples, σmem also roughly quadruples.

The solution costs and the accuracies of the algorithms are given in Table 5.2,
where the right-hand side b in Ax = b is obtained with a random x. Again, the
solution cost of NEW scales linearly. NEW also produces modest accuracies. After a few
steps of iterative refinements, high accuracies are obtained, and are comparable to
those of MF.

Similarly, we test A discretized on N ×N ×N meshes in the 3D case. The results
are shown in Table 5.3, with the values of lmax. A relative tolerance τ = 10−6 and
lmax − ls = 10 are used in NEW. Again, this choice of ls roughly gives the minimum
factorization cost for each N . The accuracies are similar to those in the 2D case and
are not shown.

Example 2. To show that the method is more generally applicable, we test it
on some matrices from the University of Florida sparse matrix collection [10]. These
matrices arise from various backgrounds. See Table 5.4.

The performance of the method is shown in Table 5.5. For NEW, we choose τ =
10−6, and lmax − ls = 7, 7, 8, 6, 6, and 7 for the matrices from the left to the right
in Table 5.5, respectively. The matrices are relatively small. However, when they are
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Table 5.2

Example 1: Solution costs ξsol and accuracies of the two algorithms discretized on N×N meshes
in two dimensions.

N (n = N2) 256 512 1024 2048 4096
lmax 13 15 17 19 21

MF 1.06E7 5.03E7 2.33E8 1.06E9 4.76E9
NEW 9.78E6 4.13E7 1.72E8 7.09E8 2.89E9

(i) Solution flops ξsol of NEW and MF.

N (n = N2) 256 512 1024 2048

MF
e2 1.25E−14 2.46E−14 7.61E−14 8.59E−14
γ2 2.13E−16 2.14E−16 2.93E−16 3.09E−16

NEW

Original
e2 5.13E−6 1.17E−5 2.30E−5 3.39E−5
γ2 4.54E−8 6.59E−8 7.37E−8 8.78E−8

After 2 steps of e2 1.01E−14 1.90E−14 7.92E−14 1.99E−13
iterative refinement γ2 1.39E−16 1.56E−16 3.63E−16 6.80E−16

(ii) Accuracies of NEW and MF (relative error e2 and relative residual γ2).

Table 5.3

Example 1: Costs (flops) and storage (number of nonzeros) of NEW and MF for (5.1) discretized
on N ×N ×N meshes in three dimensions.

N (n = N3) 48 96 192
lmax 12 15 18

ξfact
MF 1.58E11 1.05E13 6.84E14
NEW 1.83E11 8.32E12 2.63E14

σmem
MF 1.06E08 1.87E09 3.18E10
NEW 9.82E07 1.24E09 1.40E10

ξsol
MF 2.13E08 3.74E09 6.36E10
NEW 2.01E08 2.56E09 2.89E10

Table 5.4

Example 2: Test matrices from the University of Florida sparse matrix collection [10], where
nnz denotes the number of nonzeros of the matrix.

Matrix n nnz Description
apache2 715,176 4,817,870 3D SPD finite difference matrix from

“APACHE small”

ecology2 999,999 4,995,991 Landscape ecology problem with circuit
theory applied to modeling animal
movement and gene flow

G3 circuit 1,585,478 7,660,826 Circuit simulation matrix from
Okuyucu, AMD, Inc.

parabolic fem 525,825 3,674,625 Parabolic finite element matrix for a
diffusion-convection reaction in
computational fluid dynamics

thermomech dM 204,316 1,423,116 Finite element method for modeling
the temperature and deformation
of a steel cylinder

tmt sym 726,713 5,080,61 Symmetric electromagnetic matrix from
Isaak, Computational EM Works
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Table 5.5

Example 2: Costs and storage (number of nonzero entries in the factors) of NEW and MF for the
test matrices in Table 5.4.

Matrix A apache2 ecology2 G3 circuit parabolic fem thermomech dM tmt sym

lmax 15 16 17 14 14 15

ξfact
MF 2.52E11 2.59E10 8.77E10 9.14E9 8.56E8 1.33E10
NEW 1.51E11 1.26E10 5.20E10 6.75E9 6.46E8 8.68E9

σmem
MF 1.77E8 4.88E7 1.14E8 2.50E07 6.51E6 3.31E7
NEW 9.19E7 2.77E7 6.40E7 1.66E07 4.79E6 1.93E7

Table 5.6

Example 2: Accuracies of NEW and MF for the test matrices in Table 5.5, where kir is the number
of iterative refinement steps.

Matrix A apache2 ecology2 G3 circuitparabolic femthermomech dM tmt sym

MF
e2 2.51E−132.08E−13 1.33E−13 5.73E−14 2.90E−16 1.92E−11
γ2 3.49E−162.24E−16 2.45E−16 2.42E−16 2.26E−16 2.19E−16

Original
e2 1.43E−4 1.46E−3 1.66E−4 2.39E−5 2.69E−9 1.31E−3
γ2 2.19E−8 2.87E−8 7.63E−9 1.62E−8 2.01E−9 2.08E−8

NEWAfter kir 4 5 4 3 2 5
iterative e2 2.13E−137.34E−12 1.04E−13 4.61E−14 1.67E−16 2.01E−12
refinement γ2 1.66E−161.45E−16 1.09E−16 1.59E−16 2.86E−16 1.58E−16
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(3)
(4)(5)(6)

(1) CG
(2) PCG−bdiag
(3) PCG−band

(4) PCG−NEW (τ=10−1)

(5) PCG−NEW (τ=10−2)

(6) PCG−NEW (τ=10−3)

Fig. 5.2. Example 3: Convergence of the conjugate method (CG), CG with a block diagonal
preconditioner (PCG-bdiag), CG with a banded preconditioner (PCG-band), and CG with the new solver
as the preconditioner (PCG-NEW), where a diagonal block size 20 is used in PCG-bdiag, a half-bandwidth
20 is used in PCG-band, and three τ values are used in PCG-NEW.

factored, NEW is up to twice as fast as MF. NEW also requires less memory in the table.
The accuracies are shown in Table 5.6. NEW reaches accuracies comparable to those
of MF after few steps of iterative refinement.

Example 3. In this example, we test the effectiveness of the method as a precon-
ditioner, when a larger relative tolerance τ is used in the compression. The matrix
tmt sym in Table 5.4 of Example 2 is tested. Its one norm condition number (returned
by the MATLAB function condest) is about 1.1× 109.

In Figure 5.2, we show the convergence behaviors of the conjugate method (CG), CG
with a block diagonal preconditioner (PCG-bdiag), CG with a banded preconditioner
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Table 5.7

Example 3: Costs and accuracies for Figure 5.2, where the precomputation is to get the precon-
ditioner (factorization).

Precomputation flops Total flops Number of iterations γ2

CG N/A 1.18E11 6, 517 2.93E − 15
PCG-bdiag 1.94E8 2.24E11 4, 822 2.04E − 15
PCG-band 3.39E8 1.96E11 3, 714 2.70E − 15

τ=10−3 5.73E9 1.06E10 23 1.31E − 16

PCG-NEW τ=10−2 4.63E9 2.01E10 77 1.91E − 16

τ=10−1 3.88E9 3.51E10 161 1.97E − 16

(PCG-band), and CG with the new solver as the preconditioner (PCG-NEW). The matrix
is ordered by nested dissection, so that PCG-band has a significant amount of off-
diagonal entries as compared with PCG-bdiag. In PCG-NEW, lmax− ls = 6 is used. The
final costs and accuracies are given in Table 5.7.

Clearly, the convergence of PCG-NEW with τ = 10−3, 10−2, or 10−1 is significantly
faster than that of the other methods, and the cost is lower, although PCG-band

performs better than PCG-bdiag. (If τ is much smaller, the cost of PCG-NEW will be
higher.) The structured preconditioner needs about 1.5 times more storage than the
block diagonal one. The storage can be reduced if we use a smaller lmax − ls, which
will slightly increase the number of iterations.

Remark 5.1. In our future research, we expect to compare systematically the
method with multigrid preconditioners. As observed in [14, 35, 39], structured factor-
izations have a good potential in handling some situations which can cause difficulties
for multigrid, such as multiple frequencies and incompressible limits [15, 20].

These examples are intended to show the complexity and accuracies of our new
algorithms. An efficient reordering scheme for irregular meshes is expected to be done
so that we can solve larger problems. Ordering schemes and pivoting strategies for
nonsymmetric matrices will be considered in future work. Note that the structured
factorization is not guaranteed to preserve the positive definiteness for an SPD matrix
(although it is generally positive definite), since the ULV factorization is not guaran-
teed to do so for an SPD HSS matrix. We plan to combine the ideas here with some
structured robustness techniques, say, in [21].

6. Conclusions. We show a new structured multifrontal method which is sim-
pler and more general than some similar ones. In a strategy of combing the multi-
frontal method with rank-structured matrices, we show a concept of reduced matri-
ces. This concept enables us to replace the operations on large structured matrices
by those on simple compact ones. The performance is studied for both 2D and 3D
discretized matrices. The sparse rank relaxation idea allows us to use our method to
solve more general problems where the related off-diagonal ranks are unbounded and
follow certain rank patterns.

These ideas are very useful in developing other structured methods, especially
those avoiding dense update matrices, which will appear later. The idea of reduced
matrices can help overcome the major computational cost for computing the update
matrices in the factorization. We also expect to discuss systematically the parallel
implementation and analysis in future work.
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