
OPEN TORELLI LOCUS AND COMPLEX BALL QUOTIENTS

SAI-KEE YEUNG

Abstract. We study the problem of non-existence of totally geodesic complex ball quo-
tients in the open Torelli locus in a moduli space of principally polarized Abelian varieties
using analytic techniques.

§1. Introduction

1.1 Let Mg be the moduli space or stack of Riemann surfaces of genus g > 2. Let Mg be
the Deligne-Mumford compactification of Mg. Let Ag be the moduli space of principally
polarized Abelian varieties of complex dimension g. We know that Ag = Sg/Sp(2g,Z) is

the quotient of the Siegel Upper Half Space Sg of genus g. Let Ag be the Bailey-Borel
compactification of Ag. Associating a smooth Riemann surface represented by a point in
Mg to its Jacobian, we obtain the Torelli map jg : Mg → Ag. The Torelli map extends

to jg : Mg → Ag. The image T og := jg(Mg) is called the open Torelli locus of Ag. It is
well-known that the Torelli map jg is injective on Mg. As a mapping between stacks, the
mapping tg|Mg is known to be an immersion apart from the hyperelliptic locus, which is
denoted by Hg. Hg is the set of points in Mg parametrizing hyperelliptic curves of genus
g.

It is a natural problem to study Mg, jg and to characterize the Torelli locus in Ag.
There are many interesting directions and approaches to the problems. Our motivation
comes from the following conjecture in the literature.

Conjecture 1. (Oort [O]) Let T og be the open Torelli locus in the Siegel modular variety
Ag. Then for g sufficiently large, the intersection of T og with any Shimura variety M ⊂ Ag
of strictly positive dimension is not Zariski dense in M .

The problem is related to a conjecture of Coleman [C] that the cardinality of CM points
on Mg cannot be infinite if g is sufficiently large. Shimura varieties are arithmetic locally
Hermitian symmetric spaces. Hence we may consider a geometrically slightly more general
question of whether there exists a locally Hermitian symmetric space in Ag with a Zariski
open set in T og . In such case, the lattice Γ involved in the complex rank one case, namely
complex balls Bn

C = PU(n, 1)/P (U(n)× U(1)), may not be arithmetic.
Conjecture 1 is open, but there are quite a few interesting partial results. First of all

there is the result of Hain [Ha] that for M locally Hermitian symmetric of rank at least
2, it cannot happen that M ⊂ Tg(Mg) − (tg(Hg) ∪ tg(Mg\Mg)), cf. also de Jong-Zhang
[dJZ] for precise formulation and some results. On the other hand, there is the result of
de Jong-Noot [dJN] that there are examples of Shimura curves in Mg for g = 4 and 6. A
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more systematic and complete treatment in this direction can be found in Moonen [Moo].
To the knowledge of the author, not much is known for complex ball quotients of dimension
n > 2, apart from some restrictions in terms of Higgs bundles given in Chen-Lu-Tan-Zuo
[CLTZ]. A possible reason is that on the one hand rigidity results in general are not strong
enough for super-rigidity properties in the rank one complex cases, and on the other hand
the problem is not concrete enough to be handled by geometric techniques developed for
specific Riemann surfaces.

1.2 The goal of this paper is to provide a method which is applicable to locally Hermitian
symmetric spaces and in particular to all complex ball quotients of dimension n > 2. It is
a weaker statement but is in support of Conjecture 1.

Theorem 1. The set T og − jg(Hg) ⊂ Ag for g > 2 does not contain any complex hyperbolic
complex ball quotient, compact or non-compact with finite volume, of complex dimension at
least 2 as a totally geodesic complex suborbifold of Ag.

Remarks
The method of proof applies immediately to other locally Hermitian symmetric spaces of
complex dimension at least 2. We refer the readers to Section 3.5 and 4.4 for more details.
However, the end result for rankRM > 2 followed already from the results of [Ha], where
the proof is completely different.

Combining Theorem 1, the results of [Ha], the results of [Mö] and the very recent result
of [AN], we have now a rather complete picture for Shimura varieties on the complement of
the hyperelliptic locus in the open Torelli locus.

Theorem 2. Let g > 2. The space T og − jg(Hg) ⊂ Ag in the Siegel modular variety Ag
does not contain any Shimura subvariety of Ag, except when M is the Torelli image of a
Riemann surface with genus g = 3, 4. There is only one curve for each of g = 3, 4, with
universal families given by y4 = x(x− 1)(x− t) and y6 = x(x− 1)(x− t) respectively.

It is a pleasure for the author to thank Ngaiming Mok for very helpful comments and
suggestions. The author is also indebted to the referee for pointing out mistakes in earlier
drafts of the paper and for other useful comments.

§2. Preliminaries and rigidity

2.1 The approach we take is complex analytic, trying to compare various Kobayashi metrics
making use of Schwarz Lemma and results in rigidity. The reader may refer to 3.1 for a
brief summary of facts needed about Kobayashi metric.

As mentioned in the introduction, we may consider either M as a smooth submanifold
of Ag, or a suborbifold. In the latter case the Kobayashi metrics are considered to be in
orbifold sense as follows. Recall that all the singularities of Ag are orbifold singularities since
Ag is a quotient of the Siegel Upper Half Space Sg by a discrete group and Sg is smooth. By
an orbifold embedding (resp. mapping) f : M → Ag, we mean that there is a finite covering
π : A′g → Ag so that A′g is smooth and there is an embedding (resp. mapping) f ′ : M ′ → A′
for which M ′ is smooth and f ◦ π = π ◦ f ′. Since Kobayashi metric is invariant under a
biholomorphism and in particular invariant under a local holomorphic covering map, the
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argument throughout the article would be independent of the local uniformization taken at
each orbifold singularity.

Hence the Kobayashi metric studied throughout the article is in orbifold sense as ex-
plained.

2.2 The proof of Theorem 1 makes use of the following result in [A].

Proposition 1. ([A] Theorem 1.1) Let M̃ = BN
C be the complex unit ball of dimension

N > 2. There is no holomorphic embedding of M̃ into Tg which is isometric with respect to

the Kobayashi metrics on M̃ and Tg.

§3. Totally geodesic embeddings from complex balls to Siegel Upper spaces

3.1 Our approach relies on basic properties concerning totally geodesic embeddings of com-
plex balls in the Siegel Upper Half Space. The purpose of this section is to explain results
in this direction relevant to our purpose. For this purpose, it is more convenient to consider
the bounded model of Sg, namely, the classical bound domain IIIg. The main technical
result of this paper is Proposition 3 stated in 3.4.

Basic properties of classical domains can be found in [He], [Mok1] and [Sat]. Since we
are going to use the results of Satake, we follow closely the exposition in [Sat]. First let
us explain briefly classical domains of type Ip,q and IIIk according to 1.2, 1.3 of [Sat], of
which the terminology is to be used in later parts of this section.

(i). Ip,q: Consider V a vector space over C equipped with a non-degenerate Hermitian form
F of signature (p, q) with p > q > 0. Ip,q = D(V, F ) =: D is the space of q dimensional
complex subspace V− of V so that F |V− is negative definite. Let V+ be the orthogonal
complement of V− in V , so that F |V+ is positive definite. A point in D is determined

by V−, or the pair (V+, V−). Let z0 be a fixed point D, determined by (V
(0)
+ , V

(0)
− ) and

for convenience can be chosen to be the origin. Let (e1, · · · , ep) and (ep+1, · · · , ep+q) be

orthonormal basis of V
(0)
+ and V

(0)
− respectively, so that together they form a basis of V . A

point z ∈ D is now determined by (V+, V−) with V− spanned by the basis

(1)

p∑
i=1

eizij + ep+j , 1 6 j 6 q,

where the (p, q) matrix Z = (zij) satisfies Iq −t ZZ > 0. Denote by Mp,q the space of all

p× q matrices with entries in C. Identifying D with {Z ∈Mp,q : Iq − Z
t
Z > 0}, we realize

Ip,q as a bounded domain in Cpq.
The complex ball Bn

C in Cn is just In,1.

(ii). IIIk: Consider VR a vector space over R of dimension 2k equipped with a non-
degenerate alternating bilinear form A. Let V = VC be the complexification of VR. A
extends naturally to V . The Hermitian form defined by

(2) F (x, y) := iA(x̄, y)
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has signature (k, k) on V . IIIk = D(VR, A), or simply, D, is the space of all complex
structures I on VR so that the bilinear form A(x, Iy) is symmetric and positive definite. Let
W = {x ∈ V |Ix = ix} so that V = W +W . It follows that

(3) A|W = 0, F |W > 0

and W is the orthogonal complement of W in V with respect to F . Hence I ∈ D is
determined by W or the pair (W,W ) satisfying (3). Fix a point zo ∈ D corresponding to
W o. Let (e1, · · · , ep) be an orthonormal basis of W o with respect to F and let

(4) ek+i = ei, 1 6 i 6 k.

As described in Ip,q with p = q = k in the description of W ∈ D, it follows that W is

described by a k × k symmetric complex matrices Z with Ik − Z
t
Z > 0. Hence D is

identified with the bounded domain {Z ∈Mk,k : Z = Zt, Ik − Z
t
Z > 0} ⊂ Cn(n+1)/2.

The Siegel Upper Half Space Sg is biholomorphic to IIIg.

3.2 Here we recall briefly the classification of holomorphic totally geodesic embeddings of
a Hermitian symmetric domain into another. In general, the classification of holomorphic
totally geodesic embedding of a Hermitian symmetric space N1 = G1/K1 into another Her-
mitian symmetric space N2 = G2/K2 with respect to the Bergman metrics has been given
by Satake [Sat] and Ihara [I], where Gi is a semi-simple Lie group and Ki a maximal com-
pact subgroup for i = 1, 2. Since the manifolds involved are symmetric, the classification of
totally geodesic embeddings is reduced to the classification of injective Lie algebra homo-
morphisms ρ : g1 → g2 for the corresponding Lie groups. The invariant complex structure
on Ni is given by an element Hoi ∈ Ki. The totally geodesic embedding is holomorphic if
the condition (H1), namely, ρ ◦ ad(Ho1) = ad(Ho2) ◦ ρ is satisfied. The condition (H1) is a
consequence of the condition (H2), namely, ρ(Ho1) = Ho2. This is explained on page 427 of
[Sat]. Some explanation in terms of root system and Dynkin diagrams by Ihara in [I]. We
refer the reader to [Sat] for any unexplained notation and terminology.

3.3 We consider now the specific situation of classification of holomorphic totally geodesic
embeddings of IN,1 into IIIg. Let 0 be the origin in BN

C , which may be assumed to be
mapped to the origin 0 of Sg realized as the bounded domain IIIg as above, since the
spaces involved are homogeneous. The classification is described in Theorem 1, 3.2 and
the Table on page 460 of [Sat]. From the description there, any holomorphic embedding of
IN,1 to IIIg is a direct sum of a number of compositions of the following types of totally
geodesic mappings.

Type 1, standard embeddings: This includes embedding i1a : IN,1 → Ip,q, for N 6 p and
i1b : IIIk → IIIl, for k < l, given by the standard representation or standard embedding.

Type 2, connecting embeddings: The embedding i2 = ιp,q : Ip,q → IIIp+q is given in page
432-433 of [Sat],

Ip,q 3 Z 7−→
(

0 tZ
Z 0

)
∈ IIIg ∼= Sp+q.

Type 3, absolutely irreducible embeddings: The embedding i3 : Ip,1 → Ir,s, r =
(
p
m

)
, s =(

p
m−1

)
, and i3 : Ip,1 → Ir in the case of r = s, which happens when p ≡ 1 (mod 4) and
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m = p+1
2 . This corresponds to the skew-symmetric tensor representations of degree m as

explained in 3.2 and the Table on page 460 of [Sat].
The construction is described in page 448 of [Sat]. The representation is given by ρ = Λm

of G ∼= SU(p, 1), corresponding to skew-symmetric tensors of degree m. In terms of a
fundamental system of roots of the Lie algebra involved, the highest weight λρ of ρ is given
by

λρ = (

m︷ ︸︸ ︷
1, 1, · · · , 1, 0, · · · 0)

with 1 6 m 6 p. Recall the setting given in (3.1)(i) in the case of Ip,1. Let (ei)i=1,··· ,p+1

be an orthonormal basis of V , a basis of the exterior algebra Λm is given by ei1···im =
ei1 ∧ · · · ∧ eim , i1 < i2 < · · · < im. As in (3.1)(i), there is a Hermitian form F on V , which

induces F (m) on Λm given by

F (m)(x1 ∧ · · · ∧ xm, y1 ∧ · · · ∧ ym) = det(F (xi, yj))

for xi, yj ∈ V and is invariant under ρ(gsup,1). Since

F (m)(ei1···im , ei1···im) =

{
1 im < p+ 1,
−1 im = p+ 1,

the Hermitian for F (m) has signature (r, s) with r =
(
p
m

)
, s =

(
p

m−1
)
.

The totally geodesic isometry of the symmetric domains f : Ip,1 → Ir,s described here is
given in page 448 of [Sat] by

(5)
D(V, F ) 3 (V+, V−) 7−→ (Λm(V+)⊗ 1,Λm−1(V+)⊗ V−) ∈ D(Λm(V ), F (m)).
‖ ‖ ‖ ‖
Ip,1 3 z 7−→ z′ ∈ Ir,s

In the case of representation in IIIr ⊂ Ir,r, this corresponds to the above discussion with

r = s and hence m = p+1
2 and p ≡ 1 (mod 2). In such case, we can define a Bilinear form

B on Λm(V )× Λm(V ) by

x ∧ y = B(x, y)e1···p+1

which satisfies

B(y, x) = (−1)m
2
B(x, y).

Hence if m ≡ 1 (mod 2) or p ≡ 1 (mod 4), the bilinear form B(x, y) is an alternating
bilinear form. Furthermore, there is a semi-linear transformation σ on Λm(V ) so that

F (m)(x, y) = iB(xσ, y),

where σ satisfying σ2 = 1 is explicitly written in [Sat], page 449, as follows. Let M =
(i1, · · · , im) be an oriented subset of (1, 2, · · · , p+ 1) and M c the complement. Then

(6) eσM = a(M)eMc , a(M) = −iε(M c,M)η(M),

where ε(M c,M) = ±1 is the signature of the permutation of (M c,M) with respect to
(1, 2, · · · , p + 1) and η(M) = −1 (resp. 1) if p + 1 ∈ M (resp. p + 1 6∈ M). Hence
a(M) = ±i. σ serves and complex conjugate as in 3.1(ii). In this case, the bilinear form
B serves as the bilinear form A as needed in equation (2) in 3.1(ii) for the definition of
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IIIr. The totally geodesic isometry of the symmetric domains f : Ip,1 → IIIr is given by
(5) with r = s.

We summarize the result of [Sat], which is relevant to us, from Theorem 1 and the
Table on page 460 in [Sat]. As explained in 3.2, totally geodesic holomorphic embedding
corresponds to condition (H1), which by (a) below reduces the problem to representations
satisfying condition (H2). The Table on page 460 in [Sat] summarizes the representations
satisfying condition (H2) determined in Section 3 of [Sat].

Proposition 2. (Satake)
(a). Let ρ be a representation of g = su(m, 1) into IIIg satisfying condition (H1). Then
there exists absolutely irreducible representations ρi (1 6 i 6 r1) of g into (III)pi (pi > 0)
satisfying (H2) and absolutely irreducible representations ρi (r1 6 i 6 r1 + r2) of g into
(I)pi,qi (pi, qi > 0, pi + qi > 0) satisfying (H2) such that ρ is k equivalent to the direct

sum of representations
∑r1

i=1 ρi +
∑r1+r2

i=r1+1 ιpi,qi ◦ ρi up to a trivial representation, where∑r1
i=1 pi +

∑r2
i=r1+1(pi + qi) 6 g.

(b). An absolutely irreducible representation ρ of g into Ir,s or IIIr satisfying (H2) corre-
sponds to embeddings of type i3 described earlier.

We refer the reader to the original source [Sat] for any unexplained terminology. In
particular, the notion of k-equivariant and direct sum are described in §1 and §2 of [Sat].
The result of Satake applies to any semi-simple Lie algebra g of Hermitian type.

Let us now describe the mapping given in (5) more carefully, which is to be used later.

Lemma 1. In terms of standard coordinates, the totally geodesic mapping f : Bn → Ir,s ⊂
CN or IIIr ⊂ CN for r = s with f(0) = 0 with z′ = f(z) as described above is linear in z,
with image given by the intersection f(Bn) with a subspace of CN of appropriate dimension.

Proof We remark that the standard coordinates as used in [Sat] in the description above
are also the Harish-Chandra coordinates.

Consider first f : Ip,1 → Ir,s as given by (5). In terms of (1) for Ip,1, the point z
in (5) corresponds to V+ being spanned by

∑p
i=1 eizi + ep+1. Since it is a holomorphic

totally geodesic embedding, the mapping is equivariant with respect to the action of G
and in particular invariant under the action of the isotropy group K = S(U(p)× U(1)). In
particular, it suffices for us to investigate the image f(z) for z = (z1, 0, · · · , 0) with |z1|2 < 1.

Again, we use (e1, · · · , ep) and (ep+1) to denote some orthonormal basis of V
(0)
+ and V

(0)
−

respectively. With z as described, an orthonormal basis of V− and V+ at z are e′p+1 and

(e′1, e2, · · · , ep) respectively, where

(7) e′p+1 =
1√

1 + |z|2
(z1e1 + ep+1), e

′
1 =

1√
1 + |z|2

(e1 − z1ep+1).

To describe z′ in the image of f in (5), we need to investigate Λm−1(V+) ⊗ V− where

F (m) is negative definite, and express them in terms of base vectors of Λ
(0)
m = Λm(V

(0)
+ ) ⊕

Λm−1(V
(0)
+ ) ⊗ V (0)

− . From definition, Λm−1(V
(0)
+ ) ⊗ V (0)

− is generated by a basis consists of
the following two types of elements,
(i) ei1···im−1 ∧ e′p+1, where 1 < i1 < · · · < im−1 6 p,
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(ii) e′1 ∧ ei1···im−2 ∧ e′p+1, where 1 < i1 < · · · < im−2 6 p.

From the formula of e′p+1 in (7), we compute in case (i) that

(8) ei1···im−1 ∧ e′p+1 =
1√

1 + |z|2
((−1)m−1z1e1i1···im−1 + ei1···im−1(p+1))

which is proportional to

(9) (−1)m−1z1e1i1···im−1 + ei1···im−1(p+1).

Notice that we need the coefficient of ei1···im−1(p+1) to be 1 in the format of (1).
In case (ii), (7) gives

e′1 ∧ e′p+1 = e1 ∧ ep+1

and hence

(10) e′1 ∧ ei1···im−2 ∧ e′p+1 = e1i1···im−2(p+1).

Let u =
(
p−1
m−1

)
. It follows from the above explicit computation that for f : Ip,1 → Ir,s as

given in (5), the coordinates of z′ = f(z) are given by

(11) z = (z1, 0, · · · , 0) 7→ f(z) = z′ with z′ij =

{
(−1)m−1z1, 1 6 i 6 t, 1 6 j 6 u

0 otherwise

Similar constructions apply to f : Ip,1 → IIIr ⊂ Ir,r corresponding (5) with r = s. We
recall that the coordinates z′ in IIIr in the image of f is determined according to (1) in
(3.1) with respect to a corresponding basis of vectors in (Λm(V+) ⊗ 1,Λm−1(V+) ⊗ V−).
Moreover, the choice of the base vectors of is given by (4), choosing er+i to be the complex

conjugate of ei. In our case of Λ
(0)
m , the complex conjugate is given by σ in the setting of

(5) and eσIm = a(Im)eIcm in terms of earlier notations, here Im = i1 · · · im is an index set.
Hence z′ = (z′ij)16i,j6r are determined by having a basis of Λm−1(V+)⊗ V− of the form

(12)

r∑
i=1

eσIi(p+1)z
′
ij + eIj(p+1) =

r∑
i=1

a(Ii(p+ 1))e(Ii(p+1))cz
′
ij + eIj(p+1), 1 6 j 6 r

where a(Ii(p+ 1)) = ±1. From the expressions in (9) and (10), we see that (11) still applies
in the sense that z′ij are either 0 or (−1)mz1. This computation shows that in terms of

the standard coordinates of the bounded domains in CN as described in 1.3, 1.4 of [Sat]
or Chapter 4 §2 of [Mok 1] for the classical domains that the image is the intersection of
a line in Cn with Ir,s or Ir. As mentioned earlier, this works for any complex direction
obtained under the action of the isotropy group at 0 on the domain. Since the mapping f is
a totally geodesic mapping and is hence equivariant under the action of the isotropy group,
the lemma follows.

�

3.4 We now state the main result of this section.

Proposition 3. Let i : BN
C → IIIg be a totally geodesic embedding. Then there exists a

holomorphic map p : IIIg → BN
C so that p ◦ i is the identity mapping on BN

C .
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Proof Again, we let 0 be the origin in BN
C , which may be assumed to be mapped to the

origin 0 of IIIg, a bounded domain realization of Sg, as discussed earlier. To streamline
the presentation, let us consider each simple type of presentations i1, i2, i3 in details before
the general case described in Proposition 2.

Type 1: This includes embedding is given by i1 : IN,1 → Ip,q, for N 6 p or i1b : IIIk → IIIl,
for k < l, given by the standard embedding into the corresponding upper left hand corner
of the image.

The classical domain Ip,q is given as a symmetric space G/K with G = SU(p, q) and
K = S(U(p)×U(q)), where K is the isotopy group at 0. For a holomorphic totally geodesic
embedding i1a : BN

C
∼= IN,1 → Ip,q, conjugating by K if necessary, we may assume that

∂
∂z11
∈ (i1)∗(TBN

C
). Now we observe that ∂

∂zij
with i > 1 and j > 1 cannot lie in (i1a)∗(TBN

C
),

for otherwise the image i1a(B
N
C ) as a symmetric space would have real rank at least 2

considering the tangent vectors ∂
∂z11

and ∂
∂zij

, contradicting the fact that I1,N has real rank

1. It follows that i1a(B
N
C ) has to lie in one of the following two subspaces of Ip,q

I1,q = {z = [zij ] ∈ Ip,q|zij = 0 for i > 2} or Ip,1 = {z = [zij ] ∈ Ip,q|zij = 0 for j > 2}.
In either case, N 6 max(p, q) = q.

Suppose i1a(B
N
C ) ⊂ I1,q. Conjugating by some elements in K if necessary, we may assume

that mapping i1a is given by

i1a(z1, · · · , zN ) =


z1 · · · zN 0 · · · 0
0 · · · 0 0 · · · 0
...

...
0 · · · 0 0 · · · 0

 .
Consider the holomorphic projection map p1 : Ip,q → BN

C given by

p1(

 z11 · · · z1N zN+1 · · · z1q
...

...
zp1 · · · zpN zN+1 · · · zpq

) =


z11 · · · z1N 0 · · · 0
0 · · · 0 0 · · · 0
...

...
0 · · · 0 0 · · · 0

 .
Denote by Y the matrix in the domain and Z the matrix in the image. As the p× q matrix
Y satisfies I −t Y Y > 0 from definition, it follows that

∑N
i=1 |zi|2 6

∑p
i=1 |zi|2 < 1 and

hence the image of p1 lies in BN
C . Furthermore, it follows from definition that p1◦i1a = 1BN

C
.

Hence p1 gives us the retraction that we need.
For i1b : IIIk → IIIl, for k < l, given by the standard embedding into the corresponding

upper left hand corner of the image. Denote by p1b : IIIl → IIIk the projection onto the
upper left hand corner

p1b([zij ]i,j=1,··· ,l) = [zij ]i,j=1,··· ,k.

Let Y = [zij ]i,j=1,··· ,l and U = [zij ]i,j=1,··· ,k. The fact that Y is symmetric implies that U is

symmetric. Now Ig −Y Y > 0 implies that Ig′ −UU > 0 as each column vector of U is part
of a column vector of Y . Hence the image lies in IIIk.
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It is clear that p1b ◦ i1b|IIIg′ is the identity map and hence p3 is a projection.

Type 2: i2 = ιp,q : Ip,q → IIIp+q with ιp,q(Z) =

(
0 tZ
Z 0

)
. Define i2 : IIIp+q → Ip,q the

projection

IIIp+q 3 Y =

(
W1

tZ
Z W2

)
7−→

(
0 tZ
Z 0

)
7−→ Z ∈ Ip,q.

Here Y is symmetric. From the fact that Ip+q−Y Y > 0, it follows that Iq−tWW−tZZ > 0

and hence Iq −t ZZ > 0. Hence the image of i2 is really in Ip,q. It follows from definition
that p2 ◦ i2 = 1Ip,q is the identity map.

Type 3: i3 : Ip,1 → Ir,s or IIIr corresponding to the skew-symmetric tensor representations
of degree m. Since the second case can be considered as a special case of the first case, it
suffices for us to consider the case of Ir,s being the image. From Lemma 1 in 3.3, the image
of i3 is a linear subspace R := Im(i3) passing through the origin in IIIr. We claim that the
argument of Lemma 1 shows that there is a projection p3 : Ir,s → f(Ip,1) so that p3 ◦ i3|Ip,1
is identity on Ip,1. We actually take p3 be the orthogonal projection of Ir,s to the complex
linear subspace P of CN containing f(Ip,1) as a subdomain, after Lemma 1 To prove the
claim, since the domain involved is a convex domain in CN , it suffices for us to show that
p3(Ir,s) = f(Ip,1). Clearly p3(Ir,s) contains f(Ip,1). This in turn follows if we can prove the
corresponding statement for the projection of Ir,s to f(B1

C) for a geodesic B1
C ⊂ Bp

C
∼= Ip,1

through the origin, since f is equivariant with respect to the action of the isotropy groups at
0. Hence it suffices for us to show that the projection p4 of Ir,s to the line in CN containing
f(B1

C) is actually f(B1
C), where B1

C = {(z1, 0, . . . , 0) : |z1| < 1} as studied in the proof of
Lemma 1.

Recall that r =
(
p
m

)
, s =

(
p

m−1
)

and u =
(
p−1
m−1

)
. From (11) in the proof of Lemma 1, the

image of f is

(13) f(B1
C) =

{(
z1Iu 0u,a
0b,u 0b,a

)
, (z1, 0, . . . , 0) ∈ B1

C

}
where b =

(
p−1
m

)
, a =

(
p−1
m−2

)
, It is the identity matrix of size t and 0c,d is the zero matrix of

size c× d. Clearly

f(B1
C) ⊂ Ir,r ∼=

(
Ir,r 0u,a
0b,u 0b,a

)
,

where Ir.r is a bounded symmetric domain of type I.
Similar to the construction of I1a in the standard embedding earlier, it is clear that there

is a projection q1 : Ir,s → Iu,u as explained above by taking zeros in non-relevant entries.
Hence it suffices for us to show that there is a retraction q2 : Iu,u → {(z1Iu) : |z1| < 1}. Let
w = (wij) ∈ Iu,u. By definition, it satisfies Iq − w̄tw > 0 and hence |wij | < 1 for each i, j.
It suffices for us to define

q2(w) = (
1

u2

u∑
i,j=1

wij)Iu.

Clearly | 1
u2
∑u

i,j=1wij | < 1 as |wij | < 1. Furthermore q2(ζIu) = ζIu for ζ ∈ C, |ζ| < 1, and

hence q2|Im(f) is the identity map. Now it suffices for us to let p4 = q2 ◦ q1.
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This concludes the discussions on embeddings of the simple types. We now combine the
results from the above discussions with those from Proposition 2. According to Proposition
2a, the representation ρ involved is of form

r1∑
i=1

ρi +

r1+r2∑
i=r1+1

ιpi,qi ◦ ρi.

Suppose (r1, r2) = (1, 0) or (0, 1), that is the representation is irreducible. Then the
projection occurs from composition of projections corresponding to Type 1, 2, 3 embeddings
respectively, making use of Proposition 2a.

Consider now the general case. Note that each of the factors above corresponds to image
lying in some Type III classical domain IIIsi for 1 6 i 6 r1 or IIIpj+qj for r1 + 1 6 j 6
r1 + r2. As explained in §2 of [Sat], this corresponds to diagonal blocks of square matrices
in IIIg, where

∑r1
i=1 si +

∑r1+r2
j=r1+1(pi + qi) 6 g. For simplicity of notation, let us just define

sj = pj + qj for r1 + 1 6 j 6 r1 + r2. Hence we have

i : Ip,1
ia−→

 IIIs1 0 · · ·
0 IIIs2 · · ·
...

... . . .

 ib
↪−→ Ig.

The projection

pb : Ig −→

 IIIs1 0 · · ·
0 IIIs2 · · ·
...

... . . .


so that pb ◦ ib is identity is constructed exactly as in those Type i1 embeddings discussed
earlier. For each IIIsi , 1 6 i 6 r1 + r2, there is a projection psi : IIIsi → Ip,1 so that psi ◦ i1
is the identity map according to earlier discussions. The projection

pa :

 IIIs1 0 · · ·
0 IIIs2 · · ·
...

... . . .

 −→ Ip,1

is then defined by identifying Ip,1 with ia(Ip,1) and letting

pa =
1

r1 + r2
ps1 + · · ·+ 1

r1 + r2
psr1+r2

,

where addition is given in terms of the coordinate functions of the standard realization,
which is the Harish-Chandra coordinates for Ig. Clearly from construction, pa ◦ ia is the
identity. We may then define p = pa ◦ pb. It follows from construction that p ◦ i is the
identity. �

3.5 Though not really needed for this article, we mention that the argument of Proposition 3
can be applied to other pairs of Hermitian symmetric spaces of non-compact type, following
case-by-case checking as done above for classical domains using the results of [Sat], see also
[I]. In a more inspiring way, Ngaiming Mok [Mok3] has shown us a conceptual proof of such
a result for all Hermitian symmetric spaces of non-compact type, including those containing
factors of exceptional types without using classification results. This was done in terms of
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the Lie triple system and Harish-Chandra embedding for all pairs of Hermitian symmetric
spaces of non-compact type.

§4. Proofs of the main results

4.1 Denote by gV,K the Kobayashi (pseudo-)metric of a variety V , which is the positive
semi-definite Finsler metric defined as

√
gV,K(x, v) = inf{1

r
|∃f : ∆r → V holomorphic, f(0) = x, f ′(0) = v},

where ∆r is the disk of radius r in C centered at the origin. It follows from definition that
the metric on a manifold is the same as on its universal covering from the lifting properties
of a map from the unit disk. Note for orbifolds, we are considering orbifold maps and
orbifold uniformization as explained in 2.1.

From Ahlfors Schwarz Lemma, it follows easily that the Kobayashi metric on a complex
ball is precisely the same as the Poincaré metric which is the same as the Bergman metric.
The reader may consult Proposition 3 of [Y2] and the references quoted there for various
forms of Schwarz Lemma. Since we are considering quotients of bounded domains, it follows
from Schwarz Lemma that the Kobayashi metric is positive definite in this paper. Note
that the Teichmüller space Tg can be realized as a bounded domain in C3g−3 from Bers
Embedding.

Furthermore, it follows immediately from the definition that gV,K has decreasing proper-
ties in the following sense. Let F : M → N be a holomorphic mapping. Then gN,K(F∗v) 6
gM,K(v) for all v ∈ TxM . Again, the Kobayashi metric may be degenerate in general, but in
our case it is always non-degenerate. This follows from the fact that the manifolds involved
by uniformized by bounded domains in Cn for some n > 0 and the earlier discussions.

We have the following consequence of the decreasing property of the Kobayashi metric.

Lemma 2. Suppose M = BN
C /Γ is a totally geodesic subvariety of Ag. Then gM,K =

(j−1g )∗gT o
g ,K |M = gAg ,K |M .

Proof The inclusion map i : M → Ag is a holomorphic embedding. Now we have the
holomorphic mappings

(14) M →Mo
g → Ag.

The first holomorphic map in (12) comes from our assumption that M ⊂ T og and the fact

that j−1g |T o
g−jg(Hg) is a holomorphic map. Here we used the fact that jg is an injective

holomorphic map and is an immersion on Mg −Hg. The second holomorphic mapping in
(12) follows from Torelli mapping. The Torelli mapping is holomorphic by definition. Since
M is a complex submanifold of T og ⊂ Ag, it follows from definition of the Kobayashi metric
in terms of extremal functions that

(15) gM,K > (j−1g )∗gT o
g ,K |M > gAg ,K |M .

On the other hand, the Kobayashi metric on a manifold gV,K is the same as its lift g
Ṽ ,K

to

the universal covering Ṽ of V . Hence in terms of a totally geodesic BN in Siegel Sg, we need
to compare gBN ,K and gSg ,K |BN . It follows from Proposition 3 that there is a holomorphic
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map p : Sg → M̃ so that p ◦ i is identity. Hence for x ∈ M̃ ⊂ Sg and w ∈ TxM̃ ⊂ TxSg,
a holomorphic curve f : ∆r → Sg holomorphic with f(0) = x, f ′(0) = w gives rise to a

holomorphic map p ◦ f : ∆r → M̃ holomorphic with p ◦ f(0) = x and (p ◦ f)′(0) = w.
It follows from the decreasing property of the Kobayashi metric that gSg ,K |BN > gBN ,K ,
which is equivalent to gAg ,K |M > gM,K after descending to M from the universal covering
as discussed earlier.

Combining the above two paragraphs, we conclude that gSg ,K |BN = gBN ,K and that the
two inequalities in (13) can be replaced by equalities.

�

4.2 Theorem 1 now follows by putting the earlier arguments together.

Proof of Theorem 1 Assume for the sake of proof by contradiction that there exists
M = BN

C /Γ so that M is a totally geodesic subvariety of Ag with N > 1, and M ⊂
T og − jg(Hg) = jg(Mo

g), where Mo
g =Mg −Hg.

From Lemma 2, gM,K = (j−1g )∗gT o
g ,K |M = gAg ,K |M . In particular, (j−1g )∗gMo

g ,K |M =
gM,K . This however contradicts Proposition 1.

�

4.3 We remark that the argument in the proof of Theorem 1 can be applied to study the
non-existence of locally Hermitian symmetric space in T og − jg(Hg) as a totally geodesic
complex suborbifold for g > 2, a result proved earlier in [Ha]. For this purpose, we observe

that an analogue of Proposition 1 is true for M̃ being any Hermitian symmetric space as
given in [A]. Together with the remarks given in 3.5 and the results of [Mok3], the other
parts of the proof can be applied.

4.4 Proof of Theorem 2
From the results of [Ha], we know that any symmetric variety M in T og −jg(Hg) ⊂ Ag has

to be of real rank 1 as a locally symmetric space. Alternatively, to make the article more
self-contained, this follows from 3.5, 4.3 and the proof of Theorem 1. Since M is Hermitian
symmetric, we know that M has to be a complex ball quotient. Theorem 1 implies that
the complex dimension of M is 1 and hence M is a hyperbolic Riemann surface. From
the discussions above, such a Riemann surface M has to be a Shimura-Teichmüller in the
terminology of [Mö], since the Kobayashi metric, which is well-known to be the same as the
Teichmüller metric on Teichmüller spaces, is the same as the natural hyperbolic metric on
M as it is a totally geodesic curve in T og − jg(Hg). In such a case, Möller proved in [Mö]
that such a Riemann surface does not exist for genus g 6= 3, 4, 5, and the only examples for
g = 3, 4 are given in the statement of Theorem 2. Very recently, it was proved by Aulicino
and Norton in [AN] that there is no example in g = 5. Theorem 2 follows. �

Theorem 2 gives a necessary and sufficient condition for the existence of a locally Her-
mitian symmetric space in T og − jg(Hg).
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